高中数学必修4第三章 三角恒等变换知识点归纳
高中新课程数学(新课标人教A版)必修四《第三章 三角恒等变换》归纳整合
网 络 构 建
专 题 归 纳
解 读 高 考
专题一
给值求值
给出某些角的三角函数值,求另外一些角的三角函数值,解题关 键在于“变角”.使其角相同或具有某种关系,解题的基本方法 是: (1)将待求式用已知三角函数表示. (2)将已知条件转化从而推出可用的结论. 其中“凑角法”是解决 此类问题的常用技巧.解题时首先是分析已知式与待求式之间 角、函数、结构间的差异,有目的地将已知式、待求式的一方或 两方加以变换,找出它们之间的联系,最后求出待求式的值.
网 络 构 建 专 题 归 纳 解 读 高 考
【例 1】 已知 的值. 解
π π 1 sin4+αsin4-α=6,且
π sin 4α α∈2,π,求 1+cos2α
π π 1 ∵sin4+αsin4-α=6,
1 x=3.
1 1-tan2x 1-9 4 tan x tan x ∴tan 2x= 2tan x = 2 = 2 =9. 1-tan2x 答案 4 9
网 络 构 建
专 题 归 纳
解 读 高 考
5.(2011· 全国高考)已知 ________.
π α∈2,π,sin
5 α= 5 ,则 tan 2α=
网 络 构 建 专 题 归 纳 解 读 高 考
法二
22+1+cos 4x 22+2cos22x 21+cos22x 右边= = 8sin2xcos2x = 4sin2xcos2x = 2sin22x
sin2x+cos2x2+cos2x-sin2x2 2sin4x+cos4x 1 2 = = tan x + 2 2sin2xcos2x 2sin2xcos2x tan x =左边. 原式得证.
高中数学必修4第三章_三角恒等变换知识点(K12教育文档)
高中数学必修4第三章_三角恒等变换知识点(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学必修4第三章_三角恒等变换知识点(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学必修4第三章_三角恒等变换知识点(word版可编辑修改)的全部内容。
高中数学必修4第三章 三角恒等变换知识点1、同角关系:⑴商的关系:①sin tan cos y x θθθ== ②cos cot sin x y θθθ== ③sin cos tan y r θθθ==⋅ ④cos sin cot x rθθθ==⋅ ⑵倒数关系:tan cot 1θθ⋅=⑶平方关系:22sin cos 1θθ+=2、两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=- ⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+ ⑸()tan tan tan 1tan tan αβαβαβ--=+ ⇒ (()()tan tan tan 1tan tan αβαβαβ-=-+) ⑹()tan tan tan 1tan tan αβαβαβ++=- ⇒ (()()tan tan tan 1tan tan αβαβαβ+=+-) 3、二倍角的正弦、余弦和正切公式:⑴sin22sin cos ααα=222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±⇒ ⑵2222cos2cos sin 2cos 112sin ααααα=-=-=-⇒升幂公式21cos 2cos 2αα+=,21cos 2sin 2αα-=⇒降幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-= ⑶22tan tan 21tan ααα=- 4、万能公式: ①22tan sin 21tan θθθ=+ ②221tan cos 21tan θθθ-=+ ③22tan tan 21tan θθθ=- ④222tan sin 1tan θθθ=+ ⑤221cos 1tan θθ=+5、半角公式cos 2α=sin 2α=sin 1cos tan 21cos sin ααααα-===+ ⇒ (后两个不用判断符号,更加好用) 6、)sin(cos sin 22ϕθθθ++=+b a b a(其中辅助角ϕ与点(,)a b 在同一象限,且tan b a ϕ=)。
三角恒等变换
【人教版】高中数学必修4知识点总结:第三章三角恒等变换【编者按】变换是数学的重要工具,在初中,接触过大量的“只变其形不变其质”的代数变换,本章要学习的三角恒等变换也是“只变其形不变其质”的,可以揭示某些外形不同但实质相同的三角函数式之间的内在联系,是解决数学问题的重要手段。
三角恒等变换的学习,注重考察学生思维的灵活性和发散性,以及观察能力、运算及观察能力、运算推理能力和综合分析能力。
教材要求:用向量的方法推导基本的三角恒等变换公式,由此出发导出其他的三角恒等变换公式,能运用这些公式进行简单的恒等变换。
1.两角和与差的正弦、余弦、正切公式;;其中两角和与差的正切公式的变形:2.二倍角公式升幂公式降幂公式附注:在学习上述公式时应注意以下几点:(1)不仅对公式的正用逆用要熟悉,而且对公式的变形应用也要熟悉;(2)善于拆角、拼角如等;(3)注意倍角的相对性(4)要时时注意角的范围3.三角函数式的化简(1)常用方法:①直接应用公式进行降次、消项;②切割化弦,异名化同名,异角化同角;③三角公式的逆用等。
(2)化简要求:①能求出值的应求出值;②使三角函数种数尽量少;③使项数尽量少;④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数。
1)降幂公式2)辅助角公式4.三角函数的求值类型有三类(1)给角求值:一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变换消去非特殊角,转化为求特殊角的三角函数值问题;(2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论;(3)给值求角:实质上转化为“给值求值”问题,由所得的所求角的函数值结合所求角的范围及函数的单调性求得角。
5.三角等式的证明(1)三角恒等式的证题思路是根据等式两端的特征,通过三角恒等变换,应用化繁为简、左右同一等方法,使等式两端化“异”为“同”,即利用三角公式进行化名,化角,改变运算结构,使等式两边化为同一形式。
三角恒等变换知识点总结详解
三角恒等变换知识点总结详解三角恒等变换是数学中一个非常重要的概念,它涉及到三角函数之间的相互关系。
在三角恒等变换中,通过对三角函数的特性、性质和运算进行分析和推导,可以得到一系列具有等价关系的三角函数等式。
这些等式在解决各种三角函数问题时起到了重要的作用。
1.互余关系:在一个直角三角形中,正弦函数和余弦函数、正切函数和余切函数、正割函数和余割函数之间存在互余关系。
例如,正弦函数和余弦函数之间的互余关系可以表示为:sin(x) = cos(π/2 - x),cos(x) = sin(π/2- x)。
通过这种互余关系,可以将一个三角函数的计算问题转化为另一个三角函数的计算问题,从而更加方便地求解。
2.双替换关系:在三角恒等变换中,有些等式可以通过同时替换角度的正弦函数和余弦函数、正切函数和余切函数、正割函数和余割函数进行变换。
例如,sin(x) = cos(π/2 - x),cos(x) = sin(π/2 - x)就是一个双替换关系。
通过双替换关系,可以将三角函数等式从一个角度扩展到整个角度范围内。
3.平方和差关系:三角恒等变换中的平方和差关系利用了三角函数的平方和差公式。
根据平方和差公式,可以将一个三角函数的平方表示为其他三个三角函数的和或差。
例如,sin²(x) + cos²(x) = 1就是一个平方和关系。
通过平方和差关系,可以将一个三角函数的计算问题转化为其他三角函数的计算问题,从而更加方便地求解。
4.倍角关系:在三角恒等变换中,倍角关系是指利用三角函数的倍角公式将一个三角函数的角度扩展为原来的两倍。
例如,sin(2x) = 2sin(x)cos(x),cos(2x) = cos²(x) - sin²(x)。
通过倍角关系,可以将一个角度的问题扩展为两倍角度的问题,从而更加方便地求解。
5.三角和差关系:三角恒等变换中的三角和差关系利用了三角函数的和差公式。
三角恒等变换高考数学中的关键知识点总结
三角恒等变换高考数学中的关键知识点总结三角恒等变换是高考数学中的重要内容,涉及到三角函数的性质和等价关系。
在解决三角函数相关题目时,熟练掌握三角恒等变换可帮助我们简化计算和推导过程,提高解题效率。
本文将对三角恒等变换中的关键知识点进行总结。
一、基本恒等式1. 余弦、正弦和正切的平方和恒等式:$cos^2(x) + sin^2(x) = 1$$1 - tan^2(x) = sec^2(x)$$1 - cot^2(x) = csc^2(x)$这些恒等式是三角函数中最为基础的恒等式,也是其他恒等式的基础。
通过这些基本恒等式,我们可以推导出其他更复杂的恒等式。
2. 三角函数的互余关系:$sin(\frac{\pi}{2} - x) = cos(x)$$cos(\frac{\pi}{2} - x) = sin(x)$$tan(\frac{\pi}{2} - x) = \frac{1}{cot(x)}$$cot(\frac{\pi}{2} - x) = \frac{1}{tan(x)}$互余关系表明,角度x和其余角之间的三角函数之间存在特定的关系。
3. 三角函数的倒数关系:$sin(-x) = -sin(x)$$cos(-x) = cos(x)$$tan(-x) = -tan(x)$$cot(-x) = -cot(x)$三角函数的倒数关系表明,对于同一角度的正负,其正弦、余弦、正切和余切的值也是相反的。
二、和差恒等式和差恒等式是三角恒等变换中的重要内容,它们可用于将角度的和或差转化为其他三角函数表示,从而简化解题过程。
1. 正弦和差恒等式:$sin(x \pm y) = sin(x)cos(y) \pm cos(x)sin(y)$2. 余弦和差恒等式:$cos(x \pm y) = cos(x)cos(y) \mp sin(x)sin(y)$3. 正切和差恒等式:$tan(x \pm y) = \frac{tan(x) \pm tan(y)}{1 \mp tan(x)tan(y)}$这些和差恒等式在解决角度和为特定值时的三角函数计算中起到了重要的作用。
三角恒等变换与方程知识点总结
三角恒等变换与方程知识点总结三角函数是数学中重要的概念之一,它们在解决各种数学问题和实际应用中发挥着重要作用。
其中,三角恒等变换和方程是学习三角函数的重点内容之一。
本文将就三角恒等变换和方程的相关知识点进行总结和归纳。
一、三角恒等变换1. 三角函数的基本关系三角函数包括正弦函数sin(x)、余弦函数cos(x)、正切函数tan(x)等。
它们之间存在一些基本的关系,如正弦函数与余弦函数的关系sin(x) = cos(π/2 - x)、正切函数与余切函数的关系tan(x) = 1 / cot(x)等。
这些基本的关系可以帮助我们简化和转化三角函数的表达式。
2. 三角函数的倒数关系根据三角函数的定义,我们可以得到正弦函数与余切函数、余弦函数与正切函数、正弦函数与余弦函数之间的倒数关系。
例如,sin(x) / cos(x) = tan(x)、cos(x) / sin(x) = cot(x)等。
这些倒数关系可以帮助我们互相转化三角函数的表达式。
3. 三角函数的周期性三角函数在定义域内都具有周期性。
对于正弦函数和余弦函数来说,它们的周期都是2π;对于正切函数和余切函数来说,它们的周期都是π。
这个周期性的特点使得我们在计算和求解问题中可以将一个周期内的结果推广到整个定义域。
4. 三角函数的和差化简公式三角函数的和差化简公式是指将两个三角函数相加或相减之后能够转化为一个三角函数的公式。
常见的和差化简公式有正弦函数的和差化简公式sin(x ± y) = sin(x)cos(y) ± cos(x)sin(y)、余弦函数的和差化简公式cos(x ± y) = cos(x)cos(y) ∓ sin(x)sin(y)等。
这些化简公式在计算中可以简化运算步骤,提高计算效率。
二、三角方程的求解1. 三角方程的基本性质三角方程是指含有三角函数的方程。
解三角方程的关键是找到满足方程的三角函数的取值范围和周期性。
高中数学必修四 第三章三角恒等变换章末整合
=
2(2+2cos22������) 2sin22������
=
2(1+cos22������) 4sin2������cos2������
(sin2������ + cos2������)2 + (cos2������-sin2������)2
=
2si n2 ������cos2 ������
=
2(sin4������+cos4������) 2sin2������cos2������
求������, ������的值.
解:(1)当 a=1 时,f(x)=2cos2x+2sin xcos x+b
=cos 2x+1+sin 2x+b=
2sin
2������
+
π 4
+ 1 + ������,
则 f(x)的周期为 T=π.
令
2kπ−
π2≤2x+
π4≤2kπ+
π 2
(������
∈Z),
2tan������
tan2������ = 1-tan2������
应用——三角函数式的求值、化简和证明,讨论三角函数的性质
专题一 专题二 专题三 专题四
专题一 三角函数与向量的结合 三角函数与平面向量相结合是近几年来的高考亮点,它常常包括 向量与三角函数化简、求值及证明的结合,向量与三角函数的图象 与性质的结合等几个方面.此类题目主要考查三角函数的图象与性 质,以及三角函数的化简、求值.
高中数学必修四
第三章 三角恒等变换 本章整合
知识总结与综合应用
cos(������-������) = cos������cos������ + sin������sin������
高中数学必修4第三章_三角恒等变换知识点
111高中数学必修4第三章三角恒等变换知识点⑴商的关系: ① tan y sin x cos ②cotx cos y sin ③sin y cos ta n④cosx .r r⑵倒数关系: tan cot 1⑶平方关系: sin 2 cos 212、两角和与差的正弦、 余弦和正切公式:⑴cos cos cos sin sin:⑵ cos cos cos ⑶sin sin cos cos sin :⑷ sinsin cos ⑸ta ntan tan(tan tantan 1 1 tan tan ⑹ta n tan tan (tan tantan 11 tan tan1、同角关系: cos sintan tan 余弦和正切公式: 3、二倍角的正弦、 sin sin tan tan⑴ si n2 2sin cos 1 sin 2 sin 2 cos 22si n cos (sincos )2⑵ cos2 2 cos.2 sin 2cos 21 1 2si n 2升幕公式 cos 降幕公式 cos 2c 22cos — 2 cos2 1 1 cos 2sinsin 221 cos2⑶tan2羊1 tan 24、万能公式: ① sin 22 ta n 1 tan 2② cos2ta n 2 tan 2 ③ tan 22ta n 1 tan 2④ si n 2tan 21 tan 2⑤ cos 2_____1 tan 25、半角公式cos—2sin —2cos tan2 cossin 1 cos1 cos sin(后两个不用判断符号,更加好用)6、asin bcos . a2b2sin((其中辅助角与点(a,b)在同一象限,且tanb-)a2。
必修4-第三章三角恒等变换-知识点详解
必修4 第三章三角恒等变换知识点详解3.1 两角和与差的正弦、余弦和正切公式1. 两角和与差的正弦、余弦、正切公式:()sin sin cos cos sin sin 22sin cos 令αβαβαβαβααα=±=±−−−→=βαβαβαsin sin cos cos )cos(-=+βαβαβαsin sin cos cos )cos(+=-βαβαβαsin cos cos sin )sin(+=+βαβαβαsin cos cos sin )sin(-=-2. 倍角公式:()()2222222cos cos cos sin sin cos 2cos sin 2cos 112sin tan tan 1+cos2tan cos 1tan tan 21cos2sin 22tan tan 21tan 令 = = αβαβαβαβααααααβααβααβααααα=±=−−−→=-↓=-=-±±=⇒-↓=-3. 正切变形公式tanα+tanβ=tan(α+β)(1-tanαtanβ)tanα-tanβ=tan(α-β)(1+tanαtanβ)3.2 简单的三角恒等变换三角函数的化简、计算、证明的恒等变形的基本思路是:一角二名三结构。
即首先观察角与角之间的关系,注意角的一些常用变式,角的变换是三角函数变换的核心!第二看函数名称之间的关系,通常“切化弦”;第三观察代数式的结构特点。
基本的技巧有:(1)巧变角(已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换. 如()()ααββαββ=+-=-+,2()()ααβαβ=++-,2()()αβαβα=+--,22αβαβ++=⋅,()()222αββααβ+=---等), (2)公式变形使用(tan tan αβ±()()tan 1tan tan αβαβ=±。
必修4第三章--三角恒等变换复习(学生用)
A、 B、 C、 D、
9. 已知 ,则 的值为 ( )
A、 B、 C、 D、
二、填空题10. =____________
12.已知 ,则 的值为
`
三、解答题
14.(本题满分12分)已知 ,且 ,求 的值。
15.(本题满分14分)已知α为第二象限角,且sinα= 求 的值.
;;
。
3.半角公式(扩角降幂公式)
;
;
.
4.三角函数式的化简
、
常用方法:①直接应用公式进行降次、消项;②切割化弦,异名化同名,异角化同角;③三角公式的逆用等。(2)化简要求:①能求出值的应求出值;②使三角函数种数尽量少;③使项数尽量少;④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数。
5.辅助角公式
。
题型5:三角函数求值
例7.已知函数 .
(1)求 的最小正周期;(2)当 时,求 的最小值以及取得最小值时x的集合.
)
A层拓展提升:求 那么 的值
@
^
四、达标检测
一、选择题
1. 已知 ,则 的值为( )
A. B. C. D.
2.在 则这个三角形的形状是( )
%
A.锐角三角形B.钝角三角形 C.直角三角形D.等腰三角形
三角恒等变换
一.基本要求:
1.能从两角差的余弦公式导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它们的内在联系;
2.能运用上述公式进行简单的恒等变换(包括引导导出积1.两角和与差的三角函数
;;
。
—
2.二倍角公式(缩角升幂公式)
16、(本题满分14分)已知函数 的最大值是2,试确定常数 的值.
高中数学必修4第三章 三角恒等变换知识点归纳
1、同角关系: ⑴商的关系:① tan ③ sin
y sin x cos
② cot ④ cos
x cos y sin
x sin cot r
y cos tan r ⑵倒数关系: tan cot 1
tan tan 1 tan tan tan tan 1 tan tan
( tan tan tan 1 tan tan ) ( tan tan tan 1 tan tan )
④ sin 2
tan 2 1 tan 2
⑤ cos 2
6、辅助角公式:
a sin b cos a 2 b 2 sin( )
(其中辅助角 与点 (a, b) 在同一象限,且 tan 7、常数“1”的代换变形:
1 sin 2 cos 2 tan cot sin 90 o tan 45 o
(后两个不用判断符号,更加好用)
4、半角公式
cos
2tan
2
5、万能公式: ① sin 2
2 tan 1 tan 2
② cos 2
1 tan 2 1 tan 2
1 1 tan 2
③ tan 2
2 tan 1 tan 2
⑶平方关系: sin 2 cos 2 1 2、两角和与差的正弦、余弦和正切公式: ⑴ cos cos cos sin sin ; ⑵ cos cos cos sin sin ⑶ sin sin cos cos sin ; ⑷ sin sin cos cos sin ⑸ tan ⑹ tan
高中数学必修4第三章3.2简单的三角恒等变换
一、复习:两角和的正弦、余弦、正切公式:
sin sin cos cos sin
cos cos cos sin sin
tan
tan tan 1 tan tan
二sin 2 2sin cos
=3(cosx 2)2 1 33
又 x 2 , 1 cosx 1 ,
3 当x= 2
3
32
时,(cosx) min
1 2
,
y2max=145
;
当x=
3
时,(cosx) max
1 2
, ymin=
1 4.
七、y (a sinx+cosx)+bsinxcosx型
例7 求函数y sinx+cosx+sinxcosx的最值. <分析>注意到(sinx+cosx)2=1 2sinxcosx.可把sinx+cosx
sin2 1 cos 2
2
降幂升角公式
二、讲授新课:
例1.试以cos表示sin2 ,cos2 ,tan2 .
2
2
2
半角公式
sin 1 cos ,
2
2
cos 1 cos ,
2
2
tan 1 cos .
符号由α所在象限决定. 2
1 cos
2
1.半角公式
sin 1 cos
分析:要求当角取何值时,矩形ABCD的面积 S最大, 可分二步进行. ①找出S与之间的函数关系; ②由得出的函数关系,求S的最大值.
解 在Rt△OBC中,OB=cos,BC=sin 在Rt△OAD中,
苏教版数学高一- 必修4第3章《三角恒等变换》知识整合
三角函数的求值主要有两类题型,给角求值与给值求值.给角求值一般是利用和、差、倍角公式进行变换,使其出现特殊角,若为非特殊角,则应变为可消去或约分的情况,从而求出其值.给值求值一般应先化简所求的式子,弄清实际所求,或变化已知的式子,寻找已知与所求的联系,再求值.已知α∈⎝ ⎛⎭⎪⎫π4,34π,β∈⎝ ⎛⎭⎪⎫0,π4,且cos ⎝ ⎛⎭⎪⎫π4-α=35,sin ⎝ ⎛⎭⎪⎫54π+β=-1213,求cos(α+β).分析:由已知条件要求cos(α+β),应注意到角之间的关系,α+β=⎝ ⎛⎭⎪⎫π4+β-⎝ ⎛⎭⎪⎫π4-α,可应用两角差的余弦公式求得.解析:由已知α∈⎝ ⎛⎭⎪⎫π4,34π得-α∈⎝ ⎛⎭⎪⎫-34π,-π4,∴π4-α∈⎝ ⎛⎭⎪⎫-π2,0. 又cos ⎝ ⎛⎭⎪⎫π4-α=35,∴sin ⎝ ⎛⎭⎪⎫π4-α=-45.由β∈⎝ ⎛⎭⎪⎫0,π4,得π4+β∈⎝ ⎛⎭⎪⎫π4,π2,又∵sin ⎝ ⎛⎭⎪⎫54π+β=sin ⎣⎢⎡⎦⎥⎤π+⎝ ⎛⎭⎪⎫π4+β=-sin ⎝ ⎛⎭⎪⎫π4+β=-1213,∴sin ⎝ ⎛⎭⎪⎫π4+β=1213,∴cos ⎝ ⎛⎭⎪⎫π4+β=513.由⎝ ⎛⎭⎪⎫π4+β-⎝ ⎛⎭⎪⎫π4-α=α+β,得 cos(α+β)=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π4+β-⎝ ⎛⎭⎪⎫π4-α=cos ⎝ ⎛⎭⎪⎫π4+βcos ⎝ ⎛⎭⎪⎫π4-α+sin ⎝ ⎛⎭⎪⎫π4+β·sin ⎝ ⎛⎭⎪⎫π4-α=513×35+1213×⎝ ⎛⎭⎪⎫-45=-3365. ◎规律总结:给值求值的关键是找出已知式与欲求式之间的差异,一般可以适当变换已知式,求得另外函数式的值,以备应用,同时也要变换欲求式,便于将已知式求得的函数值代入,从而达到解题的目的.变式训练1.已知cos(α+β)=13,cos(α-β)=15,求tan α·tan β 的值.解析:∵cos(α+β)=cos αcos β-sin αsin β=13,①cos(α-β)=cos αcos β+sin αsin β=15,②①+②得cos αcos β=415,②-①得sin αsin β=-115,∴tan αtan β=sin αsin βcos αcos β=-115415=-14.求sin 220°+cos 280°+3sin 20°cos 80°的值.解析:方法一 原式=12(1-cos 40°)+12(1+cos 160°)+32·(sin 100°-sin 60°) =1+12(cos 160°-cos 40°)+32sin 100°-34=14-sin 100°sin 60°+32sin 100° =14. 方法二 原式=sin 220°+cos 2(60°+20°)+3sin20°·cos(60°+20°)=sin 220°+⎝ ⎛⎭⎪⎫12cos 20°-32sin 20°2+3sin20°·⎝ ⎛ 12cos 20°⎭⎪⎫-32sin 20°=14sin 220°+14cos 220° =14. 方法三 令M =sin 220°+cos 280°+3sin 20°cos 80°,则其对偶式N =cos 220°+sin 280°+3cos 20°sin 80°.因为M +N =(sin 220°+cos 220°)+(cos 280°+sin 280°)+3·(sin 20°cos 80°+cos 20°sin 80°)=2+3sin 100°,①M -N =(sin 220°-cos 220°)+(cos 280°-sin 280°)+3(sin20°cos 80°-cos 20°sin 80°)=-cos 40°+cos 160°-3sin 60°=-2sin 100°sin 60°-32=-3sin 100°-32, ②所以①+②得2M =12,M =14,即sin 220°+cos 280°+3sin 20°cos 80°的值为14.◎规律总结:“给角求值”问题,一般所给出的角都是非特殊角,从表面上看是很难的,但仔细观察非特殊角与特殊角总有一定的关系,解题时,要认真观察,综合三角公式转化为特殊角并且清除非特殊角的三角函数而得解.变式训练2.求3tan 12°-3sin 12°·4cos 212°-2的值.解析:原式=3tan 12°-32sin 12°cos 24°=3tan 12°-3·2cos 12°2sin 12°·cos 12°·2cos 24°=23sin 12°-6cos 12°sin 48°=43sin 12°cos 60°-cos 12°sin 60°sin 48°=-43sin 48°sin 48°=-4 3.一元二次方程mx 2+(2m -3)x +(m -2)=0的两根为tan α,tan β.求tan(α+β)的最小值.解析:∵mx 2+(2m -3)x +m -2=0有两根tan α,tan β,∴⎩⎨⎧Δ=2m -32-4m m -2≥0,m ≠0.解得m ≤94且m ≠0.由一元二次方程的根与系数的关系得tan α+tan β=3-2m m ,tan α·tan β=m -2m.∴tan(α+β)=tan α+tan β1-tan αtan β=3-2mm1-m -2m=3-2m 2=32-m ≥32-94=-34.故tan(α+β)的最小值为-34.◎规律总结:数学问题解决的过程实质上是一个等价转化的过程,这一点务必引起高度重视.特别是综合题,条件的使用顺序和转化,以及知识之间的联系,在平时的训练中都要认真体会和总结.变式训练3.如下图,三个相同的正方形相接,试计算α+β的大小.解析:本题的实质是已知tan α=13,tan β=12,且α,β∈⎝ ⎛⎭⎪⎫0,π2,求α+β. 可通过求tan(α+β)及(α+β)的范围来求得α+β. 由图可知:tan α=13,tan β=12且α,β均为锐角.∴tan(α+β)=tan α+tan β1-tan α·tan β=13+121-13×12=1.而α+β∈(0,π),在(0,π)上正切值等于1的角只有π4,∴α+β=π4.规律总结:已知三角函数值求角,分三步进行:①先求角α+β的某一三角函数值;②确定角所在范围(或区间);③求角的值.三角函数式的化简是三角变换应用的一个重要方面,其基本思想方法是统一角,统一三角函数的名称.在具体实施过程中,应着重抓住“角”的统一.通过观察角、函数名、项的次数等,找到突破口,利用切化弦、升幂、降幂、逆用公式等手段将其化简.最后结果要求:(1)能求值尽量求值;(2)三角函数名称尽量少;(3)项数尽量少;(4)次数尽量低;(5)分母、根号下尽量不含三角函数.化简:tan 70°cos 10°·(3tan 20°-1).分析:先化切为弦,再利用特殊角的特殊值进行转换.解析:tan 70°cos 10°· (3tan 20°-1). =sin 70°cos 70°·cos 10°·⎝⎛⎭⎪⎫3·sin 20°cos 20°-1 =3cos 10°-cos 10°·sin 70°cos 70° =3cos 10°-cos 10°cos 20°2sin 10°cos 10°=3sin 20°-cos 20°2sin 10°=sin 20°cos 30°-cos 20°sin 30°sin 10°=sin 20°-30°sin 10°=-1.◎规律总结:在三角变换中,有时根据需要,可以将一特殊值还原成某一三角函数值,如:12=sin π6=cos π3;1=tan π4=sin π2=2cos π4=sin 2α+cos 2α等,如果我们在解题时巧妙地加以运用,往往会出奇制胜.三角恒等式的证明主要有两种类型:绝对恒等式与条件恒等式. 证明绝对恒等式要根据等式两边的特征,采取化繁为简,左右归一,变更命题等方法,通过三角恒等变换,使等式的两边化异为同.条件恒等式的证明则要认真观察、比较已知条件与求证等式之间的联系,选择适当途径,常用代入法、消去法、两头凑法等.证明:tan 32x -tan x 2=2sin xcos x +cos 2x.证明:左边=sin 32xcos 32x -sin x2cosx 2=sin 32x ·cos x 2-cos 32x ·sinx2cos 32x ·cosx 2=sin ⎝ ⎛⎭⎪⎫32x -x 212⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫32x +x 2+cos ⎝ ⎛⎭⎪⎫32x -x 2 =2sin x cos 2x +cos x=右边.即等式成立.方法技巧:证明三角恒等式,一般是从左证右,从右证左,或是两边分头化简得同一结果.同时要注意“切割化弦”、“化异为同”基本原则的应用.变式训练4.已知tan(α+β)=2tan β.求证:3sin α=sin(α+2β).证明:由已知tan(α+β)=2tan β可得sinα+βcosα+β=2sin βcos β.∴sin(α+β)cos β=2cos(α+β)sin β而sin(α+2β)=sin=sin (α+β)cos β+cos(α+β)sin β=2cos(α+β)sin β+cos(α+β)sin β=3cos(α+β)·sin β. 又sin α=sin=sin(α+β)cos β-cos(α+β)sin β=cos(α+β) sin β∴3sin α=sin(α+2β).设函数f(x)=a·b,其中向量a=(2cos x,1),b=(cos x,3sin 2x ),x ∈R ,(1)若f (x )=1-3且x ∈⎣⎢⎡⎦⎥⎤-π3,π3,求x .(2)若函数y =2sin 2x 的图象按向量c =(m ,n )⎝ ⎛⎭⎪⎫|m |<π2平移后得到函数y =f (x )的图象,求实数m ,n 的值.分析:本题主要考查平面向量的概念和计算、三角函数的恒等变换及其图象变换的基本技能,考查运算能力.解析:(1)依题设,f (x )=2cos 2x +3sin 2x=1+2sin ⎝ ⎛⎭⎪⎫2x +π6.由1+2sin ⎝⎛⎭⎪⎫2x +π6=1-3,得sin ⎝⎛⎭⎪⎫2x +π6=-32. ∵-π3≤x ≤π3,∴-π2≤2x +π6≤56π.∴2x +π6=-π3,即x =-π4.(2)函数y =2sin 2x 的图象按向量c =(m ,n )平移后得到函数y =2sin +n 的图象,即函数y =f (x )的图象.由(1)得f (x )=2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π12+1,∵|m |<π2,∴m =-π12,n =1.◎规律总结:涉及三角函数性质的问题时,常通过三角变换将函数式f (x )化为y =A sin(ωx +φ)的形式,进而研究相关问题,一定要加强这种训练.向量与三角函数知识的交汇是近几年高考命题的热点,要充分体会向量的工具性作用.变式训练 5.已知向量a =(3cos x,2cos x ),b =(2sin x ,cos x ),定义函数f (x )=a ·b .(1)求函数f (x )的最小正周期; (2)求函数f (x )的单调增区间.解析:(1)f (x )=a ·b =23sin x cos x +2cos 2x =3sin 2x +cos 2x +1=1+2sin ⎝ ⎛⎭⎪⎫2x +π6.∴T =2π2=π.(2)由2k π-π2≤2x +π6≤2k π+π2,k ∈Z 得:k π-π3≤x ≤k π+π6,k ∈Z ,∴f (x )的单调增区间为: ⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z)..已知锐角三角形ABC 中,sin(A +B )=35,sin(A -B )=15.(1)求证:tan A =2tan B ; (2)设AB =3,求AB 边上的高.分析:本题要求能灵活运用两角和与差的有关三角函数公式来求证、求解,且对解三角形也有一定考查.(1)证明:∵sin(A +B )=35,sin(A -B )=15,∴⎩⎪⎨⎪⎧sin A cos B +cos A sin B =35,sin A cos B -cos A sin B =15⇒⎩⎪⎨⎪⎧sin A cos B =25,cos A sin B =15⇒tan A tan B=2. ∴tan A =2tan B .(2)解析:∵π2<A +B <π,sin(A +B )=35,∴tan(A +B )=-34,即tan A +tan B 1-tan A tan B =-34.将tan A =2tan B 代入上式并整理得 2tan 2B -4tan B -1=0,解得tan B =2±62,舍去负值,得tan B =2+62.∴tan A =2tan B =2+ 6.设AB 边上的高为CD .则AB =AD +DB =CD tan A +CD tan B =3CD2+6.由AB =3,得CD =2+ 6.所以AB 边上的高等于2+6.◎规律总结:在三角函数的应用问题中,要根据问题的特点,恰当选择使用两角和(差)、倍角公式.同时,要注意数形结合、方程(组)、等价转化等数学思想的运用.变式训练6.已知角A ,B ,C 为△ABC 的三个内角,OM →=(sin B +cos B ,cos C ),ON →=(sin C ,sin B -cos B ),OM →·ON →=-15.(1)求tan 2A 的值;(2)求2cos 2A2-3sin A -12sin ⎝ ⎛⎭⎪⎫A +π4的值.解析:(1)∵OM→·ON →=(sin B +cos B )sin C +cos C (sin B -cos B )=sin(B +C )-cos(B +C )=-15,∴sin A +cos A =-15,①两边平方整理得:2sin A cos A =-2425.②∴A ∈⎝ ⎛⎭⎪⎫π2,π,由①,②解得:sin A =35,cos A =-45.∴tan A =-34,∴tan 2A =-247.(2)∵tan A =-34,∴2cos 2A2-3sin A -12sin ⎝ ⎛⎭⎪⎫A +π4=cos A -3sin Acos A +sin A=1-3tan A 1+tan A =1-3×⎝ ⎛⎭⎪⎫-341+⎝ ⎛⎭⎪⎫-34 =13.。
高中数学必修4(人教A版)第三章三角恒等变换3.1知识点总结含同步练习及答案
α 1 − cos α = 2 2 α 1 + cos α = cos2 2 2 α 1 − cos α = tan2 2 1 + cos α α sin α 1 − cos α tan = = 2 1 + cos α sin α sin 2 12 3 例题: 已知 ,α ∈ (π, π) ,求sin 2α ,cos 2α,tan 2α的值. cos α = − 13 2 12 3 解:因为cos α = − ,α ∈ (π, π) .所以 13 2 − − − − − − − − − − 5 12 2 − − − − − − − − . sin α = −√1 − cos2 α = −√1 − (− ) =− 13 13 5 12 120
)
C.
1 9
D.
√5 3
答案: B
因为 sin α =
2 1 ,所以 cos (π − 2α) = − cos 2α = − (1 − 2sin 2 α) = − . 3 9 )
B.−
3. 化简 A.
sin 2 35∘ − sin 20∘
1 2 = (
答案: B
1 2
1 2
C.−1
D.1
4. 如图,正方形 ABCD 的边长为 1 ,延长 BA 至 E,使 AE = 1 ,连接 EC , ED,则 sin ∠CED =
(1)已知 sin α =
= (− cos 83∘ )(− cos 23∘ ) + sin 83∘ sin 23∘ = cos(83∘ − 23∘ ) 1 = cos 60∘ = . 2
sin(
π π π + α) = sin cos α + cos sin α 3 3 3 4 1 3 √3 = × + × 2 5 2 5 4√3 + 3 = 10 π π π − α) = sin cos α − cos cos α 3 3 3 4 1 3 √3 = × − × 2 5 2 5 3 − 4√3 = 10
三角恒等变换公式总结
三角恒等变换公式总结1. 引言三角恒等变换公式,这个听起来有些复杂的名字,实际上就像是数学里的“调味料”,能让我们在解决各种问题时,轻松又有趣。
想象一下,生活中的各种角度和三角形,不论是你在量房子的时候,还是在看风景时,三角函数都在悄悄发挥着作用。
今天就带大家轻松了解这些公式,保证让你有种“豁然开朗”的感觉!2. 基本三角恒等式2.1 正弦与余弦的关系首先,咱们得从最基础的说起,正弦(sin)和余弦(cos)。
你知道吗?它们就像是一对好朋友,总是形影不离。
基本恒等式之一就是sin²x + cos²x = 1。
简单来说,就是不论你选择哪个角度,它们俩加起来永远都是1。
这就像生活中的一种平衡,太多或太少都不行!2.2 正切的神奇接下来,咱们聊聊正切(tan)。
正切其实是余弦和正弦的比值,公式就是 tanx = sinx/cosx。
想象一下,这就好比你在餐厅里点了一份大餐,正弦是主菜,余弦是配菜,而正切就是你整个用餐体验的完美比例,缺一不可!3. 重要的三角恒等式3.1 角度和的公式说到三角恒等变换公式,角度和的公式可得好好聊聊。
比如说,sin(a + b) = sin a * cos b + cos a * sin b。
这就像是两个不同口味的冰淇淋,混合在一起后,产生了新鲜的口感,意外的美味总是让人惊喜。
而 cos(a + b) = cos a * cos b sin a * sin b,则是让人感觉有点酸酸甜甜的感觉,确实让人难忘!3.2 角度差的公式当然,除了和,角度差的公式也很有意思。
sin(a b) = sin a * cos b cos a * sin b。
这个公式就像是两位舞者,偶尔要展示一下各自的魅力,虽有些抵触,却又能擦出火花。
cos(a b) = cos a * cos b + sin a * sin b,则让人觉得温暖,像是朋友间的默契配合。
4. 应用实例4.1 解决实际问题学习这些公式,关键还是要知道如何运用。
高中数学必修四第三章 三角恒等变换知识点总结
第三章 三角恒等变换一、两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+; ⑵()cos cos cos sin sin αβαβαβ+=-;⑶()sin sin cos cos sin αβαβαβ-=-; ⑷()sinsin cos cos sin αβαβαβ+=+;⑸()tan tan tan 1tan tan αβαβαβ--=+ ⇒ ()()tan tan tan 1tan tan αβαβαβ-=-+⑹()tan tan tan 1tan tan αβαβαβ++=- ⇒ ()()tan tan tan 1tan tan αβαβαβ+=+-二、二倍角的正弦、余弦和正切公式:sin 22sin cos ααα=222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±⇒⑵2222cos2cos sin 2cos 112sin ααααα=-=-=-⇒221cos 2cos1cos 2sin22αααα+=-=,⇒2cos 21cos 2αα+=,21cos 2sin 2αα-=.⑶22tan tan 21tan ααα=-.三、辅助角公式:()22sin cos sin α+=++a x b x a b x ,2222cos sin a b a ba bϕϕϕ==++其中由,决定四、三角变换方法:(1)角的变换:在三角化简,求值,证明中,表达式中往往出现较多的相异角,可根据角与角之间的和差,倍半,互补,互余的关系,运用角的变换,沟通条件与结论中角的差异,使问题获解,对角的变形如:①α2是α的二倍;α4是α2的二倍;α是2α的二倍;2α是4α的二倍;②2304560304515o ooooo=-=-=;③()ααββ=+-;④()424πππαα+=--; ⑤2()()()()44ππααβαβαα=++-=+--;等等 (2)函数名称变换:三角变形中,常常需要变函数名称为同名函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、同角关系: ⑴商的关系:① tan ③ sin
y sin x cos
Байду номын сангаас
② cot ④ cos
x cos y sin
x sin cot r
y cos tan r ⑵倒数关系: tan cot 1
b ) a
8、三角函数式的化简运算通常从: “角、名、形、幂”四方面入手; 基本规则是:见切化弦,异角化同角,复角化单角,异名化同名,高次化低次,无理化有理, 特殊值与特殊角的三角函数互化。
(后两个不用判断符号,更加好用)
4、半角公式
cos
2
sin
2
tan
2
5、万能公式: ① sin 2
2 tan 1 tan 2
② cos 2
1 tan 2 1 tan 2
1 1 tan 2
③ tan 2
2 tan 1 tan 2
tan tan 1 tan tan tan tan 1 tan tan
( tan tan tan 1 tan tan ) ( tan tan tan 1 tan tan )
⑶平方关系: sin 2 cos 2 1 2、两角和与差的正弦、余弦和正切公式: ⑴ cos cos cos sin sin ; ⑵ cos cos cos sin sin ⑶ sin sin cos cos sin ; ⑷ sin sin cos cos sin ⑸ tan ⑹ tan
升幂公式 降幂公式
⑶ tan 2
1 cos 2 cos 2
2 cos 2 1 cos 2 , 2
,
1 cos 2sin 2
2 1 cos 2 sin 2 2
2 tan 1 tan 2
1 cos 2 1 cos 2 1 cos sin 1 cos 1 cos 1 cos sin
④ sin 2
tan 2 1 tan 2
⑤ cos 2
6、辅助角公式:
a sin b cos a 2 b 2 sin( )
(其中辅助角 与点 (a, b) 在同一象限,且 tan 7、常数“1”的代换变形:
1 sin 2 cos 2 tan cot sin 90 o tan 45 o
3、二倍角的正弦、余弦和正切公式: ⑴ sin 2 2sin cos 1 sin 2 sin 2 cos 2 2 sin cos (sin cos ) 2 ⑵ cos 2 cos2 sin 2 2cos2 1 1 2sin 2