分治算法设计
算法分析与设计教案
算法分析与设计课程教案课程编号:50c24037-01总学时:51 周学时:4适用年级专业(学科类):2007级计科专业开课时间:2010-2011 学年第1 学期使用教材:王晓东编著计算机算法设计与分析第3版章节第1章1.1~ 1.2 第2 章2.1 课时 2教学目的理解程序与算法的概念、区别与联系;掌握算法在最坏情况、最好情况和平均情况下的计算复杂性概念;掌握算法复杂性的渐近性态的数学表述;理解递归的概念。
教学重点及突出方法重点:程序与算法的概念、算法的时间复杂性、算法复杂性的渐近性态的数学表述以及递归的概念。
通过讲解、举例方法。
教学难点及突破方法难点:算法复杂性与递归通过讲解、举例、提问与引导方法。
相关内容此部分内容基础知识可参考清华大学出版社出版严蔚敏编著的《数据结构》教学过程(教师授课思路、设问及讲解要点)回顾数据结构课程中的算法概念、排序算法等知识,从而引出本课程内容。
提问算法与程序的区别、联系以及算法具有的特性。
讲解算法的复杂性,主要包括时间复杂性与空间复杂性。
讲解最坏情况、最好情况与平均情况的时间复杂性。
讲解算法复杂性在渐近意义下的阶,主要包括O、Ω、θ与o,并通过具体例子说明。
通过具体例子说明递归技术。
主要包括阶乘函数、Fibonacci数列、Ackerman函数、排列问题、整数划分问题、Hanoi塔问题等。
第页章节第2 章2.2~2.5 课时 2 教学目的掌握设计有效算法的分治策略,并掌握范例的设计技巧,掌握计算算法复杂性方法。
教学重点及突出方法重点:分治法的基本思想及分治法的一般设计模式。
通过讲解、举例方法。
教学难点及突破方法难点:计算算法复杂性。
通过讲解、举例、提问与引导方法。
相关内容素材教(教师授课思路、设问及讲解要点)学过程通过生活中解决复杂问题的分解方法,引出分治方法。
讲解分治法的基本思想及其一般算法的设计模式,介绍分治法的计算效率。
通过具体例子采用分治思想来设计有效算法。
分治算法
65 97
13 76
38 49 65 97
13 27 76
13 27 38 49 65 76 97
黑盒划分典型问题—合并排序
合并排序算法改进
从分治过程入手,容易消除mergeSort算法中的递归 调用
49 38 65 97 76 13 27
38 49
65 97
13 76
27
38 49 65 97
题的解,自底向上逐步求出原来问题的解。
T(n)
=
n
递归的概念
由分治法产生的子问题往往是原问题的较小模式,这 就为使用递归技术提供了方便。在这种情况下,反复 应用分治手段,可以使子问题与原问题类型一致而其 规模却不断缩小,最终使子问题缩小到很容易直接求 出其解。这自然导致递归过程的产生。
直接或间接地调用自身的算法称为递归算法。用函数 自身给出定义的函数称为递归函数。
黑盒划分典型问题—合并排序
【例5】合并排序
任务描述:任意给定一包含n个整数的集合,把n个整数按升序排列。 输入:每测试用例包括两行,第一行输入整数个数,第二行输入n个整 数,数与数之间用空格隔开。最后一行包含-1,表示输入结束。 输出:每组测试数据的结果输出占一行,输出按升序排列的n个整数。 样例输入:
13 27 76
13 27 38 49 65 76 97
黑盒划分典型问题—合并排序
黑盒划分典型问题—合并排序
合并排序算法改进
从分治过程入手,容易消除mergeSort算法中的递归调用 自然合并排序
49 38 65 97 76 13 27
49
38 65 97
76
13 27
38 49 65 97
黑盒划分典型问题—逆序对问题
算法设计与分析实验报告
实验一找最大和最小元素与归并分类算法实现(用分治法)一、实验目的1.掌握能用分治法求解的问题应满足的条件;2.加深对分治法算法设计方法的理解与应用;3.锻炼学生对程序跟踪调试能力;4.通过本次实验的练习培养学生应用所学知识解决实际问题的能力。
二、实验内容1、找最大和最小元素输入n 个数,找出最大和最小数的问题。
2、归并分类将一个含有n个元素的集合,按非降的次序分类(排序)。
三、实验要求(1)用分治法求解问题(2)上机实现所设计的算法;四、实验过程设计(算法设计过程)1、找最大和最小元素采用分治法,将数组不断划分,进行递归。
递归结束的条件为划分到最后若为一个元素则max和min都是这个元素,若为两个取大值赋给max,小值给min。
否则就继续进行划分,找到两个子问题的最大和最小值后,比较这两个最大值和最小值找到解。
2、归并分类使用分治的策略来将一个待排序的数组分成两个子数组,然后递归地对子数组进行排序,最后将排序好的子数组合并成一个有序的数组。
在合并过程中,比较两个子数组的首个元素,将较小的元素放入辅助数组,并指针向后移动,直到将所有元素都合并到辅助数组中。
五、源代码1、找最大和最小元素#include<iostream>using namespace std;void MAXMIN(int num[], int left, int right, int& fmax, int& fmin); int main() {int n;int left=0, right;int fmax, fmin;int num[100];cout<<"请输入数字个数:";cin >> n;right = n-1;cout << "输入数字:";for (int i = 0; i < n; i++) {cin >> num[i];}MAXMIN(num, left, right, fmax, fmin);cout << "最大值为:";cout << fmax << endl;cout << "最小值为:";cout << fmin << endl;return 0;}void MAXMIN(int num[], int left, int right, int& fmax, int& fmin) { int mid;int lmax, lmin;int rmax, rmin;if (left == right) {fmax = num[left];fmin = num[left];}else if (right - left == 1) {if (num[right] > num[left]) {fmax = num[right];fmin = num[left];}else {fmax = num[left];fmin = num[right];}}else {mid = left + (right - left) / 2;MAXMIN(num, left, mid, lmax, lmin);MAXMIN(num, mid+1, right, rmax, rmin);fmax = max(lmax, rmax);fmin = min(lmin, rmin);}}2、归并分类#include<iostream>using namespace std;int num[100];int n;void merge(int left, int mid, int right) { int a[100];int i, j,k,m;i = left;j = mid+1;k = left;while (i <= mid && j <= right) {if (num[i] < num[j]) {a[k] = num[i++];}else {a[k] = num[j++];}k++;}if (i <= mid) {for (m = i; m <= mid; m++) {a[k++] = num[i++];}}else {for (m = j; m <= right; m++) {a[k++] = num[j++];}}for (i = left; i <= right; i++) { num[i] = a[i];}}void mergesort(int left, int right) { int mid;if (left < right) {mid = left + (right - left) / 2;mergesort(left, mid);mergesort(mid + 1, right);merge(left, mid, right);}}int main() {int left=0,right;int i;cout << "请输入数字个数:";cin >> n;right = n - 1;cout << "输入数字:";for (i = 0; i < n; i++) {cin >> num[i];}mergesort(left,right);for (i = 0; i < n; i++) {cout<< num[i];}return 0;}六、运行结果和算法复杂度分析1、找最大和最小元素图1-1 找最大和最小元素结果算法复杂度为O(logn)2、归并分类图1-2 归并分类结果算法复杂度为O(nlogn)实验二背包问题和最小生成树算法实现(用贪心法)一、实验目的1.掌握能用贪心法求解的问题应满足的条件;2.加深对贪心法算法设计方法的理解与应用;3.锻炼学生对程序跟踪调试能力;4.通过本次实验的练习培养学生应用所学知识解决实际问题的能力。
《计算机算法设计与分析》课程设计
《计算机算法设计与分析》课程设计用分治法解决快速排序问题及用动态规划法解决最优二叉搜索树问题及用回溯法解决图的着色问题一、课程设计目的:《计算机算法设计与分析》这门课程是一门实践性非常强的课程,要求我们能够将所学的算法应用到实际中,灵活解决实际问题。
通过这次课程设计,能够培养我们独立思考、综合分析与动手的能力,并能加深对课堂所学理论和概念的理解,可以训练我们算法设计的思维和培养算法的分析能力。
二、课程设计内容:1、分治法:(2)快速排序;2、动态规划:(4)最优二叉搜索树;3、回溯法:(2)图的着色。
三、概要设计:分治法—快速排序:分治法的基本思想是将一个规模为n的问题分解为k个规模较小的子问题,这些子问题互相独立且与原问题相同。
递归地解这些子问题,然后将各个子问题的解合并得到原问题的解。
分治法的条件:(1) 该问题的规模缩小到一定的程度就可以容易地解决;(2) 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质;(3) 利用该问题分解出的子问题的解可以合并为该问题的解;(4) 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。
抽象的讲,分治法有两个重要步骤:(1)将问题拆开;(2)将答案合并;动态规划—最优二叉搜索树:动态规划的基本思想是将问题分解为若干个小问题,解子问题,然后从子问题得到原问题的解。
设计动态规划法的步骤:(1)找出最优解的性质,并刻画其结构特征;(2)递归地定义最优值(写出动态规划方程);(3)以自底向上的方式计算出最优值;(4)根据计算最优值时得到的信息,构造一个最优解。
●回溯法—图的着色回溯法的基本思想是确定了解空间的组织结构后,回溯法就是从开始节点(根结点)出发,以深度优先的方式搜索整个解空间。
这个开始节点就成为一个活结点,同时也成为当前的扩展结点。
在当前的扩展结点处,搜索向纵深方向移至一个新结点。
这个新结点就成为一个新的或节点,并成为当前扩展结点。
算法设计与分析(霍红卫)-第2章-分治法
第2章 分 治 法
我们可以很容易解决这个问题。利用这样一个事实:渐近 表示法只要求对n≥n0,T(n)≤cn lb n成立,其中n0是一个可以选择 的常数。由于对于n>3,递归方程并不直接依赖T(1),因此可设 n0=2,选择T(2)和T(3)作为归纳证明中的边界条件。由递归方程 可得T(2)=4和T(3)=5。此时只要选择c≥2,就会使得T(2)≤c·2·lb 2 和 T(3)≤c·3·lb 3 成 立 。 因 此 , 只 要 选 择 n0=2 和 c≥2 , 则 有 T(n)≤cn lb n成立。
3ic(n/4i)2=(3/16) icn2 i=0,1,…,log4n-1
深度为log4n的最后一层有3log4 n nlog4 3 个结点,每个结点的
开销为T(1),该层总开销为 nlog4 3T (1) ,即 Θ(nlog4 3)。
第2章 分 治 法
将所有层的开销相加得到整棵树的开销:
T (n) cn2
T(n)=2T(n/2)+n ≤2(c[n/2]lb[n/2])+n =cn lb n/2+n =cn lb n-cn lb 2+n =cn lb n-cn+n =cn lb n-(c-1)n
最后一步在c≥1时成立。≤cn lb n
第2章 分 治 法
下面证明猜测对于边界条件成立, 即证明对于选择的常 数c,T(n)≤cn lb n对于边界条件成立。 这个要求有时会产生 一些问题。 假设T(1)=1是递归方程的惟一边界条件,那么对 于n=1,T(1)≤c·1·lb 1=0与T(1)=1发生矛盾。因此,归纳法中 的归纳基础不成立。
3
cn2
3
2
cn2
3
分治法实验报告
算法实验报告一分治法实验一、实验目的及要求利用分治方法设计大整数乘法的递归算法,掌握分治法的基本思想和算法设计的基本步骤。
要求:设计十进制的大整数乘法,必须利用分治的思想编写算法,利用c语言(或者c++语言)实现算法,给出程序的正确运行结果。
(必须完成)设计二进制的大整数乘法,要求利用分治的思想编写递归算法,并可以实现多位数的乘法(利用数组实现),给出程序的正确运行结果。
(任选)二、算法描述1、输入两个相同位数的大整数u,v 输出uv的值判断大整数的位数i;w=u/10^(i/2);y=v/10^(i/2);x=u-w*10^(i/2);z= v-y*10^(i/2);然后将w,x,y,z代入公式求得最后结果uv=wy10^i+((w+x)(y+z)-wy-xz)10^(i/2)+xz三、调试过程及运行结果在实验中我遇到的问题:原来以为这两个大整数的位数不同,结果题目要求是相同位数的大整数在写10的多少次方时,写的是10^(i/2),10^(i),结果不对,我就将它改成了for循环语句四、实验总结在本次实验中,我知道了分治算法,以及分治算法的基本思想。
我还掌握了编写大整数乘法的算法与步骤,以及如何修改在编写程序时遇到的问题。
五、附录(源程序代码清单)1、#include<iostream.h> int weishu(int x){int i;while(x!=0){ x=x/10;i++;}return i;}void main(){int u,v;cout<<输入两个位数相同的大整数:<<endl; cin>>u;cin>>v;int i,j,m,n;int p,x,y,z,w;int a=1;int b=1;i=weishu(u);for(int k=1;k<=i;k++){a=a*10;}for(int q=1;q<=i/2;q++) {b=b*10;}w=u/b;y=v/b;x=u-w*b;z=v-y*b;p=w*y*a+((w+x)*(y+z)-w*y-x*z)*b+x*z; cout<<u<<*<<v<<=<<p; }教师评语:成绩:√优良中及格不及格算法实验报告二动态规划法实验一、实验目的及要求利用动态规划方法设计背包问题算法,掌握动态规划法的基本思想和算法设计的基本步骤。
计算思维之常用算法设计
计算思维之常用算法设计算法是计算机解决问题的一种方法或者步骤。
在计算思维中,算法设计是非常重要的一部分,它涉及到如何将一个问题转化为计算机可以理解和处理的问题,通过编写算法来解决这些问题。
常用的算法设计方法有很多,下面将介绍一些常见的算法设计思路和方法。
1.贪心算法贪心算法是一种通过每一步的局部最优解来寻找全局最优解的方法。
贪心算法通常用于解决问题的最优解不一定是全局最优的情况,而是局部最优解可以推出全局最优解的问题。
贪心算法的核心思想是每一步只考虑局部最优解,并希望通过每一步的局部最优解能够得到全局最优解。
2.分治算法分治算法是一种将一个大问题分解成若干个小问题并逐个解决,最后将这些小问题的解合并成整个问题的解的方法。
分治算法通常用于解决大规模的问题,通过将问题分解为规模较小的子问题来解决,在解决子问题的过程中,可以使用递归或循环等方式。
3.动态规划算法动态规划算法是一种通过将问题分解成重叠子问题,并使用递推关系来解决子问题的方法。
动态规划算法通常用于解决最优化问题,通过定义状态和状态转移方程来描述问题,然后使用递推或迭代的方式来求解问题的最优解。
4.回溯算法回溯算法是一种通过尝试所有可能的解,并在尝试的过程中进行判断来寻找符合条件的解的方法。
回溯算法通常用于解决在问题空间中寻找满足约束条件的解的问题,通过在过程中进行剪枝和回溯的操作,可以有效地到符合条件的解。
5.分支界限算法分支界限算法是一种通过对问题的空间进行分支和界限的方式来寻找满足约束条件的解的方法。
分支界限算法通常用于解决优化问题,通过对问题的空间进行分支和剪枝的操作,可以有效地到最优解或近似最优解。
除了以上几种常见的算法设计方法外,还有一些其他的算法设计思路和方法,如模拟退火算法、遗传算法、神经网络等。
不同的问题需要使用不同的算法设计思路和方法来解决,因此在实际应用中需要根据问题的特点选择合适的算法设计方法。
总的来说,算法设计是计算思维中的重要内容,它涉及到如何将问题转化为计算机可以理解和处理的问题,通过编写算法来解决这些问题。
算法设计与分析实验报告
算法设计与分析报告学生姓名学号专业班级指导教师完成时间目录一、课程内容 (3)二、算法分析 (3)1、分治法 (3)(1)分治法核心思想 (3)(2)MaxMin算法分析 (3)2、动态规划 (4)(1)动态规划核心思想 (4)(2)矩阵连乘算法分析 (5)3、贪心法 (5)(1)贪心法核心思想 (5)(2)背包问题算法分析 (6)(3)装载问题算法分析 (7)4、回溯法 (7)(1)回溯法核心思想 (7)(2)N皇后问题非递归算法分析 (7)(3)N皇后问题递归算法分析 (8)三、例子说明 (9)1、MaxMin问题 (9)2、矩阵连乘 (10)3、背包问题 (10)4、最优装载 (10)5、N皇后问题(非递归) (11)6、N皇后问题(递归) (11)四、心得体会 (12)五、算法对应的例子代码 (12)1、求最大值最小值 (12)2、矩阵连乘问题 (13)3、背包问题 (15)4、装载问题 (17)5、N皇后问题(非递归) (19)6、N皇后问题(递归) (20)一、课程内容1、分治法,求最大值最小值,maxmin算法;2、动态规划,矩阵连乘,求最少连乘次数;3、贪心法,1)背包问题,2)装载问题;4、回溯法,N皇后问题的循环结构算法和递归结构算法。
二、算法分析1、分治法(1)分治法核心思想当要求解一个输入规模为n,且n的取值相当大的问题时,直接求解往往是非常困难的。
如果问题可以将n个输入分成k个不同子集合,得到k个不同的可独立求解的子问题,其中1<k≤n, 而且子问题与原问题性质相同,原问题的解可由这些子问题的解合并得出。
那末,这类问题可以用分治法求解。
分治法的核心技术1)子问题的划分技术.2)递归技术。
反复使用分治策略将这些子问题分成更小的同类型子问题,直至产生出不用进一步细分就可求解的子问题。
3)合并技术.(2)MaxMin算法分析问题:在含有n个不同元素的集合中同时找出它的最大和最小元素。
算法设计与分析:第02章 递归与分治策略
A(1,0) 2 A(0, m) 1 m0 A(n,0) n 2 n2 A(n, m) A( A(n 1, m), m 1) n, m 1
2.1
递归的概念
例3 Ackerman函数 前2例中的函数都可以找到相应的非递归方式定义:
n! 1 2 3 (n 1) n
课件第2章
递归与分治策略
算法总体思想
• 将要求解的较大规模的问题分割成k个更小规模的子问 对这k个子问题分别求解。如果子问题的规模仍然不够 小,则再划分为k个子问题,如此递归的进行下去,直 题。 到问题规模足够小,很容易求出其解为止。
T(n)
=
n
T(n/2)
T(n/2)
T(n/2)
T(n/2)
算法总体思想
下面来看几个实例。
2.1
递归的概念
边界条件
例1 阶乘函数 阶乘函数可递归地定义为:
n0 1 n! n(n 1)! n 0
递归方程 边界条件与递归方程是递归函数的二个要素,递归函 数只有具备了这两个要素,才能在有限次计算后得出 结果。
2.1
递归的概念
例2 Fibonacci数列 无穷数列1,1,2,3,5,8,13,21,34,55,…,被 称为Fibonacci数列。它可以递归地定义为:
2.1
递归的概念
例6 Hanoi塔问题 public static void hanoi(int n, int a, int b, int c) 当n=1时,问题比较简单。此时,只要将编号为1的圆盘从塔座a直 在问题规模较大时,较难找到一般的方法,因此我们尝试 接移至塔座b上即可。 用递归技术来解决这个问题。 { 思考题:如果塔的个数变为a,b,c,d 当n>1时,需要利用塔座c作为辅助塔座。此时若能设法将n-1个 if (n > 0) 四个,现要将n个圆盘从a全部移动 较小的圆盘依照移动规则从塔座a移至塔座c,然后,将剩下的最 { 到d,移动规则不变,求移动步数最 大圆盘从塔座a移至塔座b,最后,再设法将n-1个较小的圆盘依照 hanoi(n-1, a, c, b); 小的方案。 移动规则从塔座c移至塔座b。 move(a,b); 由此可见,n个圆盘的移动问题可分为2次n-1个圆盘的移动问题, hanoi(n-1, c, b, a); 这又可以递归地用上述方法来做。由此可以设计出解Hanoi塔问题 的递归算法如下。 } }
算法与设计实验报告
实验一分治与递归(4学时)一、实验目的与要求1、熟悉C/C++语言的集成开发环境;2、通过本实验加深对递归过程的理解二、实验内容掌握递归算法的概念和基本思想,分析并掌握“整数划分”问题的递归算法。
三、实验题任意输入一个整数,输出结果能够用递归方法实现整数的划分。
四、程序代码五、实验结果首先按照提示输入数字:按回车键,得到此数划分的个数:此时您可以接着计算另一个数的划分个数:若要退出,请输入一个小于等于零的数:六、结果分析及程序功能经过和其它同学的实验数据对比,初步认定此程序基本正确,然而不足之处是只能得到划分的个数,而不能列出每个划分的详细情况。
一、实验目的与要求1、掌握棋盘覆盖问题的算法;2、初步掌握分治算法二、实验题盘覆盖问题:在一个2k×2k个方格组成的棋盘中,恰有一个方格与其它方格不同,称该方格为一特殊方格,且称该棋盘为一特殊棋盘。
在棋盘覆盖问题中,要用图示的4种不同形态的L型骨牌覆盖给定的特殊棋盘上除特殊方格以外的所有方格,且任何2个L型骨牌不得重叠覆盖。
三、程序代码四、实验结果按照提示输入特殊方格的行号和列号(起始行列号为0):按回车键,得到一个矩阵,数字相同区域为一个L型骨牌覆盖:五、结果分析及程序功能得到的16*16棋盘覆盖结果正确,此程序的不足之处:只能设定特殊方格的行列号,而不能设定棋盘的大小。
实验二动态规划算法(4学时)一、实验目的与要求1、熟悉最长公共子序列问题的算法;2、初步掌握动态规划算法;二、实验题若给定序列X={x1,x2,…,xm},则另一序列Z={z1,z2,…,zk},是X的子序列是指存在一个严格递增下标序列{i1,i2,…,ik}使得对于所有j=1,2,…,k有:zj=xij。
例如,序列Z={B,C,D,B}是序列X={A,B,C,B,D,A,B}的子序列,相应的递增下标序列为{2,3,5,7}。
给定2个序列X和Y,当另一序列Z既是X的子序列又是Y的子序列时,称Z是序列X和Y的公共子序列。
计算机算法的设计与分析方法
计算机算法的设计与分析方法计算机算法是解决问题的步骤和顺序的有序集合,是计算机科学和信息技术中的重要组成部分。
良好的算法设计与分析方法是确保计算机程序高效运行和问题解决的关键。
下面将介绍计算机算法的设计与分析方法,包括以下几个方面:1. 算法设计的基本原则:- 清晰和准确:算法应该清楚地描述每个步骤,确保没有歧义和模棱两可的地方。
- 可行和实用:算法应该可行和实用,要能在合理的时间和空间复杂度内完成任务。
- 高效和优化:算法应该尽可能地高效和优化,减少不必要的计算和资源消耗。
2. 算法设计的常用方法:- 贪心算法:每一步选择局部最优解,最终达到全局最优解。
- 分治法:将问题分解成子问题,递归地求解子问题,再组合子问题的解得到原问题的解。
- 动态规划:将问题分解成子问题,并且存储子问题的解,避免重复计算。
- 回溯法:通过不断回溯和试探,找到问题的解。
3. 算法分析的常用方法:- 时间复杂度:衡量算法运行时间的重要指标,通常用大O表示法表示。
- 空间复杂度:衡量算法所需的存储空间的重要指标,通常也用大O表示法表示。
- 正确性:分析算法的正确性,确保算法能够得出正确的结果。
- 稳定性:分析算法的稳定性,确保算法在不同输入下的行为一致。
4. 算法设计与分析的步骤:- 明确问题:首先要明确问题,并理解问题的背景和需求。
- 分析问题:分析问题的特点和要求,理清解决问题的思路和步骤。
- 设计算法:根据问题的特点和解决思路,选择合适的算法设计方法。
- 编写代码:根据算法的设计,编写相应的代码实现。
- 测试与调试:对编写的代码进行测试与调试,确保程序正常运行。
- 优化与改进:在代码运行过程中,不断优化和改进算法,使其更加高效。
计算机算法的设计与分析是计算机科学中的重要课题,每个学习计算机的人都应该掌握这些基本技能。
通过良好的算法设计与分析,可以提高计算机程序的运行效率和问题解决能力,为解决实际问题提供强有力的支持。
分治算法课程设计
分治算法课程设计一、教学目标本课程旨在让学生理解分治算法的基本原理,掌握分治算法的设计和分析方法,培养学生的问题解决能力和算法思维能力。
具体目标如下:1.了解分治算法的基本概念和特点;2.掌握分治算法的步骤和关键要素;3.熟悉常用的分治算法及其应用场景。
4.能够运用分治算法解决实际问题;5.能够分析分治算法的的时间复杂度和空间复杂度;6.能够比较分治算法和其他算法的优劣。
情感态度价值观目标:1.培养学生的团队合作意识和沟通能力;2.培养学生的问题解决能力和创新精神;3.培养学生对算法和计算机科学的兴趣和热情。
二、教学内容本课程的教学内容主要包括分治算法的基本概念、设计和分析方法。
具体安排如下:1.分治算法的基本概念:介绍分治算法的定义、特点和应用场景;2.分治算法的设计方法:讲解分治算法的步骤和关键要素,并通过实例进行分析;3.分治算法的分析方法:介绍分治算法的时间复杂度和空间复杂度的分析方法;4.常用的分治算法:介绍排序算法、查找算法、图像处理算法等常用的分治算法;5.分治算法的应用:通过实际问题案例,讲解分治算法在解决实际问题中的应用。
三、教学方法为了激发学生的学习兴趣和主动性,本课程将采用多种教学方法相结合的方式。
具体方法如下:1.讲授法:通过讲解分治算法的基本概念、设计和分析方法,让学生掌握分治算法的理论知识;2.案例分析法:通过分析实际问题案例,让学生了解分治算法在解决实际问题中的应用;3.实验法:通过编程实验,让学生亲手实现分治算法,培养学生的实际操作能力;4.讨论法:通过分组讨论和团队协作,让学生互相交流和学习,培养学生的团队合作意识和沟通能力。
四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将选择和准备以下教学资源:1.教材:选用权威、实用的分治算法教材,作为学生学习的主要参考资料;2.参考书:推荐一些相关的参考书籍,供学生深入学习和拓展知识;3.多媒体资料:制作精美的PPT和教学视频,辅助讲解和展示分治算法的相关概念和实例;4.实验设备:提供计算机实验室,让学生进行编程实验和实践操作。
分治算法详解及经典例题
分治算法详解及经典例题⼀、基本概念在计算机科学中,分治法是⼀种很重要的算法。
字⾯上的解释是“分⽽治之”,就是把⼀个复杂的问题分成两个或更多的相同或相似的⼦问题,再把⼦问题分成更⼩的⼦问题……直到最后⼦问题可以简单的直接求解,原问题的解即⼦问题的解的合并。
这个技巧是很多⾼效算法的基础,如排序算法(快速排序,归并排序),傅⽴叶变换(快速傅⽴叶变换)……任何⼀个可以⽤计算机求解的问题所需的计算时间都与其规模有关。
问题的规模越⼩,越容易直接求解,解题所需的计算时间也越少。
例如,对于n个元素的排序问题,当n=1时,不需任何计算。
n=2时,只要作⼀次⽐较即可排好序。
n=3时只要作3次⽐较即可,…。
⽽当n较⼤时,问题就不那么容易处理了。
要想直接解决⼀个规模较⼤的问题,有时是相当困难的。
⼆、基本思想及策略分治法的设计思想是:将⼀个难以直接解决的⼤问题,分割成⼀些规模较⼩的相同问题,以便各个击破,分⽽治之。
分治策略是:对于⼀个规模为n的问题,若该问题可以容易地解决(⽐如说规模n较⼩)则直接解决,否则将其分解为k个规模较⼩的⼦问题,这些⼦问题互相独⽴且与原问题形式相同,递归地解这些⼦问题,然后将各⼦问题的解合并得到原问题的解。
这种算法设计策略叫做分治法。
如果原问题可分割成k个⼦问题,1<k≤n,且这些⼦问题都可解并可利⽤这些⼦问题的解求出原问题的解,那么这种分治法就是可⾏的。
由分治法产⽣的⼦问题往往是原问题的较⼩模式,这就为使⽤递归技术提供了⽅便。
在这种情况下,反复应⽤分治⼿段,可以使⼦问题与原问题类型⼀致⽽其规模却不断缩⼩,最终使⼦问题缩⼩到很容易直接求出其解。
这⾃然导致递归过程的产⽣。
分治与递归像⼀对孪⽣兄弟,经常同时应⽤在算法设计之中,并由此产⽣许多⾼效算法。
三、分治法适⽤的情况分治法所能解决的问题⼀般具有以下⼏个特征:1) 该问题的规模缩⼩到⼀定的程度就可以容易地解决2) 该问题可以分解为若⼲个规模较⼩的相同问题,即该问题具有最优⼦结构性质。
算法设计策略
算法设计策略在计算机科学领域,算法是一种用于解决问题的有序步骤的描述。
算法设计策略是指在设计算法时所使用的一些基本思想和方法。
以下将介绍几种常见的算法设计策略,包括贪心算法、动态规划算法、分治算法和回溯算法。
贪心算法贪心算法是一种基于贪心策略设计的算法。
贪心策略是指在问题解决过程中,每步都选择当前状态下最优的解决方案,而不考虑全局最优解。
贪心算法通常用于求解最优化问题,比如背包问题、最小生成树等。
动态规划算法动态规划算法是一种解决多阶段决策问题的算法。
多阶段决策问题是指问题的求解过程可以划分为多个阶段,每个阶段都需要做出决策。
动态规划算法通过将原问题分解为多个子问题,将子问题的解合并成原问题的解。
动态规划算法通常用于求解最优化问题,比如最长公共子序列、最短路径等。
分治算法分治算法是一种通过将原问题分解为多个子问题并递归地求解子问题来解决原问题的算法。
分治算法通常用于求解大规模的问题,比如排序、查找等。
分治算法的基本步骤包括分解、解决和合并。
分解过程将原问题分解为多个子问题,解决过程递归地求解子问题,合并过程将子问题的解合并成原问题的解。
回溯算法回溯算法是一种通过枚举所有可能的解决方案来解决问题的算法。
回溯算法通常用于求解组合问题、排列问题等。
回溯算法的基本思想是在搜索过程中,对于每个可能的解决方案,都进行尝试并判断是否符合要求。
如果符合要求,则进入下一步搜索,否则回溯到上一步继续搜索。
总结算法设计策略是解决问题的重要方法之一,在实际问题中应用广泛。
贪心算法、动态规划算法、分治算法和回溯算法是其中常见的几种设计策略。
在应用这些算法时,需要根据问题的特点选择适当的算法设计策略,以求得最优解决方案。
算法设计的基本方法
算法设计的基本方法
算法设计的基本方法包括以下几个方面:
1. 分治法(Divide and Conquer):将一个大规模的问题分解成若干个规模较小的子问题,分别解决这些子问题,然后将子问题的解合并,得到原问题的解。
2. 动态规划法(Dynamic Programming):将原问题分解成相互重叠的子问题,通过保存子问题的解,避免重复计算,从而逐步求解原问题。
3. 贪心法(Greedy Method):每一步都选择当前状态下最优的解,没有考虑全局的最优解,但是在某些情况下能够得到全局的最优解。
4. 回溯法(Backtracking):通过尝试所有可能的解,以深度优先搜索的方式在问题空间中搜索解。
5. 枚举法(Enumeration):逐个枚举问题的所有可能解,从中选出满足条件的最优解。
6. 分支界定法(Branch and Bound):通过递归地划分问题的解空间,并估计每个子问题的下界,剪枝掉一些不可能产生最优解的子问题。
算法设计与分析实验报告
本科实验报告课程名称:算法设计与分析实验项目:递归与分治算法实验地点:计算机系实验楼110专业班级:物联网1601 学号:2016002105 学生姓名:俞梦真指导教师:郝晓丽2018年05月04 日实验一递归与分治算法1.1 实验目的与要求1.进一步熟悉C/C++语言的集成开发环境;2.通过本实验加深对递归与分治策略的理解和运用。
1.2 实验课时2学时1.3 实验原理分治(Divide-and-Conquer)的思想:一个规模为n的复杂问题的求解,可以划分成若干个规模小于n的子问题,再将子问题的解合并成原问题的解。
需要注意的是,分治法使用递归的思想。
划分后的每一个子问题与原问题的性质相同,可用相同的求解方法。
最后,当子问题规模足够小时,可以直接求解,然后逆求原问题的解。
1.4 实验题目1.上机题目:格雷码构造问题Gray码是一个长度为2n的序列。
序列无相同元素,每个元素都是长度为n的串,相邻元素恰好只有一位不同。
试设计一个算法对任意n构造相应的Gray码(分治、减治、变治皆可)。
对于给定的正整数n,格雷码为满足如下条件的一个编码序列。
(1)序列由2n个编码组成,每个编码都是长度为n的二进制位串。
(2)序列中无相同的编码。
(3)序列中位置相邻的两个编码恰有一位不同。
2.设计思想:根据格雷码的性质,找到他的规律,可发现,1位是0 1。
两位是00 01 11 10。
三位是000 001 011010 110 111 101 100。
n位是前n-1位的2倍个。
N-1个位前面加0,N-2为倒转再前面再加1。
3.代码设计:}}}int main(){int n;while(cin>>n){get_grad(n);for(int i=0;i<My_grad.size();i++)cout<<My_grad[i]<<endl;My_grad.clear();}return 0;}运行结果:1.5 思考题(1)递归的关键问题在哪里?答:1.递归式,就是如何将原问题划分成子问题。
《算法设计与分析》课程实验报告 (分治法(三))
《算法设计与分析》课程实验报告实验序号:04实验项目名称:实验4 分治法(三)一、实验题目1.邮局选址问题问题描述:在一个按照东西和南北方向划分成规整街区的城市里,n个居民点散乱地分布在不同的街区中。
用x 坐标表示东西向,用y坐标表示南北向。
各居民点的位置可以由坐标(x,y)表示。
街区中任意2 点(x1,y1)和(x2,y2)之间的距离可以用数值∣x1−x2∣+∣y1−y2∣度量。
居民们希望在城市中选择建立邮局的最佳位置,使n个居民点到邮局的距离总和最小。
编程任务:给定n 个居民点的位置,编程计算邮局的最佳位置。
2.最大子数组问题问题描述:对给定数组A,寻找A的和最大的非空连续子数组。
3.寻找近似中值问题描述:设A是n个数的序列,如果A中的元素x满足以下条件:小于x的数的个数≥n/4,且大于x的数的个数≥n/4 ,则称x为A的近似中值。
设计算法求出A的一个近似中值。
如果A中不存在近似中值,输出false,否则输出找到的一个近似中值4.循环赛日程表问题描述:设有n=2^k个运动员要进行网球循环赛。
现要设计一个满足以下要求的比赛日程表:每个选手必须与其他n-1个选手各赛一次,每个选手一天只能赛一次,循环赛一共进行n-1天。
二、实验目的(1)进一步理解分治法解决问题的思想及步骤(2)体会分治法解决问题时递归及迭代两种不同程序实现的应用情况之差异(3)熟练掌握分治法的自底向上填表实现(4)将分治法灵活于具体实际问题的解决过程中,重点体会大问题如何分解为子问题及每一个大问题涉及哪些子问题及子问题的表示。
三、实验要求(1)写清算法的设计思想。
(2)用递归或者迭代方法实现你的算法,并分析两种实现的优缺点。
(3)根据你的数据结构设计测试数据,并记录实验结果。
(4)请给出你所设计算法的时间复杂度的分析,如果是递归算法,请写清楚算法执行时间的递推式。
四、实验过程(算法设计思想、源码)1.邮局选址问题(1)算法设计思想根据题目要求,街区中任意2 点(x1,y1)和(x2,y2)之间的距离可以用数值∣x1−x2∣+∣y1−y2∣度量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
安徽文达信息工程学院学生实验报告(计算机语言编程类适用)
一、【实验目的】
1.熟悉分治算法思想。
2.验证具体问题算法的设计及程序实现。
二、【实验内容】
1、有N枚硬币,其中一枚是假币,假币和真币重量不同,可以用一个没有刻度的天平测,求出假币是哪一枚,现要求采用分治法解决,请写出算法设计思路。
(不需要编程)
答:(1)N为偶数时,将N枚硬币分成N/2,N/2的两份将第一份分成N/4,N/4的两份,分别置于天平两端,如果天平倾斜,则假币在第一份N/2中,反之水平,则假币在第二份N/2中;
(2)N为奇数时,将N枚硬币分成(N+1)/2,(N-1)/2的两份,将第一份分成(N+1)/4,(N+1)/4的两份,分别置于天平两端,如果天平倾斜,则假币在第一份(N+1)/2中,反之水平,则假币在第二份(N-1)/2中,
(3)将含假币的的币数赋值给N,N为偶数执行步骤(1),N为奇数执行步骤(2),如此执行直至找出含假币的2或3枚硬币,如果是2枚硬币则找1枚硬币构成3枚,3枚则直接两两置于天平两端,找到使天平水平的两枚硬币,则假币是剩下的硬币。
2、格雷码问题:
对于给定的正整数n,格雷码为满足如下条件的一个编码序列:
(1) 序列由2n个编码组成,每个编码都是长度为n的二进制位串。
(2) 序列中无相同的编码。
(3) 序列中位置相邻的两个编码恰有一位不同。
例如:n=1时的格雷码为:{0, 1}。
n=2时的格雷码为:{00, 01, 11, 10}。
n=3时的格雷码为:{000, 001, 011, 010,110,111,101,100}。
gray码问题求解思想:
将一个规模n位gray码序列表示为G(n), G(n)以相反顺序排列的序列表示为G’(n)。
则gray 码的构造规则即子问题的划分规则为:G(n+1)= 0G(n) 1G’(n) 或G(n+1)= G(n) 0G’(n)1。
请尝试编写程序,完成格雷码问题的处理。
三、【实验步骤】(可附页)
体会:教师评语:。