高中数学必修四第三章三角恒等变换练习题

合集下载

高中数学必修四(人教B版)练习:第三章 三角恒等变换3.1.1 Word版含解析

高中数学必修四(人教B版)练习:第三章 三角恒等变换3.1.1 Word版含解析

第三章 3.1 3.1.1一、选择题1.cos75°cos15°-sin435°sin15°的值是( ) A .0 B .12C .32D .-12[答案] A[解析] cos75°cos15°-sin435°sin15° =cos75°cos15°-sin(360°+75°)sin15° =cos75cos15°-sin75°sin15° =cos(75°+15°)=cos90°=0.2.在△ABC 中,若sin A sin B <cos A cos B ,则△ABC 一定为( ) A .等边三角形 B .直角三角形 C .锐角三角形 D .钝角三角形[答案] D[解析] ∵sin A sin B <cos A cos B , ∴cos A cos B -sin A sin B >0, ∴cos(A +B )>0,∵A 、B 、C 为三角形的内角, ∴A +B 为锐角, ∴C 为钝角.3.下列结论中,错误的是( )A .存在这样的α和β的值,使得cos(α+β)=cos αcos β+sin αsin βB .不存在无穷多个α和β的值,使得cos(α+β)=cos αcos β+sin αsin βC .对于任意的α和β,有cos(α+β)=cos αcos β-sin αsin βD .不存在这样的α和β的值,使得cos(α+β)≠cos αcos β-sin αsin β [答案] B[解析] 当α、β的终边都落在x 轴的正半轴上或都落在x 轴的负半轴上时,cos(α+β)=cos αcos β+sin αsin β成立,故选项B 是错误的.4.在锐角△ABC 中,设x =sin A sin B ,y =cos A cos B ,则x 、y 的大小关系是( )A .x ≥yB .x ≤yC .x >yD .x <y[答案] C[解析] y -x =cos(A +B ),在锐角三角形中π2<A +B <π,y -x <0,即x >y .5.化简sin(x +y )sin(x -y )+cos(x +y )cos(x -y )的结果是( ) A .sin2x B .cos2y C .-cos2x D .-cos2y [答案] B[解析] 原式=cos[(x +y )-(x -y )]=cos2y .6.△ABC 中,cos A =35,且cos B =513,则cos C 等于( )A .-3365B .3365C .-6365D .6365[答案] B[解析] 由cos A >0,cos B >0知A 、B 都是锐角, ∴sin A =1-⎝⎛⎭⎫352=45,sin B =1-⎝⎛⎭⎫5132=1213,∴cos C =-cos(A +B )=-(cos A cos B -sin A sin B ) =-⎝⎛⎭⎫35×513-45×1213=3365. 二、填空题7.若cos α=15,α∈(0,π2),则cos(α+π3)=________.[答案]1-6210[解析] ∵cos α=15,α∈(0,π2),∴sin α=265.∴cos(α+π3)=cos αcos π3-sin αsin π3=15×12-265×32=1-6210.8.已知cos(π3-α)=18,则cos α+3sin α的值为________.[答案] 14[解析] cos(π3-α)=cos π3cos α+sin π3sin α=12cos α+32sin α =12(cos α+3sin α)=18, ∴cos α+3sin α=14.三、解答题 9.已知cos α=55,sin(α-β)=1010,且α、β∈(0,π2). 求:cos(2α-β)的值. [解析] ∵α、β∈(0,π2),∴α-β∈(-π2,π2),∴sin α=1-cos 2α=255,cos(α-β)=1-sin 2(α-β)=31010,∴cos(2α-β)=cos[α+(α-β)] =cos αcos(α-β)-sin αsin(α-β) =55×31010-255×1010=210. 10. 已知sin α+sin β=310,cos α+cos β=9110,求cos(α-β)的值.[解析] 将sin α+sin β=310,两边平方得,sin 2α+2sin αsin β+sin 2β=9100①,将cos α+cos β=9110两边平方得,cos 2α+2cos αcos β+cos 2β=91100②,①+②得2+2cos(α-β)=1, ∴cos(α-β)=-12.一、选择题 1.cos47°+sin17°sin30°cos17°的值为( )A .-32B .-12C .12D .32[答案] D [解析]cos47°+sin17°sin30°cos17°=cos (30°+17°)+sin17°sin30°cos17°=cos30°cos17°-sin30°sin17°+sin17°sin30°cos17°=cos30°=32. 2.在△ABC 中,若tan A ·tan B >1,则△ABC 一定是( ) A .等边三角形 B .直角三角形 C .锐角三角形 D .钝角三角形[答案] C[解析] ∵sin A ·sin B >cos A ·cos B , ∴cos A ·cos B -sin A ·sin B <0, 即cos(A +B )<0,∵A 、B 、C 为三角形的内角, ∴A +B 为钝角,∴C 为锐角. 又∵tan A ·tan B >1, ∴tan A >0,tan B >0,∴A 、B 均为锐角,故△ABC 为锐角三角形.3.在锐角△ABC 中,设x =sin A ·sin B ,y =cos A ·cos B ,则x 、y 的大小关系为( )A .x ≤yB .x >yC .x <yD .x ≥y[答案] B[解析] y -x =cos A cos B -sin A sin B =cos(A +B ), ∵△ABC 为锐角三角形, ∴C 为锐角,∵A +B =π-C , ∴A +B 为钝角, ∴cos(A +B )<0,∴y <x .4.函数f (x )=sin x -cos(x +π6)的值域为( )A .[-2,2]B .[-3,3]C .[-1,1]D .[-32,32] [答案] B[解析] f (x )=sin x -cos(x +π6)=sin x -cos x cos π6+sin x sin π6=32sin x -32cos x =3(32sin x -12cos x ) =3sin(x -π6)∈[-3,3].二、填空题 5.形如⎪⎪⎪⎪⎪⎪ab cd 的式子叫做行列式,其运算法则为⎪⎪⎪⎪⎪⎪a b cd =ad -bc ,则行列式⎪⎪⎪⎪⎪⎪cos π3 sin π6sin π3 cos π6的值是________. [答案] 0[解析] ⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,∴⎪⎪⎪⎪⎪⎪cos π3 sin π6sin π3cos π6=cos π3cos π6-sin π3sin π6=cos(π3+π6)=cos π2=0.6.已知cos(α+β)=13,cos(α-β)=15,则tan α·tan β=________.[答案] -14[解析] ∵cos(α+β)=13,∴cos αcos β-sin αsin β=13,①∵cos(α-β)=15,∴cos αcos β+sin αsin β=15,②由①②得⎩⎨⎧sin αsin β=-115cos αcos β=415,∴tan αtan β=sin αsin βcos αcos β=-14.三、解答题7.已知cos(α-30°)=1517,30°<α<90°,求cos α的值.[解析] ∵30°<α<90°, ∴0°<α-30°<60°. ∵cos(α-30°)=1517,∴sin(α-30°)=1-cos 2(α-30°)=817,∴cos α=cos[(α-30°)+30°]=cos(α-30°)cos30°-sin(α-30°)sin30°=1517×32-817×12=153-834.8.已知向量a =(2cos α,2sin α),b =(3cos β,3sin β),若向量a 与b 的夹角为60°,求cos(α-β)的值.[解析] ∵a·b =6cos αcos β+6sin αsin β=6cos(α-β), ∴|a |=2,|b |=3, 又∵a 与b 的夹角为60°,∴cos60°=a·b |a|·|b|=6cos (α-β)2×3=cos(α-β),∴cos(α-β)=12.9. 已知函数f (x )=2cos(ωx +π6)(其中ω>0,x ∈R )的最小正周期为10π.(1)求ω的值;(2)设α、β∈[0,π2],f (5α+5π3)=-65,f (5β-5π6)=1617,求cos(α+β)的值.[解析] (1)∵T =10π=2πω,∴ω=15.(2)由(1)得f (x )=2cos(15x +π6),∵-65=f (5α+5π3)=2cos[15(5α+5π3)+π6]=2cos(α+π2)=-2sin α,∴sin α=35,cos α=45.∵1617=f (5β-5π6)=2cos[15(5β-5π6)+π6]=2cos β, ∴cos β=817,sin β=1517.∴cos(α+β)=cos αcos β-sin αsin β=45×817-35×1517=-1385.。

(好题)高中数学必修四第三章《三角恒等变形》测试(包含答案解析)(4)

(好题)高中数学必修四第三章《三角恒等变形》测试(包含答案解析)(4)

一、选择题1.若10,0,cos ,sin 2243423ππππβαβα⎛⎫⎛⎫<<-<<+=-=⎪ ⎪⎝⎭⎝⎭,则cos 2βα⎛⎫+= ⎪⎝⎭( ) AB.C. D2.已知sin 410πα⎛⎫-= ⎪⎝⎭,02πα<<,则tan α的值为( ) A .12-B .12C .2D .12-或2 3.已知tan α,tan β是方程2506x x a -+=的两个实数根,且()tan 1αβ+=,则实数a =( )A .16B .116C .512D .7124.已知函数()sin cos f x a x b x =+,其中,a b ∈R ,且0ab ≠,若()π4f x f ⎛⎫≤ ⎪⎝⎭对一切x ∈R 恒成立,则( ). A .ππ56f f ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭B .()5π2f x f x ⎛⎫=- ⎪⎝⎭C .π4f x ⎛⎫-⎪⎝⎭是偶函数 D .π4f x ⎛⎫+⎪⎝⎭是奇函数 5.函数2()sin 2f x x x =+-()cos(2)2 3 (0)6g x m x m m π=--+>,若对任意1[0,]4x π∈,存在2[0,]4x π∈,使得12()()g x f x =成立,则实数m 的取值范围是( ) A .4(1,)3B .2(,1]3C .2[,1]3D .4[1,]36.设等差数列{}n a 满足:()22222222272718sin cos cos cos sin sin 1sin a a a a a a a a -+-=+,公差()1,0d ∈-.若当且仅当11n =时,数列{}n a 的前n 项和n S 取得最大值,则首项1a 的取值范围是( ) A .9,10ππ⎛⎫⎪⎝⎭B .11,10ππ⎡⎤⎢⎥⎣⎦C .9,10ππ⎡⎤⎢⎥⎣⎦D .11,10ππ⎛⎫ ⎪⎝⎭7.已知()2020cos2020f x x x =+的最大值为A ,若存在实数1x ,2x ,使得对任意的实数x ,总有()()()12f x f x f x ≤≤成立,则12A x x -的最小值为( ) A .2020π B .1010π C .505π D .4040π 8.已知cos 2π3)4αα=+,则1tan tan αα+等于( ) A .92B .29C .9-2D .2-99.函数()sin ([,0])f x x x x π=∈-的单调递增区间是( ) A .5[,]6ππ--B .5[,]66ππ-- C .[,0]3π-D .[,0]6π-10.已知()sin 2cos x x x ϕ+=+对x ∈R 恒成立,则cos 2ϕ=( ) A .25-B .25C .35D .3511.已知直线3x −y +1=0的倾斜角为α,则1sin22α= A .310 B .35 C .−310D .11012.已知cos()63πα+=sin(2)6πα-的值为( ) A.3B .13C .13-D.3-二、填空题13.已知α、0,2πβ⎛⎫∈ ⎪⎝⎭,sin α=,()cos αβ+=()cos 2αβ+=______.14.已知,2παπ⎛⎫∈⎪⎝⎭,3tan 24α=.则2sin 2cos αα+=______.15.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若3sin 4α=,则()cos αβ-=______. 16.求值:sin 50sin 30sin10cos50cos30sin10︒+︒︒︒-︒︒=_______17.已知4sin 3cos 0+=αα,则2sin 23cos +αα的值为____________.18.已知cos 2βα⎛⎫-= ⎪⎝⎭,cos 2αβ⎛⎫-= ⎪⎝⎭,且0,22βπα⎛⎫-∈ ⎪⎝⎭,0,22απβ⎛⎫-∈ ⎪⎝⎭,则2αβ+的值为__________. 19.已知sin10cos102cos140m ︒-︒=︒,则m =_________.20.化简4cos80︒︒=________.三、解答题21.(1)求值:4sin 220tan320-︒︒; (2)已知43sin ,4544x x πππ⎛⎫+=--<<⎪⎝⎭,求22cos sin 2x x +的值.22.已知2()2sin ()142xf x π=+-. (1)求()(2)3g x f x π=-的递增区间;(2)是否存在实数k ,使得不等式(2)(4)()(4)()32f x k f x k f x π+-⋅+-⋅+<对任意22x ππ⎡⎤∈-⎢⎥⎣⎦,的恒成立,若存在,求出k 的取值范围;若不存在,说明理由. 23.已知1sin cos 5αα+=,其中0απ<<. (1)求11sin cos αα+的值; (2)求tan α的值.24.在下列三个条件中任选一个,补充在下面问题中,并解答. ①函数1()cos sin (0)2264f x x x ωωπω⎛⎫⎛⎫=+-> ⎪ ⎪⎝⎭⎝⎭.②函数1()sin +cos()(0)2224f x x x x ωωωω⎛⎫⎛⎫=> ⎪ ⎪⎝⎭⎝⎭; ③函数()1()sin 0,||22f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭对任意x ∈R 都有5()06f x f x π⎛⎫+-= ⎪⎝⎭成立;已知_______(填所选条件序号),函数()f x 图象的相邻两条对称轴之间的距离为2π. (1)求3f π⎛⎫⎪⎝⎭的值; (2)求函数()f x 的单调递增区间和对称中心、对称轴.注:如果选择多个条件分别解答,按第一个解答计分. 25.已知函数()cos23f x x =-,()2cos 4g x a x a =-.(1)求函数()()2h x x f x =+的最大值; (2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,()()f x g x >恒成立,求a 的取值范围.26.已知函数2()[2sin()sin ]cos 3f x x x x x π=++.(1)求函数()f x 的最小正周期和单调递减区间;(2)若函数()f x 的图象关于点(,)m n 对称,求正数m 的最小值;【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】 由cos cos 2442βππβαα⎡⎤⎛⎫⎛⎫⎛⎫+=+-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦展开计算正余弦值代入可得答案. 【详解】 因为10,cos 243ππαα⎛⎫<<+= ⎪⎝⎭,所以3444πππα<+<,sin +43πα⎛⎫= ⎪⎝⎭, 因为02πβ-<<,所以4422ππβπ<-<,又因为sin 423πβ⎛⎫-=⎪⎝⎭,所以cos 423πβ⎛⎫-= ⎪⎝⎭ 而cos cos +2442βππβαα⎡⎤⎛⎫⎛⎫⎛⎫+=-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, cos +cos sin +sin 442442ππβππβαα⎛⎫⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭133==. 故选:A.【点睛】三角函数式的化简要遵循“三看”原则:(1)一看“角”,这是最重要的一环,通过看角之间的区别和联系,把角进行合理的拆分,从而正确使用公式;(2)而看“函数名称”看函数名称之间的差异,从而确定使用公式,常见的有“切化弦”;(3)三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,如“遇到分式通分”等.2.C解析:C 【分析】由同角间的三角函数关系先求得cos()4πα-,再得tan()4πα-,然后由两角和的正切公式可求得tan α. 【详解】 ∵02πα<<,∴444πππα-<-<,∴cos 410πα⎛⎫-=⎪⎝⎭, ∴sin 14tan 43cos 4παπαπα⎛⎫- ⎪⎛⎫⎝⎭-== ⎪⎛⎫⎝⎭- ⎪⎝⎭, ∴tan tan 44ππαα⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦1tan 11432111tan 34παπα⎛⎫-++ ⎪⎝⎭===⎛⎫--- ⎪⎝⎭.故选:C . 【点睛】思路点睛:本题考查三角函数的求值.考查同角间的三角函数关系,两角和的正切公式.三角函数求值时首先找到“已知角”和“未知角”之间的联系,选用恰当的公式进行化简求值.注意三角公式中“单角”与“复角”的区别与联系,它们是相对的.不同的场景充当的角色可能不一样.如题中4πα-在tan tan4tan 41tan tan 4παπαπα-⎛⎫-=⎪⎝⎭+作为复角,但在tan tan 44ππαα⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦中充当“单角”角色.3.A解析:A 【分析】首先利用韦达定理求得5tan tan 6αβ+=,tan tan a αβ⋅=,再结合()tan 1αβ+=,利用两角和正切公式得到关于a 的等量关系式,求得结果. 【详解】因为tan α,tan β是方程2506x x a -+=的两个实数根, 所以有5tan tan 6αβ+=,tan tan a αβ⋅=, 因为()tan 1αβ+=,所以有5611a=-,所以16a =,故选:A. 【点睛】思路点睛:该题考查的是有关两角和正切公式,解题思路如下: (1)先利用韦达定理,写出两根和与两根积;(2)利用两角和正切公式,结合题中条件,得到等量关系式,求得结果.4.B解析:B 【分析】利用辅助角公式可得()()f x x ϕ=+,又()π4f x f ⎛⎫≤⎪⎝⎭对一切x ∈R 恒成立知π422f a ⎛⎫=+=⎪⎝⎭a b =,整理得()sin 4f x x π⎛⎫=+ ⎪⎝⎭,利用正弦函数的单调性可判断A ,利用诱导公式以及三角函数的奇偶性可判断选项BCD ,进而可得正确选项. 【详解】由0ab ≠知0a ≠且0b ≠,利用辅助角公式可得()()sin cos f x a x b x x ϕ=+=+,其中tan baϕ=, 又()π4f x f ⎛⎫≤ ⎪⎝⎭对一切x ∈R 恒成立,知π4f ⎛⎫⎪⎝⎭是()f x 的最值,所以πππsin cos 44422f b a a b ⎛⎫=+=+= ⎝⎪⎭, 即22221122a b ab a b +++=,所以2211022a b ab +-=,即()2102a b -=, 所以a b =,tan 1b a ϕ==,可得4πϕ=,所以()sin 4f x x π⎛⎫=+ ⎪⎝⎭,对于选项A :9sin sin 55420f ππππ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭,5sin sin 66412f ππππ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,又因为5912202πππ<<,则59sin sin 1220ππ<, 当0a >时,ππ56f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,当0a <时,ππ56f f ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,故选项A 不正确; 对于选项B :sin sin 5π5π11π3π2244sin 4f x x x x π⎛⎫-=--- ⎪⎝⎛⎫⎛⎫⎛⎫+== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎭()ππ4sin sin 4x f x x π⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭--+,故选项B 正确;对于选项C :sin sin ππ444x x f x π⎛⎫--⎛⎫=+= ⎪⎝⎭ ⎪⎝⎭是奇函数,故选项C 不正确;对于选项D :si πππ442n sin cos 4f x x x x π⎛⎫⎛⎫=+== ⎪ ⎪⎛⎫+++ ⎪⎭⎝⎭⎝⎭⎝是偶函数,故选项D 不正确, 故选:B 【点睛】关键点点睛:本题的关键点是从已知条件()π4f x f ⎛⎫≤⎪⎝⎭对一切x ∈R 恒成立,知π4f ⎛⎫ ⎪⎝⎭是()f x 的最值,π422f a ⎛⎫=+= ⎪⎝⎭,从而得()sin 4f x x π⎛⎫=+ ⎪⎝⎭,属于中档题.5.D解析:D 【解析】222221f x sin x x sin x cos x =+-=+-())12222222223sin x x sin x cos x sin x π==+=+()(), 当0,4x π⎡⎤∈⎢⎥⎣⎦时,552[]21[12]3366min x f x sin f x ππππ+∈∴==∴∈,,(),(),, 对于22306g x mcos x m m π=--+()()(>),2[]2[]36662m x mcos x m ππππ-∈--∈,,(),,3[33]2g x m m ∴∈-+-(),,∵对任意10,4x π⎡⎤∈⎢⎥⎣⎦,存在20,4x π⎡⎤∈⎢⎥⎣⎦,使得()()12g x f x =成立,331232m m ⎧-+≥⎪∴⎨⎪-≤⎩ ,解得实数m 的取值范围是41,3⎡⎤⎢⎥⎣⎦.故选D .【点睛】本题考查三角函数恒等变换,其中解题时问题转化为求三角函数的值域并利用集合关系是解决问题的关键,6.D解析:D 【解析】因为22222222272718sin cos cos cos sin sin 1sin()a a a a a a a a -+-=+,所以由余弦二倍角公式、平方差公式及两角和与差的余弦公式可得2272718cos 2cos()cos()1sin()a a a a a a a -+-+=+,再运用积化和差公式可得227181cos 2[cos 2cos 2]21sin()a a a a a -++=+,即72181[cos 2cos 2]21sin()a a a a -=+,再由差化积公式可得727218sin()sin()1sin()a a a a a a --+=+.由于{}n a 是等差数列,因此1827a a a a +=+,即1827sin()sin()a a a a +=+,所以72sin()1a a -=-即sin51d =-注意到()1,0d ∈-,则()55,0d ∈-,所以5210d d ππ=-⇒=-,故对称轴方程故等差数列的前n 项和是1(1)2n n n S na d -=+,即221()()222020n d d S n a n n a n ππ=+-=-++,其对称轴是1202a n ππ+=,由题设可得1202123222a ππ+<<,即11110a ππ<<,应选答案D .点睛:解答本题的关键是先借助三角变换中的两角和差的余弦公式、余弦二倍角公式、积化和差与和差化积公式等三角变换公式进行化简,再借助差数列的定义和性质求出等差数列的公差10d π=-,然后将等差数列的前n 项和公式1(1)2n n n S na d -=+变形为221()()222020n d d S n a n n a n ππ=+-=-++,借助对称轴11n =的位置建立不等式组1202123222a ππ+<<,进而求得数列首项的取值范围是11110a ππ<<. 7.B解析:B化简函数()f x 的解析式可得周期与最大值,对任意的实数x ,总有()()()12f x f x f x ≤≤成立,即12x x -半周期的整数倍,代入求最小值即可.【详解】()2020cos 20202sin 20206f x x x x π⎛⎫=+=+ ⎪⎝⎭,则220201010T ππ==,2A = 1212210101010A x x ππ-≥⨯⨯=故选:B 【点睛】本题考查正弦函数的性质,考查三角恒等变换,考查周期与最值的求法,属于中档题.8.A解析:A 【分析】先利用cos 2sin 22παα⎛⎫=+ ⎪⎝⎭结合cos 2π)4αα=+cos 46πα⎛⎫+= ⎪⎝⎭的值,然后利用二倍角公式得到24cos 22cos 1249ππαα⎛⎫⎛⎫+=+-=- ⎪ ⎪⎝⎭⎝⎭,即4sin 29α=,又12tan tan sin 2ααα+=,将4sin 29α=代入便可解出答案. 【详解】因为sin 22sin cos cos 2244π4)444πππααααπαππααα⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭===+ ⎪⎛⎫⎛⎫⎝⎭+++ ⎪ ⎪⎝⎭⎝⎭,4πα⎛⎫+= ⎪⎝⎭,则cos 4πα⎛⎫+= ⎪⎝⎭ 所以24cos 22cos 1249ππαα⎛⎫⎛⎫+=+-=- ⎪ ⎪⎝⎭⎝⎭, 又4cos 2sin 229παα⎛⎫+=-=- ⎪⎝⎭,所以4sin 29α=, 所以1sin cos 1229tan 4tan cos sin sin cos sin 229ααααααααα+=+====.故选:A.本题考查诱导公式,考查正弦、余弦的二倍角公式及其应用,难度一般,解答时公式的变形运用是关键.9.D解析:D 【解析】()sin 23f x x x sin x π⎛⎫==-⎪⎝⎭,因为[],0x π∈-4,,333x πππ⎡⎤∴-∈--⎢⎥⎣⎦,由1,323x πππ⎡⎤-∈--⎢⎥⎣⎦,得,06x π⎡⎤∈-⎢⎥⎣⎦,函数()[]()sin ,0f x x x x π=∈-的单调递增区间是,06π⎡⎤-⎢⎥⎣⎦,故选D.10.D解析:D 【分析】利用两角和的正弦公式进行展开,结合恒成立可得cos ϕ,最后根据二倍角公式得结果. 【详解】由题可知,cos sin sin 2cos x x x x ϕϕ+=+, 则cosϕ=,sin ϕ=, 所以283cos22cos 1155ϕϕ=-=-=,故选:D. 【点睛】本题主要考查了两角和的余弦以及二倍角公式的应用,通过恒成立求出cos ϕ是解题的关键,属于中档题.11.A解析:A 【分析】由题意利用直线的倾斜角和斜率求出tanα的值,再利用三角恒等变换,求出要求式子的值. 【详解】直线3x-y+1=0的倾斜角为α,∴tanα=3,∴2221133sin222219110sin cos tan a sin cos sin cos tan αααααααα=⋅====+++, 故选A . 【点睛】本题主要考查直线的倾斜角和斜率,三角恒等变换,属于中档题.12.B解析:B 【解析】∵cos 63πα⎛⎫+= ⎪⎝⎭,则5sin 2sin 2sin 26662ππππααα⎡⎤⎛⎫⎛⎫⎛⎫-=-+=-++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦][221cos 2[2cos 11]6633ππαα⎛⎫⎛⎫=-+=-+-=--= ⎪ ⎪⎝⎭⎝⎭,故选B.二、填空题13.【分析】利用同角三角函数的平方关系求得的值然后利用两角和的余弦公式可求得的值【详解】因为则又所以所以故答案为:【点睛】本题考查利用两角和的余弦公式求值同时也考查了同角三角函数基本关系的应用考查计算能解析:2【分析】利用同角三角函数的平方关系求得cos α、()sin αβ+的值,然后利用两角和的余弦公式可求得()cos 2αβ+的值. 【详解】 因为α、0,2πβ⎛⎫∈ ⎪⎝⎭,则0αβ<+<π,又10sin,()cos αβ+=cos α==()sin 5αβ+==, 所以()()()()cos 2cos cos cos sin sin αβααβααβααβ+=++=+-+⎡⎤⎣⎦-=故答案为:2. 【点睛】本题考查利用两角和的余弦公式求值,同时也考查了同角三角函数基本关系的应用,考查计算能力,属于中等题.14.【分析】由正切的二倍角公式求得用正弦二倍角公式变形化用1的代换化求值式为关于析二次齐次分式再弦化切后求值【详解】因为所以或(舍)所以故答案为:【点睛】本题考查二倍角公式考查同角间的三角函数解题关键是解析:12-【分析】由正切的二倍角公式求得tan α,用正弦二倍角公式变形化用“1”的代换化求值式为关于sin ,cos αα析二次齐次分式,再弦化切后求值.【详解】 因为22tan 3tan 21tan 4ααα==-,所以tan 3α=-或13(舍), 所以222222sin cos cos 2tan 11sin 2cos sin cos tan 12ααααααααα+++===-++. 故答案为:12-. 【点睛】本题考查二倍角公式,考查同角间的三角函数.解题关键是由221sin cos αα=+化待求值式为关于sin ,cos αα析二次齐次分式,然后利用弦化切求值.15.;【分析】根据角的终边关于轴对称得到以及两角差的余弦公式即可求出【详解】因为角与角均以为始边它们的终边关于轴对称所以所以故答案为:【点睛】本题主要考查了三角函数定义的应用两角差的余弦公式同角三角函数解析:18; 【分析】根据角的终边关于y 轴对称得到cos cos ,sin sin αβαβ=-=,以及两角差的余弦公式即可求出. 【详解】因为角α与角β均以Ox 为始边,它们的终边关于y 轴对称, 所以3cos cos ,sin sin 4αβαβ=-==, 所以()22cos cos cos sin sin sincos αβαβαβαα-=+=-22sin 1α=-92116=⨯- 18= 故答案为:18【点睛】本题主要考查了三角函数定义的应用,两角差的余弦公式,同角三角函数的关系,属于中档题.16.【分析】根据代入原式利用正余弦的和差角公式求解即可【详解】故答案为:【点睛】本题主要考查了非特殊角的三角函数化简与求值需要根据所给的角度与特殊角的关系并利用三角恒等变换进行求解属于中档题【分析】根据506010︒=︒-︒,代入原式利用正余弦的和差角公式求解即可. 【详解】()()sin 6010sin 30sin10sin 50sin 30sin10cos50cos30sin10cos 6010cos30sin10︒-︒+︒︒︒+︒︒=︒-︒︒︒-︒-︒︒sin 60cos10cos60sin10sin 30sin10cos60cos10sin 60sin10cos30sin10︒︒-︒︒+︒︒=︒︒+︒︒-︒︒sin 60cos10tan 60cos60cos10︒︒==︒=︒︒【点睛】本题主要考查了非特殊角的三角函数化简与求值,需要根据所给的角度与特殊角的关系,并利用三角恒等变换进行求解.属于中档题.17.【分析】由已知式求出利用同角三角函数间的平方关系和商数关系将化为代入即可求值【详解】则故答案为:【点睛】本题考查了同角三角函数间的平方关系和商数关系正余弦其次式的计算二倍角的正弦公式属于中档题 解析:2425【分析】由已知式求出3tan 4α=-,利用同角三角函数间的平方关系和商数关系,将2sin 23cos +αα化为22tan 3tan 1αα++,代入即可求值. 【详解】4sin 3cos 0αα+=,3tan 4α∴=-,则22222sin cos 3cos sin 23cos sin cos ααααααα++=+22tan 3tan 1αα+=+232()343()14⨯-+=-+ 2425=. 故答案为:2425. 【点睛】本题考查了同角三角函数间的平方关系和商数关系,正、余弦其次式的计算,二倍角的正弦公式,属于中档题.18.【分析】求出和再由两角和余弦公式求得然后可得角的大小【详解】∵且∴同理∴又由得∴故答案为:【点睛】本题考查已知三角函数值求角一般要求角可先这个角的某个三角函数值最好先确定这个角的范围选用在此范围内三解析:4π. 【分析】求出sin()2βα-和sin()2αβ-,再由两角和余弦公式求得cos 2αβ+,然后可得角的大小. 【详解】∵cos 2βα⎛⎫-= ⎪⎝⎭,cos 2αβ⎛⎫-= ⎪⎝⎭,且0,22βπα⎛⎫-∈ ⎪⎝⎭,0,22απβ⎛⎫-∈ ⎪⎝⎭,∴sin()25βα-==sin()2αβ-=, ∴coscos[()()]cos()cos()sin()sin()2222222αββαβαβααβαβαβ+=-+-=-----2==, 又由0,22βπα⎛⎫-∈ ⎪⎝⎭,0,22απβ⎛⎫-∈ ⎪⎝⎭得(0,)2αβπ+∈,∴2αβ+4π=. 故答案为:4π. 【点睛】本题考查已知三角函数值求角.一般要求角可先这个角的某个三角函数值,最好先确定这个角的范围,选用在此范围内三角函数是单调的函数求函数值后再确定角的大小.19.【分析】化简得再利用诱导公式与和差角公式化简求解即可【详解】由题故答案为:【点睛】本题主要考查了根据余弦的诱导公式与和差角公式化简求解的问题需要根据题中的角跟特殊角的关系用和差角公式属于中档题【分析】 化简得sin102cos140cos10m ︒-︒=︒,再利用诱导公式与和差角公式化简cos140︒求解即可.【详解】 由题()sin102cos 1030sin102cos140cos10cos10m ︒+︒+︒︒-︒==︒︒sin102cos10cos302sin10sin 302cos10cos302cos30cos10cos10︒+︒︒-︒︒︒︒===︒=︒︒.【点睛】本题主要考查了根据余弦的诱导公式与和差角公式化简求解的问题.需要根据题中的角跟特殊角的关系用和差角公式,属于中档题.20.1【分析】利用诱导公式得到通分整理后由利用两角差的正弦公式展开化简后得到答案【详解】故答案为:【点睛】本题考查诱导公式进行化简求值利用两角差的正弦公式进行化简求值属于中档题解析:1 【分析】利用诱导公式,得到cos80sin10︒︒=,通分整理后,由()sin 20sin 3010︒︒︒=-,利用两角差的正弦公式,展开化简后,得到答案. 【详解】4cos80︒︒=()2sin 3010cos10︒︒︒︒-==cos10cos110︒︒︒︒+==. 故答案为:1.【点睛】本题考查诱导公式进行化简求值,利用两角差的正弦公式进行化简求值,属于中档题.三、解答题21.(1)2)825. 【分析】(1)利用诱导公式,同角三角函数的基本关系,二倍角公式,两角和的正弦与余弦公式以及辅助角公式求解即可;(2)先利用已知条件得到4x π+的范围,进而求出cos 4x π⎛⎫+ ⎪⎝⎭的值,再利用二倍角公式和诱导公式求解即可. 【详解】(1)4sin 220tan320-︒︒()()sin 18040tan 360404︒+︒-︒-=︒ sin 440tan 40︒+=-︒ sin 440sin 40cos 40︒︒=-+︒sin 40cos 40sin 40cos 440︒︒+︒-=︒sin80sin 40co 402s -=︒+︒︒()0sin 3010cos 402cos1︒+︒+︒=-︒0sin 30cos10cos32cos 0sin10co 01s 4︒+︒︒+︒︒=-︒3cos1022cos 40-︒︒︒==(2)344x ππ-<<, 422x πππ∴-<+<,则cos 04x π⎛⎫+> ⎪⎝⎭, 所以3cos 45x π⎛⎫+=⎪⎝⎭, 又2cos 22cos 1x x =-,cos 2sin 2sin 22sin cos 2444x x x x x ππππ⎛⎫⎛⎫⎛⎫⎛⎫=+=+=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭432425525⎛⎫=⨯-⨯=- ⎪⎝⎭,则22412cos cos 2112525x x =+=-+=; sin 2cos 2cos 224x x x ππ⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎝⎭⎝⎭2972cos 12142525x π⎡⎤⎛⎫⎛⎫=-+-=-⨯-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以21782cos sin 2252525x x +=+=; 【点睛】关键点睛:本题主要考查了三角函数与三角恒等变换问题.灵活的运用诱导公式,同角三角函数的基本关系,二倍角公式,两角和的正弦与余弦公式以及辅助角公式是解决本题的关键. 22.(1)5[,],1212k k Z πππ-+∈;(2)存在,14k <<【分析】(1)利用二倍角公式化简可得()sin f x x =,从而可得()sin(2)3g x x π=-,由正弦函数的单调性可得222232k x k πππππ-+≤-≤+,k Z ∈,解不等式即可.(2)不等式化为2sin cos (4)(sin cos )3x x k x x ⋅+-+<,令sin cos [t x x =+∈-,不等式等价为2(4)40t k t +--<在⎡-⎣恒成立,令函数2()(4)4,m t t k t =+--根据二次函数根的分布只需(1)0m m -<⎧⎪⎨<⎪⎩,解不等式即可.【详解】(1)解:2()2sin ()1cos()sin 422x f x x x ππ=+-=-+=, ()(2)sin(2)33g x f x x ππ=-=-,222232k x k πππππ-+≤-≤+解得5,1212k x k k Z ππππ-+≤≤+∈,函数()g x 的递增区间为5[,],1212k k Z πππ-+∈; (2)假设存在这样的实数k ,则不等式即为2sin cos (4)(sin cos )3x x k x x ⋅+-+<,令sin cos ,t x x =+则()22sin cos 11sin cos 22x x t x x +--⋅==则不等式()221(4)3(4)40t k t t k t ⇔-+-<⇔+--<又sin cos )4t x x x π=+=+,由,02x ⎡⎤∈-⎢⎥⎣⎦π,3,444x πππ⎡⎤∴+∈-⎢⎥⎣⎦,所以sin cos )[4t x x x π=+=+∈-令函数2()(4)4,m t t k t =+--即2()(4)40,t m t t k t ⎡=+--<∈-⎣恒成立,由一元二次方程根的分布,只需(1)0101404)20m k k m k ⎧-<-<⎧⎪⎪⇒⇒<<⎨<--<⎪⎩ 【点睛】关键点点睛:本题考查了三角恒等变换、三角函数的性质、三角不等式恒成立以及一元二次方程根的分布,解题的关键是将不等式通过换元法转化为2(4)40t k t +--<在⎡-⎣恒成立,考查了分析能力、运算求解能力.23.(1)115sin cos 12αα+=-;(2)4tan 3α=-. 【分析】(1)将等式1sin cos 5αα+=两边平方,可求出sin cos αα的值,进而可求得11sin cos αα+的值; (2)法一:利用同角三角函数的基本关系可求得sin cos αα-的值,结合已知条件可得出关于sin α、cos α的方程组,解出sin α、cos α的值,进而可求得tan α的值;法二:由弦化切可得出222sin cos tan 12sin cos tan 125αααααα==-++,可得出关于tan α的二次方程,由已知条件可得出tan 1α<-,由此可求得tan α的值. 【详解】(1)由1sin cos 5αα+=①,得()21sin cos 12sin cos 25αααα+=+=.12sin cos 25αα∴=-,所以,111sin cos 5512sin cos sin cos 1225αααααα++===--; (2)法一:由(1)知12sin cos 25αα=-,0απ<<,sin 0α>,cos 0α<,sin cos 0αα∴->.()249sin cos 12sin cos 25αααα∴-=-=,7sin cos 5αα∴-=②.由①②得,4sin 5α,3cos 5α=-,sin 4tan cos 3∴==-ααα; 法二:由(1)知12sin cos 25αα=-,22sin cos 1αα+=,22sin cos 12sin cos 25αααα∴=-+. 2222sin cos 12cos sin cos 25cos αααααα∴=-+,即2tan 12tan 125αα=-+,整理可得212tan 25tan 120αα++=,得4tan 3α=-或3tan 4α=-. 因为0απ<<,所以sin 0α>,cos 0α<, 又1sin cos 05αα+=>,所以sin cos αα>,tan 1α∴<-,所以4tan 3α=-. 【点睛】方法点睛:在利用同角三角函数的基本关系求值时,可利用以下方法求解:(1)应用公式时注意方程思想的应用,对于sin cos αα+、sin cos αα-、sin cos αα这三个式子,利用()2sin cos 12sin cos αααα±=±可以知一求二; (2)关于sin α、cos α的齐次式,往往化为关于tan α的式子. 24.条件性选择见解析,(1)14;(2)单调递增区间为,,36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;对称中心的坐标为,0,212k k Z ππ⎛⎫-∈ ⎪⎝⎭;对称轴为直线26k x ππ=+,k Z ∈. 【分析】 选择条件①:()fx 11cos cos222224x x x ωωω⎛⎫⎛⎫=+- ⎪⎪ ⎪⎝⎭⎝⎭11cos sin 426x x x πωωω⎛⎫=+=+ ⎪⎝⎭,再根据相邻两对称轴之间距离为2π,可得ω从而求出()f x ;选择条件②:()f x 11sin cos sin 4426x x x πωωω⎛⎫=+=+ ⎪⎝⎭,相邻两对称轴之间距离为2π,可得ω,从而求出()f x ; 选择条件③:()f x 相邻两对称轴之间距离为2π,求出ω,对任意x ∈R 都有5()06f x f x π⎛⎫+-= ⎪⎝⎭成立,则()f x 的图象关于5,012π⎛⎫ ⎪⎝⎭对称,可求出ϕ,从而得出()f x ;(1)由于选择哪种情况,都有1()sin 226f x x π⎛⎫=+ ⎪⎝⎭,代入3f π⎛⎫⎪⎝⎭可得答案. (2)分别根据正弦函数的单调递增区间、对称中心、对称轴可得答案. 【详解】选择条件①:依题意,()1cos sin 2264f x x x ωωπ⎛⎫⎛⎫=+-⎪ ⎪⎝⎭⎝⎭,即有:()11cos cos22224f x x x x ωωω⎫⎛⎫=+-⎪⎪⎪⎝⎭⎝⎭,化简得:211()cos cos 22224f x x x x ωωω⎛⎫=+- ⎪⎝⎭,即有:11()cos sin 4426f x x x x πωωω⎛⎫=+=+ ⎪⎝⎭, 又因为()f x 相邻两对称轴之间距离为2π,则周期为π,从而2ω=, 从而1()sin 226f x x π⎛⎫=+ ⎪⎝⎭ ;选择条件②:依题意,()1cos cos 2224f x x x x ωωω⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,即有:11()cos sin 4426f x x x x πωωω⎛⎫=+=+ ⎪⎝⎭, 又因为()f x 相邻两对称轴之间距离为2π,则周期为π,从而2ω=, 从而1()sin 226f x x π⎛⎫=+ ⎪⎝⎭;选择条件③:依题意,()f x 相邻两对称轴之间距离为2π,则周期为π,从而2ω=,对任意x ∈R 都有5()06f x f x π⎛⎫+-= ⎪⎝⎭成立,则()f x 的图象关于5,012π⎛⎫⎪⎝⎭对称,则5212k πϕπ⨯+=,k Z ∈,由||2ϕπ<知6π=ϕ, 从而1()sin 226f x x π⎛⎫=+ ⎪⎝⎭; (1)由于选择哪种情况,都有1()sin 226f x x π⎛⎫=+ ⎪⎝⎭,所以11sin 233264f πππ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭. (2)1()sin 226f x x π⎛⎫=+ ⎪⎝⎭, 单调递增区间为2222621,k x k k z πππππ-≤+≤+∈, 解得,,36x k k k Z ππππ⎡⎤∈-+∈⎢⎥⎣⎦, 从而()f x 的单调增区间为,,36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ 又由2,6x k k Z ππ+=∈,所以212k x k Z ππ=-∈,, 得()f x 的对称中心的坐标为,0,212k k Z ππ⎛⎫-∈⎪⎝⎭, ()f x 的对称轴为直线2,62x k k Z πππ+=+∈,即26k x ππ=+,k Z ∈. 【点睛】 关键点点睛:本题考查了三角函数解析式的化简,以及三角函数的图象与性质的应用,其中解答中利用三角恒等变换的公式,化简函数的解析式,再利用三角函数的图象与性质求解是解答的关键,着重考查了推理与计算能力,属于基础题.25.(1)-1;(2)()4-+∞【分析】(1)易得()2sin 233h x x π⎛⎫=+- ⎪⎝⎭,再利用正弦函数的性质求解. (2)将0,2x π⎡⎤∈⎢⎥⎣⎦时,()()f x g x >恒成立,转化为0,2x π⎡⎤∈⎢⎥⎣⎦时,22cos 2cos 440x a x a -+->恒成立,令[]cos 0,1t x =∈,利用二次函数的性质求()22244r t t at a =-+-的最小值即可.【详解】(1)因为函数()cos23f x x =-,所以()2cos 232sin 233h x x x x π⎛⎫=+-=+- ⎪⎝⎭, 当22,32x k k Z πππ+=+∈,即 ,12x k k Z ππ=+∈时, sin 213x π⎛⎫+= ⎪⎝⎭, 所以()h x 的最大值是-1;(2)因为0,2x π⎡⎤∈⎢⎥⎣⎦时,()()f x g x >恒成立, 所以0,2x π⎡⎤∈⎢⎥⎣⎦时,cos232cos 4x a x a >--恒成立, 所以0,2x π⎡⎤∈⎢⎥⎣⎦时,22cos 2cos 440x a x a -+->恒成立, 令[]cos 0,1t x =∈ ()22244r t t at a =-+- 当02a ≤,即 0a ≤时, ()()min 0440r t r a ==->,解得 1a >,此时无解; 当012a <<,即 02a <<时, ()2min 44022a a r t r a ⎛⎫==-+-> ⎪⎝⎭,解得44-<+,此时42a -<; 当12a ≥,即 2a ≥时, ()()min 1220r t r a ==->,解得 1a >,此时2a ≥;综上:a 的取值范围是()4-+∞【点睛】方法点睛:恒成立问题的解法:若()f x 在区间D 上有最值,则()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<;若能分离常数,即将问题转化为:()a f x >(或()a f x <),则()()max a f x a f x >⇔>;()()min a f x a f x <⇔<.26.(1)T π=,7[,],1212++∈k k k Z ππππ;(2)3π. 【分析】(1)先利用三角恒等变换,将函数转化为()2sin(2)3f x x π=+,再利用正弦函数的性质求解.(2)根据函数()f x 的图象关于点(,)m n 对称,令2()3m k k Z ππ+=∈求解. 【详解】(1)2()[2sin()sin ]cos 3=++f x x x x x π2(sin sin )cos =++-x x x x x2(2sin )cos =+x x x x222sin cos sin )x x x x =+-sin 222sin(2)3x x x π==+, T π=, 由3222232k x k πππππ+≤+≤+, 解得71212k x k ππππ+≤≤+, 则()f x 的单调递减区间是7[,],1212++∈k k k Z ππππ. (2)2()3+=∈m k k Z ππ,,26∴=-∈k m k Z ππ 又0m >m ∴的最小值为3π. 【点睛】 方法点睛:1.讨论三角函数性质,应先把函数式化成y =A sin(ωx +φ)(ω>0)的形式. 2.函数y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2T ωπ=,y =tan(ωx +φ)的最小正周期为T πω=. 3.对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t =ωx +φ,将其转化为研究y =sin t 的性质.。

高中数学必修4第三章三角恒等变换综合检测题(人教A版)

高中数学必修4第三章三角恒等变换综合检测题(人教A版)

第三章三角恒等变换综合检测题本试卷分第I 卷选择题和第U 卷非选择题两部分,满分150分,时间120 分钟。

第I 卷(选择题共60分)一、选择题(本大题共12个小题,每小题 5分,共60分,在每小题给出的四个选项中 只有一个是符合题目要求的 )n 3 41 .已知 0v av 2v 3<n 又 sin a= 5, cos (a+ ®= — 5,贝V sin ()B . 0 或 2424 C.25 24 D . ±25 [答案]Cn 3 4[解析]•/ 0v av 2 v 3v n 且 sin a= 5, COS ( a+ 3 = — 54 n3 3• cos a= 5 , 2< a+ 3v ㊁ n, • sin( a+ 3 = ±5,=sin( a+ 3cos a — cos( a+ 3)sin a才< 3v n ••• sin 3> 0•故排除 A , B , D.4 3 4⑵由 cos( a+ 3)= — 5及 Sin a= 3可得 sin 3= §(1 + cos 3)代入 sin 2 3+ cos 2 3= 1 中可解得 cos37 n=—1或一25,再结合2<仟n 可求sin 32.若sin Bv 0, cos2 0v 0,则在(0,2 内)B 的取值范围是()3 n3=0.sin3=- 5x 4-又氏才,n j, • sin 3> 0,故 sin 3= 24当 sin( a+ 3 =,sin 3= sin [( a+ a[点评](1)可用排除法求解,T=器53 245 = 25;A . n< 0< 25 nB.5T <e< ¥3 nC.y <e< 2 nD.严< 0<孕4 4[答案]B[解析]2 2 2•/ cos2 e< 0, • 1 —2sin < 0,即sin e>2或sin < —"2,又已知sin < 0, •— 1 < sin e<—亠2,2由正弦曲线得满足条件的e取值为54n<e< ¥3. 函数y= sin2x+ cos2x的图象,可由函数y= sin2x —cos2x的图象()A .向左平移f个单位得到B .向右平移f个单位得到8c.向左平移n个单位得到4D .向右平移4个单位得到[答案]C[解析]y= sin2x+ cos2x= , 2sin(2x+J=2si n2(x +》_ n _ ny= sin2x—cos2x= 2sin(2x—4)= . 2sin2(x—§)n n n其中x+8=(x+ 4)—8n•••将y= sin2x—cos2x的图象向左平移:个单位可得y= sin2x+ cos2x的图象.44. 下列各式中,值为~2的是()A . 2sin 15 cos15 °2 2B. cos 15。

高中数学必修4(人教B版)第三章三角恒等变换3.1知识点总结含同步练习题及答案

高中数学必修4(人教B版)第三章三角恒等变换3.1知识点总结含同步练习题及答案
解:(1) 原式 =
tan 60∘ − tan 15∘ 1 + tan 60∘ ⋅ tan 15∘ = tan(60∘ − 15∘ ) = tan 45∘ = 1.
(2)根据tan α + tan β = tan(α + β)(1 − tan α tan β) ,则有 原式 = tan 120 ∘ (1 − tan 55∘ tan 65∘ ) − √3 tan 55∘ tan 65∘
π ),向左平移 m 个单位后,得到的函数为 3 π π π y = 2 sin (x + + m),若所得到的图像关于 y 轴对称,则 + m = + kπ, k ∈ Z ,所以 3 3 2 π π m = + kπ ,k ∈ Z.取 k = 0 时,m = . 6 6
高考不提分,赔付1万元,关注快乐学了解详情。
和差角公式 辅助角公式
三、知识讲解
1.和差角公式 描述: 两角差的余弦公式 对于任意角α,β 有cos(α − β) = cos α cos β + sin α sin β,称为差角的余弦公式,简记C(α−β) . 两角和的余弦公式 对于任意角α,β 有cos(α + β) = cos α cos β − sin α sin β,称为和角的余弦公式,简记C(α+β) . 两角和的正弦公式 对于任意角α,β 有sin(α + β) = sin α cos β + cos α sin β,称为和角的正弦公式,简记S (α+β) . 两角差的正弦公式 对于任意角α,β 有sin(α − β) = sin α cos β − cos α sin β,称为差角的正弦公式,简记S (α−β) . 两角和的正切公式 对于任意角α,β 有tan(α + β) = 两角差的正切公式 对于任意角α,β 有tan(α − β) =

数学4必修第三章三角恒等变换基础训练A组及答案

数学4必修第三章三角恒等变换基础训练A组及答案

(数学4必修)第三章 三角恒等变换[基础训练A 组]一、选择题 1 已知(,0)2x π∈-,4cos 5x =,则=x 2tan ( ) A 247 B 247- C 724 D 724- 2 函数3sin 4cos 5y x x =++的最小正周期是( ) A 5π B 2π C π D 2π 3 在△ABC 中,cos cos sin sin A B A B >,则△ABC 为( ) A 锐角三角形 B 直角三角形 C 钝角三角形 D 无法判定4 设00sin14cos14a =+,00sin16cos16b =+,c =, 则,,a b c 大小关系( ) A a b c << B b a c << C c b a << D a c b <<5 函数)cos[2()]y x x ππ=-+是( ) A 周期为4π的奇函数 B 周期为4π的偶函数 C 周期为2π的奇函数 D 周期为2π的偶函数6 已知cos 2θ=44sin cos θθ+的值为( ) A 1813 B 1811 C 97 D 1- 二、填空题1 求值:0000tan 20tan 4020tan 40+=_____________ 2 若1tan 2008,1tan αα+=-则1tan 2cos 2αα+ 3 函数f x x x x ()cos sin cos =-223的最小正周期是___________4 已知sin cos 223θθ+=那么sin θ的值为 ,cos 2θ的值为 5 ABC ∆的三个内角为A 、B 、C ,当A 为 时,cos 2cos 2B C A ++取得最大值,且这个最大值为 三、解答题1 已知sin sin sin 0,cos cos cos 0,αβγαβγ++=++=求cos()βγ-的值2 若,22sin sin =+βα求βαcos cos +的取值范围3 求值:0010001cos 20sin10(tan 5tan 5)2sin 20-+--4 已知函数.,2cos 32sin R x x x y ∈+= (1)求y 取最大值时相应的x 的集合;(2)该函数的图象经过怎样的平移和伸变换可以得到)(sin R x x y ∈=的图象数学4(必修)第三章 三角恒等变换 [基础训练A 组]参考答案一、选择题 1 D (,0)2x π∈-,24332tan 24cos ,sin ,tan ,tan 25541tan 7x x x x x x ==-=-==-- 2 D 25sin()5,21y x T πϕπ=++== 3 C cos cos sin sin cos()0,cos 0,cos 0,A B A B A B C C C -=+>-><为钝角4 D 0a =,061b =,060c =5 C 2cos 242y x x x ==-,为奇函数,242T ππ== 6 B 442222221sin cos (sin cos )2sin cos 1sin 22θθθθθθθ+=+-=- 21111(1c o s 2)218θ=--= 二、填空题1 0000000tan 20tan 40tan 60tan(2040)1tan 20tan 40+=+==-000020tan 40tan 20tan 40=+ 2 200811s i n 21s i n 2t a n 2c o s 2c o s 2c o s 2c o s 2ααααααα++=+= 222(cos sin )cos sin 1tan 2008cos sin cos sin 1tan αααααααααα+++====---3 π ()c o s 23s i n 22c o s (2)3f x x x x π==+,22T ππ== 4 17,3922417(sin cos )1sin ,sin ,cos 212sin 22339θθθθθθ+=+===-= 5 0360,2 2c o s 2c o s c o s 2s i n 12s i n 2s i n 2222B C A A A A A ++=+=-+ 22132sin 2sin 12(sin )22222A A A =-+-=--+ 当1sin 22A =,即060A =时,得max 3(cos 2cos )22BC A ++= 三、解答题 1 解:sin sin sin ,cos cos cos ,βγαβγα+=-+=-22(sin sin )(cos cos )1,βγβγ+++= 122cos()1,cos()2βγβγ+-=-= 2 解:令cos cos t αβ+=,则2221(sin sin )(cos cos ),2t αβαβ+++=+ 221322cos(),2cos()22t t αβαβ+-=+-=-2231722,,22222t t t -≤-≤-≤≤-≤≤ 3 解:原式2000000002cos 10cos5sin 5sin10()4sin10cos10sin 5cos5=-- 000000cos10cos102sin 202cos102sin102sin10-=-= 0000000000cos102sin(3010)cos102sin 30cos102cos30sin102sin102sin10---+==0cos302==4 解:sin 2sin()2223x x x y π=+=+ (1)当2232x k πππ+=+,即4,3x k k Z ππ=+∈时,y 取得最大值 |4,3x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭为所求 (2)2sin()2sin 2sin 232x x y y y x ππ=+−−−−−→=−−−−−−−→=右移个单位横坐标缩小到原来的2倍3 sin y x −−−−−−−→=纵坐标缩小到原来的2倍。

高中数学(人教A版)必修4第3章 三角恒等变换 测试题(含详解)

高中数学(人教A版)必修4第3章 三角恒等变换 测试题(含详解)

第三章测试(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.sin105°cos105°的值为( ) A.14 B .-14C.34D .-34解析 原式=12sin210°=-12sin30°=-14.答案 B2.若sin2α=14,π4<α<π2,则cos α-sin α的值是( )A.32B .-32C.34D .-34解析 (cos α-sin α)2=1-sin2α=1-14=34.又π4<α<π2, ∴cos α<sin α,cos α-sin α=-34=-32. 答案 B3.sin15°sin30°sin75°的值等于( ) A.14 B.34 C.18D.38解析 sin15°sin30°sin75° =sin15°cos15°sin30° =12sin30°sin30°=12×12×12=18. 答案 C4.在△ABC 中,∠A =15°,则 3sin A -cos(B +C )的值为( ) A. 2 B.22C.32D. 2解析 在△ABC 中,∠A +∠B +∠C =π, 3sin A -cos(B +C ) =3sin A +cos A =2(32sin A +12cos A ) =2cos(60°-A )=2cos45°= 2. 答案 A5.已知tan θ=13,则cos 2θ+12sin2θ等于( )A .-65B .-45C.45D.65解析 原式=cos 2θ+sin θcos θcos 2θ+sin 2θ=1+tan θ1+tan 2θ=65.答案 D6.在△ABC 中,已知sin A cos A =sin B cos B ,则△ABC 是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形D .等腰三角形或直角三角形解析 ∵sin2A =sin2B ,∴∠A =∠B ,或∠A +∠B =π2.答案 D 7.设a =22(sin17°+cos17°),b =2cos 213°-1,c =32,则( ) A .c <a <b B .b <c <a C .a <b <c D .b <a <c 解析 a =22sin17°+22cos17°=cos(45°-17°)=cos28°,b =2cos 213°-1=cos26°,c =32=cos30°, ∵y =cos x 在(0,90°)内是减函数, ∴cos26°>cos28°>cos30°,即b >a >c . 答案 A8.三角形ABC 中,若∠C >90°,则tan A ·tan B 与1的大小关系为( ) A .tan A ·tan B >1 B. tan A ·tan B <1 C .tan A ·tan B =1D .不能确定解析 在三角形ABC 中,∵∠C >90°,∴∠A ,∠B 分别都为锐角. 则有tan A >0,tan B >0,tan C <0. 又∵∠C =π-(∠A +∠B ),∴tan C =-tan(A +B )=-tan A +tan B1-tan A ·tan B <0,易知1-tan A ·tan B >0, 即tan A ·tan B <1. 答案 B9.函数f (x )=sin 2⎝⎛⎭⎫x +π4-sin 2⎝⎛⎭⎫x -π4是( ) A .周期为π的奇函数 B .周期为π的偶函数 C .周期为2π的奇函数 D .周期为2π的偶函数解析 f (x )=sin 2⎝⎛⎭⎫x +π4-sin 2⎝⎛⎭⎫x -π4 =cos 2⎝⎛⎭⎫π4-x -sin 2⎝⎛⎭⎫x -π4 =cos 2⎝⎛⎭⎫x -π4-sin 2⎝⎛⎭⎫x -π4 =cos ⎝⎛⎭⎫2x -π2 =sin2x . 答案 A10.y =cos x (cos x +sin x )的值域是( ) A .[-2,2] B.⎣⎢⎡⎦⎥⎤1+22,2C.⎣⎢⎡⎦⎥⎤1-22,1+22D.⎣⎡⎦⎤-12,32 解析 y =cos 2x +cos x sin x =1+cos2x 2+12sin2x=12+22⎝⎛⎭⎫22sin2x +22cos2x =12+22sin(2x +π4).∵x ∈R , ∴当sin ⎝⎛⎭⎫2x +π4=1时,y 有最大值1+22; 当sin ⎝⎛⎭⎫2x +π4=-1时,y 有最小值1-22. ∴值域为⎣⎢⎡⎦⎥⎤1-22,1+22.答案 C11.已知θ为第二象限角,sin(π-θ)=2425,则cos θ2的值为( )A.335 B.45 C .±35D .±45解析 由sin(π-θ)=2425,得sin θ=2425.∵θ为第二象限的角,∴cos θ=-725.∴cos θ2=±1+cos θ2=± 1-7252=±35. 答案 C12.若α,β为锐角,cos(α+β)=1213,cos(2α+β)=35,则cos α的值为( )A.5665 B.1665C.5665或1665D .以上都不对解析 ∵0<α+β<π,cos(α+β)=1213>0,∴0<α+β<π2,sin(α+β)=513.∵0<2α+β<π,cos(2α+β)=35>0,∴0<2α+β<π2,sin(2α+β)=45.∴cos α=cos [(2α+β)-(α+β)]=cos(2α+β)cos(α+β)+sin(2α+β)sin(α+β) =35×1213+45×513=5665. 答案 A二、填空题(本大题共4小题,每题5分,共20分.将答案填在题中横线上) 13.若1+tan α1-tan α=2012,则1cos2α+tan2α=______.解析1cos2α+tan2α=1+sin2αcos2α=sin 2α+cos 2α+2sin αcos αcos 2α-sin 2α=tan 2α+1+2tan α1-tan 2α=(tan α+1)21-tan 2α=1+tan α1-tan α=2012.答案 201214.已知cos2α=13,则sin 4α+cos 4α=________.解 ∵cos2α=13,∴sin 22α=89.∴sin 4α+cos 4α=(sin 2α+cos 2α)2-2sin 2αcos 2α =1-12sin 22α=1-12×89=59.答案 5915.sin (α+30°)+cos (α+60°)2cos α=________.解析 ∵sin(α+30°)+cos(α+60°)=sin αcos30°+cos αsin30°+cos αcos60°-sin αsin60°=cos α,∴原式=cos α2cos α=12.答案 1216.关于函数f (x )=cos(2x -π3)+cos(2x +π6),则下列命题:①y =f (x )的最大值为2; ②y =f (x )最小正周期是π;③y =f (x )在区间⎣⎡⎦⎤π24,13π24上是减函数;④将函数y =2cos2x 的图像向右平移π24个单位后,将与已知函数的图像重合.其中正确命题的序号是________. 解析 f (x )=cos ⎝⎛⎭⎫2x -π3+cos ⎝⎛⎭⎫2x +π6 =cos ⎝⎛⎭⎫2x -π3+sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫2x +π6 =cos ⎝⎛⎭⎫2x -π3-sin ⎝⎛⎭⎫2x -π3 =2·⎣⎡⎦⎤22cos ⎝⎛⎭⎫2x -π3-22sin ⎝⎛⎭⎫2x -π3 =2cos ⎝⎛⎭⎫2x -π3+π4 =2cos ⎝⎛⎭⎫2x -π12, ∴y =f (x )的最大值为2,最小正周期为π,故①,②正确.又当x ∈⎣⎡⎦⎤π24,13π24时,2x -π12∈[0,π],∴y =f (x )在⎣⎡⎦⎤π24,13π24上是减函数,故③正确. 由④得y =2cos2⎝⎛⎭⎫x -π24=2cos ⎝⎛⎭⎫2x -π12,故④正确. 答案 ①②③④三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(10分)已知向量m =⎝⎛⎭⎫cos α-23,-1,n =(sin x,1),m 与n 为共线向量,且α∈⎣⎡⎦⎤-π2,0.(1)求sin α+cos α的值; (2)求sin2αsin α-cos α的值.解 (1)∵m 与n 为共线向量, ∴⎝⎛⎭⎫cos α-23×1-(-1)×sin α=0, 即sin α+cos α=23. (2)∵1+sin2α=(sin α+cos α)2=29,∴sin2α=-79.∴(sin α-cos α)2=1-sin2α=169. 又∵α∈⎣⎡⎦⎤-π2,0,∴sin α-cos α<0. ∴sin α-cos α=-43.∴sin2αsin α-cos α=712. 18.(12分)求证:2-2sin ⎝⎛⎭⎫α+3π4cos ⎝⎛⎭⎫α+π4cos 4α-sin 4α=1+tan α1-tan α. 证明 左边=2-2sin ⎝⎛⎭⎫α+π4+π2cos ⎝⎛⎭⎫α+π4(cos 2α+sin 2α)(cos 2α-sin 2α) =2-2cos 2⎝⎛⎭⎫α+π4cos 2α-sin 2α =1-cos ⎝⎛⎭⎫2α+π2cos 2α-sin 2α=1+sin2αcos 2α-sin 2α=(sin α+cos α)2cos 2α-sin 2α=cos α+sin αcos α-sin α=1+tan α1-tan α. ∴原等式成立.19.(12分)已知函数f (x )=2cos2x +sin 2x -4cos x . (1)求f ⎝⎛⎭⎫π3的值;(2)求f (x )的最大值和最小值. 解 (1)f ⎝⎛⎭⎫π3=2cos 2π3+sin 2π3-4cos π3 =2×⎝⎛⎭⎫-12+⎝⎛⎭⎫322-4×12 =-1+34-2=-94.(2)f (x )=2(2cos 2x -1)+(1-cos 2x )-4cos x =3cos 2x -4cos x -1=3⎝⎛⎭⎫cos x -232-73, ∵x ∈R ,cos x ∈[-1,1],∴当cos x =-1时,f (x )有最大值6; 当cos x =23时,f (x )有最小值-73.20.(12分)已知cos ⎝⎛⎭⎫x -π4=210,x ∈⎝⎛⎭⎫π2,3π4. (1)求sin x 的值; (2)求sin ⎝⎛⎭⎫2x +π3的值. 解 (1)解法1:∵x ∈⎝⎛⎭⎫π2,3π4, ∴x -π4∈⎝⎛⎭⎫π4,π2, 于是sin ⎝⎛⎭⎫x -π4= 1-cos 2⎝⎛⎭⎫x -π4=7210.sin x =sin ⎣⎡⎦⎤⎝⎛⎭⎫x -π4+π4=sin ⎝⎛⎭⎫x -π4cos π4+cos ⎝⎛⎭⎫x -π4sin π4 =7210×22+210×22=45. 解法2:由题设得22cos x +22sin x =210, 即cos x +sin x =15.又sin 2x +cos 2x =1, 从而25sin 2x -5sin x -12=0, 解得sin x =45,或sin x =-35,因为x ∈⎝⎛⎭⎫π2,3π4,所以sin x =45. (2)∵x ∈⎝⎛⎭⎫π2,3π4,故 cos x =-1-sin 2x =-1-⎝⎛⎭⎫452=-35. sin2x =2sin x cos x =-2425.cos2x =2cos 2x -1=-725.∴sin ⎝⎛⎭⎫2x +π3 =sin2x cos π3+cos2x sin π3=-24+7350.21.(12分)已知函数 f (x )=4cos x sin ⎝⎛⎭⎫x +π6-1. (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤-π6,π4上的最大值和最小值. 解 (1)因为f (x )=4cos x sin ⎝⎛⎭⎫x +π6-1 =4cos x ⎝⎛⎭⎫32sin x +12cos x -1=3sin2x +2cos 2x -1=3sin2x +cos2x =2sin ⎝⎛⎭⎫2x +π6所以f (x )的最小正周期为π.(2)-π6≤x ≤π4,所以-π6≤2x +π6≤2π3,当2x +π6=π2时,即x =π6,f (x )取得最大值2;当2x +π6=-π6时,即x =-π6,f (x )取得最小值-1.22.(12分)已知函数f (x )=sin ⎝⎛⎭⎫x +7π4+cos ⎝⎛⎭⎫x -3π4,x ∈R . (1)求f (x )的最小正周期和最小值;(2)已知cos(β-α)=45,cos(β+α)=-45,0<α<β≤π2,求证:[f (β)]2-2=0.解 (1)∵f (x )=sin ⎝⎛⎭⎫x +7π4-2π+sin ⎝⎛⎭⎫x -3π4+π2 =sin ⎝⎛⎭⎫x -π4+sin ⎝⎛⎭⎫x -π4=2sin ⎝⎛⎭⎫x -π4, ∴T =2π,f (x )的最小值为-2.(2)证明:由已知得cos βcos α+sin βsin α=45,cos βcos α-sin βsin α=-45.两式相加,得2cos βcos α=0, ∵0<α<β≤π2,∴β=π2.∴[f (β)]2-2=4sin 2π4-2=0.。

高中数学三角恒等变换习题及答案

高中数学三角恒等变换习题及答案

第三章 三角恒等变换一、选择题1.函数y =sin α+cos α⎪⎭⎫ ⎝⎛2π < < 0α的值域为( ).A .(0,1)B .(-1,1)C .(1,2]D .(-1,2)2.若0<α<β<4π,sin α+cos α=a ,sin β+cos β=b ,则( ). A .a <bB .a >bC .ab <1D .ab >23.若θθtan +2tan 1-=1,则θθ2sin +12cos 的值为( ).A .3B .-3C .-2D .-214.已知 α∈⎪⎭⎫⎝⎛2π3 ,π,并且sin α=-2524,则tan 2α等于( ). A .34 B .43 C .-43 D .-345.已知tan (α+β)=3,tan (α-β)=5,则tan 2α=( ). A .-47B .47 C .-74 D .74 6.在△ABC 中,若cos A cos B >sin A sin B ,则该三角形是( ). A .锐角三角形 B .直角三角形 C .钝角三角形D .锐角或直角三角形7.若0<α<2π<β<π,且cos β=-31,sin (α+β)=97,则sin α 的值是( ).A .271B .275C .31D .2723 8.若cos (α+β)·cos (α-β)=31,则cos 2 α-sin 2 β 的值是( ).A .-32B .31C .-31D .32 9.锐角三角形的内角A ,B 满足tan A -A 2sin 1=tan B ,则有( ). A .sin 2A -cos B =0 B .sin 2A +cos B =0 C .sin 2A -sin B =0D .sin 2A +sin B =010.函数f (x )=sin 2⎪⎭⎫ ⎝⎛4π+x -sin 2⎪⎭⎫ ⎝⎛4π-x 是( ).A .周期为 π 的偶函数B .周期为π 的奇函数C .周期为2 π的偶函数D .周期为2π的奇函数二、填空题 11.已知设α∈⎪⎭⎫ ⎝⎛2π,0,若sin α=53,则2cos ⎪⎭⎫ ⎝⎛+4πα= . 12.sin 50°(1+3tan 10°)的值为 . 13.已知cos ⎪⎭⎫ ⎝⎛-6πα+sin α=534,则sin ⎪⎭⎫ ⎝⎛+6π7α的值是 . 14.已知tan ⎪⎭⎫ ⎝⎛α + 4π=21,则ααα2cos +1cos -2sin 2的值为 .15.已知tan α=2,则cos ⎪⎭⎫⎝⎛2π3+2α的值等于 . 16.sin ⎪⎭⎫ ⎝⎛α + 4πsin ⎪⎭⎫ ⎝⎛α - 4π=61,α∈⎪⎭⎫⎝⎛ π,2π,则sin 4α 的值为 .三、解答题17.求cos 43°cos 77°+sin 43°cos 167°的值.18.求值:①(tan10°-3)︒︒50sin 10cos ; ②︒︒︒20cos 20sin -10cos 2.19.已知cos ⎪⎭⎫ ⎝⎛x + 4π=53,127π<x <47π,求x x x tan -1sin 2+2sin 2的值.20.若sin α=55,sin β=1010,且α,β 均为钝角,求α+β 的值.参考答案一、选择题 1.C解析:∵ sin α+cos α=2sin (α+4π),又 α∈(0,2π),∴ 值域为(1,2]. 2.A解析:∵ a =2sin (α+4π),b =2sin (β+4π),又4π<α+4π<β+4π<2π. 而y =sin x 在[0,2π]上单调递增,∴ sin (α+4π)<sin (β+4π).即a <b .3.A 解析:由θθtan +2tan 1-=1,解得tan θ=-21,∴ θθ2sin +12cos =222sin + cos sin - cos )(θθθθ=θθθθsin + cos sin - cos =θθ tan + 1 tan - 1=⎪⎭⎫⎝⎛⎪⎭⎫⎝⎛21 - + 121 - - 1=3. 4.D解析:sin α=-2524,α∈(π,2π3),∴ cos α=-257,可知tan α=724. 又tan α=2tan - 12tan22αα=724. 即12 tan 22α+7 tan 2α-12=0. 又 2α∈⎪⎭⎫ ⎝⎛4π ,2π,可解得 tan 2α=-34. 5.C解析:tan 2α=tan [(α+β)+(α-β)]=)-()+(-)-()++(βαβαβαβαtan tan 1tan tan =-74.6.C解析:由cos A cos B >sin A sin B ,得cos (A +B )>0⇒cos C <0, ∴ △ABC 为钝角三角形. 7.C解析:由0<α<2π<β<π,知2π<α+β<23 π 且cos β=-31,sin (α+β)=97,得sin β=322,cos (α+β)=-924. ∴ sin α=sin [(α+β)-β]=sin (α+β)cos β-cos (α+β)sin β=31.8.B解析:由cos (α+β)·cos (α-β)=31,得cos 2α cos 2 β-sin 2α sin 2 β=31,即cos 2 α(1-sin 2 β)-(1-cos 2 α)sin 2 β=31,∴ cos 2 α-sin 2 β=31.9.A解析:由tan A -A 2sin 1=tanB ,得A 2sin 1=tan A -tan B ⇒A A cos sin 21=BA B A cos cos -sin )(⇒cos B =2sin A sin (A -B )⇒cos [(A -B )-A ]=2sin A sin (A -B ) ⇒cos (A -B )cos A -sin A sin (A -B )=0,即cos (2A -B )=0.∵ △ABC 是锐角三角形, ∴ -2π<2A -B <π, ∴ 2A -B =2π⇒sin 2A =cos B ,即sin 2A -cos B =0. 10.B解析:由sin 2⎪⎭⎫ ⎝⎛4π-x =sin 2⎪⎭⎫ ⎝⎛x -4π=cos 2⎪⎭⎫⎝⎛x +4π,得f (x )=sin 2⎪⎭⎫ ⎝⎛4π+x -cos 2⎪⎭⎫ ⎝⎛x +4π=-cos ⎪⎭⎫ ⎝⎛2π+2x =sin 2x .二、填空题 11.15. 解析:由α∈⎪⎭⎫ ⎝⎛2π,0,sin α=53得cos α=54,2cos ⎪⎭⎫ ⎝⎛+4πα=cos α-sin α=51. 12.1.解析:sin50°(1+3tan10°) =sin50°·︒︒︒10cos 10sin 3+10cos=sin50°·︒⎪⎪⎭⎫ ⎝⎛︒︒10 cos 10sin 23+10 cos 212=sin50°·︒︒10cos 50cos 2=︒︒10cos 100sin =︒︒10cos 10cos =1. 13.-45. 解析:cos ⎪⎭⎫⎝⎛-6πα+sin α=23cos α+21sin α+sin α =23( cos α+3sin α)=534, 所以cos α+3sin α=58. sin ⎪⎭⎫ ⎝⎛+6π7α=sin αcos6π7+cos αsin 6π7 =-23sin α-21cos α=-21(3sin α+cos α)=-54. 14.-65. 解析:由tan ⎪⎭⎫ ⎝⎛α + 4π=ααtan 4πtan -1tan +4πtan =ααtan -1tan +1=21,解得tan α=-31,∴ ααα2cos +1cos -2sin 2=αααα22cos 2cos -cos sin 2 =αααcos 2cos -sin 2=tan α-21 =-31-21=-65. 15.45. 解析:tan α=ααcos sin =2,sin α=2cos α.又sin 2 α+cos 2 α=1, 所以sin 2 α=54,又cos ⎪⎭⎫ ⎝⎛+2π32α=sin 2α=2sin αcos α=sin 2α=54. 16.-924. 解析:∵ sin ⎪⎭⎫⎝⎛α - 4π=sin ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛α + 4π - 2π=cos ⎪⎭⎫ ⎝⎛α + 4π,∴ sin ⎪⎭⎫ ⎝⎛α + 4πsin ⎪⎭⎫ ⎝⎛α - 4π=61⇒sin ⎪⎭⎫ ⎝⎛α + 4πcos ⎪⎭⎫ ⎝⎛α + 4π=61⇒sin ⎪⎭⎫ ⎝⎛α2 + 2π=31.∴ cos 2α=31,又 α∈(2π,π),∴ 2α∈(π,2π).∵ sin 2α=-α2cos -12=-322, ∴ sin 4α=2sin 2αcos 2α=-924. 三、解答题17.解:cos 43°cos 77°+sin 43°cos 167°=cos 43°cos 77°-sin 43°sin 77° =cos (43°+77°)=cos 120°=-21. 18.①解法1: 原式=(tan 10°-tan 60°)︒︒50sin 10cos =⎪⎭⎫ ⎝⎛︒︒︒︒cos60sin60 - cos10sin10︒︒50sin 10cos =︒︒︒60cos 10cos 50-sin )(·︒︒50sin 10cos=-2. 解法2:原式=⎪⎭⎫ ⎝⎛︒︒3 - cos10sin10︒︒50sin 10cos =⎪⎪⎭⎫ ⎝⎛︒︒︒cos10cos103-sin10︒︒50sin 10cos =︒⎪⎪⎭⎫ ⎝⎛︒︒50 sin 10 cos 23-10 sin 212 =︒︒︒50sin 60-10sin 2 )(=-2. ②解:原式=︒︒︒︒20cos 20sin -20-30cos 2 )(=︒︒︒︒︒︒20cos 20sin -20sin 30sin 2+20cos 30cos 2=︒︒︒20cos 20cos 30cos 2=3.19.解:∵127π<x <47π,∴ 65π<4π+x <2π.又cos ⎪⎭⎫ ⎝⎛x + 4π=53>0,∴ 23π<4π+x <2π,∴ sin ⎪⎭⎫ ⎝⎛x + 4π=-54,tan ⎪⎭⎫⎝⎛x + 4π=-34.又 sin 2x =-cos ⎪⎭⎫ ⎝⎛x 2 + 2π=-cos 2⎪⎭⎫ ⎝⎛x + 4π=-2cos 2⎪⎭⎫⎝⎛x + 4π+1=257,∴ 原式=xx xx cos sin -1sin 2+2sin 2=x x x x x x sin -cos cos sin 2+cos 2sin 2=xx x x x sin -cos sin +cos 2sin )(=xx x tan -1tan +12sin )(=sin 2x ·tan (4π+x ) =-7528.20.解:∵ α,β 均为钝角且sin α=55,sin β=1010, ∴ cos α=-α2sin 1-=-552,cos β=-β2sin 1-=-10103, ∴ cos (α+β)=cos αcos β-sin αsin β=⎪⎪⎭⎫ ⎝⎛-552×⎪⎪⎭⎫ ⎝⎛-1010355-×1010=22.又 2π<α<π, 2π<β<π,∴ π<α+β<2π,则α+β=4π7.。

(典型题)高中数学必修四第三章《三角恒等变形》测试题(包含答案解析)(1)

(典型题)高中数学必修四第三章《三角恒等变形》测试题(包含答案解析)(1)

一、选择题1.已知θ为锐角,且满足如tan 311tan θθ=,则tan 2θ的值为( ) A .34B .43 C .23D .322.已知函数()sin os 0(c f x x a x a ωω=+>且0>ω),周期2T π<,()3f π()f x 在6x π=处取得最大值,则ω的最小值为( )A .11B .12C .13D .143.已知,(0,2)αβπ∈,且满足1sin cos 2αα-=,1cos sin 2ββ-=,则sin()αβ+=( )A .1B .或1C .34-或1 D .1或-14.若sin 3cos 0θθ+=,则2cos sin 2θθ+的值( ) A .2B .2-C .12D .12-5.已知ππ2α<<,且π3sin 45α⎛⎫+= ⎪⎝⎭,则cos α的值为( )A .10B .10-C .10D .10-6.若1sin 34a π⎛⎫-= ⎪⎝⎭,则sin 26a π⎛⎫-= ⎪⎝⎭( )A .78-B .78C .1516-D .15167.已知函数()sin cos f x a x b x =+,其中,a b ∈R ,且0ab ≠,若()π4f x f ⎛⎫≤ ⎪⎝⎭对一切x ∈R 恒成立,则( ). A .ππ56f f ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭B .()5π2f x f x ⎛⎫=-⎪⎝⎭C .π4f x ⎛⎫- ⎪⎝⎭是偶函数D .π4f x ⎛⎫+ ⎪⎝⎭是奇函数8.函数2()sin 2f x x x =+-()cos(2)2 3 (0)6g x m x m m π=--+>,若对任意1[0,]4x π∈,存在2[0,]4x π∈,使得12()()g x f x =成立,则实数m 的取值范围是( ) A .4(1,)3B .2(,1]3C .2[,1]3D .4[1,]39.已知α,β均为锐角,5cos()13αβ+=-,3sin()35πβ+=,则sin()3πα-=( )A .3365B .3365-C .6365D .566510.已知α∈3π,π2⎛⎫ ⎪⎝⎭,cos α=-45,则tan π4α⎛⎫- ⎪⎝⎭等于( ) A .7B .17C .-17D .-711.若0||4πα<<,则下列说法①sin2α>sinα,②cos2α<cosα,③tan2α>tanα,正确的是( ) A .①B .②C .③D .①③12.已知()0,απ∈,sin cos αα+=cos2=α( ) A.BC.9-D.9二、填空题13.给出下列命题:①存在实数α使得sin cos 1αα=; ②存在实数α使得3sin cos 2αα+=; ③5sin 22y x π⎛⎫ ⎪⎝=⎭-是偶函数; ④8x π=是函数5sin 24y x π⎛⎫=+⎪⎝⎭的图象的一条对称轴方程; ⑤若α、β是第一象限角,且αβ>,则tan tan αβ>, 其中正确命题的序号是______.14.设a ,b 是非零实数,且满足sincos1077tan 21cos sin 77a b a b πππππ+=-,则b a =_______.15.如图,在边长为1的正方形ABCD 中,P ,Q 分别在边BC ,CD 上,且PB QD PQ +=,则PAQ ∠的大小为__________.16.()sin 5013tan10︒+︒的值__________. 17.已知cosα17=,cos(α﹣β)1314=,且0<β<α2π<,则sinβ=_____. 18.已知锐角α,β满足()sin 23sin αββ+=,则()tan cot αβα+=______. 19.已知3tan 4α=-,()1tan 4αβ+=,则tan β=______. 20.已知,,0,2παβγ⎛⎫∈ ⎪⎝⎭,且222cos cos cos 2αβγ++=,则cos cos cos sin sin sin αβγαβγ++++的最小值为______.三、解答题21.函数()3sin()0,||2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,其中7,03B π⎛⎫⎪⎝⎭,且最高点A 与B 的距离29AB π=+(1)求函数()f x 的解析式;(2)若(),,4363f ππαα⎛⎫∈-= ⎪⎝⎭,求cos2α的值. 22.已知函数21()3cos cos 22f x x x x π⎛⎫=++-⎪⎝⎭. (1)若对任意,32x ππ⎡⎤∈-⎢⎥⎣⎦,都有()f x a ≥成立,求实数a 的取值范围;(2)若先将()y f x =的图像上每个点横坐标伸长为原来的2倍(纵坐标不变),再将所得图像向左平移6π个单位长度,得到函数()y g x =的图像,求函数1()3y g x=-在区间[],3ππ-内的所有零点之和.23.已知3sin 5α=-,且α为第四象限角 (1)求sin sin(2)2tan()cos()παπααππα⎛⎫++ ⎪⎝⎭---+的值; (2)求1sin 2cos 21sin 2cos 2αααα+-++的值.24.先将函数2sin 23sin 26y x x π⎛⎫=+- ⎪⎝⎭图像上所有点的纵坐标伸长为原来的2倍(横坐标不变),再将所得到的图像横坐标伸长为原来的2倍(纵坐标不变)得到函数()f x 的图像. (1)求函数()f x 的解析式; (2)若α,β满足42()()3f f αβ⋅=,且4παβ+=,设232sin()sin()()cos x x g x xαβ+⋅+=,求函数()g x 在,44x ππ⎡⎤∈-⎢⎥⎣⎦上的最大值. 25.已知函数()()sin f x A x =+ωϕ(0A >,0>ω,ππ22ϕ-<<)的部分图像如图所示,π12,7π12是函数的两个相邻的零点,且图像过()0,1-点.(1)求函数()f x 的解析式;(2)求函数()()π4g x f x f x ⎛⎫=⋅- ⎪⎝⎭的单调增区间以及对称轴方程. 26.(1)化简:(cos 20tan 20sin 40-⋅°°°;(2)证明:()()21tan 31sin 21tan 312sin πx xπx x+--=---.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】先利用两角和的正切计算tan tan 2tan 31tan tan 2θθθθθ+=-,再利用二倍角的正切化简前者,结合tan 311tan θθ=可得1tan 2θ=,从而可求tan 2θ.【详解】32222tan tan tan tan 23tan tan 1tan tan 32tan 1tan tan 213tan 1tan 1tan θθθθθθθθθθθθθθ++--===---⨯-, 故32223tan tan tan 33tan 13tan 11tan tan 13tan θθθθθθθθ---===-,故21tan 4θ=, 因为θ为锐角,故1tan 2θ=,故1242tan 21314θ⨯==-, 故选:B. 【点睛】思路点睛:已知θ的三角函数值,求()*n n N θ∈的三角函数值,应利用两角和的三角函数值逐级计算即可.2.C解析:C 【分析】利用辅助角公式,求得()f x 的解析式,根据题意,可求得ϕ的表达式,根据tan a ϕ=,可求得1tan 6a πω⎛⎫=⎪⎝⎭,又根据()3f π=,可求得cos 6πω⎛⎫= ⎪⎝⎭sin 6πω⎛⎫⎪⎝⎭的值,根据同角三角函数的关系,可求得a 的值,即可求得ω的表达式,根据ω的范围,即可求得答案.【详解】()sin cos ),tan f x x a x x a ωωωϕϕ=+=+=,因为22T ππω=<,所以1ω>,因为()f x 在6x π=处取得最大值,所以2,62k k Z πωπϕπ+=+∈,即2,26k k Z ππωϕπ=+-∈,所以1tan tan 2tan 2626tan 6k a ππωππωϕππω⎛⎫⎛⎫=+-=-== ⎪ ⎪⎛⎫⎝⎭⎝⎭ ⎪⎝⎭, 所以1tan 6aπω⎛⎫= ⎪⎝⎭,因为()3f π3πωϕ⎛⎫+=⎪⎝⎭sin 3πωϕ⎛⎫+= ⎪⎝⎭,所以sin sin 2sin cos 3326266k πωπωππωππωπωϕπ⎛⎫⎛⎫⎛⎫⎛⎫+=++-=+== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以sin tan cos 666πωπωπω⎛⎫⎛⎫⎛⎫=⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,又2222sin cos 166πωπω⎛⎫⎛⎫+=+= ⎪ ⎪⎝⎭⎝⎭, 解得23a =,又0a >,所以a =1sin 62πω⎛⎫=⎪⎝⎭, 所以2,66k k Z πωππ=+∈或52,66k k Z πωππ=+∈,解得121,k k Z ω=+∈或125,k k Z ω=+∈,又1ω>,所以ω的最小值为13. 故选:C 【点睛】解题的关键是根据题意,求得ϕ的表达式,代入求得tan 6πω⎛⎫⎪⎝⎭,cos 6πω⎛⎫⎪⎝⎭的表达式,再结合同角三角函数关系进行求解,计算量大,考查分析理解,计算化简的能力,属中档题.3.C解析:C 【分析】由两角与差的正弦、余弦公式变形由已知求得sin()4πα-和cos()4πβ+,用平方关系求得cos()4πα-和sin()4πα+,而sin()sin ()()44ππαβαβ⎡⎤+=-++⎢⎥⎣⎦,展开后计算,注意分类讨论. 【详解】∵1sin cos 2αα-=,∴αα=sin()4πα-=1cos sin 2ββ-=ββ-=,cos()44πβ+=,∴cos()44πα-=±,sin()44πα+=±, sin()sin ()()sin()cos()cos()sin()444444ππππππαβαβαβαβ⎡⎤+=-++=-++-+⎢⎥⎣⎦,当7cos()sin()448ππαβ-+=时,17sin()188αβ+=+=, 当7cos()sin()448ππαβ-+=-时,173sin()884αβ+=-=-, 故选:C . 【点睛】关键点点睛:本题考查两角和与差正弦、余弦公式.解题关键是确定已知角和未知角之间的关系,本题中已知等式变形得出4πα-和4πβ+,未知角有()()44ππαβαβ+=-++,这样易确定使用的公式与顺序.4.D解析:D 【分析】先根据题意得tan 3θ=-,再根据正弦的二倍角公式化简得2212tan 1cos sin 21tan 2θθθθ++==-+.解:由sin 3cos 0θθ+=得tan 3θ=-.所以2222222cos sin 2cos 2sin cos cos sin 2cos sin cos sin θθθθθθθθθθθ+++==++ 22222222cos 2sin cos 12tan 51cos cos cos sin 1tan 102cos cos θθθθθθθθθθθ++-====-++, 故选:D. 【点睛】本题解题的关键是将等式2cos sin 2θθ+变形化简得2212tan cos sin 21tan θθθθ++=+,进而求解,考查运算求解能力,是中档题.5.D解析:D 【分析】根据同角三角函数基本关系得出cos 4πα⎛⎫+ ⎪⎝⎭的值,再用两角差的余弦公式即可解题.【详解】 因为ππ2α<<,所以35,444πππα⎛⎫+∈ ⎪⎝⎭,又3sin 45πα⎛⎫+= ⎪⎝⎭,所以4cos 45πα⎛⎫+=- ⎪⎝⎭, 所以cos cos cos cos sin sin 444444ππππππαααα⎛⎫⎛⎫⎛⎫=+-=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭43525210=-⨯+⨯=-. 故选:D 【点睛】方法点睛:该题考查的是有关三角函数求值问题,解题方法如下: (1)利用同角三角函数关系式,结合角的范围,求得cos 4πα⎛⎫+ ⎪⎝⎭的值; (2)凑角,利用差角余弦公式求得结果.6.B解析:B 【分析】 化简sin 2cos 2()63a ππα⎛⎫-=- ⎪⎝⎭,再利用二倍角公式化简求值.22sin 2sin[(2)]cos(2)=cos 2()cos 2()632333a ππππππαααα⎛⎫-=-+=--=- ⎪⎝⎭=21712sin ()123168πα--=-⨯=. 故选:B 【点睛】方法点睛:三角恒等变换常用的方法有:三看(看角、看名、看式)三变(变角变名变式),要根据已知条件灵活选择方法化简求值.7.B解析:B 【分析】利用辅助角公式可得()()f x x ϕ=+,又()π4f x f ⎛⎫≤ ⎪⎝⎭对一切x ∈R 恒成立知π4f a ⎛⎫==⎪⎝⎭a b =,整理得()sin 4f x x π⎛⎫=+ ⎪⎝⎭,利用正弦函数的单调性可判断A ,利用诱导公式以及三角函数的奇偶性可判断选项BCD ,进而可得正确选项. 【详解】由0ab ≠知0a ≠且0b ≠,利用辅助角公式可得()()sin cos f x a x b x x ϕ=+=+,其中tan baϕ=, 又()π4f x f ⎛⎫≤ ⎪⎝⎭对一切x ∈R 恒成立,知π4f ⎛⎫⎪⎝⎭是()f x 的最值,所以πππsin cos 44422f b a a b ⎛⎫=+=+= ⎝⎪⎭, 即22221122a b ab a b +++=,所以2211022a b ab +-=,即()2102a b -=, 所以a b =,tan 1b a ϕ==,可得4πϕ=,所以()sin 4f x x π⎛⎫=+ ⎪⎝⎭,对于选项A :9sin sin 55420f ππππ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭, 5sin sin 66412f ππππ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,又因为5912202πππ<<,则59sin sin 1220ππ<,当0a >时,ππ56f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,当0a <时,ππ56f f ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,故选项A 不正确; 对于选项B:sin sin 5π5π11π3π2244sin 4f x x x x π⎛⎫-=--- ⎪⎝⎛⎫⎛⎫⎛⎫+== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎭()ππ4sin sin 4x f x x π⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭--+,故选项B 正确;对于选项C:sin sin ππ444x x f x π⎛⎫--⎛⎫=+= ⎪⎝⎭ ⎪⎝⎭是奇函数,故选项C 不正确; 对于选项D:si πππ442n sin cos 4f x x x x π⎛⎫⎛⎫=+== ⎪ ⎪⎛⎫+++ ⎪⎭⎝⎭⎝⎭⎝是偶函数,故选项D 不正确, 故选:B 【点睛】关键点点睛:本题的关键点是从已知条件()π4f x f ⎛⎫≤⎪⎝⎭对一切x ∈R 恒成立,知π4f ⎛⎫ ⎪⎝⎭是()f x的最值,π422f a ⎛⎫=+= ⎪⎝⎭,从而得()sin 4f x x π⎛⎫=+ ⎪⎝⎭,属于中档题.8.D解析:D 【解析】222221f x sin x x sin x cos x =+-=+-())12222222223sin x x sin x cos x sin x π==+=+()(), 当0,4x π⎡⎤∈⎢⎥⎣⎦时,552[]21[12]3366min x f x sin f x ππππ+∈∴==∴∈,,(),(),, 对于22306g x mcos x m m π=--+()()(>),2[]2[]36662m x mcos x m ππππ-∈--∈,,(),,3[33]2g x m m ∴∈-+-(),, ∵对任意10,4x π⎡⎤∈⎢⎥⎣⎦,存在20,4x π⎡⎤∈⎢⎥⎣⎦,使得()()12g x f x =成立,331232m m ⎧-+≥⎪∴⎨⎪-≤⎩ ,解得实数m 的取值范围是41,3⎡⎤⎢⎥⎣⎦.故选D .【点睛】本题考查三角函数恒等变换,其中解题时问题转化为求三角函数的值域并利用集合关系是解决问题的关键,9.B解析:B 【分析】由所给三角函数值利用同角三角函数的关系求出()sin αβ+、cos 3πβ⎛⎫+⎪⎝⎭,3πα-记为()3παββ⎛⎫+-+⎪⎝⎭,利用两角差的正弦公式展开代入相应值计算即可.【详解】α,β均为锐角,5cos()013αβ+=-<,,2παβπ⎛⎫∴+∈ ⎪⎝⎭,∴()12sin 13αβ+==,β均为锐角,5,336πππβ⎛⎫∴+∈ ⎪⎝⎭,则1cos 322πβ⎛⎫⎛⎫+∈- ⎪ ⎪ ⎪⎝⎭⎝⎭,4cos 35πβ⎛⎫∴+==- ⎪⎝⎭或45(4152>,舍去),()sin()sin 33ππααββ⎡⎤⎛⎫∴-=+-+ ⎪⎢⎥⎝⎭⎣⎦()()sin cos cos sin 33ππαββαββ⎛⎫⎛⎫=+⋅+-+⋅+ ⎪ ⎪⎝⎭⎝⎭124533313513565⎛⎫⎛⎫=⨯---⨯=- ⎪ ⎪⎝⎭⎝⎭. 故选:B 【点睛】本题考查同角三角函数的关系、两角差的正弦公式、三角函数在各象限的符号,属于中档题.10.B解析:B 【分析】先根据同角三角函数关系求tan α,再根据两角差正切公式求结果. 【详解】由已知得tan α=34,则tan π1tan 141tan 7ααα-⎛⎫-== ⎪+⎝⎭. 选B 【点睛】本题考查同角三角函数关系、两角差正切公式,考查基本求解能力.11.B解析:B 【分析】 取6πα=-判断①③,根据余弦函数的性质结合二倍角公式判断②.【详解】当6πα=-时,1sin 2sin ,sin sin ,sin 2sin 3262ππαααα⎛⎫⎛⎫=-=-=-=-< ⎪ ⎪⎝⎭⎝⎭tan 2tan tan tan ,tan 2tan 363ππαααα⎛⎫⎛⎫=-==-=-< ⎪ ⎪⎝⎭⎝⎭,则①③错误;0||4πα<<,cos cos ||2αα⎛⎫∴=∈ ⎪ ⎪⎝⎭2cos 2cos 2cos cos 1(cos 1)(2cos 1)0αααααα∴-=--=-+<即cos2cos αα<,②正确; 故选:B 【点睛】本题主要考查了求余弦函数的值域以及二倍角的余弦公式的应用,属于中档题.12.A解析:A 【分析】在等式sin cos αα+=cos sin αα-的值,然后利用二倍角的余弦公式可求得cos2α的值. 【详解】()0,απ∈,sin cos 3αα+=,两边平方后得:112sin cos 3αα+=,即1sin cos 3αα=-,sin 0α∴>,cos 0α<,()215cos sin 12sin cos 1233αααα⎛⎫-=-=-⨯-= ⎪⎝⎭,cos sin αα∴-=,则()()22cos 2cos sin cos sin cos sin ααααααα=-=-+==故选:A. 【点睛】本题考查利用二倍角的余弦公式求值,同时也考查了同角三角函数平方关系的应用,考查计算能力,属于中等题.二、填空题13.③④【分析】利用二倍角的降幂公式结合正弦函数的有界性可判断①的正误;利用辅助角公式结合正弦函数的有界性可判断②的正误;化简函数解析式结合余弦函数的奇偶性可判断③的正误;利用代入检验法可判断④的正误;解析:③④ 【分析】利用二倍角的降幂公式结合正弦函数的有界性可判断①的正误;利用辅助角公式结合正弦函数的有界性可判断②的正误;化简函数解析式,结合余弦函数的奇偶性可判断③的正误;利用代入检验法可判断④的正误;利用特殊值法可判断⑤的正误. 【详解】对于命题①,111sin cos sin 2,222ααα⎡⎤=∈-⎢⎥⎣⎦, 所以,不存在实数α使得sin cos 1αα=,①错误;对于命题②,sin cos 4πααα⎛⎫⎡+=+∈ ⎪⎣⎝⎭, 所以,不存在实数α使得3sin cos 2αα+=,②错误; 对于命题③,si o 5s 2n c 2i s n 222x y x x ππ⎛⎫⎛⎫== ⎪⎪⎝-⎭-⎭=⎝, ()cos 2cos2x x -=,所以,函数5sin 22y x π⎛⎫⎪⎝=⎭-是偶函数,③正确;对于命题④,当8x π=时,min 53sin 2sin 1842y y πππ⎛⎫=⨯+==-= ⎪⎝⎭, 所以,8x π=是函数5sin 24y x π⎛⎫=+⎪⎝⎭的图象的一条对称轴方程,命题④正确; 对于命题⑤,取9244παππ=+=,4πβ=,αβ>,但tan 1tan αβ==,⑤错误.因此,正确命题的序号为③④. 故答案为:③④. 【点睛】本题考查有关三角函数命题真假的判断,考查了三角函数的有界性、正弦型函数的奇偶性、对称性以及正切值大小的比较,考查计算能力与推理能力,属于中等题.14.【分析】先把已知条件转化为利用正切函数的周期性求出即可求得结论【详解】因为(tanθ)∴∴tanθ=tan (kπ)∴故答案为【点睛】本题主要考查三角函数中的恒等变换应用考查了两角和的正切公式属于中档题【分析】先把已知条件转化为10721717btana tan tanb tan a πππθπ+⎛⎫==+ ⎪⎝⎭-.利用正切函数的周期性求出3k πθπ=+,即可求得结论.【详解】因为10721717btana tan tanb tan a πππθπ+⎛⎫==+ ⎪⎝⎭-,(tanθb a =) ∴10721k ππθπ+=+ ∴3k πθπ=+.tanθ=tan (k π3π+)=∴ba=. 【点睛】本题主要考查三角函数中的恒等变换应用,考查了两角和的正切公式,属于中档题.15.【分析】先分别设则在中由勾股定理得再分别表示出之后利用正切的和角公式求即可解决【详解】解:设则因为是直角三角形所以由勾股定理得:化简得在中在中所以又因为所以故答案为:【点睛】本题主要考查正切的和角公解析:4π【分析】先分别设PB x =,DQ y =,则在PCQ △中,由勾股定理得1xy x y -=+,再分别表示出tan BAP ∠,tan DAQ ∠,之后利用正切的和角公式求()tan BAP DAQ ∠+∠即可解决.【详解】解:设PB x =,DQ y =,则1CP x =-,1CQ y =-, 因为PCQ △是直角三角形,PB QD PQ +=,所以由勾股定理得:()()()22211x y x y -+-=+,化简得1xy x y -=+, 在ABP △中,tan BPBAP x AB∠==, 在ADQ △中,tan DQDAQ y AD∠==, 所以()tan tan tan 11tan tan 1BAP DAQ x yBAP DAQ DAQ BAP xy∠+∠+∠+∠===-∠∠-,又因为02BAP DAQ π<∠+∠<,所以,=4PAQ π∠故答案为:4π 【点睛】本题主要考查正切的和角公式,数据处理能力与运算能力,是中档题.16.1【分析】由结合辅助角公式可知原式为结合诱导公式以及二倍角公式可求值【详解】解:故答案为:1【点睛】本题考查了同角三角函数的基本关系考查了二倍角公式考查了辅助角公式考查了诱导公式本题的难点是熟练运用解析:1 【分析】由sin10tan10cos10︒︒=︒,结合辅助角公式可知原式为2sin50sin 40cos10︒︒︒,结合诱导公式以及二倍角公式可求值. 【详解】解: ()cos10sin501sin50cos10︒+︒︒+︒=︒⨯︒()2sin50cos30sin10sin 30cos102sin50sin 402sin50cos50cos10cos10cos10︒︒︒+︒︒︒︒︒︒===︒︒︒ ()sin 10902sin50cos50sin100cos101cos10cos10cos10cos10︒+︒︒︒︒︒====︒︒︒︒.故答案为:1. 【点睛】本题考查了同角三角函数的基本关系,考查了二倍角公式,考查了辅助角公式,考查了诱导公式.本题的难点是熟练运用公式对所求式子进行变形整理.17.【分析】利用同角三角函数的基本关系式求得的值由的值【详解】依题意则所以所以所以故答案为:【点睛】本小题主要考查同角三角函数的基本关系式考查两角差的正弦公式考查化归与转化的数学思想方法属于基础题解析:2【分析】利用同角三角函数的基本关系式求得()sin ,sin ααβ-的值,由()sin sin βααβ=--⎡⎤⎣⎦的值. 【详解】 依题意02πβα<<<,则02πβ>->-,所以02παβ<-<,所以sin α==,()sin αβ-==()sin sin βααβ=--⎡⎤⎣⎦()()sin cos cos sin ααβααβ=---1317147147142=⨯-⨯==⨯.【点睛】本小题主要考查同角三角函数的基本关系式,考查两角差的正弦公式,考查化归与转化的数学思想方法,属于基础题.18.2【分析】将三角函数式配成与由正弦函数和角与差角公式展开即可求解【详解】锐角满足变形可得由正弦和角与差角公式展开可得合并化简可得等式两边同时除以可得即故答案为:2【点睛】本题考查了三角函数式化简求值解析:2 【分析】将三角函数式配成()αβα++与()αβα+-,由正弦函数和角与差角公式展开,即可求解. 【详解】锐角α,β满足()sin 23sin αββ+=变形可得()()sin 3sin αβααβα++=+-⎡⎤⎡⎤⎣⎦⎣⎦ 由正弦和角与差角公式展开可得()()()()sin cos sin cos 3sin cos 3sin cos αβαααβαβαααβ+++=+-+合并化简可得()()4sin cos 2sin cos ααβαβα+=+ 等式两边同时除以()2cos cos αβα+ 可得()2tan tan ααβ=+ 即()tan cot 2αβα+= 故答案为:2 【点睛】本题考查了三角函数式化简求值,角的变化形式,属于中档题.19.【分析】根据以及两角差正切公式求解【详解】故答案为:【点睛】本题考查两角差正切公式考查基本分析求解能力属基础题 解析:1613【分析】根据()βαβα=+-以及两角差正切公式求解. 【详解】13tan()tan 1644tan tan[()]31tan()tan 13116αβαβαβααβα++-=+-===++-故答案为:1613【点睛】本题考查两角差正切公式,考查基本分析求解能力,属基础题.20.【分析】根据同角三角函数关系式及基本不等式可得同理证明另外两组式子成立不等式两边同时相加化简即可得解【详解】由题意知则因为则不等式两边同时加可得开平方可得同理相加可得化简得故答案为:【点睛】本题考查【分析】根据同角三角函数关系式及基本不等式,可得sin sin αβγ+≤,同理证明另外两组式子成立,不等式两边同时相加,化简即可得解. 【详解】由题意知222sin sin sin 1αβγ++=, 则2222sinsin 1sin cos αβγγ+=-=2222sin sin 1sin cos αγββ+=-= 2222sin sin 1sin cos βγαα+=-=因为,,0,2παβγ⎛⎫∈ ⎪⎝⎭,则222sin sin sin sin αβαβ⋅≤+,不等式两边同时加22sin sin αβ+ 可得()()222sin sin 2sin sin αβαβ+≤+开平方可得sin sin αβγ+≤=,同理sin sin βγα+≤=,sin sin γαβ+≤=,相加可得2sin 2sin 2sin αβγαβγ++≤++化简得cos cos cos sin sin sin αβγαβγ++≥++故答案为 【点睛】本题考查了三角函数式的化简求值,同角三角函数关系式的应用,根据基本不等式求最值,属于中档题.三、解答题21.(1)()13sin 26f x x π⎛⎫=- ⎪⎝⎭;(2 【分析】(1)根据最高点A 与点B 的距离AB ==,求得,T ω,点7,03B π⎛⎫ ⎪⎝⎭在图象上求解.(2)由(),,463f ππαα⎛⎫∈-= ⎪⎝⎭,求得sin 2,cos 266ππαα⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,然后由cos2cos 266ππαα⎛⎫=-+ ⎪⎝⎭求解.【详解】(1)最高点A 与点B 的距离AB ==,14,2T πω==, ()13sin ,2f x x ϕ⎛⎫=+ ⎪⎝⎭因为点7,03B π⎛⎫⎪⎝⎭在图象上, 所以773sin 0,36f ππϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭因为2πϕ<,所以6πϕ=-,所以()13sin 26f x x π⎛⎫=-⎪⎝⎭.(2)()43sin 2266f ππααα⎛⎫⎛⎫=-=-= ⎪ ⎪⎝⎭⎝⎭因为,63ππα⎛⎫∈-⎪⎝⎭, 所以2,622πππα⎛⎫-∈- ⎪⎝⎭,所以cos 26πα⎛⎫-== ⎪⎝⎭, 所以cos2cos 266ππαα⎛⎫=-+⎪⎝⎭, cos 2cos sin 2sin 6666ππππαα⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭6=. 【点睛】 方法点睛:已知f (x )=A sin(ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)五点法,由ω=2Tπ即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x 0,则令ωx 0+φ=0(或ωx 0+φ=π),即可求出φ;(2)代入法,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求. 22.(1)1a ≤-,(2)6π 【分析】(1)先对函数()f x 化简变形,然后求出函数()f x 在,32x ππ⎡⎤∈-⎢⎥⎣⎦上的最小值,则可得到实数a 的取值范围;(2)根据题意,利用函数sin()y A x ωϕ=+的图像变换规律,先得到()g x 的解析式,函数1()3y g x =-在区间[],3ππ-内的所有零点,即1sin 3x =的实数根,它的实数根共4个,再根据正弦函数图像的对称性得到结论 【详解】解:(1)21()cos cos 22f x x x x π⎛⎫=++-⎪⎝⎭21cos (2sin 1)2x x x =+-12cos 2sin(2)226x x x π=-=-, 若对任意,32x ππ⎡⎤∈-⎢⎥⎣⎦,都有()f x a ≥成立,则只需min ()f x a ≥即可, 因为,32x ππ⎡⎤∈-⎢⎥⎣⎦,所以552[,]666x πππ-∈-,所以当262x ππ-=-即π6x =-时,()f x 取得最小值为1-,所以1a ≤-, (2)先将()f x 的图像上每个点的纵坐标不变,横坐标变为原来的2倍,可得sin()6y x π=-的图像,然后再向左平移6π个单位得到函数()sin g x x =的图像,函数1()3y g x =-在区间[],3ππ-内的所有零点,即1sin 3x =的实数根,它的实数根共4个,设为1234,,,x x x x ,则根据对称性可知这4个根关于直线32x π=对称,所以1234342x x x x π+++=,所以12346x x x x π+++= 【点睛】关键点点睛:此题考查三角函数恒等变换、正弦函数的定义域和值域,函数恒成立问题,函数sin()y A x ωϕ=+的图像变换规律,第2问解题的关键是运用正弦函数的对称性进行求解,属于中档题 23.(1)45;(2)34-. 【分析】(1)先求出4cos 5α=,再利用诱导公式和同角的三角函数的基本关系化简后可得所求的值.(2)先求出3tan 4α=-,再利用倍角公式和同角的三角函数的基本关系化简后可得所求的值.【详解】(1)因为3sin 5α=-,且α为第四象限角,故4cos 5α=. 原式()cos sin cos t 45an cos ααααα===-⋅-. (2)由(1)得4cos 5α=,故3tan 4α=- 原式222sin cos 2sin sin tan =2sin cos 2cos cos 34ααααααααα==+-+=. 【点睛】思路点睛:三角函数的中的化简求值问题,我们往往从次数的差异、函数名的差异、结构的差异和角的差异去分析,处理次数差异的方法是升幂降幂法,解决函数名差异的方法是弦切互化,而结构上差异的处理则是已知公式的逆用等,最后角的差异的处理则往往是用已知的角去表示未知的角.24.(1)()2cos f x x =;(2)4.【分析】(1)先对函数化简变形可得cos 2y x =,再由三角函数图像变换规律可求出()f x 的解析式;(2)由已知条件可得cos cos 3αβ=,sin sin 6αβ=-2()2tan 3tan 1g x x x =+-,然后令tan [1,1]t x =∈-,则2()231h t t t =+-,从而可求出其最值【详解】(1)原函数化简得到2sin 2cos cos 2sin 2cos 266y x x x x ππ⎡⎤=+=⎢⎥⎣⎦, 将cos 2y x =图像上所有点的纵坐标伸长为原来的2倍(横坐标不变),可得2cos2y x =,再将2cos2y x =的图像横坐标伸长为原来的2倍(纵坐标不变)得到2cos y x =所以()2cos f x x =.(2)由题意知cos cos 3αβ=, 因为4παβ+=所以cos()cos cos sin sin 2αβαβαβ+=-=,解得sin sin 6αβ=-()g x =.222sin cos cos sin cos sin()cos sin sin cos x x x x xαβαβαβ⎤+++⎣⎦=222sin sin cos cos cos x x x x x⎤⎛++⋅⎥ ⎥⎝⎭⎣⎦= 22tan 3tan 1x x =+-令tan [1,1]t x =∈-,2()231h t t t =+-, 则对称轴为34t =-.所以max ()(1)4h t h ==. 【点睛】 关键点点睛:此题考查三角恒等变换公式的应用,考查三角函数图像变换规律,考查数学转化思想,解题的关键是由()()3f f αβ⋅=求出cos cos 3αβ=,再对4παβ+=两边取余弦化简可求出sin sin 6αβ=-()g x 化简可得2()2tan 3tan 1g x x x =+-,再利用换元法可求得结果,属于中档题25.(1)()π2sin 26f x x ⎛⎫=- ⎪⎝⎭;(2)5ππ11ππ,242242k k ⎡⎤++⎢⎥⎣⎦,k Z ∈,对称轴方程为5π244k x π=+,k Z ∈. 【分析】 (1)先利用图象解得周期和ω,再结合π3f A ⎛⎫=⎪⎝⎭, ()01f =-,解得ϕ和A ,即得解析式;(2)先根据解析式化简()g x ,再利用整体代入法求解单调区间和对称轴方程即可.【详解】解:(1)由图可知7212122T πππ=-=,周期T π=,故22T πω==, 由π12,7π12是函数的两个相邻的零点,则17π2123π12π⎛⎫= ⎪⎭+⎝处取得最大值, 故π2πsin 33f A A ϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,得2πsin 13ϕ⎛⎫+= ⎪⎝⎭,即2π2,32k k Z πϕπ+=+∈,又ππ22ϕ-<<,故π6ϕ=-, 由()0sin sin 16f A A πϕ⎛⎫==-=- ⎪⎝⎭,得2A =, 所以()π2sin 26f x x ⎛⎫=- ⎪⎝⎭; (2)()πππππ2sin 22sin 24sin 2cos 262666g x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=-⋅--=--- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ π4sin 43x ⎛⎫=-- ⎪⎝⎭, 当ππ32π4π2π232k x k +≤-≤+,k Z ∈时,5ππ11ππ242242k k x +≤≤+,()g x 单调递增, 所以()g x 的单调增区间为5ππ11ππ,242242k k ⎡⎤++⎢⎥⎣⎦,k Z ∈, 令ππ4π32x k -=+,对称轴方程为5π244k x π=+,k Z ∈. 【点睛】思路点睛:解决三角函数()sin y A ωx φ=+的图象性质,通常利用正弦函数的图象性质,采用整体代入法进行求解,或者带入验证.26.(1)2-;(2)详见解析.【分析】(1)首先变形sin 20tan 20cos 20=,再通分变形,利用辅助角公式化简求值;(2)利用诱导公式化简正切,即sin tan cos x x x =,代入后化简证明. 【详解】 (1)原式sin 20cos 203cos 20sin 40⎛⎫=-⋅ ⎪⎝ sin 203cos 20cos 20cos 20sin 40⎛⎫-=⋅ ⎪ ⎪⎝⎭ ()2sin 2060cos 20cos 20sin 40-=⋅ 2sin 40cos 20cos 20sin 40-=⋅ 2=- ;(2)原式sin 11tan cos sin 1tan 1cos xx x xx x --==++ ()()()2cos sin cos sin cos sin cos sin cos sin x x x x x x x x x x --==++- ()222222cos sin sin 21sin 2cos sin 1sin sin x x x x x x x x +--==---21sin 212sin x x-=- 【点睛】 思路点睛:三角函数化简求值或证明,如果有正切,正弦和余弦时,第一步先正切化为正弦和余弦公式,第一题通分后利用辅助角公式化简;第二题,也可以左右都化简,证明等于同一个式子.。

高中数学第三章三角恒等变换教材习题本新人教A版必修4

高中数学第三章三角恒等变换教材习题本新人教A版必修4

第三章 三角恒等变换P1461, 已知βα,都是锐角,()135cos ,54sin =+=βαα,求βsin 的值,2, 已知⎪⎭⎫⎝⎛∈⎪⎭⎫ ⎝⎛∈-=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛-4,0,43,4,131245sin ,534cos πβππαβπαπ,求()s i n αβ+=3, 已知βα,都是锐角,1010sin ,71tan ==βα,求()=+βα2tan4, 证明()()βαβαβαβα+-+=+tan tan tan tan tan tan 求000040tan 20tan 340tan 20tan ++的值 若43πβα=+,求()()βαtan 1tan 1--的值 求000040tan 20tan 120tan 40tan 20tan 0++的值5, 化简0010cos 310sin 1-()()310tan 40sin 00-()120tan 310cos 70tan 000-()0010tan 3150sin +6, 已知23,53cos πθπθ<<-=,求22cos 2sin ⎪⎭⎫⎝⎛-θθ的值 已知512cos 2sin =-θθ,求θsin 的值 已知95cos sin 44=+θθ,求θ2sin 的值 已知532cos =θ,=+θθ44cos sin7已知()()53cos ,51cos =-=+βαβα,求tan tan αβ的值 8证明 ()()A AA A A 424tan 4cos 2cos 434cos 2cos 43sin sin cos 2sin 2sin 21tan 212sin cos 22sin 1cos 832cos 44cos =+++-=+-++=++=++αββααβαααααααα 9,已知函数()x x x y 22cos 2cos sin ++= 求它的递减区间求它的最大值和最小值10.已知函数x x x x y 44sin cos sin 2cos --=求y 的最小正周期 当⎥⎦⎤⎢⎣⎡∈2,0πx 时,求y 的最小值以及取得最小值时的x 的集合 11,已知函数)cos (sin sin 2x x x y +=求y 的最小正周期和最大值画出函数y 在区.2,2⎥⎦⎤⎢⎣⎡-ππ上的图形 12已知函数a x x x y ++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+=cos 6sin 6sin ππ的最大值为1 求常数a 的值 求使y ≥0成立的x 的取值范围13已知直线21//l l ,A 是21,l l 之间的一个定点,且A 点到21,l l 的距离分别为21,h h ,B 是直线2l 上一动点,作AB AC ⊥,且使AC 与直线1l 交于点C ,求三角形ABC 面积的最小值B 组 已知πααα≤≤=-051cos sin ,求⎪⎭⎫ ⎝⎛-42sin πα的值 已知11sin sin ,cos cos 23αβαβ+=+=,求()βα-cos 的值 已知02,534sin 3sin <<--=+⎪⎭⎫ ⎝⎛+απαπα,求αcos 的值 已知471217,534cos πππ<<=⎪⎭⎫ ⎝⎛+x x ,求x x x tan 1sin 22sin 2-+的值 已知βθθαθθ2sin cos sin ,sin 2cos sin ==+,求证βα2cos 2cos 422= 若函数m x x y ++=2cos 22sin 3在区间⎥⎦⎥⎢⎣⎢2.0π的最大值为6,求常数m 的值及函数当R x ∈时的最小值,并求相应的x 的值的集合在正方形ABCD 的边长为1,P,Q 分别为边AB,DA 上的点,当三角形APQ 的周长为2时,求角PCO 的大小已知()π,0,51cos sin ∈=+x x x ,求=x tan P139用αcos 表示2tan 2cos ,2sin222ααα 求证P A Q DCBA P C Q D OB ()()[]2cos 2sin 2sin sin sin sin 21sin sin φθφθφθβαβαβα++=+-++=求函数x x y cos 3sin +=的周期及最大值和最小值例题4、如图,已知OPQ 是半径为1,圆心角为3π的扇形,C 是扇形弧上的动点,ABCD 是扇形的内接矩形。

高中数学四练习:第三章三角恒等变换二倍角的正弦、余弦、正切公式

高中数学四练习:第三章三角恒等变换二倍角的正弦、余弦、正切公式

第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3。

1.3 二倍角的正弦、余弦、正切公式A级基础巩固一、选择题1.sin 15°sin 75°的值为()A。

错误! B.错误!C。

错误!D。

错误!解析:原式=sin 15°cos 15°=错误!(2sin 15°cos 15°)=错误!sin 30°=错误!。

答案:C2.已知sin α=错误!,则cos (π-2α)=()A.-错误!B.-错误! C.错误!D。

错误!解析:因为sin α=错误!,所以cos (π-2α)=-cos 2α=-(1-2sin2α)=-1+2×错误!错误!=-19。

答案:B3.错误!等于()A。

错误!cos 12°B.2cos 12°C.cos 12°-sin 12°D.sin 12°-cos 12°解析:错误!=错误!=(sin 12°-cos 12°)2=|sin 12°-cos 12°|=cos 12°-sin 12°。

答案:C4.已知cos错误!=错误!,则sin 2α的值为()A.错误!B.-错误!C。

错误!D.-错误!解析:因为cos错误!=错误!,所以sin 2α=-cos错误!=-cos错误!=1-2cos2错误!=1-错误!×2=错误!.答案:A5.若α∈错误!,且sin2α+cos 2α=错误!,则tan α的值等于() A。

错误!B。

错误! C.错误! D.错误!解析:因为sin2α+cos 2α=错误!,所以sin2α+cos2α-sin2α=cos2α=错误!所以cos α=±错误!。

又α∈错误!,所以cos α=错误!,sin α=错误!.所以tan α=错误!.答案:D二、填空题6.已知tan α=-错误!,则错误!=________.解析:错误!=错误!=错误!=tan α-错误!=-错误!。

(好题)高中数学必修四第三章《三角恒等变形》检测题(含答案解析)

(好题)高中数学必修四第三章《三角恒等变形》检测题(含答案解析)

一、选择题1.已知函数44()cos sin f x x x =-在区间,()4t t t R π⎡⎤-∈⎢⎥⎣⎦上的最大值为()M t ,最小值为()N t 则函数()()()g t M t N t =-的最小值为( ) A1-B .1C.2D.12-2.已知tan α,tan β是方程2506x x a -+=的两个实数根,且()tan 1αβ+=,则实数a =( )A .16B .116C .512D .7123.已知ππ2α<<,且π3sin 45α⎛⎫+= ⎪⎝⎭,则cos α的值为( )A.10 B. CD.-4.已知函数()sin cos f x a x b x =+,其中,a b ∈R ,且0ab ≠,若()π4f x f ⎛⎫≤ ⎪⎝⎭对一切x ∈R 恒成立,则( ).A .ππ56f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭B .()5π2f x f x ⎛⎫=- ⎪⎝⎭C .π4f x ⎛⎫-⎪⎝⎭是偶函数 D .π4f x ⎛⎫+⎪⎝⎭是奇函数 5.设等差数列{}n a 满足:()22222222272718sin cos cos cos sin sin 1sin a a a a a a a a -+-=+,公差()1,0d ∈-.若当且仅当11n =时,数列{}n a 的前n 项和n S 取得最大值,则首项1a 的取值范围是( )A .9,10ππ⎛⎫⎪⎝⎭ B .11,10ππ⎡⎤⎢⎥⎣⎦C .9,10ππ⎡⎤⎢⎥⎣⎦ D .11,10ππ⎛⎫ ⎪⎝⎭6.角α的终边与单位圆的交点坐标为1,)22,将α的终边绕原点顺时针旋转34π,得到角β,则cos()αβ+=( ) ABCD .07.函数()sin sin 22f x x x π⎛⎫=++⎪⎝⎭的最大值为( )A .2B .1C .18D .988.已知角α满足1cos()63πα+=,则sin(2)6πα-=( ) A .429-B .429C .79-D .799.已知()cos 2cos 2παπα⎛⎫+=- ⎪⎝⎭,则tan 4πα⎛⎫-= ⎪⎝⎭( )A .4-B .4C .13-D .1310.已知函数22()2sin cos ()sin (0)24x f x x x ωπωωω=-->在区间25[,]36ππ-上是增函数,且在区间[0,]π上恰好取得一次最大值,则ω的范围是( )A .3(0,]5B .13[,]25C .13[,]24D .15[,)2211.求sin10°sin50°sin70°的值( ) A .12B .32C .18D .33812.若,则的值为( )A .B .C .D .二、填空题13.已知函数2()23sincos2cos (0)222xxxf x ωωωω=+>的周期为23π,当0,3x π⎡⎤∈⎢⎥⎣⎦时,函数()()g x f x k =+恰有两个不同的零点,则实数k 的取值范围是__________.14.已知函数()2cos 3sin cos f x x x x =在区间[]0,m 上单调递增,则实数m 的最大值是______.15.函数2cos sin y x x =+的最大值为____________. 16.若函数f (x )=sin 2x+cos 2x ,且函数y=f 2x ϕ⎛⎫+⎪⎝⎭(0<φ<π)是一个偶函数,则φ的值等于_____.17.已知A 、B 、C 为△ABC 的三内角,且角A 为锐角,若tan 2tan B A =,则11tan tan B C+的最小值为______. 18.若1tan 20201tan αα+=-,则1tan 2cos 2αα+=____________.19.如图,在边长为1的正方形ABCD 中,P ,Q 分别在边BC ,CD 上,且PB QD PQ +=,则PAQ ∠的大小为__________.20.在ABC 中,已知tansin 2A BC +=,给出以下四个论断: ①tan tan A B =,②1sin sin 2A B <+≤22sin cos 1A B +=,④222cos cos sin A B C +=,其中正确的是__________.三、解答题21.已知cos α5=,sin (α﹣β)10=,且α、β∈(0,2π).求:(Ⅰ)cos (2α﹣β)的值; (Ⅱ)β的值.22.设函数()2cos 22sin 3f x x x π⎛⎫=++ ⎪⎝⎭. (1)求函数()f x 取得最大值时的自变量x 的值; (2)求函数()f x 的单调递增区间.23.已知函数()cos23f x x =-,()2cos 4g x a x a =-. (1)求函数()()3sin 2h x x f x =+的最大值; (2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,()()f x g x >恒成立,求a 的取值范围. 24.已知函数()2133sin cos 1224f x x x x =-+-(x ∈R ) (1)求()f x 的最小正周期; (2)求()f x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值,并分别写出相应的x 的值. 25.已知02πα<<,02πβ-<<,310cos 10α=,3cos()42πβ-=.(1)求cos()4πα+的值;(2)求sin()2+βα的值.26.如图,设单位圆与x 轴的正半轴相交于点(1,0)Q ,当2()k k απβ≠+∈Z 时,以x 轴非负半轴为始边作角α,β,它们的终边分别与单位圆相交于点1(cos ,sin )P αα,1(cos ,sin )Q ββ.(1)叙述并利用上图证明两角差的余弦公式;(2)利用两角差的余弦公式与诱导公式.证明:sin()sin cos cos sin αβαβαβ-=-. (附:平面上任意两点()111,P x y ,()222,P x y 间的距离公式()()22122121PP x x y y =-+-【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先利用平方差公式、同角三角函数关系以及二倍角公式将函数变形为()cos 2f x x =,然后发现区间长度刚好是四分之一个周期,从而利用余弦函数的对称性,得到当区间,4t t π⎡⎤-⎢⎥⎣⎦,关于cos 2y x =的对称轴对称时,此时最大值与最小值的差值最小,求出此时的最大值和最小值,即可得到答案. 【详解】 函数44222222()cos sin (cos sin )(cos sin )cos sin cos 2f x x x x x x x x x x =-=+-=-=,所以函数()f x 的周期为22T ππ==,区间,()4t t t R π⎡⎤-∈⎢⎥⎣⎦的区间长度刚好是函数()f x 的四分之一个周期, 因为()f x 在区间,()4t t t R π⎡⎤-∈⎢⎥⎣⎦上的最大值为()M t ,最小值为()N t ,由函数cos 2y x =的对称性可知,当区间,4t t π⎡⎤-⎢⎥⎣⎦,关于2y cos x =的对称轴对称时,此时最大值与最小值的差值最小,即函数()()()g t M t N t =-取最小值,区间,4t t π⎡⎤-⎢⎥⎣⎦,的中点为428t tt t ππ-+==-,此时()f t 取得最值±1, 不妨()f t 取得最大值()=1M t , 则有cos 2()18t π-=,解得224t k ππ-=,所以,,8t k k Z ππ=+∈所以()cos 2cos 2cos 44N t t k πππ⎛⎫==+==⎪⎝⎭故()()()g t M t N t =-取最小值为12-. 故选:D . 【点睛】关键点睛:本题考查了三角函数的最值,涉及了二倍角公式的应用、同角三角函数关系的应用、三角函数的周期性、对称性的应用,解题的关键是分析出当区间,4t t π⎡⎤-⎢⎥⎣⎦关于cos 2y x =的对称轴对称时,此时最大值与最小值的差值最小.2.A解析:A 【分析】首先利用韦达定理求得5tan tan 6αβ+=,tan tan a αβ⋅=,再结合()tan 1αβ+=,利用两角和正切公式得到关于a 的等量关系式,求得结果. 【详解】因为tan α,tan β是方程2506x x a -+=的两个实数根, 所以有5tan tan 6αβ+=,tan tan a αβ⋅=, 因为()tan 1αβ+=,所以有5611a=-,所以16a =,故选:A. 【点睛】思路点睛:该题考查的是有关两角和正切公式,解题思路如下: (1)先利用韦达定理,写出两根和与两根积;(2)利用两角和正切公式,结合题中条件,得到等量关系式,求得结果.3.D解析:D 【分析】根据同角三角函数基本关系得出cos 4πα⎛⎫+ ⎪⎝⎭的值,再用两角差的余弦公式即可解题. 【详解】 因为ππ2α<<,所以35,444πππα⎛⎫+∈ ⎪⎝⎭,又3sin 45πα⎛⎫+= ⎪⎝⎭,所以4cos 45πα⎛⎫+=- ⎪⎝⎭, 所以cos cos cos cos sin sin 444444ππππππαααα⎛⎫⎛⎫⎛⎫=+-=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭43525210=-⨯+⨯=-. 故选:D 【点睛】方法点睛:该题考查的是有关三角函数求值问题,解题方法如下: (1)利用同角三角函数关系式,结合角的范围,求得cos 4πα⎛⎫+ ⎪⎝⎭的值; (2)凑角,利用差角余弦公式求得结果.4.B解析:B 【分析】利用辅助角公式可得()()f x x ϕ=+,又()π4f x f ⎛⎫≤⎪⎝⎭对一切x ∈R 恒成立知π4f a ⎛⎫==⎪⎝⎭a b =,整理得()sin 4f x x π⎛⎫=+ ⎪⎝⎭,利用正弦函数的单调性可判断A ,利用诱导公式以及三角函数的奇偶性可判断选项BCD ,进而可得正确选项. 【详解】由0ab ≠知0a ≠且0b ≠,利用辅助角公式可得()()sin cos f x a x b x x ϕ=+=+,其中tan b aϕ=, 又()π4f x f ⎛⎫≤ ⎪⎝⎭对一切x ∈R 恒成立,知π4f ⎛⎫⎪⎝⎭是()f x 的最值,所以πππsin cos 444f b a ⎛⎫=+=+= ⎝⎪⎭, 即22221122a b ab a b +++=,所以2211022a b ab +-=,即()2102a b -=, 所以a b =,tan 1b a ϕ==,可得4πϕ=,所以()sin 4f x x π⎛⎫=+ ⎪⎝⎭,对于选项A :9sin sin 55420f ππππ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭, 5sin sin 66412f ππππ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,又因为5912202πππ<<,则59sin sin 1220ππ<,当0a >时,ππ56f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,当0a <时,ππ56f f ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,故选项A 不正确; 对于选项B :sin sin 5π5π11π3π2244sin 4f x x x x π⎛⎫-=--- ⎪⎝⎛⎫⎛⎫⎛⎫+== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎭()ππ4sin sin 4x f x x π⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭--+,故选项B 正确;对于选项C :sin sin ππ444x x f x π⎛⎫--⎛⎫=+= ⎪⎝⎭ ⎪⎝⎭是奇函数,故选项C 不正确;对于选项D :si πππ442n sin cos 4f x x x x π⎛⎫⎛⎫=+== ⎪ ⎪⎛⎫+++ ⎪⎭⎝⎭⎝⎭⎝是偶函数,故选项D 不正确, 故选:B 【点睛】关键点点睛:本题的关键点是从已知条件()π4f x f ⎛⎫≤⎪⎝⎭对一切x ∈R 恒成立,知π4f ⎛⎫ ⎪⎝⎭是()f x 的最值,π4f ⎛⎫== ⎪⎝⎭,从而得()sin 4f x x π⎛⎫=+ ⎪⎝⎭,属于中档题.5.D解析:D 【解析】因为22222222272718sin cos cos cos sin sin 1sin()a a a a a a a a -+-=+,所以由余弦二倍角公式、平方差公式及两角和与差的余弦公式可得2272718cos 2cos()cos()1sin()a a a a a a a -+-+=+,再运用积化和差公式可得227181cos 2[cos 2cos 2]21sin()a a a a a -++=+,即72181[cos 2cos 2]21sin()a a a a -=+,再由差化积公式可得727218sin()sin()1sin()a a a a a a --+=+.由于{}n a 是等差数列,因此1827a a a a +=+,即1827sin()sin()a a a a +=+,所以72sin()1a a -=-即sin51d =-注意到()1,0d ∈-,则()55,0d ∈-,所以5210d d ππ=-⇒=-,故对称轴方程故等差数列的前n 项和是1(1)2n n n S na d -=+,即221()()222020n d d S n a n n a n ππ=+-=-++,其对称轴是1202a n ππ+=,由题设可得1202123222a ππ+<<,即11110a ππ<<,应选答案D .点睛:解答本题的关键是先借助三角变换中的两角和差的余弦公式、余弦二倍角公式、积化和差与和差化积公式等三角变换公式进行化简,再借助差数列的定义和性质求出等差数列的公差10d π=-,然后将等差数列的前n 项和公式1(1)2n n n S na d -=+变形为221()()222020n d d S n a n n a n ππ=+-=-++,借助对称轴11n =的位置建立不等式组1202123222a ππ+<<,进而求得数列首项的取值范围是11110a ππ<<. 6.A解析:A 【分析】先求α的正余弦三角函数,再求β的正余弦三角函数,然后根据余弦的两角和与差的公式计算即可得到答案. 【详解】由角α的终边经过点1)2,得1sin ,cos 2αα==, 因为角β的终边是由角α的终边顺时针旋转34π得到的,所以3331sin sin()sin cos cos sin (4442πππβααα=-=-=⨯=3331cos cos()cos cos sin sin (4442πππβααα=-=+=+=1cos()cos cos sin sin 2αβαβαβ+=-==, 故选:A. 【点睛】本题主要考查了三角函数的定义以及两角和与差的正余弦公式的应用,属于中档题.7.D解析:D 【分析】利用诱导公式与二倍角的余弦公式化简,再结合二次函数配方法求解即可. 【详解】因为()sin sin 2sin cos 22f x x x x x π⎛⎫=++=+ ⎪⎝⎭,2219sin 12sin 2sin 48x x x ⎛⎫=+-=--+ ⎪⎝⎭所以()f x 的最大值为98, 故选:D. 【点睛】本题主要考查诱导公式与二倍角的余弦公式的应用,考查了二次函数的性质,属于基础题.8.D解析:D 【分析】由已知利用诱导公式可求133sin πα⎛⎫-= ⎪⎝⎭,sin 2263cos ππαα⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,再由二倍角公式化简,即可得结果. 【详解】162633cos sin sin ππππααα⎡⎤⎛⎫⎛⎫⎛⎫+=-+=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,2sin 2cos 2cos 2262633cos πππππαααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫∴-=--=-=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦22171212()339sin πα⎛⎫=--=-⨯= ⎪⎝⎭.故选D . 【点睛】本题主要考查了诱导公式,二倍角公式在三角函数化简求值中的应用,属于基础题.三角函数求值有三类,(1)“给角求值”;(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种系;(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.9.C解析:C 【解析】 因为cos()2cos()2παπα+=-,所以sin 2cos tan 2ααα-=-⇒=,所以1tan 1tan()41tan 3πααα--==-+,故选C. 10.B解析:B 【分析】先化简函数,根据()f x 在区间25,36ππ⎡⎤-⎢⎥⎣⎦上是增函数,则为函数含有零的增区间的子集,再根据区间[]0,π上恰好取得一次最大值,则取得最大值时对应的最小正数解属于[]0,π,最后取交集.【详解】因为()222sin cos sin 24x f x x x ωπωω⎛⎫=--⎪⎝⎭, ()2sin 1sin sin x x x ωωω=+-,22sin sin sin x x x ωωω=+-,sin x ω=,令22,22k x k k Z πππωπ-+≤≤+∈,则22,22k k x k Z ππππωωωω-+≤≤+∈, 因为()f x 在区间25,36ππ⎡⎤-⎢⎥⎣⎦上是增函数, 25,23,2262,k k k Z ππππωωωωππ⎡⎤∴-++∈⎢⎥⎣⎦⎡⎤-⊆⎢⎥⎣⎦ 所以223562ππωππω⎧-≤-⎪⎪⎨⎪≤⎪⎩,解得35ω≤,令2,2x k k Z πωπ=+∈,因为在区间[]0,π上恰好取得一次最大值, 所以02ππω≤≤,所以12ω≥, 所以ω的取值范围是1325ω≤≤. 故选:B. 【点睛】本题主要考查三角函数的单调性和最值以及二倍角公式的应用,还考查了运算求解的能力,属于中档题.11.C解析:C 【分析】由诱导公式可转化为cos20cos40cos80︒︒︒,利用二倍角公式正弦公式求解即可. 【详解】sin10sin50sin70cos20cos40cos80︒︒︒=︒︒︒ 1sin160sin 20cos 20cos 40cos8018sin 20sin 208︒∴︒︒︒︒==︒︒ 即1sin10sin 50sin 708︒︒︒= 故选:C 【点睛】本题主要考查了诱导公式,二倍角的正弦公式,考查了运算能力,属于中档题.12.C解析:C 【解析】 试题分析:因,故应选C .考点:同角三角函数的关系及运用.二、填空题13.【分析】先利用二倍角公式和辅助角公式结合周期为求得然后将时函数恰有两个不同的零点转化为时恰有两个不同的根在同一坐标系中作出函数的图象利用数形结合法求解【详解】函数因为函数的周期为所以因为时函数恰有两 解析:(3,2]--【分析】先利用二倍角公式和辅助角公式,结合周期为23π求得()2sin316f xxπ⎛⎫=++⎪⎝⎭,然后将0,3xπ⎡⎤∈⎢⎥⎣⎦时,函数()()g x f x k=+恰有两个不同的零点,转化为0,3xπ⎡⎤∈⎢⎥⎣⎦时,()f x k=-恰有两个不同的根,在同一坐标系中作出函数(),y f x y k==-的图象,利用数形结合法求解.【详解】函数2()23sin cos2cos222x x xf xωωω=+,3sin cos1x xωω=++,2sin16xπω⎛⎫=++⎪⎝⎭,因为函数()f x的周期为,所以2323πωπ==,()2sin316f x xπ⎛⎫=++⎪⎝⎭因为0,3xπ⎡⎤∈⎢⎥⎣⎦时,函数()()g x f x k=+恰有两个不同的零点,所以0,3xπ⎡⎤∈⎢⎥⎣⎦时,()f x k=-恰有两个不同的根,在同一坐标系中作出函数(),y f x y k==-的图象如图所示:由图象可知:23k≤-<,即2k-3<≤-,所以实数k的取值范围是(3,2]--,故答案为:(3,2]--【点睛】方法点睛:函数零点个数问题:若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用.14.【分析】利用辅助角公式进行化简结合函数的单调性进行求解即可【详解】解:当时∵在区间上单调递增∴得即m 的最大值为故答案为:【点睛】本题考查二倍角公式和辅助角公式化简考查三角函数的单调性属于基础题 解析:6π【分析】利用辅助角公式进行化简,结合函数的单调性进行求解即可. 【详解】解:()1cos 212sin 22262x f x x x π+⎛⎫=+=++ ⎪⎝⎭, 当0x m ≤≤时,266x m ππ≤≤+,∵()f x 在区间[]0,m 上单调递增, ∴262m ππ+≤,得6m π≤,即m 的最大值为6π. 故答案为:6π. 【点睛】本题考查二倍角公式和辅助角公式化简,考查三角函数的单调性,属于基础题.15.【分析】将函数解析式变形为且有利用二次函数的基本性质可求出该函数的最大值【详解】且因此当时函数取得最大值故答案为:【点睛】本题考查二次型三角函数的最值利用二倍角余弦公式将问题转化为二次函数的最值问题解析:98【分析】将函数解析式变形为22sin sin 1y x x =-++,且有1sin 1x -≤≤,利用二次函数的基本性质可求出该函数的最大值. 【详解】2219cos 2sin 12sin sin 2sin 48y x x x x x ⎛⎫=+=-+=--+ ⎪⎝⎭,且1sin 1x -≤≤,因此,当1sin 4x =时,函数2cos sin y x x =+取得最大值98.故答案为:98. 【点睛】本题考查二次型三角函数的最值,利用二倍角余弦公式将问题转化为二次函数的最值问题是解题的关键,考查计算能力,属于中等题.16.【分析】先根据配角公式将函数化为基本三角函数再根据正弦函数对称轴确定φ满足条件解得φ的值【详解】因为f(x)=sin2x+cos2x=sin 所以y=fsin 则有φ++kπ因此φ=+kπ(k ∈Z)当k解析:π4【分析】先根据配角公式将函数化为基本三角函数,再根据正弦函数对称轴确定φ满足条件,解得φ的值. 【详解】因为f (x )=sin 2x+cos 2sin π24x ⎛⎫+ ⎪⎝⎭,所以y=f 2x ϕ⎛⎫+= ⎪⎝⎭π24x ϕ⎛⎫++ ⎪⎝⎭,则有φ+ππ42=+k π,因此φ=π4+k π(k ∈Z),当k=0时,φ=π4. 【点睛】本题考查正弦函数对称性,考查基本分析求解能力.17.【分析】由三角形内角的性质结合可得由目标函数式并利用基本不等式即可求得其最小值注意基本不等式的使用条件一正二定三相等其中为锐角【详解】为△的三内角为锐角∴故有即可得∴当且仅当时等号成立∴的最小值为故解析:23【分析】由三角形内角的性质结合tan 2tan B A =,可得23tan tan tan 2BC B =-,由目标函数式11tan tan B C+并利用基本不等式即可求得其最小值,注意基本不等式的使用条件“一正二定三相等”,其中A 为锐角,tan 2tan 0B A => 【详解】A 、B 、C 为△ABC 的三内角,A 为锐角,tan 2tan 0B A => ∴tan 2tan[()]2tan()B B C B C π=-+=-+故有2(tan tan )tan tan tan 1B C B B C +=-,即可得23tan tan tan 2BC B =-∴2111tan 2tan 12tan tan tan 3tan 33tan 3B B BC B B B -+=+=+≥=,当且仅当tan 1B =时等号成立 ∴11tan tan B C +的最小值为23故答案为:23【点睛】本题考查了由三角形内角间的函数关系,利用三角恒等变换以及基本不等式求目标三角函数的最值,注意两角和正切公式、基本不等式(使用条件要成立)的应用18.2020【分析】由条件求出化简待求式为的形式即可求解【详解】因为解得所以故答案为:2020【点睛】本题主要考查了同角三角函数的基本关系考查了运算能力属于中档题解析:2020 【分析】由条件求出tan α,化简待求式为tan α的形式即可求解. 【详解】 因为1tan 20201tan αα+=-,解得2019tan 2021α=, 所以222222221cos sin 2tan 1tan 2tan tan 2cos 2cos sin 1tan 1tan 1tan αααααααααααα+++=+=+---- 2220191(1tan )1tan 2021=202020191tan 1tan 12021αααα+++===---, 故答案为:2020 【点睛】本题主要考查了同角三角函数的基本关系,考查了运算能力,属于中档题.19.【分析】先分别设则在中由勾股定理得再分别表示出之后利用正切的和角公式求即可解决【详解】解:设则因为是直角三角形所以由勾股定理得:化简得在中在中所以又因为所以故答案为:【点睛】本题主要考查正切的和角公解析:4π【分析】先分别设PB x =,DQ y =,则在PCQ △中,由勾股定理得1xy x y -=+,再分别表示出tan BAP ∠,tan DAQ ∠,之后利用正切的和角公式求()tan BAP DAQ ∠+∠即可解决.【详解】解:设PB x =,DQ y =,则1CP x =-,1CQ y =-,因为PCQ △是直角三角形,PB QD PQ +=,所以由勾股定理得:()()()22211x y x y -+-=+,化简得1xy x y -=+, 在ABP △中,tan BPBAP x AB ∠==, 在ADQ △中,tan DQDAQ y AD∠==, 所以()tan tan tan 11tan tan 1BAP DAQ x yBAP DAQ DAQ BAP xy∠+∠+∠+∠===-∠∠-,又因为02BAP DAQ π<∠+∠<,所以,=4PAQ π∠故答案为:4π 【点睛】本题主要考查正切的和角公式,数据处理能力与运算能力,是中档题.20.②④【分析】已知式子变形可得逐个选项判定即可【详解】解:因为所以整理得所以①中:因为所以不一定等于故①不正确;②中:因为又因为所以所以故②正确;③中:不一定成立故③不正确;④中:所以故④正确【点睛】解析:②④ 【分析】已知式子变形可得2A B π+=,逐个选项判定即可.【详解】 解:因为tansin 2A BC += 所以sin22sin cos 22cos 2A BA B A B A B +++=+整理得()cos 0A B += . 所以2A B π+=.①中:因为2A B π+=,所以tan A 不一定等于tan B ,故①不正确;②中:因为sin sin sin cos 4A B A A A π⎛⎫+=+=+ ⎪⎝⎭又因为3444A πππ<+<,所以sin 124A π⎛⎫<+≤ ⎪⎝⎭所以1sin sin A B <+≤故②正确;③中:22222sin cos sin si n 12n si A B A A A ==+=+,不一定成立,故③不正确; ④中:2222cos cos cos sin 1A A B A +==+,22sin si 1n 2C π==,所以222cos cos sin A B C +=.故④正确. 【点睛】本题考查两角和与差的三角函数公式,命题的真假的判断,属基础题.三、解答题21.(Ⅰ)10;(Ⅱ)4π.【分析】(Ⅰ)由α,β的范围求出α﹣β的范围,由题意和平方关系求出sin α和cos (α﹣β),由两角和的余弦公式求出cos (2α﹣β)=cos[(α﹣β)+α]的值;(Ⅱ)由两角差的余弦公式求出cos β=cos[α﹣(α﹣β)]的值,再由β的范围求出β的值. 【详解】(Ⅰ)∵02παβ⎛⎫∈ ⎪⎝⎭,,,∴α﹣β∈(2π-,2π),∵cos α=,()sin αβ-=∴sin α==cos (α﹣β)==, ∴cos (2α﹣β)=cos[(α﹣β)+α]=cos (α﹣β)cosα﹣sin (α﹣β)sin α=-=(Ⅱ)由(Ⅰ)得,cos β=cos[α﹣(α﹣β)]=cos α cos (α﹣β)+ sinα sin (α﹣β)=+=又∵02πβ⎛⎫∈ ⎪⎝⎭,,∴β4π=.【点睛】关键点点睛:拆角2()αβαβα-=-+,()βααβ=--是本题解题关键. 22.(1)π3x k π=-,k Z ∈时,()f x 取得最大值;(2)()2,63k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z . 【分析】(1)利用两角和的余弦公式、二倍角公式、辅助角公式对()f x 化简,再利用三角函数性质即可求解;(2)由(1)知()sin 216f x x π⎛⎫=-++ ⎪⎝⎭,解不等式3222262k x k πππππ+≤+≤+,k Z ∈即可求解.【详解】(1)()1cos 221cos 222f x x x x =-+-sin 216x π⎛⎫=-++ ⎪⎝⎭,所以当sin 216x π⎛⎫+=- ⎪⎝⎭,即2262x k πππ+=-,k Z ∈,即π3x k π=-,k Z ∈时,()f x 取得最大值.(2)由(1)知,()sin 216f x x π⎛⎫=-++ ⎪⎝⎭, 要求其单调单增区间,只需求sin 26y x π⎛⎫=+ ⎪⎝⎭的单调递减区间,令3222262k x k πππππ+≤+≤+,k Z ∈, 解得:263k x k ππππ+≤≤+,k Z ∈ 所以()f x 的单调递增区间为()2,63k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z . 【点睛】方法点睛:已知三角函数的解析式求单调区间先将解析式化为()sin y A ωx φ=+或()cos y A x ωϕ=+()0,0A ω>>的形式,然后将x ωϕ+看成一个整体,根据sin y x =与cos y x =的单调区间列不等式求解.23.(1)-1;(2)()4-+∞ 【分析】(1)易得()2sin 233h x x π⎛⎫=+- ⎪⎝⎭,再利用正弦函数的性质求解. (2)将0,2x π⎡⎤∈⎢⎥⎣⎦时,()()f x g x >恒成立,转化为0,2x π⎡⎤∈⎢⎥⎣⎦时,22cos 2cos 440x a x a -+->恒成立,令[]cos 0,1t x =∈,利用二次函数的性质求()22244r t t at a =-+-的最小值即可.【详解】(1)因为函数()cos23f x x =-,所以()2cos 232sin 233h x x x x π⎛⎫=+-=+- ⎪⎝⎭, 当22,32x k k Z πππ+=+∈,即 ,12x k k Z ππ=+∈时, sin 213x π⎛⎫+= ⎪⎝⎭,所以()h x 的最大值是-1; (2)因为0,2x π⎡⎤∈⎢⎥⎣⎦时,()()f x g x >恒成立, 所以0,2x π⎡⎤∈⎢⎥⎣⎦时,cos232cos 4x a x a >--恒成立, 所以0,2x π⎡⎤∈⎢⎥⎣⎦时,22cos 2cos 440x a x a -+->恒成立, 令[]cos 0,1t x =∈ ()22244r t t at a =-+-当02a≤,即 0a ≤时, ()()min 0440r t r a ==->,解得 1a >,此时无解; 当012a <<,即 02a <<时, ()2min 44022a a r t r a ⎛⎫==-+-> ⎪⎝⎭,解得44-<+,此时42a -<;当12a≥,即 2a ≥时, ()()min 1220r t r a ==->,解得 1a >,此时2a ≥;综上:a 的取值范围是()4-+∞ 【点睛】方法点睛:恒成立问题的解法:若()f x 在区间D 上有最值,则()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<;若能分离常数,即将问题转化为:()a f x >(或()a f x <),则()()max a f x a f x >⇔>;()()min a f x a f x <⇔<.24.(1)π;(2)当3x π=时,()max14f x =-;当12x π=-时,()min 32f x =-.【分析】(1)利用二倍角公式和辅助角公式,将函数转化为()1sin 2123f x x π⎛⎫=-- ⎪⎝⎭求解.. (2)根据,63x ππ⎡⎤∈-⎢⎥⎣⎦,得到22,333x πππ⎡⎤-∈-⎢⎥⎣⎦,再利用正弦函数的性质求解.【详解】(1)()21sin cos 12f x x x x =+,1sin 2214x x =--, 1sin 2123x π⎛⎫=-- ⎪⎝⎭, 所以()f x 的最小正周期为22T ππ==. (2)∵,63x ππ⎡⎤∈-⎢⎥⎣⎦, ∴22,333x πππ⎡⎤-∈-⎢⎥⎣⎦,当233x ππ-=,即3x π=,()max14f x =-, 当232x ππ-=-,12x π=-时,()()min 131122f x =⨯--=-. 【点睛】方法点睛:1.讨论三角函数性质,应先把函数式化成y =A sin(ωx +φ)(ω>0)的形式. 2.函数y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2T ωπ=,y =tan(ωx +φ)的最小正周期为T πω=. 3.对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t =ωx +φ,将其转化为研究y =sin t 的性质.25.(1;(2. 【分析】(1)根据02πα<<,cos 10α=sin α=,再利用两角和的余弦公式求解..(2)由(1)求得sin()45+=πα,再由02πβ-<<,求得sin()42πβ-=,然后由sin()sin[()()]2442+=+--βππβαα,利用两角差的正弦公式求解.【详解】(1)因为02πα<<,cos 10α=所以10sin α=, 所以cos()cos cos sin sin 444πππααα+=-,22==. (2)因为02πα<<, 所以3444πππα<+<,所以sin()45+=πα, 因为02πβ-<<, 所以4422ππβπ<-<,所以sin()42πβ-=, 所以sin()sin[()()]2442+=+--βππβαα, sin()cos()cos()sin()442442=+--+-ππβππβαα,== 【点睛】 方法点睛:三角函数式的化简要遵循“三看”原则:①一看角之间的差别与联系,把角进行合理的拆分,正确使用公式;②二看函数名称之间的差异,确定使用的公式,常见的有“切化弦”;③三看结构特征,找到变形的方向,常见的有“遇到分式要通分”,“遇到根式一般要升幂”等.26.(1)两角差的余弦公式为:cos()cos cos sin sin αβαβαβ-=+,证明见解析;(2)证明见解析.【分析】(1)先构造向量()()11cos ,sin ,cos ,sin OP OQ ααββ==,再利用数量积111111cos OP OQ OP AQ POQ ⋅=⋅∠代入计算即得结果;(2)利用诱导公式知()sin cos 2παβαβ⎛⎫-=-+-⎪⎝⎭,再结合两角差的余弦公式展开即得结论.【详解】解:(1)两角差的余弦公式为:cos()cos cos sin sin αβαβαβ-=+. 证明:依题意,()()11cos ,sin ,cos ,sin OP OQ ααββ==, 则11cos cos sin sin OP OQ αβαβ⋅=+,11111,OP AQ POQ αβ==∠=- 故由111111cos OP OQ OP AQ POQ ⋅=⋅∠得,()cos cos sin sin 11cos αβαβαβ+=⨯⨯-, 即cos()cos cos sin sin αβαβαβ-=+,当()2k k απβ=+∈Z 时,容易证明上式仍然成立. 故cos()cos cos sin sin αβαβαβ-=+成立; (2)证明:由诱导公式可知,()sin cos 2παβαβ⎛⎫-=-+- ⎪⎝⎭. 而cos cos 22ππαβαβ⎡⎤⎛⎫⎛⎫+-=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦cos cos sin sin 22ππαβαβ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭ sin cos cos sin αβαβ=-+,故[]sin()sin cos cos sin sin cos cos sin αβαβαβαβαβ-=--+=-. 即证结论.【点睛】本题解题关键在于构造向量,综合运用数量积的定义法运算和坐标运算,即突破难点.。

(典型题)高中数学必修四第三章《三角恒等变形》测试卷(含答案解析)

(典型题)高中数学必修四第三章《三角恒等变形》测试卷(含答案解析)

一、选择题1.若10,0,cos ,sin 2243423ππππβαβα⎛⎫⎛⎫<<-<<+=-=⎪ ⎪⎝⎭⎝⎭,则cos 2βα⎛⎫+= ⎪⎝⎭( )A B .C . D2.已知函数()sin f x x x ωω=()0ω>的图像与直线2y =交于,A B 两点,若AB 的最小值为π,则函数()f x 的一条对称轴是( )A .3x π=B .4x π=C .6x π=D .12x π=3.已知函数2()2sin cos (0)f x x x x ωωωω=->图像的相邻两条对称轴之间的距离为2π,则2f π⎛⎫= ⎪⎝⎭( )A .1B .1--C .0D .-4.设函数22()cos sin 2cos sin f x x x x x =-+,下列说法中,错误的是( )A .()f x 的最小值为B .()f x 在区间,48ππ⎡⎤-⎢⎥⎣⎦上单调递增.C .函数()y f x =的图象可由函数y x =的图象先向左平移4π个单位,再将横坐标缩短为原来的一半(纵坐标不变)而得到. D .将函数()y f x =的图象向左平移4π个单位,所得函数的图象关于y 轴对称.5.在ABC 中,cos A =,1tan 3B =,则()tan A B -=( )A .2-B .12-C .12D .26.若1sin 34a π⎛⎫-= ⎪⎝⎭,则sin 26a π⎛⎫-= ⎪⎝⎭( )A .78-B .78C .1516-D .15167.已知,22ππα⎛⎫∈- ⎪⎝⎭,1cos 63πα⎛⎫+= ⎪⎝⎭,则sin α=( )A B .6C .D .168.已知α∈3π,π2⎛⎫ ⎪⎝⎭,cos α=-45,则tan π4α⎛⎫- ⎪⎝⎭等于( ) A .7B .17C .-17D .-79.已知αβ、均为锐角,满足sin ,cos 510αβ==,则αβ+=( ) A .6πB .4π C .3π D .34π 10.已知,2παπ⎛⎫∈ ⎪⎝⎭,3sin 5α=,则tan 4πα⎛⎫+= ⎪⎝⎭( )A .17 B .7C .17-D .-711.已知直线524x π=是函数21()sin (08)222x f x x ωωω=+-<≤图象的一条对称轴,则ω=( ) A .2B .4C .6D .812.已知cos()6πα+=sin(2)6πα-的值为( ) A.3B .13C .13-D.3-二、填空题13.已知1cos 3α=,且02πα-<<,则()()()cos sin 2tan 23sin cos 22αππαπαππαα--+-=⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭______. 14.函数2cos sin y x x =+的最大值为____________.15.在区间,22ππ⎛⎫- ⎪⎝⎭范围内,函数tan y x =与函数sin y x =的图象交点有_______个.16.已知sin α=,()1cos 3αβ+=-,且,0,2παβ⎛⎫∈ ⎪⎝⎭,则sin β=_____.17.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若3sin 4α=,则()cos αβ-=______. 18.已知4sin 3cos 0+=αα,则2sin 23cos +αα的值为____________. 19________.20.已知x 是第二象限的角.化简:1sin 1sin 1sin 1sin x xx x+---+的值为____________. 三、解答题21.已知函数()()23sin cos 3cos 02f x x x x ωωωω=⋅-+>图象的两条相邻对称轴之间的距离为2π. (1)求函数()y f x =的解析式及其图象的对称轴方程; (2)若函数()13y f x =-在()0,π上的零点为1x 、2x ,求()12cos x x -的值. 22.已知函数()3sin 2cos 2f x x x =-,[,]34x ππ∈-.(1)求函数()f x 的周期和值域; (2)设()3a g x x x =+,若对任意的1(0)x ∈+∞,及任意的2[,]34x ππ∈-,都有不等式12() ()g x f x ≥恒成立,求实数a 的取值范围.23.已知5sin2α=,()5cos 13αβ+=,()0,απ∈,0,2πβ⎛⎫∈⎪⎝⎭. (1)求sin 2α的值; (2)求sin β的值.24.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式. (2)若3()5f x =-,且36x ππ-<<,求cos2x 的值.25.已知02πα<<,02πβ-<<,310cos α=3cos()42πβ-=.(1)求cos()4πα+的值;(2)求sin()2+βα的值.26.已知关于x 的方程21204x bx -+=的两根为sin θ和cos θ,3,44θππ⎛⎫∈ ⎪⎝⎭. (1)求实数b 的值; (2)求2sin cos 1cos sin θθθθ+-的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由cos cos 2442βππβαα⎡⎤⎛⎫⎛⎫⎛⎫+=+-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦展开计算正余弦值代入可得答案. 【详解】 因为10,cos 243ππαα⎛⎫<<+= ⎪⎝⎭,所以3444πππα<+<,sin +4πα⎛⎫= ⎪⎝⎭因为02πβ-<<,所以4422ππβπ<-<,又因为sin 423πβ⎛⎫-=⎪⎝⎭,所以cos 423πβ⎛⎫-= ⎪⎝⎭而cos cos +2442βππβαα⎡⎤⎛⎫⎛⎫⎛⎫+=-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, cos +cos sin +sin 442442ππβππβαα⎛⎫⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭133339=⨯+=. 故选:A. 【点睛】三角函数式的化简要遵循“三看”原则:(1)一看“角”,这是最重要的一环,通过看角之间的区别和联系,把角进行合理的拆分,从而正确使用公式;(2)而看“函数名称”看函数名称之间的差异,从而确定使用公式,常见的有“切化弦”;(3)三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,如“遇到分式通分”等.2.D解析:D 【分析】化简得()2sin 3f x x πω⎛⎫=+⎪⎝⎭,由题可得周期为π,即可求出2ω=,令2,32πππ+=+∈x k k Z 求出对称轴即可得出答案.【详解】()sin 2sin 3f x x x x πωωω⎛⎫=+=+ ⎪⎝⎭,()f x 直线2y =交于,A B 两点,且AB 的最小值为π,T π=,则22T πω==,即()2sin 23f x x π⎛⎫=+ ⎪⎝⎭,令2,32πππ+=+∈x k k Z ,则,122k x k Z ππ=+∈, ()f x ∴的对称轴为,122k x k Z ππ=+∈, 当0k =时,12x π=.故选:D. 【点睛】本题考查正弦型函数的对称轴问题,解题的关键是利用辅助角公式化简函数得出周期,求出解析式,即可解决.3.D解析:D 【分析】先将函数化简整理,根据相邻对称轴之间距离求出周期,确定1ω=,再求2f π⎛⎫ ⎪⎝⎭. 【详解】因为()21cos 22sin cos sin 22x f x x x x x ωωωωω-=-=- πsin 222sin 23x x x ωωω⎛⎫=+=+- ⎪⎝⎭由题意知()f x 的最小正周期为π22π⨯=,所以2π2πω=,即1ω=,所以()π2sin 23f x x ⎛⎫=+⎪⎝⎭π2sin 23f ππ⎛⎫⎛⎫=+=- ⎪ ⎪⎝⎭⎝⎭.故选:D. 【点睛】本题考查了三角函数的性质,关键点是根据已知条件先化简正弦函数的解析式,还要熟练掌握三角函数的性质才能正确的解题,属于中档题.4.D解析:D 【分析】由二倍角公式及辅助角公式化简,再根据正弦型函数性质判断AB ,利用图象平移伸缩判断CD. 【详解】由22()cos sin 2cos sin cos 2sin 2)4f x x x x x x x x π=-+=+=+,可知函数的最小值为,故A 正确;当,48x ππ⎡⎤∈-⎢⎥⎣⎦时,2,442x πππ⎡⎤+∈-⎢⎥⎣⎦,由正弦函数单调性知())4f x x π=+单调递增,故B 正确;y x =的图象先向左平移4π个单位得)4y x π=+,再将横坐标缩短为原来的一半(纵坐标不变)得)4y x π=+,故C 正确;将函数()y f x =的图象向左平移4π个单位得)]))44424y x x x πππππ=++=++=+,图象不关于y 轴对称,故D 错误. 故选:D 【点睛】关键点点睛:首先要把函数解析式化简,利用正弦型函数的图象与性质判断值域与单调性,利用图象变换的时候,注意平移与伸缩都变在自变量上,属于中档题.5.A解析:A 【分析】根据已知条件计算出tan A 的值,然后根据两角差的正切公式结合tan ,tan A B 的值计算出()tan A B -的值.【详解】因为cos 2A =-且()0,A π∈,所以34A π=,所以tan 1A =-,所以()()11tan tan 3tan 211tan tan 113A BA B A B ----===-++-⨯,故选:A. 【点睛】关键点点睛:解答本题的关键是根据特殊角的余弦值求出其正切值以及两角差的正切公式的熟练运用.6.B解析:B 【分析】 化简sin 2cos 2()63a ππα⎛⎫-=- ⎪⎝⎭,再利用二倍角公式化简求值. 【详解】22sin 2sin[(2)]cos(2)=cos 2()cos 2()632333a ππππππαααα⎛⎫-=-+=--=- ⎪⎝⎭=21712sin ()123168πα--=-⨯=. 故选:B 【点睛】方法点睛:三角恒等变换常用的方法有:三看(看角、看名、看式)三变(变角变名变式),要根据已知条件灵活选择方法化简求值.7.D解析:D 【分析】结合同角三角函数基本关系计算sin 6πα⎛⎫+ ⎪⎝⎭的值,再利用两角差的正弦公式进行求解即可.【详解】 由,22ππα⎛⎫∈-⎪⎝⎭可得2,633πππα⎛⎫+∈- ⎪⎝⎭, 又11cos cos 6323ππα⎛⎫+=<= ⎪⎝⎭,所以2,633πππα⎛⎫+∈ ⎪⎝⎭所以sin 63πα⎛⎫+== ⎪⎝⎭, sin sin sin cos cos sin 666666ππππππαααα⎛⎫⎛⎫⎛⎫=+-=+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11332=-⨯=故选:D 【点睛】本题主要考查两角和与差的正余弦公式与同角三角函数基本关系,解题的关键是熟练运用公式.8.B解析:B 【分析】先根据同角三角函数关系求tan α,再根据两角差正切公式求结果. 【详解】 由已知得tan α=34,则tan π1tan 141tan 7ααα-⎛⎫-== ⎪+⎝⎭. 选B 【点睛】本题考查同角三角函数关系、两角差正切公式,考查基本求解能力.9.B解析:B 【分析】依题意,求cos (α+β),结合角的范围可求得α+β的值. 【详解】由已知α、β均为锐角,sin αβ==,cos αβ∴==又cos (α+β)=cosαcosβ﹣sinαsinβ=2, ∵0<α+β<π,∴α+β=4π. 故选B . 【点睛】解答给值求角问题的一般思路:①求角的某一个三角函数值,此时要根据角的范围合理地选择一种三角函数;②确定角的范围,此时注意范围越精确越好;③根据角的范围写出所求的角.10.A解析:A 【分析】根据角的范围以及平方关系求出4cos ,5α=-再利用商的关系求出3tan 4α=-,最后由两角和的正切公式可得答案. 【详解】 因为,2παπ⎛⎫∈⎪⎝⎭,3sin 5α=,所以4cos ,5α==-sin 3tan cos 4ααα==-, tan tan4tan 41tan tan 4παπαπα+⎛⎫+== ⎪⎝⎭-⋅17 故选:A. 【点睛】本题主要考查平方关系、商的关系以及两角和的正切公式,属于基础题.11.B解析:B 【分析】首先通过三角函数关系式的变换,把函数的关系式变形成正弦型函数,进一步利用函数的性质的应用求出结果. 【详解】解:函数211()sin cos )sin sin()2223xf x x x x x ωπωωωω=+=-+=-, 令:5()2432k k Z πππωπ-=+∈,解得244()5kk Z ω=+∈, 由于08ω<, 所以4ω=. 故选:B . 【点睛】本题考查三角函数关系式的变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,12.B解析:B 【解析】∵cos 6πα⎛⎫+= ⎪⎝⎭5sin 2sin 2sin 26662ππππααα⎡⎤⎛⎫⎛⎫⎛⎫-=-+=-++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦][221cos 2[2cos 11]6633ππαα⎛⎫⎛⎫=-+=-+-=--= ⎪ ⎪⎝⎭⎝⎭,故选B.二、填空题13.【分析】用同角间的三角函数关系计算用诱导公式化简后再计算然后计算可得【详解】∵且∴∴故答案为:【点睛】方法点睛:本题考查诱导公式同角间的三角函数关系三角函数求值问题首先要进行化简应用诱导公式化简应用解析:-【分析】用同角间的三角函数关系计算sin α,用诱导公式化简后再计算.然后计算tan α,可得. 【详解】∵1cos 3α=,且02πα-<<,∴sin 3α==-, ∴()()()cos sin 2tan 2cos sin (tan )sin tan 3cos (sin )cos sin cos 22αππαπααααααππααααα--+---=====---⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭.故答案为:-. 【点睛】方法点睛:本题考查诱导公式,同角间的三角函数关系.三角函数求值问题,首先要进行化简,应用诱导公式化简,应用同角间的三角函数关系化简,最后才代入求值.应用诱导公式应牢记:奇变偶不变,符号看象限,应用同角间的三角函数关系应注意在应用平方关系求函数值需确定角的范围,以确定正弦余弦值的正负.14.【分析】将函数解析式变形为且有利用二次函数的基本性质可求出该函数的最大值【详解】且因此当时函数取得最大值故答案为:【点睛】本题考查二次型三角函数的最值利用二倍角余弦公式将问题转化为二次函数的最值问题解析:98【分析】将函数解析式变形为22sin sin 1y x x =-++,且有1sin 1x -≤≤,利用二次函数的基本性质可求出该函数的最大值. 【详解】2219cos 2sin 12sin sin 2sin 48y x x x x x ⎛⎫=+=-+=--+ ⎪⎝⎭,且1sin 1x -≤≤,因此,当1sin 4x =时,函数2cos sin y x x =+取得最大值98. 故答案为:98. 【点睛】本题考查二次型三角函数的最值,利用二倍角余弦公式将问题转化为二次函数的最值问题是解题的关键,考查计算能力,属于中等题.15.1【分析】将函数图象交点个数等价于方程在根的个数即可得答案【详解】∵函数图象交点个数等价于方程在根的个数∴解得:∴方程只有一解∴函数与函数的图象交点有1个故答案为:1【点睛】本题考查函数图象交点个数解析:1 【分析】将函数图象交点个数等价于方程tan sin x x =在,22x ππ⎛⎫∈- ⎪⎝⎭根的个数,即可得答案. 【详解】∵函数图象交点个数等价于方程tan sin x x =在,22x ππ⎛⎫∈- ⎪⎝⎭根的个数, ∴sin 1tan sin sin 0sin (1)0cos cos x x x x x x x=⇔-=⇔-=,解得:0x =, ∴方程只有一解,∴函数tan y x =与函数sin y x =的图象交点有1个. 故答案为:1. 【点睛】本题考查函数图象交点个数与方程根个数的等价性,考查函数与方程思想,考查逻辑推理能力和运算求解能力.16.【分析】由已知分别求得再由展开两角差的正弦得答案【详解】解:∵∴∴∴又∴则故答案为:【点睛】本题考查同角三角函数间的关系正弦的差角公式给值求值型的问题属于中档题解析:9【分析】由已知分别求得cos α,()sin αβ+,再由()sin sin βαβα=+-⎡⎤⎣⎦,展开两角差的正弦得答案.【详解】解:∵sin α=,0,2πα⎛⎫∈ ⎪⎝⎭,∴1cos 3α==, ∴,0,2παβ⎛⎫∈ ⎪⎝⎭,∴()0,αβπ+∈,又()1cos 3αβ+=-,∴()sin αβ+==. 则()()()sin sin sin cos cos sin βαβααβααβα=+-=+-+⎡⎤⎣⎦1133339⎛⎫=⨯--⨯=⎪⎝⎭.故答案为:9. 【点睛】本题考查同角三角函数间的关系,正弦的差角公式,给值求值型的问题,属于中档题.17.;【分析】根据角的终边关于轴对称得到以及两角差的余弦公式即可求出【详解】因为角与角均以为始边它们的终边关于轴对称所以所以故答案为:【点睛】本题主要考查了三角函数定义的应用两角差的余弦公式同角三角函数解析:18; 【分析】根据角的终边关于y 轴对称得到cos cos ,sin sin αβαβ=-=,以及两角差的余弦公式即可求出. 【详解】因为角α与角β均以Ox 为始边,它们的终边关于y 轴对称, 所以3cos cos ,sin sin 4αβαβ=-==, 所以()22cos cos cos sin sin sincos αβαβαβαα-=+=-22sin 1α=-92116=⨯- 18= 故答案为:18【点睛】本题主要考查了三角函数定义的应用,两角差的余弦公式,同角三角函数的关系,属于中档题.18.【分析】由已知式求出利用同角三角函数间的平方关系和商数关系将化为代入即可求值【详解】则故答案为:【点睛】本题考查了同角三角函数间的平方关系和商数关系正余弦其次式的计算二倍角的正弦公式属于中档题 解析:2425【分析】由已知式求出3tan 4α=-,利用同角三角函数间的平方关系和商数关系,将2sin 23cos +αα化为22tan 3tan 1αα++,代入即可求值. 【详解】4sin 3cos 0αα+=,3tan 4α∴=-,则22222sin cos 3cos sin 23cos sin cos ααααααα++=+22tan 3tan 1αα+=+232()343()14⨯-+=-+ 2425=. 故答案为:2425. 【点睛】本题考查了同角三角函数间的平方关系和商数关系,正、余弦其次式的计算,二倍角的正弦公式,属于中档题.19.【分析】利用同角三角函数的基本关系式二倍角公式结合根式运算化简求得表达式的值【详解】依题意由于所以故答案为:【点睛】本小题主要考查同角三角函数的基本关系式二倍角公式考查根式运算属于基础题解析:4【分析】利用同角三角函数的基本关系式、二倍角公式,结合根式运算,化简求得表达式的值. 【详解】=4==,由于342ππ<<=故答案为:4 【点睛】本小题主要考查同角三角函数的基本关系式、二倍角公式,考查根式运算,属于基础题.20.【分析】本题可以先通过是第二象限的角得出然后对进行化简即可得到结果【详解】因为是第二象限的角所以所以故答案为:【点睛】关键点睛:本题主要考查三角函数式的化简利用三角函数的同角三角函数关系式进行化简是 解析:2tan x -【分析】本题可以先通过x 是第二象限的角得出cos 0x <进行化简即可得到结果. 【详解】因为x 是第二象限的角,所以cos 0x <,==1sin 1sin cos cos x xx x+-=---11tan tan cos cos x x x x=--+- 2tan x =-.故答案为:2tan x -. 【点睛】关键点睛:本题主要考查三角函数式的化简,利用三角函数的同角三角函数关系式进行化简是本题的关键.三、解答题21.(1)()sin 23πf x x ⎛⎫=- ⎪⎝⎭,对称轴方程为()5122k x k Z ππ=+∈;(2)13. 【分析】(1)利用三角恒等变换化简函数解析式为()sin 23f x x πω⎛⎫=- ⎪⎝⎭,求出函数()f x 的最小正周期,可得出函数()f x 的解析式,解方程()232x k k Z πππ-=+∈可解得函数()y f x =图象的对称轴方程;(2)求得121sin 2sin 2333x x ππ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭,分析得出点()()11,x f x 、()()22,x f x 关于直线512x π=对称,可得出1256x x π+=,再利用诱导公式可求得()12cos x x -的值.【详解】 (1)())221sin cos sin 22cos 12f x x x x x x ωωωωω=⋅+=--1sin 2cos2sin 2223x x x πωωω⎛⎫=-=- ⎪⎝⎭, 由于函数()f x 图象的两条相邻对称轴之间的距离为2π,则该函数的最小正周期为22T ππ=⨯=,0ω>,所以,222Tπω==,解得1ω=. 所以,()sin 23πf x x ⎛⎫=- ⎪⎝⎭, 由()232x k k Z πππ-=+∈,解得()5122k x k Z ππ=+∈, 所以,函数()y f x =图象的对称轴方程为()5122k x k Z ππ=+∈; (2)由题意可得()1111sin 20333f x x π⎛⎫-=--= ⎪⎝⎭,则11sin 233x π⎛⎫-= ⎪⎝⎭,同理可得21sin 233x π⎛⎫-= ⎪⎝⎭.当0πx <<时,则52333x πππ-<-<, 若()20,3x ππ-∈,设232x ππ-=,解得512x π=. 因为()()1213f x f x ==,所以,点()()11,x f x 、()()22,x f x 关于直线512x π=对称. 所以,1256x x π+=. 所以,()12111155cos cos cos 2cos 26632x x x x x x ππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫-=--=-=-- ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦11sin 233x π⎛⎫=-= ⎪⎝⎭.【点睛】思路点睛:利用三角恒等变换思想化简正弦型函数解析式的步骤如下: (1)利用两角和与差的正弦、余弦公式展开;(2)利用二倍角的正弦、余弦的降幂公式将二次式降幂,并合并同类项; (3)利用辅助角公式化简.22.(1)T π=,[-;(2)14a ≥. 【分析】(1)利用辅助角公式化简可得()2sin(2)6f x x π=-,代入周期公式,可求得周期T ,根据x 的范围,求得26x π-的范围,根据正弦型函数的性质,即可求得答案.(2)根据题意可得min max ()()g x f x ≥,由(1)可得max ()f x =0a <,0a =,0a >三种,()3ag x x x=+的最小值,结合对勾函数的性质,即可求得答案.【详解】(1)1()2cos 2)2sin(2)26f x x x x π=-=-, 周期22T ππ== 由[,]34x ππ∈-,则52[,]663x πππ-∈-, 所以当262x ππ-=-,即6x π=-时,()2sin(2)6f x x π=-有最小值-1当263x ππ-=,即4x π=时,()2sin(2)6f x x π=-有最大值2,所以1sin(2)62x π-≤-≤,所以22sin(2)6x π-≤-≤即()f x 的值域为[-(2)对任意的1(0)x ∈+∞,及任意的2[,]34x ππ∈-,都有不等式12() ()g x f x ≥恒成立,只需当min max ()()g x f x ≥由(1)知,max ()f x =当0a <,()3ag x x x=+为(0,)+∞上增函数,值域为R ,不满足题意; 当0a =,()3g x x =为(0,)+∞上增函数,值域为(0,)+∞,不满足题意;当0a >,()3ag x x x=+为对勾函数,所以()3a g x x x =+≥=min ()g x =,当且仅当3ax x=,即x =.由题意,即可,所以14a ≥. 【点睛】解题的关键是将题干条件等价为min max ()()g x f x ≥,分别根据12,x x 的范围,求得两函数的最值,再进行求解,考查分析计算的能力,属中档题. 23.(1)2425;(2)1665.【分析】(1)由二倍角公式求得cos α,再由平方关系得sin α,然后由正弦的二倍角公式得sin 2α;(2)确定α的范围,得αβ+范围,从而可求得sin()αβ+,再由两角差的正弦公式计算. 【详解】(1)由已知223cos 12sin 12255αα⎛⎫=-=-⨯= ⎪ ⎪⎝⎭,又(0,)απ∈,∴(0,)2πα∈,∴sin 45α==, ∴4324sin 22sin cos 25525ααα==⨯⨯=; (2)∵(0,)2πβ∈,∴(0,)αβπ+∈,∴12sin()13αβ+=,∴1235416sin sin[()]sin()cos cos()sin 13513565βαβααβααβα=+-=+-+=⨯-⨯=. 【点睛】关键点点睛:本题考查二倍角公式,两角和与差的正弦公式,同角间的三角函数关系,解题关键是确定“已知角”和“未知角”之间的关系,确定选用的公式和应用公式的顺序.在应用三角函数恒等变换公式时注意“单角”和“复角”的相对性.如在sin ,cos αβ,求cos()a β+时,,αβ是单角,αβ+是两个单角的和,但象本题中求sin β时,αβ+作为一个单角,α作为一个单角,()βαβα=+-.由此直接应用公式求解.24.(1)()sin 26f x x π⎛⎫=+ ⎪⎝⎭;(2)310. 【分析】(1)根据最大值求出A ,根据周期求出ω,根据极大值点求出ϕ (2)根据角的范围求出4cos 265x π⎛⎫+= ⎪⎝⎭,将cos2x 写成cos 2cos 266x x ππ⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦,利用两角和与差的余弦公式展开,求解即可.【详解】(1)由图知121,,2362A T πππ==-= ,2πω∴==T又22,,62k k Z ππϕπ⨯+=+∈26k πϕπ∴=+又||2πϕ<,,()sin 266f x x ππϕ⎛⎫∴==+ ⎪⎝⎭ (2)3()5f x =-所以3sin 265x π⎛⎫+=- ⎪⎝⎭, ,236262x x πππππ-<<-<+<,又因为34sin 2,cos 26565x x ππ⎛⎫⎛⎫+=-+= ⎪ ⎪⎝⎭⎝⎭,所以 cos 2cos 266x x ππ⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦cos 2cos sin 2sin 6666x x ππππ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭431552=-⨯=【点睛】已知f (x )=Asin (ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)由ω=2Tπ即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x 0,则令ωx 0+φ=0(或ωx 0+φ=π),即可求出φ.(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.25.(1;(2)15. 【分析】(1)根据02πα<<,cos 10α=10sin α=,再利用两角和的余弦公式求解..(2)由(1)求得sin()4+=πα,再由02πβ-<<,求得sin()42πβ-=,然后由sin()sin[()()]2442+=+--βππβαα,利用两角差的正弦公式求解.【详解】(1)因为02πα<<,cos α=所以sin α= 所以cos()cos cossin sin444πππααα+=-,1021025=⋅-=. (2)因为02πα<<,所以3444πππα<+<,所以sin()45+=πα, 因为02πβ-<<,所以4422ππβπ<-<,所以sin()42πβ-=,所以sin()sin[()()]2442+=+--βππβαα, sin()cos()cos()sin()442442=+--+-ππβππβαα,535315=-=. 【点睛】 方法点睛:三角函数式的化简要遵循“三看”原则:①一看角之间的差别与联系,把角进行合理的拆分,正确使用公式;②二看函数名称之间的差异,确定使用的公式,常见的有“切化弦”;③三看结构特征,找到变形的方向,常见的有“遇到分式要通分”,“遇到根式一般要升幂”等. 26.(1)b =2). 【分析】()1根据题意,利用韦达定理列出关系式,利用完全平方式和同角三角函数的基本关系化简求出b 的值,利用3,44θππ⎛⎫∈⎪⎝⎭对b 的值进行取舍即可. ()2由()1可知sin cos θθ+的值,利用()2sin cos 12sin cos θθθθ-=-,求出sin cos θθ-的值,代入原式即可.【详解】(1)∵sin ,cos θθ为关于x 的方程21204x bx -+=的两根,∴220sin cos 21sin cos 8b b θθθθ⎧⎪∆=-≥⎪⎪+=⎨⎪⎪⋅=⎪⎩,所以()221sin cos 1+2sin cos 1+44b θθθθ+===,即21144b =+,解得b =520∆=->,又3,44θππ⎛⎫∈⎪⎝⎭,∴sin cos 0θθ+>,∴b = (2)由(1),得sin cos θθ+=,又3,44θππ⎛⎫∈ ⎪⎝⎭,所以sin cos θθ>,∴sin cos 2θθ-===,∴12+12sin cos1cos sin6θθθθ⨯+==--.【点睛】关键点点睛:本题考查同角三角函数的基本关系与一元二次方程中的韦达定理相结合,通过利用韦达定理得到sin cosθθ+和cos sinθθ的表达式,再结合()2sin cos12sin cosθθθθ+=+是求解本题的关键;其中由3,44θππ⎛⎫∈ ⎪⎝⎭对取值进行取舍是本题的易错点.。

高中数学 第三章 三角恒等变换测试题(含解析)新人教A版必修4(2021年最新整理)

高中数学 第三章 三角恒等变换测试题(含解析)新人教A版必修4(2021年最新整理)

高中数学第三章三角恒等变换测试题(含解析)新人教A版必修4 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第三章三角恒等变换测试题(含解析)新人教A版必修4)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第三章三角恒等变换测试题(含解析)新人教A版必修4的全部内容。

第三章三角恒等变换一.选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的) 1.15sin 951852-等于 ( ) A 。

185 B.365C 。

3635 D.18352。

已知m A A =+tan 1tan ,则A 2sin 的值为 ( ) A 。

21mB.m 1C.m 2 D 。

m 23.sin 12π—3cos 12π的值是 ( )A .0B . —2C . 2D . 2 sin 125π4.已知3cos ()52x x ππ=-<<,则sin 2x =( )A.55B.55-C.255- D.2555.若△ABC 中,sin B·sin C=cos 2错误!,则△ABC 的形状为( )A .直角三角形B .等边三角形C .等腰三角形D .等腰直角三角形6。

函数sin 3cos 22x xy =+的图象的一条对称轴方程是 ( )A 。

x =113π B.x =53π C 。

53x π=- D 。

3x π=-7.已知α为锐角,且cos 错误!=错误!,则cos α的值为( )A 。

错误! B.错误! C 。

错误! D.错误!8。

函数22()cos ()sin ()11212f x x x ππ=-++-是( )A 。

新人教版高中数学必修四第三章三角恒等变换题库

新人教版高中数学必修四第三章三角恒等变换题库

(数学4必修)第三章 三角恒等变换[基础训练A 组]一、选择题1.已知(,0)2x π∈-,4cos 5x =,则=x 2tan ( ) A .247 B .247- C .724 D .724- 2.函数3sin 4cos 5y x x =++的最小正周期是( )A .5πB .2π C .π D .2π 3.在△ABC 中,cos cos sin sin A B A B >,则△ABC 为( )A .锐角三角形B .直角三角形C .钝角三角形D .无法判定4.设00sin14cos14a =+,00sin16cos16b =+,c =则,,a b c 大小关系( )A .a b c <<B .b a c <<C .c b a <<D .a c b <<5.函数)cos[2()]y x x ππ=-+是( ) A .周期为4π的奇函数 B .周期为4π的偶函数 C .周期为2π的奇函数 D .周期为2π的偶函数6.已知cos 2θ=44sin cos θθ+的值为( ) A .1813 B .1811 C .97 D .1- 二、填空题1.求值:0000tan 20tan 4020tan 40+=_____________。

2.若1tan 2008,1tan αα+=-则1tan 2cos 2αα+= 。

3.函数f x x x x ()cos sin cos =-223的最小正周期是___________。

4.已知sin cos 223θθ+=那么sin θ的值为 ,cos 2θ的值为 。

5.ABC ∆的三个内角为A 、B 、C ,当A 为 时,cos 2cos2B C A ++取得最大值,且这个最大值为 。

三、解答题1.已知sin sin sin 0,cos cos cos 0,αβγαβγ++=++=求cos()βγ-的值.2.若,22sin sin =+βα求βαcos cos +的取值范围。

(好题)高中数学必修四第三章《三角恒等变形》测试卷(答案解析)

(好题)高中数学必修四第三章《三角恒等变形》测试卷(答案解析)

一、选择题1.已知函数44()cos sin f x x x =-在区间,()4t t t R π⎡⎤-∈⎢⎥⎣⎦上的最大值为()M t ,最小值为()N t 则函数()()()g t M t N t =-的最小值为( )A 1-B .1C .2D .12-2.已知矩形ABCD 中,AB AD >.设点B 关于AC 的对称点为B ',AB '与CD 交于点P ,若3CP PD =,则tan BCB '∠=( )A .-B .C .2-D .4-3.函数()2cos ||cos 2f x x x =-在[,]x ππ∈-上的单调增区间为( ) A .,3ππ⎡⎤--⎢⎥⎣⎦和0,3π⎡⎤⎢⎥⎣⎦B .,03π⎡⎤-⎢⎥⎣⎦和,3ππ⎡⎤⎢⎥⎣⎦C .,06π⎡⎤-⎢⎥⎣⎦和,6ππ⎡⎤⎢⎥⎣⎦D .,6ππ⎡⎤--⎢⎥⎣⎦和06,π⎡⎤⎢⎥⎣⎦4.已知tan α,tan β是方程2506x x a -+=的两个实数根,且()tan 1αβ+=,则实数a =( )A .16B .116C .512D .7125.已知2tan 23θ=,则1cos sin 1cos sin θθθθ-+++的值为( )A .23B .23-C .32D .32-6.已知sin cos x x +=,则1tan tan x x +=( ) A .6- B .7-C .8-D .9-7.已知cos 410πθ⎛⎫-=⎪⎝⎭,则sin 2θ=( ) A .2425-B .1225-C .1225D .24258.已知函数()sin (0)f x x x ωωω=+>的图象关于直线8x π=对称,则ω的最小值为( ) A .13B .23C .43D .839.已知α∈3π,π2⎛⎫ ⎪⎝⎭,cos α=-45,则tan π4α⎛⎫- ⎪⎝⎭等于( ) A .7B .17C .-17D .-710.已知角α满足1cos()63πα+=,则sin(2)6πα-=( ) A.9-B.9C .79-D .7911.已知,2παπ⎛⎫∈ ⎪⎝⎭,3sin 5α=,则tan 4πα⎛⎫+= ⎪⎝⎭( )A .17 B .7C .17-D .-712.已知直线524x π=是函数21()sin 8)22x f x x ωωω=+<≤图象的一条对称轴,则ω=( ) A .2B .4C .6D .8二、填空题13.已知1cos 3α=,且02πα-<<,则()()()cos sin 2tan 23sin cos 22αππαπαππαα--+-=⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭______. 14.4cos50tan40-=______.15.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若3sin 4α=,则()cos αβ-=______. 16.若函数()2cos 2,[0,]f x x x x π=-+∈的图象与直线y m =恰有两个不同交点,则m 的取值范围是________.17.已知()()sin 2sin 223cos cos 2πθπθπθπθ⎛⎫--- ⎪⎝⎭=⎛⎫+++ ⎪⎝⎭,则22sin 2sin cos cos θθθθ+-=___________.18.若函数()sin()cos f x x x ϕ=++为偶函数,则常数ϕ的一个取值为________.19.已知角θ的终边经过点(4,3)P -,则22cos sin 12)4--=+θθπθ_____________.20.已知sin 4πθ⎛⎫-= ⎪⎝⎭sin 2θ=___________. 三、解答题21.已知函数2()cos 2cos 1(0)f x x x x ωωωω=-+>,且()y f x =的图象与直线2y =的两个相邻公共点之间的距离为π. (1)求函数()f x 的最小正周期和单调递减区间; (2)将函数()f x 图象上的所有点向左平移6π个单位,得到函数()g x 的图象,当0,2x π⎡⎤∈⎢⎥⎣⎦时,关于x 的方程()g x a =有两个不相等的实数根,求实数a 的取值范围.22.已知310,2,tan ,sin 223ππαβπαβ<<<<==. (1)求cos()αβ-的值; (2)求αβ+的值.23.①角α的终边上有一点()2,4M ;②角α的终边与单位圆的交点在第一象限且横坐标为13;③2α为锐角且22sin 42cos 22sin 2ααα=-.在这三个条件中任选一个,补充在下面问题中的横线上,并加以解答.问题:已知角α的顶点在原点O ,始边在x 轴的非负半轴上,___________.求cos 23πα⎛⎫+ ⎪⎝⎭的值.注:如果选择多个条件分别解答,则按第一个解答记分.24.已知300cos 25παβπα<<<<=,,. (1)分别求cos 2sin 2sin 2ααα,,的值;(2)若1sin()3αβ+=,求cos β.25.已知函数()22sin cos 1444x x x f x ⎛⎫=+- ⎪⎝⎭.(1)求函数()f x 的最小正周期及()f x 的单调递减区间﹔ (2)将()f x 的图象先向左平移6π个单位长度,再将其横坐标缩小为原来的12,纵坐标不变得到函数()g x ,若()04g x =,05,4x ππ⎛⎫∈⎪⎝⎭,求0sin x 的值. 26.已知函数2()sin 22sin 6f x x x π⎛⎫=-+ ⎪⎝⎭.(1)求512f π⎛⎫⎪⎝⎭;(2)求()f x 的单调递增区间及最小正周期.(3)若(0,)2πα∈,且()22f α=,求sin α.(4)若tan 2β=,求3()cos 22f ββ+的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先利用平方差公式、同角三角函数关系以及二倍角公式将函数变形为()cos 2f x x =,然后发现区间长度刚好是四分之一个周期,从而利用余弦函数的对称性,得到当区间,4t t π⎡⎤-⎢⎥⎣⎦,关于cos 2y x =的对称轴对称时,此时最大值与最小值的差值最小,求出此时的最大值和最小值,即可得到答案. 【详解】 函数44222222()cos sin (cos sin )(cos sin )cos sin cos 2f x x x x x x x x x x =-=+-=-=,所以函数()f x 的周期为22T ππ==,区间,()4t t t R π⎡⎤-∈⎢⎥⎣⎦的区间长度刚好是函数()f x 的四分之一个周期,因为()f x 在区间,()4t t t R π⎡⎤-∈⎢⎥⎣⎦上的最大值为()M t ,最小值为()N t ,由函数cos 2y x =的对称性可知,当区间,4t t π⎡⎤-⎢⎥⎣⎦,关于2y cos x =的对称轴对称时,此时最大值与最小值的差值最小,即函数()()()g t M t N t =-取最小值,区间,4t t π⎡⎤-⎢⎥⎣⎦,的中点为428t tt t ππ-+==-,此时()f t 取得最值±1, 不妨()f t 取得最大值()=1M t , 则有cos 2()18t π-=,解得224t k ππ-=,所以,,8t k k Z ππ=+∈所以2()cos 2cos 2cos 44N t t k πππ⎛⎫==+==⎪⎝⎭, 故()()()g t M t N t =-取最小值为212-. 故选:D . 【点睛】关键点睛:本题考查了三角函数的最值,涉及了二倍角公式的应用、同角三角函数关系的应用、三角函数的周期性、对称性的应用,解题的关键是分析出当区间,4t t π⎡⎤-⎢⎥⎣⎦关于cos 2y x =的对称轴对称时,此时最大值与最小值的差值最小.2.A解析:A 【分析】根据对称性可得BAC CAP ACP ∠=∠=∠,设1PD =,可计算出AB 的长,利用勾股定理可得BC 的长,在Rt ABC 中,由ABBC可得tan BCA ∠,再利用正切函数的二倍角公式可得答案. 【详解】如图,由题意得BAC CAP ACP ∠=∠=∠. 不妨设1PD =,则3AP CP ==,4AB CD ==, 在Rt APD 中,223122AD =-=,即22BC AD ==. 在Rt ABC 中,tan 222AB BCA BC ∠===. 则22tan 22tan tan 2221tan 12BCA BCB BCA BCA ∠'∠=∠===--∠-,故选:A.【点睛】本题考查了利用三角函数解决几何图形问题,关键点是利用对称性找到边长之间的关系然后利用正切函数求解,考查了学生分析问题、解决问题的能力.3.A解析:A【分析】先把函数解析式化简,然后令cos t x =,利用复合函数单调性求解即可 【详解】 当[]0,x π∈时,22()2cos ||cos 2=2cos (2cos 1)2cos 2cos 1f x x x x x x x =---=-++,令cos [1,1]t x t =∈-,,则cos t x =在[]0,x π∈上为减函数;而2221y t t =-++ 对称轴为12t =, ∴2221y t t =-++在1[1,]2t ∈-上单增,在1[,1]2t ∈上单减, ∴()y f x =在0,3x π⎡⎤∈⎢⎥⎣⎦上为增函数,在,3x ππ⎡⎤∈⎢⎥⎣⎦上为减函数. 又()2cos ||cos 2f x x x =-为偶函数,其图像关于y 轴对称, ∴()y f x =在,3ππ⎡⎤--⎢⎥⎣⎦上为增函数,在,03π⎡⎤-⎢⎥⎣⎦上为减函数. 故()y f x =的单调增区间为,3ππ⎡⎤--⎢⎥⎣⎦和0,3π⎡⎤⎢⎥⎣⎦. 故选:A 【点睛】复合函数的单调性口诀:同增异减,其具体含义为: 内外函数的单调性相同(同),则复合函数为增函数(增); 内外函数的单调性相反(异),则复合函数为减函数(减).4.A解析:A 【分析】首先利用韦达定理求得5tan tan 6αβ+=,tan tan a αβ⋅=,再结合()tan 1αβ+=,利用两角和正切公式得到关于a 的等量关系式,求得结果. 【详解】因为tan α,tan β是方程2506x x a -+=的两个实数根, 所以有5tan tan 6αβ+=,tan tan a αβ⋅=, 因为()tan 1αβ+=,所以有5611a=-,所以16a =,故选:A. 【点睛】思路点睛:该题考查的是有关两角和正切公式,解题思路如下:(1)先利用韦达定理,写出两根和与两根积;(2)利用两角和正切公式,结合题中条件,得到等量关系式,求得结果.5.A解析:A 【分析】根据半角公式得22sin sin cos221cos sin 1co 2cos sin cos 22s s 2in θθθθθθθθθθ=+++++-,再分子分母同除以2cos 2θ得2tan 1cos sin 21cos si tan2n 31ta 2n 2θθθθθθθ-+=++=++. 【详解】解:根据半角公式得:22cos 12sin2cos 122θθθ=-=-,sin 2sincos22θθθ=所以22222sin 2sin cos sin sin cos2222222cos 2sin cos cos sin cos 21cos sin 1cos 222n 2i 2s θθθθθθθθθθθθθθθθ-+==++++++, 对上述式子分子分母同除以2cos 2θ得: 222sin sin cos tan22222cos s 42ta in cos 22n 1cos sin 1029321cos sin 1531tan 1322θθθθθθθθθθθθθ+-+==+++===++++. 故选:A. 【点睛】本题解题的关键在于利用半角公式化简得22sin sin cos221cos sin 1co 2cos sin cos 22s s 2in θθθθθθθθθθ=+++++-,进而构造齐次式求解即可,考查运算求解能力,是中档题. 6.C解析:C 【分析】将等式sin cos x x +=sin cos x x 的值,利用切化弦可求得1tan tan x x+的值. 【详解】由sin cos x x +=,可得()23sin cos 12sin cos 4x x x x +=+=,得1sin cos 8x x =-,因此,221sin cos sin cos 1tan 8tan cos sin sin cos sin cos x x x x x x x x x x x x++=+===-.故选:C. 【点睛】方法点睛:应用公式时注意方程思想的应用,对于sin cos αα+、sin cos αα-、sin cos αα这三个式子,利用()2sin cos 12sin cos αααα±=±可以知一求二.7.D解析:D 【分析】由2sin 2cos(2)cos[2()]2cos ()1244πππθθθθ=-=-=--,代入即可求解. 【详解】因为cos 410πθ⎛⎫-=⎪⎝⎭, 由24924sin 2cos(2)cos[2()]2cos ()1212445025πππθθθθ=-=-=--=⨯-=. 故选:D. 【点睛】本题主要考查了三角恒等变换的化简、求值,其中解答中熟记余弦的倍角公式,准确运算是解答的关键,着重考查了运算与求解能力.8.C解析:C 【分析】利用辅助角公式将函数()y f x =的解析式化简为()2sin 3f x x πω⎛⎫=+ ⎪⎝⎭,根据题意得出()832k k Z πππωπ+=+∈,可得出关于ω的表达式,即可求出正数ω的最小值.【详解】()sin 2sin 3f x x x x πωωω⎛⎫=+=+ ⎪⎝⎭,由于该函数的图象关于直线8x π=对称,则()832k k Z πππωπ+=+∈,得()483k k Z ω=+∈, 0ω>,当0k =时,ω取得最小值43.故选:C. 【点睛】本题考查利用正弦型函数的对称性求参数,解题时要将三角函数的解析式利用三角恒等变换思想化简,并通过对称性列出参数的表达式求解,考查计算能力,属于中等题.9.B解析:B 【分析】先根据同角三角函数关系求tan α,再根据两角差正切公式求结果. 【详解】 由已知得tan α=34,则tan π1tan 141tan 7ααα-⎛⎫-== ⎪+⎝⎭. 选B 【点睛】本题考查同角三角函数关系、两角差正切公式,考查基本求解能力.10.D解析:D 【分析】由已知利用诱导公式可求133sin πα⎛⎫-= ⎪⎝⎭,sin 2263cos ππαα⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,再由二倍角公式化简,即可得结果. 【详解】162633cos sin sin ππππααα⎡⎤⎛⎫⎛⎫⎛⎫+=-+=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,2sin 2cos 2cos 2262633cos πππππαααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫∴-=--=-=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦22171212()339sin πα⎛⎫=--=-⨯= ⎪⎝⎭.故选D . 【点睛】本题主要考查了诱导公式,二倍角公式在三角函数化简求值中的应用,属于基础题.三角函数求值有三类,(1)“给角求值”;(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种系;(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.11.A解析:A 【分析】根据角的范围以及平方关系求出4cos ,5α=-再利用商的关系求出3tan 4α=-,最后由两角和的正切公式可得答案. 【详解】因为,2παπ⎛⎫∈ ⎪⎝⎭,3sin 5α=,所以4cos ,5α==-sin 3tan cos 4ααα==-, tan tan4tan 41tan tan 4παπαπα+⎛⎫+== ⎪⎝⎭-⋅17 故选:A. 【点睛】本题主要考查平方关系、商的关系以及两角和的正切公式,属于基础题.12.B解析:B 【分析】首先通过三角函数关系式的变换,把函数的关系式变形成正弦型函数,进一步利用函数的性质的应用求出结果. 【详解】解:函数211()sin cos )sin sin()2223xf x x x x x ωπωωωω=+=-+=-, 令:5()2432k k Z πππωπ-=+∈,解得244()5kk Z ω=+∈, 由于08ω<, 所以4ω=. 故选:B . 【点睛】本题考查三角函数关系式的变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,二、填空题13.【分析】用同角间的三角函数关系计算用诱导公式化简后再计算然后计算可得【详解】∵且∴∴故答案为:【点睛】方法点睛:本题考查诱导公式同角间的三角函数关系三角函数求值问题首先要进行化简应用诱导公式化简应用解析:-【分析】用同角间的三角函数关系计算sin α,用诱导公式化简后再计算.然后计算tan α,可得.【详解】∵1cos 3α=,且02πα-<<,∴sin 3α==-, ∴()()()cos sin 2tan 2cos sin (tan )sin tan 3cos (sin )cos sin cos 22αππαπααααααππααααα--+---=====---⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭.故答案为:-. 【点睛】方法点睛:本题考查诱导公式,同角间的三角函数关系.三角函数求值问题,首先要进行化简,应用诱导公式化简,应用同角间的三角函数关系化简,最后才代入求值.应用诱导公式应牢记:奇变偶不变,符号看象限,应用同角间的三角函数关系应注意在应用平方关系求函数值需确定角的范围,以确定正弦余弦值的正负.14.【详解】故答案为考点:三角函数诱导公式切割化弦思想【详解】4sin 40cos 40sin 404cos50tan 40cos 40--=2cos10sin 30cos10sin10cos30cos 40--=,1sin102cos 40⎫-⎪⎝⎭=40340==.考点:三角函数诱导公式、切割化弦思想.15.;【分析】根据角的终边关于轴对称得到以及两角差的余弦公式即可求出【详解】因为角与角均以为始边它们的终边关于轴对称所以所以故答案为:【点睛】本题主要考查了三角函数定义的应用两角差的余弦公式同角三角函数解析:18; 【分析】根据角的终边关于y 轴对称得到cos cos ,sin sin αβαβ=-=,以及两角差的余弦公式即可求出. 【详解】因为角α与角β均以Ox 为始边,它们的终边关于y 轴对称,所以3cos cos ,sin sin 4αβαβ=-==, 所以()22cos cos cos sin sin sincos αβαβαβαα-=+=-22sin 1α=-92116=⨯- 18= 故答案为:18【点睛】本题主要考查了三角函数定义的应用,两角差的余弦公式,同角三角函数的关系,属于中档题.16.【分析】化简函数解析式为做出函数的图象数形结合可得的取值范围【详解】解:因为所以由可得则函数的图象与直线恰有两个不同交点即方程在上有两个不同的解画出的图象如下所示:依题意可得时函数的图象与直线恰有两 解析:[4,6)【分析】化简函数解析式为()4sin()26f x x π=-+,做出函数的图象,数形结合可得m 的取值范围. 【详解】解:因为()2cos 2,[0,]f x x x x π=-+∈所以()2cos 24sin()26f x x x x π=-+=-+,[0,]x π∈,由[]0,x π∈,可得5,666x πππ⎡⎤-∈-⎢⎥⎣⎦, 则函数()f x ,[]0,x π∈的图象与直线y m =恰有两个不同交点,即方程4sin()26x m π-+=在[]0,x π∈上有两个不同的解,画出()f x 的图象如下所示:依题意可得46m ≤<时,函数()232cos 2,[0,]f x x x x π=-+∈的图象与直线y m =恰有两个不同交点,故答案为:[)4,6 【点睛】本题主要考查正弦函数的最大值和单调性,函数sin()y A x ωϕ=+的图象变换规律,正弦函数的图象特征,体现了转化、数形结合的数学思想,属于中档题.17.【分析】利用诱导公式结合弦化切的思想求出的值然后在代数式上除以并在所得分式的分子和分母中同时除以可得出关于的分式代值计算即可【详解】解得因此故答案为:【点睛】本题考查诱导公式和同角三角函数的商数关系 解析:75【分析】利用诱导公式结合弦化切的思想求出tan θ的值,然后在代数式22sin 2sin cos cos θθθθ+-上除以22sin cos θθ+,并在所得分式的分子和分母中同时除以2cos θ可得出关于tan θ的分式,代值计算即可. 【详解】()()sin 2sin sin cos tan 1223sin cos tan 1cos cos 2πθπθθθθπθθθθπθ⎛⎫--- ⎪++⎝⎭===--⎛⎫+++ ⎪⎝⎭,解得tan 3θ=.因此,22222222sin 2sin cos cos tan 2tan 1sin 2sin cos cos sin os tan 1θθθθθθθθθθθθθ+-+-+-==++2232317315+⨯-==+. 故答案为:75.【点睛】本题考查诱导公式和同角三角函数的商数关系化简求值,解题的关键就是求出tan θ的值,考查运算求解能力,属于中等题.18.(答案不唯一)【分析】根据函数为偶函数有化简得对任意恒成立所以有取其中一个值即可得出答案【详解】解:因为函数为偶函数则所以所以等价于对任意恒成立所以所以所以常数的一个取值为故答案为:(答案不唯一)【解析:π2(答案不唯一) 【分析】根据函数为偶函数有()()f x f x =-,化简得sin cos 0x ϕ=对任意x 恒成立,所以有()2k k Z πϕπ=+∈,取其中一个值即可得出答案.【详解】解:因为函数()sin()cos f x x x ϕ=++为偶函数,则()()f x f x =- 所以sin()cos sin()cos()x x x x ϕϕ++=-++-所以sin cos cos sin cos sin()cos cos()sin cos x x x x x x ϕϕϕϕ++=-+-+ 等价于sin cos 0x ϕ=对任意x 恒成立,所以cos 0ϕ=, 所以()2k k Z πϕπ=+∈,所以常数ϕ的一个取值为π2. 故答案为:π2(答案不唯一) 【点睛】应用函数奇偶性可解决的四类问题及解题方法(1)求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解;(2)求解析式:先将待求区间上的自变量转化到已知区间上,再利用奇偶性求解,或充分利用奇偶性构造关于()f x 的方程(组),从而得到()f x 的解析式;(3)求函数解析式中参数的值:利用待定系数法求解,根据()()0f x f x ±-=得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值; (4)画函数图象和判断单调性:利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性.19.7【分析】根据角终边定义得将所求分式用倍角公式和差公式化简化为齐次式代化简即可【详解】解:由角的终边经过点得所以故答案为:7【点睛】任意角的三角函数值:(1)角与单位圆交点则;(2)角终边任意一点则;解析:7 【分析】根据角终边定义得3tan 4θ=-,将所求分式用倍角公式、和差公式化简,化为齐次式,代3tan 4θ=-化简即可.【详解】解:由角θ的终边经过点(4,3)P -得3tan 4θ=-所以222cos sin 1(2cos 1)sin cos sin 22sin cos )coscos sin )444-----==+++θθθθθθπππθθθθθ31cos sin 1tan 473sin cos tan 114θθθθθθ⎛⎫-- ⎪--⎝⎭====++-+.故答案为:7 【点睛】任意角的三角函数值:(1)角α与单位圆交点(,)P x y ,则sin ,cos ,tan (0)yy x x xααα===≠; (2)角α终边任意一点(,)P x y,则sin tan (0)yx xααα===≠; 20.【分析】根据可得的值将平方结合正弦的二倍角公式即可计算出的值【详解】因为所以所以所以且所以所以故答案为:【点睛】关键点点睛:解答本题的关键是通过展开得到的值再根据与之间的关系:去完成求解解析:23【分析】根据sin 46πθ⎛⎫-= ⎪⎝⎭可得sin cos θθ-的值,将sin cos θθ-平方结合正弦的二倍角公式即可计算出sin 2θ的值. 【详解】因为sin 46πθ⎛⎫-= ⎪⎝⎭,所以()sin cos 26θθ-=,所以sin cos 3θθ-=,所以()21sin cos 3θθ-=且22sin cos 1θθ+=, 所以112sin cos 3θθ-=,所以2sin 23θ=, 故答案为:23. 【点睛】关键点点睛:解答本题的关键是通过展开sin 4πθ⎛⎫-⎪⎝⎭得到sin cos θθ-的值,再根据sin cos θθ-与sin 2θ之间的关系:()2sin cos 1sin 2θθθ-=-去完成求解. 三、解答题21.(1)最小正周期为π,单调递减区间为5,,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(2)1,12⎡⎫⎪⎢⎣⎭【分析】(1)化简可得()2sin 26f x x πω⎛⎫=-⎪⎝⎭,由题可得T π=,则可解出1ω=,令3222,262k x k k Z πππππ+≤-≤+∈可求出单调递减区间; (2)可得()2sin 26g x x π⎛⎫=+⎪⎝⎭,题目等价于找出()g x 有两个点相等的区间,即可求出a 的范围.【详解】(1)()2cos 22sin 26f x x x x πωωω⎛⎫=-=-⎪⎝⎭, ()y f x =的图象与直线2y =的两个相邻公共点之间的距离为π,T π∴=,则22ππω=,解得1ω=, ()2sin 26f x x π⎛⎫∴=- ⎪⎝⎭,令3222,262k x k k Z πππππ+≤-≤+∈, 解得5,36k x k k Z ππππ+≤≤+∈, 故()f x 的单调递减区间为5,,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(2)可得()2sin 22sin 26666g x f x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫=+=+-=+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 当0,2x π⎡⎤∈⎢⎥⎣⎦时,672,66x πππ⎡⎤⎢⎥⎣⎦-∈,()1,12g x ⎡⎤∈-⎢⎥⎣⎦, 要使关于x 的方程()g x a =有两个不相等的实数根, 只需找出()g x 有两个点相等的区间即可, 当2,662x πππ⎡⎫-∈⎪⎢⎣⎭和52,626x πππ⎛⎤-∈ ⎥⎝⎦时满足题意,此时()1,12g x ⎡⎫∈⎪⎢⎣⎭,1,12a ⎡⎫∴∈⎪⎢⎣⎭.【点睛】本题考查三角函数与方程的应用,解题的关键是得出题目等价于找出()g x 有两个点相等的区间.22.(1;(2)74π. 【分析】(1)由tan α求得sin ,cos αα,由sin β求得cos β,然后由两角差的余弦公式计算; (2)由两角和的正弦公式求得sin()αβ+后,由3522ππαβ<+<可得αβ+ 【详解】 因为1tan 3α=,所以sin 1cos 3αα=,又因为22sin cos 1αα+=,02πα<<,所以sin α=cos α=sin β=322πβπ<<,所以cos β===.(1)cos()cos cos sin sin αβαβαβ-=+⎛=⎝⎭=(2)因为sin()sin cos cos sin αβαβαβ+=+⎛= ⎝⎭2=-. 因为02πα<<,322πβπ<<,所以3522ππαβ<+<,所以74αβπ+=. 【点睛】方法点睛:本题考查两角和与差的正弦、余弦公式,考查同角间的三角函数关系,求角求值.解题关键是确定“已知角”和“未知角”的关系,以便选用恰当的公式求值.在求角,一般先确定出这个角的范围,在这个范围内选三角函数值是一对一的函数求得这个三角函数值,然后得角,如果不能直接得出一对一的函数,常常需要由已知或已求出的三角函数值缩小角的范围,从而得出角. 23.答案见解析 【分析】选条件①,则根据三角函数定义得cosα=,sin α=,进而根据二倍角公式得3cos25α=-,4sin 25α=,再结合余弦的和角公式求解即可;选条件②,由三角函数单位圆的定义得1cos 3α=,sin 3α=,进而根据二倍角公式得7cos 29α=-,sin 29α=,再结合余弦的和角公式求解即可; 选条件③,由二倍角公式得222sin 42tan 22cos 22sin 212tan 2ααααα==--,并结合题意得1tan 22α=,故cos 2α=,sin 2α=【详解】解:方案一:选条件①. 由题意可知2cos ||OM α===4sin ||OM α===. 所以23cos 22cos 15αα=-=-,4sin 22sin cos 5ααα==.所以cos 2cos 2cos sin 2sin 333πππααα⎛⎫+=- ⎪⎝⎭3145252=-⨯-⨯= 方案二:选条件②.因为角α的终边与单位圆的交点在第一象限且横坐标为13,所以1cos 3α=,sin α==所以27cos 22cos 19αα=-=-,sin 22sin cos 9ααα==.所以cos 2cos 2cos sin 2sin 333πππααα⎛⎫+=- ⎪⎝⎭719292=-⨯-⨯=. 方案三:选条件③.22222sin 42sin 2cos 22tan 22cos 22sin 2cos 22sin 212tan 2ααααααααα===---,结合2α为锐角,解得1tan 22α=,所以cos 2α=,sin 2α=. 所以cos 2cos 2cos sin 2sin 333πππααα⎛⎫+=- ⎪⎝⎭12==. 【点睛】本题解题的关键在于根据三角函数的定义求得cos ,sin αα,进而根据三角恒等变换求解,考查运算求解能力,是基础题. 24.(1)724cos 2,sin 2,sin 25252ααα=-==;(2. 【分析】 (1)先由30cos 25παα<<=,,求出sin α,然后分别求cos 2sin 2sin 2ααα,,的值; (2)先判断αβ+的范围,再凑角()βαβα=+-,利用两角差的余弦公式即可求解. 【详解】 (1)因为30,cos 25παα<<=,所以24sin 1cos 5αα.所以27cos 22cos 1,2524sin 22sin cos ,25sin 2αααααα=-=-====;(2)因为0,02παβπ<<<<,所以302παβ<+<,因为14sin()sin 35αβα+=<=,所以αβ+不可能是锐角,所以cos()αβ+==,所以4cos cos[()]cos()cos sin()sin 15βαβααβααβα-=+-=+++=. 【点睛】利用三角公式求三角函数值的关键: (1)角的范围的判断;(2)根据条件进行合理的拆角,如()()2()βαβαααβαβ=+-=++-,等. 25.(1)最小正周期为4π,单调递减区间是5114,4,33k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z ;(2). 【分析】(1)利用完全平方公式、正弦的二倍角公式、逆用两角差正弦公式化简()f x ,再求最小正周期及()f x 的单调递减区间;(2)求出()f x 的图象变换后的解析式,再求出04x π-的正余弦值利用凑角可得答案.【详解】()22sin cos 112sin cos 1cos 1444442x x x x x x f x ⎛⎫⎫=+-=++ ⎪⎪⎝⎭⎭1sin 2sin 2sin 22222223x x x x x π⎛⎫⎛⎫==-=- ⎪ ⎪ ⎪⎝⎭⎝⎭. (1)()f x 的最小正周期为4T π=, 由3222232x k k πππππ+≤-≤+,k ∈Z ,解得5114433k x k ππππ+≤≤+,k ∈Z , 所以函数()f x 的单调递减区间是5114,4,33k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z .(2)将()f x 的图象先向左平移6π个单位长度,得到函数62sin 2sin 2324x x y πππ⎛⎫+ ⎪⎛⎫=-=- ⎪ ⎪⎝⎭ ⎪⎝⎭,再将其横坐标缩小为原来的12,纵坐标不变得到函数()2sin 4g x x π⎛⎫=- ⎪⎝⎭,据题意有0sin 4x π⎛⎫-= ⎪⎝⎭03,44x πππ⎛⎫-∈ ⎪⎝⎭,则0cos 4x π⎛⎫-= ⎪⎝⎭则0000sin sin sin cos cos sin 444444x x x x ππππππ⎡⎤⎛⎫⎛⎫⎛⎫=-+=-+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦822=⨯-=. 【点睛】 本题考查了三角函数的图象和性质,其中解答中利用三角恒等变换的公式,化简()f x 的解析式,再利用三角函数的图象与性质求解是解答的关键,着重考了学生的计算能力,属于基础题.26.(11(2)5[,],1212k k k Z ππππ-+∈,π(3)6(4)15+ 【分析】(1)化简函数解析式代入直接求值即可;(2)由正弦型函数的性质求解即可; (3)先求出cos()3πα-,sin()3πα-再利用33ππαα=-+求解即可; (4)由两角差的正弦化简后再利用弦化切求解.【详解】 (1)2()sin 22sin 6f x x x π⎛⎫=-+= ⎪⎝⎭ sin2cos cos2sin 1cos 266x x x ππ⋅-⋅+-1cos21cos22x x x =-+-3cos212x x =-+213x π⎛⎫=-+ ⎪⎝⎭,故55sin()111263f πππ⎛⎫=-+= ⎪⎝⎭.(2)由(1)知()213f x x π⎛⎫=-+ ⎪⎝⎭, 令222,232k x k k Z πππππ-≤-≤+∈, 解得5,1212k x k k Z ππππ-≤≤+∈, 所以函数()f x 的单调递增区间为5[,],1212k k k Z ππππ-+∈,函数()f x 的周期为22T ππ==. (3)(0,)2πα∈,且()22f α=,())1223f απα=-+=,即sin()33πα-=, 因为(0,)2πα∈,所以cos()33πα-=, 故sin sin[()]sin()cos cos()sin 333333ππππππαααα=-+=-+-12=+=(4)33()cos 2)1cos 2232f πββββ+=-++3221cos 22βββ=-++211β=+=+1=+1= 【点睛】关键点点睛:涉及三角函数的求值化简问题,关键要根据式子结构特征,选择合适的公式,正用、逆用公式,并结合切化弦、弦化切思想,角的变换技巧,灵活运用公式,熟练运算,属于中档题.。

高中数学第三章三角恒等变换3.1.4二倍角的正弦、余弦、正切公式练习(含解析)新人教A版必修4

高中数学第三章三角恒等变换3.1.4二倍角的正弦、余弦、正切公式练习(含解析)新人教A版必修4

高中数学第三章三角恒等变换3.1.4二倍角的正弦、余弦、正切公式练习(含解析)新人教A 版必修41.设α是第四象限角,已知sin α=-35,则sin2α,cos2α和tan2α的值分别为( )A .-2425,725,-247B .2425,725,247C .-2425,-725,247D .2425,-725,-247答案 A解析 因为α是第四象限角,且sin α=-35,所以cos α=45,所以sin2α=2sin αcos α=-2425,cos2α=2cos 2α-1=725,tan2α=sin2αcos2α=-247.2.已知sin ⎝ ⎛⎭⎪⎫α+π4=7210,cos2α=725,则cos α=( )A .45B .-45C .-35D .35 答案 A解析 ∵sin ⎝ ⎛⎭⎪⎫α+π4=7210,∴22sin α+22cos α=7210,即sin α+cos α=75,∵cos2α=725,∴cos 2α-sin 2α=725,即(cos α-sin α)(cos α+sin α)=725,∴cos α-sin α=15,可得cos α=45,故选A .3.1-tan 215°2t an15°等于( )A . 3B .33C .1D .-1 答案 A解析 原式=12tan15°1-tan 215°=1tan30°=3.4.cos 275°+cos 215°+cos75°cos15°的值等于( ) A .62 B .32 C .54 D .1+34答案 C解析 原式=sin 215°+cos 215°+sin15°cos15°=1+12sin30°=1+14=54.5.sin65°cos25°+cos65°sin25°-tan 222.5°2tan22.5°等于( )A .12 B .1 C .3 D .2 答案 B解析 原式=sin90°-tan 222.5°2tan22.5°=1-tan 222.5°2tan22.5°=1tan45°=1.6.3-sin70°2-cos 210°的值是________. 答案 2 解析3-sin70°2-cos 210°=3-sin70°2-1+cos20°2=23-cos20°3-cos20°=2. 7.若cos(75°-α)=13,则cos(30°+2α)=________.答案 79解析 由cos(75°-α)=13,得cos(150°-2α)=2cos 2(75°-α)-1=-79,则cos(30°+2α)=cos[180°-(150°-2α)] =-cos(150°-2α)=79.8.若α∈2,2,则1+sin α+1-sin α的值为( )A .2cos α2B .-2cos α2 C .2sin α2 D .-2sin α2 答案 D解析 ∵α∈5π2,7π2,∴α2∈5π4,7π4,∴原式=sin α2+cos α2+sin α2-cos α2=-sin α2-cos α2-sin α2+cos α2=-2sin α2. 9.已知角α在第一象限且cos α=35,则1+2cos2α-π4sin α+π2等于( )A .25B .75C .145D .-25 答案 C解析 ∵cos α=35且α在第一象限,∴sin α=45.∴cos2α=cos 2α-sin 2α=-725,sin2α=2sin αcos α=2425,∴原式=1+2cos2αcos π4+sin2αsinπ4cos α=1+cos2α+sin2αcos α=145.10.已知sin x 2-2cos x2=0.(1)求tan x 的值;(2)求cos2xcos ⎝ ⎛⎭⎪⎫5π4+x sin π+x 的值.解 (1)由sin x 2-2cos x 2=0,知cos x2≠0,∴tan x2=2,∴tan x =2tanx21-tan 2x 2=2×21-22=-43.(2)由(1),知tan x =-43,∴cos2xcos ⎝ ⎛⎭⎪⎫5π4+x sin π+x =cos2x-cos ⎝ ⎛⎭⎪⎫π4+x -sin x=cos 2x -sin 2x⎝ ⎛⎭⎪⎫22cos x -22sin x sin x=cos x -sin x cos x +sin x22cos x -sin x sin x=2×cos x +sin x sin x =2×1+tan x tan x =24.对应学生用书P90一、选择题1.12-sin 215°=( ) A .64 B .6-24 C .32 D .34答案 D解析 原式=12-1-cos 2×15°2=cos30°2=34.2.函数f (x )=2sin 2⎝ ⎛⎭⎪⎫x 2+π4-1是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为2π的奇函数D .最小正周期为2π的偶函数 答案 C解析 ∵f (x )=2sin 2⎝ ⎛⎭⎪⎫x 2+π4-1=-cos2x 2+π4=-cos ⎝ ⎛⎭⎪⎫x +π2=sin x ,∴函数f (x )=2sin 2⎝ ⎛⎭⎪⎫x 2+π4-1是最小正周期为2π的奇函数.3.已知cos π4-x =35,则sin2x 的值为( )A .1825B .725C .-725D .-1625 答案 C解析 因为sin2x =cos π2-2x =cos2π4-x =2cos 2π4-x -1,所以sin2x =2×352-1=1825-1=-725.4.已知cos2θ=23,则sin 4θ+cos 4θ的值为( ) A .1318 B .1118 C .79 D .-1 答案 B解析 sin 4θ+cos 4θ=(sin 2θ+cos 2θ)2-2sin 2θcos 2θ =1-12sin 22θ=1-12(1-cos 22θ)=1118.5.若cos2αsin α-π4=-22,则cos α+sin α的值为( )A .-72 B .-12C .12D .72 答案 C解析 cos2αsin α-π4=cos 2α-sin 2α22sin α-cos α=cos α+sin αcos α-sin α22sin α-cos α=-2(cos α+sin α)=-22. ∴sin α+cos α=12.二、填空题6.已知tan x +π4=2,则tan xtan2x 的值为________.答案 49解析 ∵tan x +π4=2,∴tan x +11-tan x =2,∴tan x =13.∴tan x tan2x =tan x 2tan x 1-tan 2x=1-tan 2x2=1-192=49. 7.已知sin 22α+sin2αcos α-cos2α=1,α∈0,π2,则 α=________.答案π6解析 ∵sin 22α+sin2αcos α-(cos2α+1)=0. ∴4sin 2αcos 2α+2sin αcos 2α-2cos 2α=0. ∵α∈0,π2.∴2cos 2α>0.∴2sin 2α+sin α-1=0.∴sin α=12(sin α=-1舍).∴α=π6.8.设a =12cos7°-32sin7°,b =2cos12°·cos78°,c =1-cos50°2,则a ,b ,c 的大小关系是________.答案 c >b >a解析 a =12cos7°-32sin7°=sin30°cos7°-cos30°sin7°=sin(30°-7°)=sin23°,b =2cos12°cos78°=2sin12°·cos12°=sin24°,c =1-cos50°2=1-1-2sin 225°2=sin 225°=sin25°,所以c >b >a .三、解答题9.求下列各式的值:(1)sin π8sin 3π8;(2)cos 215°-cos 275°;(3)2cos25π12-1;(4)tan30°1-tan 230°; (5)求s in10°sin30°sin50°sin70°的值. 解 (1)∵sin 3π8=sin ⎝ ⎛⎭⎪⎫π2-π8=cos π8,∴sin π8sin 3π8=sin π8cos π8=12·2sin π8cos π8=12sin π4=24.(2)∵cos 275°=cos 2(90°-15°)=sin 215°, ∴cos 215°-cos 275°=cos 215°-sin 215°=cos30°=32. (3)2cos25π12-1=cos 5π6=-32. (4)tan30°1-tan 230°=12×2tan30°1-tan 230°=12tan60°=32. (5)解法一:∵sin10°sin50°sin70°=sin20°sin50°sin70°2cos10°=sin20°cos20°sin50°2cos10°=sin40°sin50°4cos10°=sin40°cos40°4cos10°=sin80°8cos10°=18,∴sin10°sin30°sin50°sin70°=116.解法二:sin10°sin30°sin50°sin70°=12cos20°cos40°cos80°=2sin20°cos20°cos40°cos80°4sin20°=sin40°cos40°cos80°4sin20°=sin80°cos80°8sin20°=116·sin160°sin20°=116.10.已知α为钝角,且tan π4-α=2.(1)求tan α的值;(2)求sin2αcos α-sin αcos2α的值.解 (1)tan π4-α=1-tan α1+tan α,所以1-tan α1+tan α=2,1-tan α=2+2tan α,所以tan α=-13.(2)sin2αcos α-sin αcos2α=2sin αcos 2α-sin αcos2α=sin α2cos 2α-1cos2α=sin αcos2αcos2α=sin α.因为tan α=-13,所以cos α=-3sin α,又sin 2α+cos 2α=1,所以sin 2α=110,又α为钝角,所以sin α=1010, 所以sin2αcos α-sin αcos2α=1010.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(Ⅰ) (Ⅱ)由题, ,则 .那么

, 而 ,则 ,

18.化简

19.已知 解:由题, ,得 20.化简 ,即 .
,求

.6页
少壮不努力,老大徒伤悲!
22.已知函数 (Ⅰ)单调区间与周期; (Ⅱ)当 时,函数的值域.
.求
(Ⅰ)由 原函数的单调递增区间为 由 原函数的单调递减区间为 原函数的周期为 ; ,得
明日复明日,明日何其多?
和差倍半角公式的应用 参考答案
1.求 解: ; . ;

; ;

2. 解:由题,
, 为第二象限角,求 .



3. 解:由题, .
.求


4.设
为钝角,且 .
,求

解:由题,

高中数学
第1页
共6页
少壮不努力,老大徒伤悲!

为钝角, . . ,求 ,则 . .
5.已知 解:由题,
,求

12.已知
,求


13.已知
,求


高中数学
第3页
共6页
少壮不努力,老大徒伤悲!
14.已知
,求

解:

15.已知 . 解:由题 .那么 ; ;
,求

,知
,则

16.已知
,求

解:由题
,得
,则

17.已知 (Ⅰ) (Ⅱ) ; .
,且
,求
解:由
,得
,或


.则

高中数学
第4页
共6页
明日复明日,明日何其多?
,得 ; , ;

(Ⅱ)当
时,
,则

原函数的值域为

高中数学
第6页
共6页
6.一元二次方程
的两根为
,求
的最小值.
解:由题,
,得



.易
知,当 7. 解:由题,
时, , 为第二象限角,求
. . ,则 .那么

. 8.已知 解:由题, 而 为锐角,且 . ( 为锐角) ,故 . ,且 .
高中数学
第2页
共6页
明日复明日,明日何其多?
. 9.已知 ,求 .
10.已知
,求

11.已知
相关文档
最新文档