【市级联考】山东省枣庄市滕州市2017--2018学年八年级(下)期中数学试题

合集下载

枣庄市峄城区2017-2018学年八年级下期中考试数学试题及答案

枣庄市峄城区2017-2018学年八年级下期中考试数学试题及答案

2017-2018学年度第二学期期中质量检测八年级数学试题说明:1.考试时间为120分钟,满分120分.另设卷面分5分.2.选择题答案用2B铅笔涂在答题卡上,如不用答题卡,请将答案填在答题纸上的口琴格内.3.考试时,不允许使用科学计算器.4.不得用铅笔或红色笔在答题纸上答题一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个选项是正确的.1.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,将弧①点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是A、AB=ADB、AC平分∠BADC、S△ABC= BC AHD、BH垂直平分线段AD2.如图,已知△ABC中,AB=3,AC=5,BC=7,在△ABC所在平面内一条直线,将△ABC分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画A、2条B、3条C、4条D、5条3.已知,如图,△ABC中,AB=AC,AD是角平分线,BE=CF,则下列说法正确的有几个(1)AD平分∠EDF;(2)△EBD≌△FCD;(3)BD=CD;(4)AD⊥BCA、1个B、2个C、3个D、4个4.在正方形网格中,∠AOB的位置如图所示,到∠AOB两边距离相等的点应是A、M点B、N点C、P点D、Q点5.不等式-2x>的解集是A、x<B、x<-1C、x>D、x>-16.如果不等式组恰有3个整数解,则a的取值范围是A.a≤-1B.a<-1C.-2≤a<-1D.-2<a≤-17.把不等式组的解集表示在数轴上如下图,正确的是8.下列选项中能由左图平移得到的是9.如图,在正方形网格中,将△ABC绕点A旋转后得到△ADE,则下列旋转方式中,符合题意的是A、逆时针旋转90°B、顺时针旋转90°C、逆时针旋转45°D、顺时针旋转45°10.如图,将△ABC绕着点C顺时针旋转50°后得到△A'B'C'.若∠A=40°,∠BCA'的度数是A、110°B、80°C、40°D、30°11.下列银行标志中,既不是中心对称图形也不是轴对称图形的是12.如图,在△ABC中,BC=5,∠A=80°,∠B=70°,把△ABC沿RS的方向平移到△DEF的位置,若CF=4,则下列结论中错误的是A、BE=4B、∠F=30°C. AB//DE D、DF=5二、填空题:本题共6小题,每小题填对得4分,共24分.只要求在答题纸上填写最后结果.13.如图所示,在△ABC中,DM,EN分别垂直平分AB和AC,交BC于点D,E,若∠DAE=50°°,则∠BAC=________,若△ADE的周长为19cm,则BC=_____cm.14.随着人们生活水平的不断提高,汽车逐步进入到千家万户,小红的爸爸想在本镇的三条相互交叉的公路(如图所示),建一个加油站,要求它到三条公路的距离相等,这样可供选择的地址有_______处.15.绕等边三角形中心旋转_______度的整倍数之后能和自己重合.16.商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗,为了避免亏本,售价至少应定为_______元/千克.17.如图,已知一次函数y=kx+b的图象与x轴交于点(3,0),与y轴交于点(0,2),不等式kx+b≥2解集是_______.18.一个图形无论经过平移变换还是旋转变换,下列结论一定正确的是______.(把所有你认为正确的序号都写上)①对应线段平行;②对应线段相等;③对应角相等;④图形的形状和大小都不变.三、解答题:本题共7小题,满分60分.解答应写出必要的文字说明、证明过程或演算步骤.19.(本小题满分8分)解不等式≥3+,并把解集在数轴上表示出来.20.(本小题满分8分)解不等式组:,并将解集表示在数轴上.21.(本小题满分8分)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C l;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2、C2的坐标.22.(本小题满分8分)如图,在平面直角坐标系中,△ABC各顶点的坐标分别为A(-2,-2),B(-4,-1),C(-4,-4).(1)作出△ABC关于原点O成中心对称的△A1B1C1;(2)作出点A关于x轴的对称点A'.若把点A'向右平移a个单位长度后落在△A1B1C1的内部(不包括顶点和边界),求a的取值范围.23.(本小题满分8分)如图,将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE.(1)如果AC=6cm,BC=8cm,试求△ACD的周长;(2)如果∠CAD:∠BAD=1:2,求∠B的度数.24.(本小题满分10分)某公司为了扩大经营,决定购进6台机器用于生产某种活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示,经过预算,本次购买机器所耗资金不能超过34万元.(1)按该公司要求可以有几种购买方案?(2)若该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择哪种购买方案?25.(本小题满分10分)如图,在等边△ABC中,点D是AB边上一点,连接CD,将线段CD绕点C按顺时针方向旋转60°后得到CE,连接AE.求证:AE∥BC.2017—2018学年度第二学期期中质量检测八年级数学参考答案与评分标准一、选择题:本大题共12小题,每小题3分,共36分二、填空题:本题共6小题,每小题填对得4分,共24分13.115°,19 14.4 15.120 16.10 17.x≤0 18.②③④三、解答题:本题共7小题,共60分19.解:去分母,得2x≥30+5(x-2)………………1分去括号,得2x≥30+5x-10………………2分移项,得2x-5x≥30-10………………3分合并同类项,得-3x≥20……………4分系数化为1,得x≤-………5分将解集表示在数轴上,如右图:…………………8分20.解:①②解不等式①,得x≤8,…………………2分解不等式②,得x>2,………………4分把解集在数轴上表示出来为:……………………6分故不等式组的解集为:2<x≤8…………………8分21.解;(1)如图,△A1B1C1即为所求;(2分)(2)如图,△AB2C2即为所求,(2分)点B2(4,-2),C2(1,-3).(4分)22.(1)如图:(3分)(2)解:A’如图所示.(2分)a的取值范围是4<a<6.(3分)23.解:(1)由折叠的性质可知,DE垂直平分线段AB………………1分根据垂直平分线的性质可得DA=DB………………2分所以DA+DC+AC=DB+DC+AC=BC+AC=14(cm)………………4分(2)设∠CAD=x,则∠BAD=2x.因为DA=DB,所以∠B=∠BAD=2x…………………5分在Rt△ABC中,∠B+∠BAC=90°,即2x+2x+x=90°………………6分解得x=18°…………………7分所以∠B=2x=36°…………………8分24.解:(1)设购买甲种机器x台(x≥0),则购买乙种机器(6-x)台…………3分依题意,得7x+5×(6-x)≤34…………………3分解这个不等式,得x≤2,即x可取0,1,2三个值.∴该公司按要求可以有以下三种购买方案:…………………5分方案一:不购买甲种机器,购买乙种机器6台.方案二:购买甲种机器l1台,购买乙种机器5台.方案三:购买甲种机器2台,购买乙种机器4台………………6分(2)根据题意,100x+60(6-x)≥380解之得x>…………………8分由(1)得x≤2,即≤x≤2.∴x可取1,2俩值.即有以下两种购买方案:方案一购买甲种机器1台,购买乙种机器5台,所耗资金为1×7+5×5=32万元;方案二购买甲种机器2台,购买乙种机器4台,所耗资金为2×7+4×5=34万元. ∴为了节约资金应选择方案一.故应选择方案一……………………10分25.解:∵△ABC是等边三角形,∴AC=BC,∠B=∠ACB=60°,∵线段CD绕点C顺时针旋转60°得到CE,………………3分∴CD=CE,∠DCE=60°,∴∠DCE=∠ACB,……………4分即∠BCD+∠DCA=∠DCA+∠ACE,∴∠BCD=∠ACE,在△BCD与△ACE中,∠∠∴△BCD≌△ACE,……………………8分∴∠EAC=∠B=60°,∴∠EAC=∠ACB,∴AE∥BC…………………10分。

2017-2018学年山东省枣庄市峄城区八年级(下)期中数学试卷(解析版)

2017-2018学年山东省枣庄市峄城区八年级(下)期中数学试卷(解析版)

2017-2018学年山东省枣庄市峄城区八年级(下)期中数学试卷一、选择题(本大题共12小题,共36.0分)1.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()A. BH垂直平分线段ADB. AC平分C. △D.2.如图,已知△ABC中,AB=3,AC=5,BC=7,在△ABC所在平面内一条直线,将△ABC分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画()A. 2条B. 3条C. 4条D. 5条3.已知,如图,△ABC中,AB=AC,AD是角平分线,BE=CF,则下列说法正确的有几个()(1)AD平分∠EDF;(2)△EBD≌△FCD;(3)BD=CD;(4)AD⊥BC.A. 1个B. 2个C. 3个D. 4个4.在正方形网格中,∠AOB的位置如图所示,到∠AOB两边距离相等的点应是()A. M点B. N点C. P点D. Q点5.不等式-2x>的解集是()A. B. C. D.6.如果不等式组恰有3个整数解,则a的取值范围是()A. B. C. D.7.把不等式组的解集表示在数轴上如下图,正确的是()A.B.C. D.8. 下列选项中能由左图平移得到的是( )A. B. C. D.9. 如图,在正方形网格中,将△ABC 绕点A 旋转后得到△ADE ,则下列旋转方式中,符合题意的是( )A. 顺时针旋转B. 逆时针旋转C. 顺时针旋转D. 逆时针旋转10. 如图,将△ABC 绕着点C 顺时针旋转50°后得到△A ′B ′C ′,若∠A =40°,∠B =110°,∠BCA ′的度数是( )A.B.C.D.11. 下列银行标志中,既不是中心对称图形也不是轴对称图形的是( )A. B. C. D.12. 如图,在△ABC 中,BC =5,∠A =80°,∠B =70°,把△ABC沿RS 的方向平移到△DEF 的位置,若CF =4,则下列结论中错误的是( )A. B. C.D.二、填空题(本大题共6小题,共24.0分)13. 如图所示,在△ABC 中,DM 、EN 分别垂直平分AB 和AC ,交BC 于D 、E ,若∠DAE =50°,则∠BAC =______度,若△ADE 的周长为19cm ,则BC =______cm .14.随着人们生活水平的不断提高,汽车逐步进入到千家万户,小红的爸爸想在本镇的三条相互交叉的公路(如图所示),建一个加油站,要求它到三条公路的距离相等,这样可供选择的地址有______处.15.正三角形中心旋转______度的整倍数之后能和自己重合.16.商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗.为了避免亏本,售价至少应定为______元/千克.17.如图,已知一次函数y=kx+b的图象与x轴交于点(3,0),与y轴交于点(0,2),不等式kx+b≥2解集是______.18.一个图形无论经过平移变换还是旋转变换,下列结论一定正确的是______(把所有你认为正确的序号都写上)①对应线段平行;②对应线段相等;③对应角相等;④图形的形状和大小都不变.三、解答题(本大题共7小题,共60.0分)19.解不等式≥3+,并把解集在数轴上表示出来.20.解不等式组:>,并将解集表示在数轴上.21.在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2、C2的坐标.22.如图,在平面直角坐标系中,△ABC各顶点的坐标分别为A(-2,-2),B(-4,-1),C(-4,-4).(1)作出△ABC关于原点O成中心对称的△A1B1C1;(2)作出点A关于x轴的对称点A′,若把点A′向右平移a个单位长度后落在△A1B1C1的内部(不包括顶点和边界),求a的取值范围.23.如图,将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE.(1)如果AC=6cm,BC=8cm,试求△ACD的周长;(2)如果∠CAD:∠BAD=1:2,求∠B的度数.24.某公司为了扩大经营,决定购进6台机器用于生产某种活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,本次购买机器所耗资金不能超过34万元.()按该公司要求可以有几种购买方案?(2)若该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择哪种购买方案?25.如图,在等边△ABC中,点D是AB边上一点,连接CD,将线段CD绕点C按顺时针方向旋转60°后得到CE,连接AE.求证:AE∥BC.答案和解析1.【答案】A【解析】解:A、正确.如图连接CD、BD,∵CA=CD,BA=BD,∴点C、点B在线段AD的垂直平分线上,∴直线BC是线段AD的垂直平分线,故A正确.B、错误.CA不一定平分∠BDA.C、错误.应该是S△ABC=•BC•AH.D、错误.根据条件AB不一定等于AD.故选:A.根据已知条件可知直线BC是线段AD的垂直平分线,由此一一判定即可.本题考查作图-基本作图、线段的垂直平分线的性质等知识,解题的关键是掌握证明线段垂直平分线的证明方法,属于基础题,中考常考题型.2.【答案】C【解析】解:如图所示,当AB=AF=3,BA=BD=3,AB=AE=3,BG=AG时,都能得到符合题意的等腰三角形.故选:C.根据等腰三角形的性质分别利用AB为底以及AB为腰得出符合题意的图形即可.此题主要考查了等腰三角形的判定等知识,正确利用图形分类讨论得出等腰三角形是解题关键.3.【答案】D【解析】解:∵△ABC是等腰三角形,AD是角平分线,∴BD=CD,且AD⊥BC,又BE=CF,∴△EBD≌△FCD,且△ADE≌△ADF,∴∠ADE=∠ADF,即AD平分∠EDF.所以四个都正确.故选:D.在等腰三角形中,顶角的平分线即底边上的中线,垂线.利用三线合一的性质,进而可求解,得出结论.本题考查了全等三角形的判定和性质;熟练掌握三角形的性质,理解等腰三角形中中线,平分线,垂线等线段之间的区别与联系,会求一些简单的全等三角形.做题时,要结合已知条件与全等的判定方法对选项逐一验证.4.【答案】A【解析】解:从图上可以看出点M在∠AOB的平分线上,其它三点不在∠AOB的平分线上.所以点M到∠AOB两边的距离相等.故选A.根据角平分线的性质“角的平分线上的点到角的两边的距离相等”,注意观察点M、N、P、Q中的哪一点在∠AOB的平分线上.本题主要考查平分线的性质,根据正方形网格看出∠AOB平分线上的点是解答问题的关键.5.【答案】A【解析】解:两边都除以-2可得:x<-,故选:A.根据不等式的基本性质两边都除以-2可得.本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.6.【答案】C【解析】解:如图,由图象可知:不等式组恰有3个整数解,需要满足条件:-2≤a<-1.故选C.首先根据不等式组得出不等式组的解集为a<x<2,再由恰好有3个整数解可得a的取值范围.此题主要考查了解不等式组,关键是正确理解解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.7.【答案】B【解析】解:∵解不等式①得:x≤2,解不等式②得:x>-1,∴不等式组的解集为-1<x≤2,在数轴上表示为:,故选:B.先求出不等式的解集,再求出不等式组的解集,最后求出答案即可.本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能求出不等式组的解集是解此题的关键.8.【答案】C【解析】解:能由左图平移得到的是:选项C.故选:C.根据平移的性质,图形只是位置变化,其形状与方向不发生变化进而得出即可.此题主要考查了生活中的平移现象,正确根据平移的性质得出是解题关键.9.【答案】B【解析】解:根据图形可知:将△ABC绕点A逆时针旋转90°可得到△ADE.故选:B.此题根据给出的图形先确定出旋转中心,再确定出旋转的方向和度数即可求出答案.本题主要考查旋转的性质,在解题时,一定要明确三个要素:旋转中心、旋转方向、旋转角度.10.【答案】B【解析】解:∵∠A=40°,∠B=110°,∴∠ACB=30°,∵△ABC绕着点C顺时针旋转50°后得到△A′B′C′,∴∠ACA′=50°,∴∠BCA′=∠BCA+∠ACA′=30°+50°=80°.故选:B.先利用三角形内角和计算出∠ACB=30°,再利用旋转的性质得到∠ACA′=50°,然后计算∠BCA+∠ACA′即可.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.11.【答案】B【解析】解:∵A中的图形是轴对称图形,不是中心对称图形,∴选项A不正确;∵B中的图形既不是中心对称图形也不是轴对称图形,∴选项B正确;∵C中的图形既是轴对称图形,也是中心对称图形,∴选项C不正确;∵D中的图形既是轴对称图形,也是中心对称图形,∴选项D不正确.故选:B.根据中心对称图形与轴对称图形的区别,逐一判断即可.此题主要考查了中心对称图形与轴对称图形的区别,要熟练掌握,解答此题的关键是要明确:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合.12.【答案】D【解析】解:∵把△ABC沿RS的方向平移到△DEF的位置,BC=5,∠A=80°,∠B=70°,∴CF=BE=4,∠F=∠ACB=180°-∠A-∠B=180°-80°-70°=30°,AB∥DE,∴A、B、C正确,D错误,故选:D.根据平移的性质,平移只改变图形的位置,不改变图形的大小与形状,平移后对应点的连线互相平行,对各选项分析判断后利用排除法.本题考查了平移的性质,熟练掌握平移性质是解题的关键.13.【答案】115;19【解析】解:①∵DM、EN分别垂直平分AB和AC,∴AD=BD,AE=EC,∴∠B=∠BAD,∠C=∠EAC(等边对等角),∵∠BAC=∠DAE+∠BAD+∠CAE,∴∠BAC=∠DAE+∠B+∠C;又∵∠BAC+∠B+∠C=180°,∠DAE=50°,∴∠BAC=115°;②∵△ADE的周长为19cm,∴AD+AE+DE=19cm,由①知,AD=BD,AE=EC,∴BD+DE+EC=19,即BC=19cm.故答案为:115,19.根据中垂线的性质可知∠B=∠BAD、∠C=∠CAE,所以∠BAC+∠B+∠C=∠DAE+2(∠B+∠C)=180°,所以∠BAC=180°-(∠B+∠C).此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.14.【答案】4【解析】解:如图所示,加油站站的地址有四处,故答案为:4.根据角平分线上的点到角的两边的距离相等作出图形即可得解.本题考查了角平分线的性质,掌握角平分线上的点到角的两边的距离相等的性质是解题的关键,作出图形更形象直观.15.【答案】120【解析】解:∵360°÷3=120°,∴该图形绕中心至少旋转120度后能和原来的图案互相重合.故答案为:120.根据旋转角及旋转对称图形的定义结合图形特点作答.本题考查了旋转的性质、等边三角形的性质,对应点与旋转中心所连线段的夹角叫做旋转角.16.【答案】10【解析】解:设商家把售价定为每千克x元时恰好不亏本,根据题意得:x(1-5%)=,解得,x=10,故为避免亏本,商家把售价应该至少定为每千克10元.故答案为:10.设商家把售价应该定为每千克x元,因为销售中有5%的水果正常损耗,故每千克水果损耗后的价格为x(1-5%),根据题意列出一元一次方程即可.本题考查一元一次方程的应用,将现实生活中的事件与数学思想联系起来,读懂题意,根据“去掉损耗后的售价≥进价”列出方程即可求解.17.【答案】x≤0【解析】解:由一次函数的图象可知,此函数是减函数,即y随x的增大而减小,∵一次函数y=kx+b的图象与y轴交于点(0,2),∴当x≤0时,有kx+b≥2.故答案为x≤0由一次函数y=kx+b的图象过点(0,2),且y随x的增大而减小,从而得出不等式kx+b≥2的解集.本题考查的是一次函数与一元一次不等式,能利用数形结合求出不等式的解集是解答此题的关键.18.【答案】②③④【解析】解:∵平移后对应线段平行;对应线段相等;对应角相等;图形的形状和大小没有发生变化;旋转后对应线段不平行;对应线段相等;对应角相等;图形的形状和大小没有发生变化;∴结论一定正确的是②③④;故答案为:②③④.根据平移和旋转的性质及其区别,平移变换对应线段平行,但旋转后对应线段不平行,即可得出答案.此题考查了图形变换的性质及其区别,关键是根据平移和旋转的性质及其区别解答.19.【答案】解:去分母,得2x≥30+5(x-2)去括号,得2x≥30+5x-10移项,得2x-5x≥30-10合并同类项,得-3x≥20系数化为1,得x≤-将解集表示在数轴上,如下图:【解析】去分母,去括号,移项,系数化为1,得出x的取值,然后在数轴上表示出来.本题主要考查对解一元一次不等式,在数轴上表示不等式的解集,不等式的性质等知识点的理解和掌握,能根据不等式的性质正确解不等式是解此题的关键.20.【答案】解:,①>.②解不等式①,得x≤8,解不等式②,得x>2;把解集在数轴上表示出来为:故不等式组的解集为:2<x≤8.【解析】先求出两个不等式的解集,再求其公共解.本题考查了一元一次不等式组的解法,在数轴上表示不等式组的解集,需要把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.21.【答案】解:(1)如图,△A1B1C1即为所求;(2)如图,△AB2C2即为所求,点B2(4,-2),C2(1,-3).【解析】(1)利用点平移的规律写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)利用网格特点和旋转的性质画出点B、C的对应点B2、C2,从而得到△AB2C2,再写出点B2、C2的坐标.本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.22.【答案】解:(1)如图所示,△A1B1C1即为所求;(2)∵点A′坐标为(-2,2),∴若要使向右平移后的A′落在△A1B1C1的内部,最少平移4个单位,最多平移6个单位,即4<a<6.【解析】本题主要考查作图-中心对称和轴对称、平移,熟练掌握中心对称和轴对称、平移变换的性质是解题的关键.(1)分别作出点A、B、C关于原点O或中心对称的对应点,顺次连接即可得;(2)由点A′坐标为(-2,2)可知要使向右平移后的A′落在△A1B1C1的内部,最少平移4个单位,最多平移6个单位,据此可得.23.【答案】解:(1)由折叠的性质可知,DE垂直平分线段AB,根据垂直平分线的性质可得:DA=DB,所以,DA+DC+AC=DB+DC+AC=BC+AC=14cm;(2)设∠CAD=x,则∠BAD=2x,∵DA=DB,∴∠B=∠BAD=2x,在Rt△ABC中,∠B+∠BAC=90°,即:2x+2x+x=90°,x=18°,∠B=2x=36°.【解析】(1)折叠时,对称轴为折痕DE,DE垂直平分线段AB,由垂直平分线的性质得DA=DB,再把△ACD的周长进行线段的转化即可;(2)设∠CAD=x,则∠BAD=2x,根据(1)DA=DB,可证∠B=∠BAD=2x,在Rt△ABC中,利用互余关系求x,再求∠B.本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.24.【答案】解:(1)设购买甲种机器x台(x≥0),则购买乙种机器(6-x)台.依题意,得7x+5×(6-x)≤34.解这个不等式,得x≤2,即x可取0,1,2三个值.∴该公司按要求可以有以下三种购买方案:方案一:不购买甲种机器,购买乙种机器6台.方案二:购买甲种机器1台,购买乙种机器5台.方案三:购买甲种机器2台,购买乙种机器4台.(2)根据题意,100x+60(6-x)≥380,解之,可得:x≥,由上题解得:x≤2,即≤x≤2,∴x可取1,2两个值,即有以下两种购买方案:方案一购买甲种机器1台,购买乙种机器5台,所耗资金为1×7+5×5=32万元;方案二购买甲种机器2台,购买乙种机器4台,所耗资金为2×7+4×5=34万元.∴为了节约资金应选择方案一.故应选择方案一.【解析】(1)设购买甲种机器x台(x≥0),则购买乙种机器(6-x)台,根据买机器所耗资金不能超过34万元,即购买甲种机器的钱数+购买乙种机器的钱数≤34万元.就可以得到关于x的不等式,就可以求出x的范围.(2)该公司购进的6台机器的日生产能力不能低于380个,就是已知不等关系:甲种机器生产的零件数+乙种机器生产的零件数≤380件.根据(1)中的三种方案,可以计算出每种方案的需要资金,从而选择出合适的方案.解决本题的关键是读懂题意,找到符合题意的不等关系式,正确确定各种情况,确定各种方案是解决本题的关键.25.【答案】解:∵△ABC是等边三角形,∴AC=BC,∠B=∠ACB=60°,∵线段CD绕点C顺时针旋转60°得到CE,∴CD=CE,∠DCE=60°,∴∠DCE=∠ACB,即∠BCD+∠DCA=∠DCA+∠ACE,∴∠BCD=∠ACE,在△BCD与△ACE中,,∴△BCD≌△ACE,∴∠EAC=∠B=60°,∴∠EAC=∠ACB,∴AE∥BC.【解析】利用等边三角形的性质得AC=BC,∠B=∠ACB=60°,再根据旋转的性质得CD=CE,∠DCE=60°,则∠DCE=∠ACB,所以∠BCD=∠ACE,接着证明△BCD≌△ACE得到∠EAC=∠B=60°,从而得到∠EAC=∠ACB,然后根据平行线的判定方法得到结论.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的性质和全等三角形的判定与性质.。

2018山东省枣庄市八年级

2018山东省枣庄市八年级

2018山东省枣庄市八年级(下)期中数学试卷一、选择题(共12小题,每小题3分,满分36分)1.要使二次根式有意义,字母x的取值必须满足()A.x≥0 B.C.D.2.下列运算错误的是()A. += B.•= C.÷= D.(﹣)2=23.下列四组线段中,可以构成直角三角形的是()A.1.5,2,2.5 B.4,5,6 C.2,3,4 D.1,,34.若等边△ABC的边长为2cm,那么△ABC的面积为()A.cm2B.2cm2C.3cm2D.4cm25.若x=﹣3,则等于()A.﹣1 B.1 C.3 D.﹣36.如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心.一只蚂蚁在盒子表面由A处向B处爬行,所走的最短路程是()A.40cm B.20cm C.20cm D.10cm7.如图,在Rt△ABC中,∠C=90°,D为AC上一点,且DA=DB=5,又△DAB的面积为10,那么DC的长是()A.4 B.3 C.5 D.4.58.若直角三角形两边分别是3和4,则第三边是()A.5 B.C.5或D.无法确定9.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=12,则HE等于()A.24 B.12 C.6 D.810.若,则x的值等于()A.4 B.±2 C.2 D.±411.若的整数部分为x,小数部分为y,则的值是()A.B.C.1 D.312.给出下列命题:①在直角三角形ABC中,已知两边长为3和4,则第三边长为5;②三角形的三边a、b、c满足a2+c2=b2,则∠C=90°;③△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④△ABC中,若a:b:c=1:2:,则这个三角形是直角三角形.其中,正确命题的个数为()A.1个B.2个C.3个D.4个二、填空题(共6小题,每小题4分,满分24分)13.如图,直线m∥n,△ABC为等腰三角形,∠BAC=90°,则∠1=度.14.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ范围是.15.如图,将△ABC绕点A顺时针旋转60°得到△AED,若线段AB=3,则BE=.16.直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n 的解集为.17.如图,在坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P的坐标为.18.如图所示的图案绕其旋转中心旋转后能够与自身重合,那么它的旋转角的度数可能是(填写一个你认为正确的答案).三、解答题(共7小题,满分60分)19.解不等式:≤﹣1,并把解集表示在数轴上.20.解不等式组:.21.如图,一块余料ABCD,AD∥BC,现进行如下操作:以点B为圆心,适当长为半径画弧,分别交BA,BC于点G,H;再分别以点G,H为圆心,大于GH的长为半径画弧,两弧在∠ABC内部相交于点O,画射线BO,交AD于点E.(1)求证:AB=AE;(2)若∠A=100°,求∠EBC的度数.22.如图,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点都在格点上,请按要求完全下列各题:(1)画出△ABC向左平移6个单位长度得到的图形△A1B1C1;(2)将△ABC绕点O按逆时针方向旋转180°得到△A2B2C2,请画出△A2B2C2.23.“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).(1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案.24.将两块全等的含30°角的三角尺如图(1)摆放在一起,它们的较短直角边长为3.(1)将△ECD沿直线l向左平移到图(2)的位置,使E点落在AB上,则CC′=;(2)将△ECD绕点C逆时针旋转到图(3)的位置,使点E落在AB上,则△ECD绕点C 旋转的度数=;(3)将△ECD沿直线AC翻折到图(4)的位置,ED′与AB相交于点F,求证:AF=FD′.25.如图,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分线分别交AB和AC于点D,E.(1)求证:AE=2CE;(2)连接CD,请判断△BCD的形状,并说明理由.山东省八年级(下)期中数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.要使二次根式有意义,字母x的取值必须满足()A.x≥0 B.C.D.【考点】72:二次根式有意义的条件.【分析】根据二次根式有意义的条件可得2x+3≥0,再解不等式即可.【解答】解:由题意得:2x+3≥0,解得:x≥﹣,故选:D.2.下列运算错误的是()A. += B.•= C.÷= D.(﹣)2=2【考点】78:二次根式的加减法;75:二次根式的乘除法.【分析】根据同类二次根式的合并,二次根式的乘除法则,分别进行各选项的判断即可.【解答】解:A、与不是同类二次根式,不能直接合并,故本选项正确;B、×=,计算正确,故本选项错误;C、÷=,计算正确,故本选项错误;D、(﹣)2=2,计算正确,故本选项错误;故选A.3.下列四组线段中,可以构成直角三角形的是()A.1.5,2,2.5 B.4,5,6 C.2,3,4 D.1,,3【考点】KS:勾股定理的逆定理.【分析】根据勾股定理的逆定理求出两小边的平方和和大边的平方,看看是否相等即可.【解答】解:A、1.52+22=2.52,即三角形是直角三角形,故本选项正确;B、42+52≠62,即三角形不是直角三角形,故本选项错误;C、22+32≠42,即三角形不是直角三角形,故本选项错误;D、12+()2≠32,即三角形不是直角三角形,故本选项错误;故选A.4.若等边△ABC的边长为2cm,那么△ABC的面积为()A.cm2B.2cm2C.3cm2D.4cm2【考点】KQ:勾股定理;KK:等边三角形的性质.【分析】注意三角形的面积的计算方法,首先要作出三角形的高,根据勾股定理就可求出高的长,三角形的面积就很容易求出.【解答】解:作出三角形的高,则高是=,所以三角形的面积是×2×=cm2;故选A.5.若x=﹣3,则等于()A.﹣1 B.1 C.3 D.﹣3【考点】7A:二次根式的化简求值.【分析】x=﹣3时,1+x<0,=﹣1﹣x,再去绝对值.【解答】解:当x=﹣3时,1+x<0,=|1﹣(﹣1﹣x)|=|2+x|=﹣2﹣x=1.故选B.6.如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心.一只蚂蚁在盒子表面由A处向B处爬行,所走的最短路程是()A.40cm B.20cm C.20cm D.10cm【考点】KV:平面展开﹣最短路径问题.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:根据两点之间线段最短,把正方体展开,可知由A处向B处爬行,所走的最短路程是20cm.故选C.7.如图,在Rt△ABC中,∠C=90°,D为AC上一点,且DA=DB=5,又△DAB的面积为10,那么DC的长是()A.4 B.3 C.5 D.4.5【考点】KQ:勾股定理;K3:三角形的面积.【分析】根据Rt△ABC中,∠C=90°,可证BC是△DAB的高,然后利用三角形面积公式求出BC的长,再利用勾股定理即可求出DC的长.【解答】解:∵在Rt△ABC中,∠C=90°,∴BC⊥AC,即BC是△DAB的高,∵△DAB的面积为10,DA=5,∴DA•BC=10,∴BC=4,∴CD===3.故选B.8.若直角三角形两边分别是3和4,则第三边是()A.5 B.C.5或D.无法确定【考点】KQ:勾股定理.【分析】题干中没有明确指出边长为4的边是直角边还是斜边,所以我们需要分类讨论,(1)边长为4的边为直角边;(2)边长为4的边为斜边.【解答】解:(1)边长为4的边为直角边,则第三边即为斜边,则第三边的长为:=5;(2)边长为4的边为斜边,则第三边即为直角边,则第三边的长为:=.故第三边的长为5或cm.故选C.9.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=12,则HE等于()A.24 B.12 C.6 D.8【考点】KX:三角形中位线定理;KP:直角三角形斜边上的中线.【分析】利用三角形中位线定理知DF=AC;然后在直角三角形AHC中根据“直角三角形斜边上的中线等于斜边的一半”即可将所求线段EH与已知线段DF联系起来了.【解答】解:∵D、F分别是AB、BC的中点,∴DF是△ABC的中位线,∴DF=AC(三角形中位线定理);又∵E是线段AC的中点,AH⊥BC,∴EH=AC,∴EH=DF=12,故选B.10.若,则x的值等于()A.4 B.±2 C.2 D.±4【考点】78:二次根式的加减法.【分析】方程左边化成最简二次根式,再解方程.【解答】解:原方程化为=10,合并,得=10=2,即2x=4,x=2.故选C.11.若的整数部分为x,小数部分为y,则的值是()A.B.C.1 D.3【考点】78:二次根式的加减法.【分析】因为的整数部分为1,小数部分为﹣1,所以x=1,y=﹣1,代入计算即可.【解答】解:∵的整数部分为1,小数部分为﹣1,∴x=1,y=﹣1,∴=﹣(﹣1)=1.故选:C.12.给出下列命题:①在直角三角形ABC中,已知两边长为3和4,则第三边长为5;②三角形的三边a、b、c满足a2+c2=b2,则∠C=90°;③△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④△ABC中,若a:b:c=1:2:,则这个三角形是直角三角形.其中,正确命题的个数为()A.1个 B.2个 C.3个 D.4个【考点】O1:命题与定理.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:①在直角三角形ABC中,已知两边长为3和4,则第三边长为5或,故本选项错误;②三角形的三边a、b、c满足a2+c2=b2,则∠B=90°,故本选项错误;③△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形,故本选项正确;④△ABC中,若a:b:c=1:2:,则这个三角形是直角三直角三角形,故本选项正确.其中,正确命题的个数为2个;故选B.二、填空题(共6小题,每小题4分,满分24分)13.如图,直线m∥n,△ABC为等腰三角形,∠BAC=90°,则∠1=45度.【考点】平行线的性质;等腰直角三角形.【分析】先根据等腰三角形性质和三角形的内角和定理求出∠ABC,根据平行线的性质得出∠1=∠ABC,即可得出答案.【解答】解:∵△ABC为等腰三角形,∠BAC=90°,∴∠ABC=∠ACB=45°,∵直线m∥n,∴∠1=∠ABC=45°,故答案为:45.【点评】本题考查了等腰三角形的性质,三角形内角和定理,平行线的性质的应用,解此题的关键是求出∠1=∠ABC和求出∠ABC的度数,注意:两直线平行,同位角相等.14.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ范围是PQ≥2.【考点】角平分线的性质;垂线段最短.【分析】由OP平分∠MON,PA⊥ON于点A,PA=2,根据角平分线的性质得到点P到OM 的距离等于2,再根据直线外一点与直线上所有点的连线段中垂线段最短即可得到PQ≥2.【解答】解:∵OP平分∠MON,PA⊥ON于点A,PA=2,∴点P到OM的距离等于2,而点Q是射线OM上的一个动点,∴PQ≥2.故答案为PQ≥2.【点评】本题考查了角平分线的性质:角平分线上的点到角的两边的距离相等.也考查了垂线段最短.15.如图,将△ABC绕点A顺时针旋转60°得到△AED,若线段AB=3,则BE=3.【考点】旋转的性质.【分析】根据旋转的性质得出∠BAE=60°,AB=AE,得出△BAE是等边三角形,进而得出BE=3即可.【解答】解:∵将△ABC绕点A顺时针旋转60°得到△AED,∴∠BAE=60°,AB=AE,∴△BAE是等边三角形,∴BE=3.故答案为:3.【点评】本题考查旋转的性质,关键是根据旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三要素:①定点﹣旋转中心;②旋转方向;③旋转角度.16.直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n 的解集为x≥1.【考点】一次函数与一元一次不等式.【分析】首先把P(a,2)坐标代入直线y=x+1,求出a的值,从而得到P点坐标,再根据函数图象可得答案.【解答】解:将点P(a,2)坐标代入直线y=x+1,得a=1,从图中直接看出,当x≥1时,x+1≥mx+n,故答案为:x≥1.【点评】此题主要考查了一次函数与一元一次不等式,关键是求出两函数图象的交点坐标,根据函数图象可得答案.17.如图,在坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P的坐标为(1,﹣1).【考点】坐标与图形变化-旋转.【分析】根据网格结构,找出对应点连线的垂直平分线的交点即为旋转中心.【解答】解:由图形可知,对应点的连线CC′、AA′的垂直平分线的交点是点(1,﹣1),根据旋转变换的性质,点(1,﹣1)即为旋转中心.故旋转中心坐标是P(1,﹣1).故答案是:(1,﹣1).【点评】本题考查了利用旋转变换作图,旋转变换的旋转以及对应点连线的垂直平分线的交点即为旋转中心,熟练掌握网格结构,找出对应点的位置是解题的关键.18.如图所示的图案绕其旋转中心旋转后能够与自身重合,那么它的旋转角的度数可能是72°(答案不唯一)(填写一个你认为正确的答案).【考点】旋转对称图形.【分析】根据旋转对称图形的概念(把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角)计算出角度即可.【解答】解:该图形被平分成五部分,因而每部分被分成的圆心角是72°,并且圆具有旋转不变性,因而旋转72度的整数倍,就可以与自身重合,则它的旋转角的度数可能是72°(答案不唯一).故答案为:72°(答案不唯一).【点评】此题主要考查了旋转对称图形,理解旋转对称图形的定义是解决本题的关键.三、解答题(共7小题,满分60分)19.解不等式:≤﹣1,并把解集表示在数轴上.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】先去分母,再去括号,移项、合并同类项,把x的系数化为1即可.【解答】解:去分母得,4(2x﹣1)≤3(3x+2)﹣12,去括号得,8x﹣4≤9x+6﹣12,移项得,8x﹣9x≤6﹣12+4,合并同类项得,﹣x≤﹣2,把x的系数化为1得,x≥2.在数轴上表示为:.【点评】本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.20.解不等式组:.【考点】解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x﹣2≤0,得:x≤4,解不等式5﹣3(x﹣1)<4+x,得:x>1,∴不等式组的解集为:1<x≤4.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.如图,一块余料ABCD,AD∥BC,现进行如下操作:以点B为圆心,适当长为半径画弧,分别交BA,BC于点G,H;再分别以点G,H为圆心,大于GH的长为半径画弧,两弧在∠ABC内部相交于点O,画射线BO,交AD于点E.(1)求证:AB=AE;(2)若∠A=100°,求∠EBC的度数.【考点】作图—基本作图;等腰三角形的判定与性质.【分析】(1)根据平行线的性质,可得∠AEB=∠EBC,根据角平分线的性质,可得∠EBC=∠ABE,根据等腰三角形的判定,可得答案;(2)根据三角形的内角和定理,可得∠AEB,根据平行线的性质,可得答案.【解答】(1)证明:∵AD∥BC,∴∠AEB=∠EBC.由BE是∠ABC的角平分线,∴∠EBC=∠ABE,∴∠AEB=∠ABE,∴AB=AE;(2)由∠A=100°,∠ABE=∠AEB,得∠ABE=∠AEB=40°.由AD∥BC,得∠EBC=∠AEB=40°.【点评】本题考查了等腰三角形的判定,利用了平行线的性质,角平分线的性质,等腰三角形的判定.22.如图,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点都在格点上,请按要求完全下列各题:(1)画出△ABC向左平移6个单位长度得到的图形△A1B1C1;(2)将△ABC绕点O按逆时针方向旋转180°得到△A2B2C2,请画出△A2B2C2.【考点】作图-旋转变换;作图-平移变换.【分析】(1)根据平移的定义画出图象即可.(2)根据旋转的定义画出旋转后的图形即可.【解答】解:(1)△ABC向左平移6个单位长度得到的图形△A1B1C1,图象如图所示.(2)将△ABC绕点O按逆时针方向旋转180°得到△A2B2C2,图象如图所示.【点评】本题考查平移、旋转变换,解题的关键是理解平移、旋转的定义,图形的变换实质上是点的变换,画出各个对应点的位置是作图的关键,属于中考常考题型.23.“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).(1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案.【考点】一元一次不等式组的应用;二元一次方程组的应用.【分析】(1)设每本文学名著x元,动漫书y元,根据题意列出方程组解答即可;(2)根据学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,列出不等式组,解答即可.【解答】解:(1)设每本文学名著x元,动漫书y元,可得:,解得:,答:每本文学名著和动漫书各为40元和18元;(2)设学校要求购买文学名著x本,动漫书为(x+20)本,根据题意可得:,解得:,因为取整数,所以x取26,27,28;方案一:文学名著26本,动漫书46本;方案二:文学名著27本,动漫书47本;方案三:文学名著28本,动漫书48本.【点评】此题主要考查了二元一次方程组的应用,不等式组的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.24.将两块全等的含30°角的三角尺如图(1)摆放在一起,它们的较短直角边长为3.(1)将△ECD沿直线l向左平移到图(2)的位置,使E点落在AB上,则CC′=3﹣;(2)将△ECD绕点C逆时针旋转到图(3)的位置,使点E落在AB上,则△ECD绕点C 旋转的度数=30°;(3)将△ECD沿直线AC翻折到图(4)的位置,ED′与AB相交于点F,求证:AF=FD′.【考点】旋转的性质;全等三角形的判定与性质;翻折变换(折叠问题);平移的性质.【分析】(1)根据题意:E′是AB的中点,即BC′=;则CC′=BC﹣BC′=;(2)△ECD绕点C旋转的度数即∠ECE’的度数;易得:∠ECE′=∠BAC=30°;(3)思路:根据条件,证明△AEF≌△D′BF进而得出AF=FD′.【解答】(1)解:CC′=3﹣.理由如下:∵EC=3,∠A=30°,∴AC=3,∴AE=3﹣3,∴CC′=EE′=AE×tan30°=3﹣;(2)解:△ECD绕点C旋转的度数即∠ECE′的度数;∵∠ABC=60°,BC=CE′=3,AB=6,∴△E′BC是等边三角形,∴BC=E′C=E′B=3,∴AE′=E′C=3,∴∠E′AC=∠E′CA,∴∠ECE′=∠BAC=30°;(3)证明:在△AEF和△D′BF中,∵AE=AC﹣EC,D′B=D′C﹣BC,又∵AC=D′C,EC=BC,∴AE=D′B,又∵∠AEF=∠D′BF=180°﹣60°=120°,∠A=∠CD′E=30°,∴△AEF≌△D′BF,∴AF=FD′.【点评】本题考查平移、旋转的性质;平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变,两组对应点连线的交点是旋转中心.25.如图,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分线分别交AB和AC于点D,E.(1)求证:AE=2CE;(2)连接CD,请判断△BCD的形状,并说明理由.【考点】含30度角的直角三角形;线段垂直平分线的性质.【分析】(1)连接BE,由垂直平分线的性质可求得∠EBC=∠ABE=∠A=30°,在Rt△BCE 中,由直角三角形的性质可证得BE=2CE,则可证得结论;(2)由垂直平分线的性质可求得CD=BD,且∠ABC=60°,可证明△BCD为等边三角形.【解答】(1)证明:连接BE,∵DE是AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=30°,∴∠CBE=∠ABC﹣∠ABE=30°,在Rt△ABC中,BE=2CE,∴AE=2CE;(2)解:△BCD是等边三角形,理由如下:∵DE垂直平分AB,∴D为AB中点,∵∠ACB=90°,∴CD=BD,∵∠ABC=60°,∴△BCD是等边三角形.【点评】本题主要考查线段垂直平分线的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.。

2017-2018学年枣庄市滕州市八年级下期中数学试卷(含答案解析)

2017-2018学年枣庄市滕州市八年级下期中数学试卷(含答案解析)

2017-2018学年山东省枣庄市滕州市八年级(下)期中数学试卷一、选择题:每题3分,共45分。

在每小题的四个选项中,只有一项是符合题目要求的,把正确答案的代号涂在答题卡上。

1.下列图形中,既是轴对称图形,又是中心对称图形的有()A.1个B.2个C.3个D.4个2.如果a>b,那么下列各式中正确的是()A.a﹣2<b﹣2B.<C.﹣2a<﹣2b D.﹣a>﹣b3.如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是()A.a>0B.a<0C.a>﹣1D.a<﹣14.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()A.8或10B.8C.10D.6或125.△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC 于点E,则PD+PE的长是()A.4.8B.4.8或3.8C.3.8D.56.如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB 于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为()A.4cm B.3cm C.2cm D.1cm7.如图,在△ABC中,∠C=90°,点E是AC上的点,且∠1=∠2,DE垂直平分AB,垂足是D,如果EC=3cm,则AE等于()A.3cm B.4cm C.6cm D.9cm8.已知:如图,点D,E分别在△ABC的边AC和BC上,AE与BD相交于点F,给出下面四个条件:①∠1=∠2;②AD=BE;③AF=BF;④DF=EF,从这四个条件中选取两个,不能判定△ABC是等腰三角形的是()A.①②B.①④C.②③D.③④9.如图,三条公路把A、B、C三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三个条公路的距离相等,则这个集贸市场应建在()A.在AC、BC两边高线的交点处B.在AC、BC两边中线的交点处C.在∠A、∠B两内角平分线的交点处D.在AC、BC两边垂直平分线的交点处10.如图,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为()A.30°B.36°C.45°D.70°11.已知不等式组的解集为﹣1<x<1,则(a+1)(b﹣1)值为()A.6B.﹣6C.3D.﹣312.如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()A.B.4C.D.513.如图,在平面直角坐标系中,点A的坐标为(0,3),△OAB沿x轴向右平移后得到的△O′A′B′,点A的对应点A′在直线y=x上,则点B与其对应点B′间的距离为()A.B.3C.4D.514.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC :S△ABC=1:3.A.1B.2C.3D.415.如图,在直角坐标系中,已知点A(﹣3,0)、B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4、…,△16的直角顶点的坐标为()A.(60,0)B.(72,0)C.(67,)D.(79,)二、填空题:每题3分,共18分,将答案填在题的横线上16.在平面直角坐标系中,若点P(2x+6,5x)在第四象限,则x的取值范围是.17.如图所示,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A落在CB的延长线上的点E处,则∠BDC的度数为度.18.已知等腰△OPQ的顶点P的坐标为(4,3),O为坐标原点,腰长OP=5,点Q位于y轴正半轴上,则点Q的坐标为.19.初三的几位同学拍了一张合影作为留念,已知拍一张底片需要5元,洗一张相片需要0.5元.拍一张照片,在每位同学得到一张相片的前提下,平均每人分摊的钱不足1.5元,那么参加合影的同学人数为.20.如图,在△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为10cm,那么△ABC 的周长为cm.21.如图,边长为1的等边△ABO在平面直角坐标系的位置如图所示,点O为坐标原点,点A在x 轴上,以点O为旋转中心,将△ABO按逆时针方向旋转60°,得到△OA′B′,则点A′的坐标为.三、解答题:共7小题,满分57分,解答应写出文字说明过程或演算步骤。

滕州八年级期中考试数学试卷

滕州八年级期中考试数学试卷

一、选择题(每题4分,共40分)1. 已知a,b,c是等差数列的三项,且a+c=12,a-b+c=8,则b的值为()A. 4B. 6C. 8D. 102. 在△ABC中,∠A=30°,∠B=75°,则∠C的度数为()A. 45°B. 60°C. 75°D. 105°3. 若x-3是x2-5x+6的因式,则x的值为()A. 2B. 3C. 4D. 64. 若函数f(x)=2x-1在区间[0,2]上单调递增,则实数a的取值范围是()A. a≥0B. a≥1C. a≤0D. a≤15. 已知一次函数y=kx+b的图象过点A(1,2),且与y轴的交点坐标为(0,-3),则该函数的解析式为()A. y=2x-3B. y=x-3C. y=2x+3D. y=x+36. 若x是方程2x2-3x+1=0的解,则x的值为()A. 1B. 2C. 1/2D. 1/47. 已知a,b,c是等比数列的三项,且a+b+c=6,b+c=4,则a的值为()A. 2B. 1C. 3D. 48. 若一次函数y=kx+b的图象与x轴、y轴分别交于点A、B,且OA=3,OB=4,则该函数的解析式为()A. y=4x/3B. y=3x/4C. y=3x+4D. y=4x+39. 若x是方程x2-2x+1=0的解,则x的值为()A. 1B. 2C. 1/2D. 1/410. 已知等差数列{an}的公差为d,且a1+a5+a9=24,则a3的值为()A. 6B. 8C. 10D. 12二、填空题(每题5分,共50分)11. 若m是方程x2-2x+1=0的解,则m的值为______。

12. 在△ABC中,∠A=45°,∠B=60°,则∠C的度数为______。

13. 已知一次函数y=kx+b的图象过点A(2,-3),且与y轴的交点坐标为(0,1),则该函数的解析式为______。

2017-2018学年枣庄市滕州市八年级下期中数学试卷(含精品解析)

2017-2018学年枣庄市滕州市八年级下期中数学试卷(含精品解析)

2017-2018学年山东省枣庄市滕州市八年级(下)期中数学试卷一、选择题:每题3分,共45分。

在每小题的四个选项中,只有一项是符合题目要求的,把正确答案的代号涂在答题卡上。

1.下列图形中,既是轴对称图形,又是中心对称图形的有( )A.1个B.2个C.3个D.4个2.如果a>b,那么下列各式中正确的是( )A.a﹣2<b﹣2B.<C.﹣2a<﹣2b D.﹣a>﹣b3.如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是( )A.a>0B.a<0C.a>﹣1D.a<﹣14.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为( )A.8或10B.8C.10D.6或125.△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是( )A.4.8B.4.8或3.8C.3.8D.56.如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为( )A.4cm B.3cm C.2cm D.1cm7.如图,在△ABC中,∠C=90°,点E是AC上的点,且∠1=∠2,DE垂直平分AB,垂足是D,如果EC=3cm,则AE等于( )A.3cm B.4cm C.6cm D.9cm8.已知:如图,点D,E分别在△ABC的边AC和BC上,AE与BD相交于点F,给出下面四个条件:①∠1=∠2;②AD=BE;③AF=BF;④DF=EF,从这四个条件中选取两个,不能判定△ABC是等腰三角形的是( )A.①②B.①④C.②③D.③④9.如图,三条公路把A、B、C三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三个条公路的距离相等,则这个集贸市场应建在( )A.在AC、BC两边高线的交点处B.在AC、BC两边中线的交点处C.在∠A、∠B两内角平分线的交点处D.在AC、BC两边垂直平分线的交点处10.如图,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为( )A.30°B.36°C.45°D.70°11.已知不等式组的解集为﹣1<x<1,则(a+1)(b﹣1)值为( )A.6B.﹣6C.3D.﹣312.如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为( )A.B.4C.D.513.如图,在平面直角坐标系中,点A的坐标为(0,3),△OAB沿x轴向右平移后得到的△O′A′B′,点A的对应点A′在直线y=x上,则点B与其对应点B′间的距离为( )A.B.3C.4D.514.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是( )①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.A.1B.2C.3D.415.如图,在直角坐标系中,已知点A(﹣3,0)、B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4、…,△16的直角顶点的坐标为( )A.(60,0)B.(72,0)C.(67,)D.(79,)二、填空题:每题3分,共18分,将答案填在题的横线上16.在平面直角坐标系中,若点P(2x+6,5x)在第四象限,则x的取值范围是 .17.如图所示,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A落在CB的延长线上的点E处,则∠BDC的度数为 度.18.已知等腰△OPQ的顶点P的坐标为(4,3),O为坐标原点,腰长OP=5,点Q位于y轴正半轴上,则点Q的坐标为 .19.初三的几位同学拍了一张合影作为留念,已知拍一张底片需要5元,洗一张相片需要0.5元.拍一张照片,在每位同学得到一张相片的前提下,平均每人分摊的钱不足1.5元,那么参加合影的同学人数为 .20.如图,在△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为10cm,那么△ABC的周长为 cm.21.如图,边长为1的等边△ABO在平面直角坐标系的位置如图所示,点O为坐标原点,点A在x轴上,以点O为旋转中心,将△ABO按逆时针方向旋转60°,得到△OA′B′,则点A′的坐标为 .三、解答题:共7小题,满分57分,解答应写出文字说明过程或演算步骤。

山东省枣庄市八年级下学期期中数学试卷

山东省枣庄市八年级下学期期中数学试卷

山东省枣庄市八年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2017八上·高邑期末) 式子有意义的x取值范围是()A . x≠1B . x≥﹣C . x≥﹣且x≠1D . x>﹣且x≠12. (2分) (2020八下·太原期中) 如图,已知中,的垂直平分线分别交于连接,则的长为()A .B .C .D .3. (2分)下列轴对称图形中,对称轴条数最少的是()A . 等腰直角三角形B . 等边三角形C . 正方形D . 长方形4. (2分) (2019八下·端州月考) 下列二次根式中,是最简二次根式的为()A .B .C .D .5. (2分) (2019八下·蜀山期末) 若x- ,则x-y的值为()A . 2B . 1C . 0D . -16. (2分) (2017八上·老河口期中) 已知∠AOB=30°,点P在∠AOB的内部,点P1与点P关于OB对称,点P2与点P关于OA对称,则以点P1 , O,P2为顶点的三角形是()A . 直角三角形B . 钝角三角形C . 等腰三角形D . 等边三角形7. (2分)如图,在平面直角坐标系中,以A(﹣1,0),B(2,0),C(0,1)为顶点构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是()A . (3,1)B . (﹣4,1)C . (1,﹣1)D . (﹣3,1)8. (2分)在△ABC中,若三边BC ,CA,AB满足 BC:CA:AB=5:12:13,则cosB=()A .B .C .D .9. (2分) (2017八下·钦州港期末) 下列说法中的错误的是()A . 一组邻边相等的矩形是正方形B . 一组邻边相等的平行四边形是菱形C . 一组对边相等且有一个角是直角的四边形是矩形D . 一组对边平行且相等的四边形是平行四边形10. (2分)小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a-b,x-y,x+y,a+b,x2-y2,a2-b2分别对应下列六个字:昌、爱、我、宜、游、美,现将(x2-y2)a2-(x2-y2)b2因式分解,结果呈现的密码信息可能是()A . 我爱美B . 宜昌游C . 爱我宜昌D . 美我宜昌二、填空题 (共6题;共6分)11. (1分)(2016·南岗模拟) 计算﹣ =________.12. (1分)若式子有意义,则x的取值范围是________13. (1分) (2020八下·无锡期中) 如图,菱形ABCD中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD 的周长为20,则OE的长等于________.14. (1分)(2020·吉林模拟) 如图,在扇形 AOB 中,∠AOB=90°,正方形 CDEF 的顶点 C 是弧 AB 的中点,点D 在 OB 上,点 E 在 OB 的延长线上,当正方形 CDEF 的边长为时,阴影部分的面积为________.15. (1分)(2016·呼和浩特) 已知平行四边形ABCD的顶点A在第三象限,对角线AC的中点在坐标原点,一边AB与x轴平行且AB=2,若点A的坐标为(a,b),则点D的坐标为________.16. (1分) (2016七下·邻水期末) 已知a,b是正整数,若 + 是不大于2的整数,则满足条件的有序数对(a,b)为________.三、解答题 (共7题;共40分)17. (10分) (2015八下·绍兴期中) 计算下列各题:(1)(2).18. (5分) (2020八下·和平期末) 如图,是一个边长为的等边三角形,是的高,求的长.19. (5分) (2017八上·李沧期末) 如图,点B、E、C、F在同一直线上,AC与DE相交于点G,∠A=∠D,AC∥DF,求证:∠B=∠DEC.20. (5分) (2019八上·恩施期中) 如图,BE⊥AC于E,CF⊥AB于F,CF、BE相交于点D,且BD=CD.求证:AD平分∠BAC.21. (5分)如图,矩形ABCD中,AB=8,AD=6,点E、F分别在边CD、AB上.(1)若DE=BF,求证:四边形AFCE是平行四边形;(2)若四边形AFCE是菱形,求菱形AFCE的周长.22. (5分)如图,D、E分别是不等边三角形ABC(即AB≠BC≠AC)的边AB、AC的中点.O是△ABC平面上的一动点,连接OB、OC,G、F分别是OB、OC的中点,顺次连接点D、G、F、E.(1)如图,当点O在△ABC内时,求证:四边形DGFE是平行四边形;(2)若连接AO,且满足AO=BC,AO⊥BC.问此时四边形DGFE又是什么形状?并请说明理由.23. (5分)已知,正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,AH⊥MN于点H.(1)如图①,当∠MAN点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:AH=AB ;(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,求AH的长.(可利用(2)得到的结论)参考答案一、选择题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共6题;共6分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共7题;共40分)答案:17-1、答案:17-2、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、考点:解析:答案:21-1、考点:解析:答案:22-1、考点:解析:答案:23-1、考点:解析:。

2017-2018学年枣庄市滕州市八年级下期中数学试卷(有答案)

2017-2018学年枣庄市滕州市八年级下期中数学试卷(有答案)

2017-2018学年山东省枣庄市滕州市八年级(下)期中数学试卷一、选择题:每题3分,共45分。

在每小题的四个选项中,只有一项是符合题目要求的,把正确答案的代号涂在答题卡上。

1.下列图形中,既是轴对称图形,又是中心对称图形的有()A.1个B.2个C.3个D.4个2.如果a>b,那么下列各式中正确的是()A.a﹣2<b﹣2B.<C.﹣2a<﹣2b D.﹣a>﹣b3.如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是()A.a>0B.a<0C.a>﹣1D.a<﹣14.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()A.8或10B.8C.10D.6或125.△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC 于点E,则PD+PE的长是()A.4.8B.4.8或3.8C.3.8D.56.如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB 于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为()A.4cm B.3cm C.2cm D.1cm7.如图,在△ABC中,∠C=90°,点E是AC上的点,且∠1=∠2,DE垂直平分AB,垂足是D,如果EC=3cm,则AE等于()A.3cm B.4cm C.6cm D.9cm8.已知:如图,点D,E分别在△ABC的边AC和BC上,AE与BD相交于点F,给出下面四个条件:①∠1=∠2;②AD=BE;③AF=BF;④DF=EF,从这四个条件中选取两个,不能判定△ABC是等腰三角形的是()A.①②B.①④C.②③D.③④9.如图,三条公路把A、B、C三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三个条公路的距离相等,则这个集贸市场应建在()A.在AC、BC两边高线的交点处B.在AC、BC两边中线的交点处C.在∠A、∠B两内角平分线的交点处D.在AC、BC两边垂直平分线的交点处10.如图,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为()A.30°B.36°C.45°D.70°11.已知不等式组的解集为﹣1<x<1,则(a+1)(b﹣1)值为()A.6B.﹣6C.3D.﹣312.如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()A.B.4C.D.513.如图,在平面直角坐标系中,点A的坐标为(0,3),△OAB沿x轴向右平移后得到的△O′A′B′,点A的对应点A′在直线y=x上,则点B与其对应点B′间的距离为()A.B.3C.4D.514.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC :S△ABC=1:3.A.1B.2C.3D.415.如图,在直角坐标系中,已知点A(﹣3,0)、B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4、…,△16的直角顶点的坐标为()A.(60,0)B.(72,0)C.(67,)D.(79,)二、填空题:每题3分,共18分,将答案填在题的横线上16.在平面直角坐标系中,若点P(2x+6,5x)在第四象限,则x的取值范围是.17.如图所示,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A落在CB的延长线上的点E处,则∠BDC的度数为度.18.已知等腰△OPQ的顶点P的坐标为(4,3),O为坐标原点,腰长OP=5,点Q位于y轴正半轴上,则点Q的坐标为.19.初三的几位同学拍了一张合影作为留念,已知拍一张底片需要5元,洗一张相片需要0.5元.拍一张照片,在每位同学得到一张相片的前提下,平均每人分摊的钱不足1.5元,那么参加合影的同学人数为.20.如图,在△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为10cm,那么△ABC 的周长为cm.21.如图,边长为1的等边△ABO在平面直角坐标系的位置如图所示,点O为坐标原点,点A在x轴上,以点O为旋转中心,将△ABO按逆时针方向旋转60°,得到△OA′B′,则点A′的坐标为.三、解答题:共7小题,满分57分,解答应写出文字说明过程或演算步骤。

2017—2018学年度第二学期八年级数学期中试卷(含答案)

2017—2018学年度第二学期八年级数学期中试卷(含答案)

2017—2018学年度第二学期期中教学质量评估测试八年级数学试卷题号一 二 三 总分 得分注意事项:全卷共120分,考试时间120分钟.一、选择题:(每小题3分,共30分)1.下列二次根式中,最简二次根式的是( )A .B .C .D . 2.下列计算正确的是( ).A.2(3)9=B .822÷=C .236⨯=D .2(2)2-=-3. 下列各组数中,能构成直角三角形的是( )A. 4,5,6B. 1,1,C. 6,8,11D. 5,12,23 4. 在Rt△ABC 中,△C =90°,△B =45°,c =10,则a 的长为( )A. B. C.5 D.5.在下列给出的条件中,能判定四边形ABCD 为平行四边形的是( ) A. AB=BC,CD=DA B. AB//CD,AD=BC C. AB//CD,C A ∠=∠ D.D C B A ∠=∠∠=∠, 6.正方形面积为36,则对角线的长为( ) A.B .6C .9D. 7.如图,一棵大树在一次强台风中距地面5m 处折断,倒下后树顶端着地点A 距树底端B 的距离为12m ,这棵大树在折断前的高度为( )A. 10mB. 15mC. 18mD. 20m8.如图,在平行四边形ABCD 中,已知AD=5cm ,AB=3cm ,AE 平分△BAD 交BC 边于点E ,则EC 等于( )A .1cmB .2cmC .3cmD .4cm9.如图,菱形ABCD 中,E 、F 分别是AB 、AC 的中点,若EF=3,则菱形ABCD 的周长是( )A .12B .16C .20D .2410.如图,在矩形ABCD 中,AB=8,BC=4,将矩形沿AC 折叠,点D 落在点D′处,则重叠部分△AFC 的面积为( )A .6B .8C .10D .12二、填空题:(每小题3分,共30分)11. 木工师傅要做一个长方形桌面,做好后量得长为80cm ,宽为60cm ,对角线为100cm ,则这个桌面 .(填“合格”或“不合格” ) 12.若式子 在实数范围内有意义,则 的取值范围是 .13.在数轴上表示实数a 的点如图所示,化简()2-a 5-a 2+的结果为______.14.计算()2252-的结果是________.15.一个直角三角形的两边长分别为4与5,则第三边长为________.16.平行四边形ABCD 中一条对角线分△A 为35°和45°,则△B= 度. 17. 如右图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则EF= cm . 18. 在△ABC 中,△C=90°,AC=12,BC=16,则AB 边上的中线CD 为 .19.在平面直角坐标系中,点A (﹣1,0)与点B (0,2)的距离是 . 20.对于任意不相等的两个数a ,b ,定义一种运算△如下:a△b = ,座号得 分 评卷人 题号1 2 3 4 5 6 7 8 9 10 答案得 分 评卷人学校 年级 姓名 学号密封线内不要答题八年级 数学 第1页 (共6页) 八年级 数学 第2页 (共6页)212510252612-+x x x 8.04529a b a b+-如3△2= =5.那么12△4= .三.解答题:(本大题共60分)21. (6分)(共2小题,每小题3分)(1) (2)22.(8分)若最简二次根式31025311x x y x y -+--+和是同类二次根式. (1)求x y 、的值; (5分) (2)求22y x +的值.(3分)23.(7分)有如图所示的一块地,已知AD=4米,CD=3米,090ADC ∠=,AB=13米,BC=12米.(1)试判断以点A 、点B 、点C 为顶点的三角形是什么三角形?并说明理由. ( 4分)(2)求这块地的面积.(3分)24. (8分)如图,四边形ABCD 中,AC ,BD 相交于点O ,O 是AC 的中点,AD △BC ,AC =8,BD =6.(1)求证:四边形ABCD 是平行四边形; (4分) (2)若AC △BD ,求平行四边形ABCD 的面积. (4分)25 . (8分)如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,E 是CD 的中点,连接OE .过点C 作CF △BD 交线段OE 的延长线于点F ,连接DF . 求证:(1)△ODE △△FCE (4分)(2)四边形ODFC 是菱形 (4分)得 分 评卷人DACB八年级 数学 第3页 (共6页) 八年级 数学 第4页 (共6页)3232+-)227(328--+5232232⨯÷26.(8分)已知:如图,四边形ABCD 四条边上的中点分别为E 、F 、G 、H ,顺次连接EF 、FG 、GH 、HE ,得到四边形EFGH (即四边形ABCD 的中点四边形). (1)四边形EFGH 的形状是 ,证明你的结论;(4分)(2)当四边形ABCD 的对角线满足 条件时,四边形EFGH 是矩形(不证明)(2分) (3)你学过的哪种特殊四边形的中点四边形是矩形? (不证明)(2分)27.(6分)某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口 小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?28.(9分)观察下列等式: △ △ + = △……回答下列问题:(1)仿照上列等式,写出第n 个等式: ; (2分) (2)利用你观察到的规律,化简:(3分)(3)计算: + + +……+(4分)八年级 数学 第5页 (共6页) 八年级 数学 第6页 (共6页)23321+211+231+34)34)(34(34341-=-+-=+231+1031+)23)(23(23-+-23-2017—2018学年度第二学期期中教学质量评估测试八年级数学参考答案一、选择题1.D 2.B 3. B 4.A 5.C 6. A 7.C 8.B 9.D 10. C 二、填空题11.合格 12.x ≥﹣2且x ≠1 13. 3 14. 15.3或41 16.100 17 . 2.5 18. 10 19. . 20.1.2三、解答题:(共60分)21(1)解: + 2 ﹣(﹣ ) =2 +2 ﹣3 + ------(2分) =3 ﹣ ------(3分) (2)解: ÷ ×== ------(2分)= -------(3分) 22.(1)x=4,y=3;(5分) (2)5 (3分) 解:(1)由题意得:3x-10=2 , ---------(2分)2x+y-5=x-3y+11 ----------(4分)解得x=4 y=3 --------(5分)(2)当x=4 , y=3时22y x += =5 -----(3分) 23.解(1)以点A 、点B 、点C 为顶点的三角形是直角三角形(4分)(2)这块地的面积24m 2. (3分) 解:(1)连接AC . -------(1分) 由勾股定理可知:AC=---(2分)又∵AC 2+BC 2=52+122=132=AB 2--------(3分) ∴△ABC 是直角三角形 --------(4分) (2)这块地的面积=△ABC 的面积-△ACD 的面积 ----(1分)=×5×12- ×3×4 --- (2分) =24(m 2). ----(3分)24. (1)证明:∵O 是AC 的中点,∴OA =OC. ------(1分) ∵AD ∥BC ,∴∠DAO =∠BCO. -------(2分) 又∵∠AOD =∠COB ,∴△AOD ≌△COB ,(ASA ) -----------------(3分) ∴OD =OB ,∴四边形ABCD 是平行四边形 --------------(4分) (2)∵四边形ABCD 是平行四边形,AC ⊥BD ,∴四边形ABCD 是菱形 ---------------(2分)∴ ABCD 的面积= AC •BD = ×8×6=24 ---------------(4分)25 .证明:(1)∵CF ∥BD ∴∠ODE=∠FCE----------------(1分)∵E 是CD 中点 ∴CE=DE , -------------------(2分) 在△ODE 和△FCE 中2222435AD CD +=+=12121222410.-1.232322528528332⨯⨯10110102234+32722332235∴△ODE ≌△FCE (ASA ) --------------(4分) (2)∵△ODE ≌△FCE ∴OD=FC , -------------(1分) 又∵CF ∥BD , ∴四边形ODFC 是平行四边形-----(2分)∵矩形ABCD ∴AC=BD OC= AC,OD= BD ∴ OC=OD ----------------(3分)∴四边形ODFC 是菱形. -----------------------(4分) 26(1)平行四边形;(4分)(2)互相垂直(2分)(3)菱形.(2分)(1)证明:连结BD . -------------------- (1分)∵E 、H 分别是AB 、AD 中点,∴EH ∥BD ,EH= BD , ----------------------(2分)同理FG ∥BD ,FG= BD , ---------------------(3分)∴EH ∥FG ,EH=FG ,∴四边形EFGH 是平行四边形 --------------------------(4分) 27. 解:根据题意,得PQ=16×1.5=24(海里) - -----------(1分)PR=12×1.5=18(海里) -----------(2分) QR=30(海里)∵242+182=302, 即PQ 2+PR 2=QR 2∴∠QPR=90°. ----------------(4分) 由“远洋号”沿东北方向航行可知∠QPS=45°,则∠SPR=45°(5分) 即“海天”号沿西北方向航行. -------(6分)28. (1)(2)2311- (3)解:(1)第n 个等式 (2分)(2)原式=1121123111211=-=-+. (3分)原式=2-1+3-2+4-3+……+10-9=10-1 ( 4分)12121212=-+++=++)1)(1(11n n n n n n 101nn -+1=-+++=++)1)(1(11n n n n n n nn -+1n n -+1n n -+1。

2017-2018学年度第二学期八年级下册 期中数学试卷(有答案和解析)

2017-2018学年度第二学期八年级下册 期中数学试卷(有答案和解析)

2017-2018学年八年级(下)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.在二次根式中,字母x的取值范围是()A. B. C. D.2.若x=1是方程x2-ax+3=0的一个根,那么a值为()A. 4B. 5C.D.3.下列计算正确的是()A. B. C. D.4.A. 14,13B. 15,13C. 14,14D. 14,155.一个n边形的内角和等于它的外角和,则n=()A. 3B. 4C. 5D. 66.某厂一月份生产某机器100台,计划二、三月份共生产280台.设二、三月份每月的平均增长率为x,根据题意列出的方程是()A. B.C. D.7.如图O是边长为9的等边三角形ABC内的任意一点,且OD∥BC,交AB于点D,OF∥AB,交AC于点F,OE∥AC,交BC于点E,则OD+OE+OF的值为()A. 3B. 6C. 8D. 98.关于x的方程(a-6)x2-8x+6=0有实数根,则a的取值范围是()A. 且B. 且C.D. 且9.如图,在平面直角坐标系中,OABC的顶点A在x轴上,定点B的坐标为(6,4),若直线经过定点(1,0),且将平行四边形OABC分割成面积相等的两部分,则直线的表达式()A. B. C. D.10.如图,在平行四边形ABCD中,AE平分∠BAD,交BC于点E,且AB=AE,延长AB与DE的延长线交于点F.下列结论中:①△ABC≌△EAD;②△ABE是等边三角形;③AD=AF;④S△ABE=S△CEF其中正确的是()A. ①②③B. ①②④C. ②③④D. ①②③④二、填空题(本大题共6小题,共24.0分)11.标本-1,-2,0,1,2,方差是______.12.若整数满足,则的值为________.13.若x=-2是关于x的方程x2-2ax+8=0的一个根,则方程的另一个根为______.14.已知m是一元二次方程x2-9x+1=0的解,则=______.15.如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为______m.16.如图在△ABC中,∠BAC=30°,AB=AC=6,M为AC边上一动点(不与A,C重合),以MA、MB为一组邻边作平行四边形MADB,则平行四边形MADB的对角线MD的最小值是______.三、计算题(本大题共1小题,共8.0分)17.(1)已知x=2+,y=2-,求(+)(-)的值.(2)若的整数部分为a,小数部分为b,写出a,b的值并计算-ab的值.四、解答题(本大题共6小题,共58.0分)18.解方程:(1)2x2-x=0(2)(x-1)(2x+3)=1.19.某校初三对某班最近一次数学测验成绩(得分取整数)进行统计分析,将所有成绩由低到高分成五组,并绘制成如图的频数分布直方图,请结合直方图提供的信息,回答下列问题:(1)该班共有______名同学参加这次测验;(2)这次测验成绩的中位数落在______分数段内;(3)若该校一共有800名初三学生参加这次测验,成绩80分以上(不含80分)为优秀,估计该校这次数学测验的优秀人数是多少人?20.如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O,下列结论中:①∠ABC=∠ADC;②AC与BD相互平分;③AC,BD分别平分四边形ABCD的两组对角;④四边形ABCD的面积S=AC•BD.(1)写出正确结论的序号;(2)证明所有正确的结论.21.银隆百货大楼服装柜在销售中发现:“COCOTREE”牌童装每件成本60元,现以每件100元销售,平均每天可售出20件.为了迎接“五•一”劳动节,商场决定采取适当的降价措施,以扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多销售2件.(1)要想平均每天销售这种童装盈利1200元,请你帮商场算一算,每件童装应定价多少元?(2)这次降价活动中,1200元是最高日利润吗?若是,请说明理由;若不是,请试求最高利润值.22.如图1,已知∠AOB,OA=OB,点E在OB边上,四边形AEBF是平行四边形.(1)请你只用无刻度的直尺在图中画出∠AOB的平分线.(保留作图痕迹,不要求写作法)(2)如图2,请再说出两种画角平分线的方法(要求画出图形,并说明你使用的工具和依据)23.如图,在△ABC中,AB=AC=13厘米,BC=10厘米,AD⊥BC于点D,动点P从点A出发以每秒1厘米的速度在线段AD上向终点D运动,设动点运动时间为t秒.(1)求AD的长.(2)当P、C两点的距离为时,求t的值.(3)动点M从点C出发以每秒2厘米的速度在射线CB上运动.点M与点P同时出发,且当点P运动到终点D时,点M也停止运动.是否存在时刻t,使得S△PMD=S△ABC?若存在,请求出t的值;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:二次根式中,字母x的取值范围是:x-3>0,解得:x>3.故选:B.直接利用二次根式的性质分析得出答案.此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.2.【答案】A【解析】解:把x=1代入x2-ax+3=0得1-a+3=0,解得a=4.故选:A.根据一元二次方程的解的定义把x=1代入x2-ax+3=0中得到关于a的方程,然后解关于a的一次方程即可.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.3.【答案】A【解析】解:A、-=2-=,故本选项正确.B、+≠,故本选项错误;C、×=,故本选项错误;D、÷==2,故本选项错误.故选:A.根据二次根式的加法及乘法法则进行计算,然后判断各选项即可得出答案.本题考查了二次根式的混合运算,难度不大,解答本题一定要掌握二次根式的混合运算的法则.4.【答案】A【解析】解:将这组数据按大小顺序,中间一个数为13,则这组数据的中位数是13;=(24+15+13+10+8)÷5=14.故选:A.根据中位数和平均数的定义求解即可.本题为统计题,考查平均数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.【答案】B【解析】解:由题可知(n-2)•180=360,所以n-2=2,n=4.故选:B.利用等量关系式以及多边形内角和公式解答.根据题意列出方程即可.本题主要考查的是多边形的内角和与外角和,熟练掌握多边形的内角和与外角和公式是解题的关键.6.【答案】B【解析】【分析】主要考查增长率问题,一般用"增长后的量=增长前的量×(1+增长率)",如果设二、三月份每月的平均增长率为x,根据“计划二、三月份共生产280台”,即可列出方程.本题可根据增长率的一般规律找到关键描述语,列出方程;平均增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.【解析】解:设二、三月份每月的平均增长率为x,则二月份生产机器为:100(1+x),三月份生产机器为:100(1+x)2;又知二、三月份共生产280台;所以,可列方程:100(1+x)+100(1+x)2=280.故选B.7.【答案】D【解析】【分析】根据等边三角形,平行线的性质,和平行四边形的判定,并根据等腰梯形性质求解.本题考查了等边三角形的性质,关键是利用了:1、等腰三角形的性质和判定:三边相等,三角均为60度,有两角相等且为60度的三角形是等边三角形;2、平行四边形的判定的性质;3、等腰梯形的判定和性质.【解答】解:延长OD交AC于点G,∵OE∥CG,OG∥CE,∴四边形OGCE是平行四边形,有OE=CG,∠OGF=∠C=60°,∵OF∥AB,∴∠OFG=∠A=60°,∴OF=OG,∴△OGF是等边三角形,∴OF=FG,∵OD∥BC,∴∠ADO=∠B=60°∴梯形OFAD是等腰梯形,有OD=AF,即OD+OE+OF=AF+FG+CG=AC=9.8.【答案】C【解析】解:当a-6=0时,原方程为-8x+6=0,解得:x=,∴a=6符合题意;当a-6≠0时,有,解得:a≤且a≠6.综上所述,a的取值范围为:a≤.故选:C.分a-6=0和a-6≠0两种情况考虑:当a-6=0时,通过解一元一次方程可得出原方程有解,进而可得出a=6符合题意(此时已经可以确定答案了);当a-6≠0时,由二次项系数非零及根的判别式△≥0,即可得出关于a的一元一次不等式组,解之即可得出a的取值范围.综上即可得出结论.本题考查了根的判别式、一元二次方程的定义以及解一元一次方程,分a-6=0和a-6≠0两种情况考虑是解题的关键.9.【答案】C【解析】解:∵点B的坐标为(6,4),∴平行四边形的中心坐标为(3,2),设直线l的函数解析式为y=kx+b,则,解得,所以直线l的解析式为y=x-1.根据过平行四边形的中心的直线把平行四边形分成面积相等的两部分,先求出平行四边形中心的坐标,再利用待定系数法求一次函数解析式解答即可.本题考查了待定系数法求一次函数解析式,平行四边形的性质,熟练掌握过平行四边形的中心的直线把平行四边形分成面积相等的两部分是解题的关键.10.【答案】B【解析】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠EAD=∠AEB,又∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴AB=BE,∵AB=AE,∴△ABE是等边三角形;②符合题意;在∴△ABC≌△EAD(SAS);①符合题意;∵△FCD与△ABC等底(AB=CD)等高(AB与CD间的距离相等),∴S△FCD=S△ABC,又∵△AEC与△DEC同底等高,∴S△AEC=S△DEC,∴S△ABE=S△CEF;④符合题意.若AD与AF相等,即∠AFD=∠ADF=∠DEC即EC=CD=BE即BC=2CD,题中未限定这一条件∴③不符合题意;∴①②④符合题意,故选:B.由平行四边形的性质得出AD∥BC,AD=BC,由AE平分∠BAD,可得∠BAE=∠DAE,可得∠BAE=∠BEA,得AB=BE,由AB=AE,得到△ABE是等边三角形,②正确;则∠ABE=∠EAD=60°,由SAS证明△ABC≌△EAD,①正确;由△FCD与△ABD等底(AB=CD)等高(AB与CD间的距离相等),得出S△FCD=S△ABD,由△AEC与△DEC同底等高,所以S△AEC=S△DEC,得出S△ABE=S△CEF.④正确.此题考查了平行四边形的性质、等边三角形的判定与性质、全等三角形的判定与性质.此题比较复杂,注意将每个问题仔细分析.11.【答案】2【解析】解:∵==0,∴方差S2=×[(1-0)2+(2-0)2+(0-0)2+(-1-0)2+(-2-0)2]=2.故答案为:2.先计算出平均数,再根据方差的公式计算.本题考查方差的定义:一般地设n个数据,x 1,x2,…x n的平均数为,则方差S2=[(x 1-)2+(x2-)2+…+(x n-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.12.【答案】4【解析】解:∵2=,3=,∴整数n满足2<n<3,则n的值为=4.故答案为4.直接得出n最接近的二次根式,进而得出答案.此题主要考查了估算无理数的大小,正确将原数转化是解题关键.13.【答案】-4【解析】解:设方程的另一个根为x1,根据根与系数的关系有:-2x1=8,解得x1=-4.故答案为:-4.设出方程的另一个根,利用根与系数关系中的两根之积可以求出方程的另一个根.本题考查的是一元二次方程的解,知道方程的一个根,用根与系数关系中的两根的积可以求出方程的另一个根.14.【答案】17【解析】解:∵m是一元二次方程x2-9x+1=0的解,∴m2-9m+1=0,∴m2-7m=2m-1,m2+1=9m,∴=2m-1+=2(m+)-1,∵m2-9m+1=0,∴m≠0,在方程两边同时除以m,得m-9+=0,即m+=9,∴=2(m+)-1=2×9-1=17.故答案是:17.将x=m代入该方程,得m2-9m+1=0,通过变形得到m2-7m=2m-1,m2+1=9m;然后在方程m2-9m+1=0两边同时除以m,得到m+=9,代入即可求得所求代数式的值.此题主要考查了方程解的定义.此类题型的特点是:利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.15.【答案】2【解析】解:设人行通道的宽度为x米,将两块矩形绿地合在一起长为(30-3x)m,宽为(24-2x)m,由已知得:(30-3x)•(24-2x)=480,整理得:x2-22x+40=0,解得:x1=2,x2=20,当x=20时,30-3x=-30,24-2x=-16,不符合题意舍去,即x=2.答:人行通道的宽度为2米.故答案为2.设人行通道的宽度为x米,将两块矩形绿地合在一起长为(30-3x)m,宽为(24-2x)m,根据矩形绿地的面积为480m2,即可列出关于x的一元二次方程,解方程即可得出x的值,经检验后得出x=20不符合题意,此题得解.本题考查了一元二次方程的应用,根据数量关系列出关于x的一元二次方程是解题的关键.16.【答案】3【解析】解:如图,作BH⊥AC于H.在Rt△ABH中,∵AB=6,∠BHA=90°,∠BAH=30°,∴BH=AB=3,∵四边形ADBM是平行四边形,∴BD∥AC,∴当DM⊥AC时,DM的值最小,此时DM=BH=3,故答案为3.如图,作BH⊥AC于H.因为四边形ADBM是平行四边形,所以BD∥AC,所以当DM⊥AC时,DM的值最小,此时DM=BH.本题考查直角三角形30度角性质、等腰三角形的性质、平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.【答案】解:(1)原式=-==,∵x=2+,y=2-,∴x+y=4、y-x=-2、xy=1,则原式==-8;(2)∵2<<3,∴a=2、b=-2,∴-ab=-2(-2)=+2-2+4=6-.【解析】(1)将原式变形为,再根据x、y的值计算出y+x、y-x、xy的值,继而代入可得;(2)由题意得出a、b的值,代入计算可得.本题主要考查二次根式的化简求值,解题的关键是掌握二次根式混合运算顺序和运算法则.18.【答案】解:(1)2x2-x=0,x(2x-)=0,则x=0或2x-=0,解得x1=0,x2=;(2)(x-1)(2x+3)=1,2x2+x-4=0,解得:x1=,x2=.【解析】(1)提取公因式x,即可得到x(2x-)=0,再解两个一元一次方程即可;(2)先转化为一般式方程,然后利用因式分解法解方程.本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.19.【答案】40;70.5~80.5【解析】解:(1)根据题意得:该班参加这次测验的学生共有:2+9+10+14+5=40(名);故答案为:40;(2)因为共有40个数,所以中位数是第20和21个数的平均数,所以这次测验成绩的中位数落在落70.5~80.5分数段内;故答案为:70.5~80.5;(3)根据题意得:该校这次数学测验的优秀人数是800×=380(人).(1)把各分段的人数加起来就是总数;(2)根据中位数的定义得出中位数就是第20个和第21个的平均数,从而得出答案;(3)先算出40人中80分以上的人的优秀率,再乘以总人数即可.本题考查了频数分布直方图,解题的关键是能读懂统计图,从图中获得必要的信息,用到的知识点是中位数、频数、频率.20.【答案】解:(1)正确结论是①④,(2)①在△ABC和△ADC中,∵ ,∴△ABC≌△ADC(SSS),∴∠ABC=∠ADC,故①结论正确;②∵△ABC≌△ADC,∴∠BAC=∠DAC,∵AB=AD,∴OB=OD,AC⊥BD,而AB与BC不一定相等,所以AO与OC不一定相等,故②结论不正确;③由②可知:AC平分四边形ABCD的∠BAD、∠BCD,而AB与BC不一定相等,所以BD不一定平分四边形ABCD的对角;故③结论不正确;④∵AC⊥BD,∴四边形ABCD的面积S=S△ABD+S△BCD=BD•AO+BD•CO=BD•(AO+CO)=AC•BD.故④结论正确;【解析】①证明△ABC≌△ADC,可作判断;②③由于AB与BC不一定相等,则可知此两个选项不一定正确;④根据面积和求四边形的面积即可.本题考查了全等三角形的判定和性质、等腰三角形的性质,掌握全等三角形的判定方法是解题的关键,结论①可以利用等边对等角,由等量加等量和相等来解决.21.【答案】解:(1)设每件童装应降价x元,由题意得:(100-60-x)(20+2x)=1200,解得:x1=10,x2=20,因要减少库存,故取x=20,答:每件童装应定价80元.(2)1200不是最高利润,y=(100-60-x)(20+2x)=-2x 2+60x+800=-2(x-15)2+1250故当降价15元,即以85元销售时,最高利润值达1250元.【解析】(1)首先设每件降价x元,则每件实际盈利为(100-60-x)元,销售量为(20+2x)件,用每件盈利×销售量=每天盈利,列方程求解.为了扩大销售量,x应取较大值.(2)设每天销售这种童装利润为y,利用(1)中的关系列出函数关系式,利用配方法解决问题.此题考查了二次函数的应用以及一元二次方程的应用,利用基本数量关系:平均每天售出的件数×每件盈利=每天销售这种童装利润,进而列方程与函数关系解决实际问题.22.【答案】解:(1)如图2,OP为所作;(2)方法一:如图1,利用有刻度的直尺画出AB的中点M,则OM为∠AOB的平分线;方法二:如图3,利用圆规和直尺作∠AOB的平分线ON,【解析】(1)利用AB、EF,填空相交于点P,如图2,利用平行四边形的性质得到PA=PB,然后根据等腰三角形的性质可判断OP平分∠AOB;(2)方法一:如图1,利用有刻度的直尺和腰三角形的性质画图;方法二:如图3,利用圆规和直尺,根据基本作图作∠AOB的平分线ON.本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了平行四边形的性质和等腰三角形的性质.23.【答案】解:(1)∵AB=AC=13,AD⊥BC,∴BD=CD=5cm,且∠ADB=90°,∴AD2=AC2-CD2∴AD=12cm.(2)AP=t,∴PD=12-t,在Rt△PDC中,PC=,CD=5,根据勾股定理得,PC2=CD2+PD2,∴29=52+(12-t)2,∴t=10或t=14(舍).即:t的值为10s;(3)假设存在t,使得S△PMD=S△ABC.∵BC=10,AD=12,∴S△ABC=BC×AD=60,①若点M在线段CD上,即0≤t<时,PD=12-t,DM=5-2t,由S△PMD=S△ABC,即(12-t)(5-2t)=,2t2-29t+43=0解得t1=(舍去),t2=②若点M在射线DB上,即<t<12.由S△PMD=S△ABC得(12-t)(2t-5)=,2t2-29t+77=0解得t=11或t=综上,存在t的值为s或 11s或s,使得S△PMD=S△ABC.【解析】(1)根据等腰三角形性质和勾股定理解答即可;(2)根据勾股定理建立方程求解即可;(3)根据题意列出PD、MD的表达式解方程组,由于M在D点左右两侧情况不同,所以进行分段讨论即可,注意约束条件.此题是三角形综合题,主要考查了等腰三角形的性质,勾股定理,三角形的面积公式,解本题的关键为利用三角形性质勾股定理以及分段讨论,在解方程时,注意解是否符合约束条件.。

2017-2018学年山东省枣庄市滕州市八年级(下)期中数学试卷

2017-2018学年山东省枣庄市滕州市八年级(下)期中数学试卷

2017-2018学年山东省枣庄市滕州市八年级(下)期中数学试卷一、选择题:每题3分,共45分。

在每小题的四个选项中,只有一项是符合题目要求的,把正确答案的代号涂在答题卡上。

1.(3分)下列图形中,既是轴对称图形,又是中心对称图形的有( )A . 1 个B . 2 个C . 3 个D . 4 个2.(3分)如果a b >,那么下列各式中正确的是( )A .22a b -<-B .22a b <C .22a b -<-D .a b ->-3.(3分)如果关于x 的不等式(1)1a x a +>+的解集为1x <,那么a 的取值范围是( )A .0a >B .0a <C .1a >-D .1a <-4.(3分)已知一个等腰三角形的两边长分别是 2 和 4 ,则该等腰三角形的周长为( )A . 8 或 10B . 8C . 10D . 6 或 125.(3分)ABC ∆中,5AB AC ==,8BC =,点P 是BC 边上的动点,过点P 作PD AB ⊥于点D ,PE AC ⊥于点E ,则PD PE +的长是( )A . 4.8B . 4.8 或 3.8C . 3.8D . 56.(3分)如图,在ABC ∆中,AB AC =,120A ∠=︒,6BC cm =,AB 的垂直平分线交BC 于点M ,交AB 于点E ,AC 的垂直平分线交BC 于点N ,交AC 于点F ,则MN 的长为( )A .4cmB .3cmC .2cmD .1cm7.(3分)如图,在ABC ∆中,90C ∠=︒,点E 是AC 上的点,且12∠=∠,DE垂直平分AB ,垂足是D ,如果3EC cm =,则AE 等于( )A .3cmB .4cmC .6cmD .9cm8.(3分)已知:如图,点D ,E 分别在ABC ∆的边AC 和BC 上,AE 与BD 相交于点F ,给出下面四个条件:①12∠=∠;②AD BE =;③AF BF =;④DF EF =,从这四个条件中选取两个,不能判定ABC ∆是等腰三角形的是( )A .①②B .①④C .②③D .③④9.(3分)如图,三条公路把A 、B 、C 三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三个条公路的距离相等,则这个集贸市场应建在( )A .在AC 、BC 两边高线的交点处B .在AC 、BC 两边中线的交点处C .在A ∠、B ∠两内角平分线的交点处D .在AC 、BC 两边垂直平分线的交点处10.(3分)如图,ABC ∆中,AB AC =,点D 在AC 边上,且BD BC AD ==,则A ∠的度数为( )A .30︒B .36︒C .45︒D .70︒11.(3分)已知不等式组2123x a x b -<⎧⎨->⎩的解集为11x -<<,则(1)(1)a b +-值为( )A . 6B .6-C . 3D .3-12.(3分)如图,已知ABC ∆中,45ABC ∠=︒,4AC =,H 是高AD 和BE 的交点,则线段BH 的长度为( )A B .4 C .D .513.(3分)如图,在平面直角坐标系中,点A 的坐标为(0,3),OAB ∆沿x 轴向右平移后得到的△O A B ''',点A 的对应点A '在直线34y x =上,则点B 与其对应点B '间的距离为( )A .94B . 3C . 4D . 514.(3分)如图,在ABC ∆中,90C ∠=︒,30B ∠=︒,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中正确的个数是( )①AD 是BAC ∠的平分线;②60ADC ∠=︒;③点D 在AB 的中垂线上;④:1:3DAC ABC S S ∆∆=.A . 1B . 2C . 3D . 415.(3分)如图,在直角坐标系中,已知点(3,0)A -、(0,4)B ,对OAB ∆连续作旋转变换,依次得到△1、△2、△3、△4、⋯,△16的直角顶点的坐标为( )A .(60,0)B .(72,0)C .1(675,9)5D .1(795,9)5二、填空题:每题3分,共18分,将答案填在题的横线上16.(3分)在平面直角坐标系中,若点(26,5)P x x +在第四象限,则x 的取值范围是 .17.(3分)如图所示,把一个直角三角尺ACB 绕着30︒角的顶点B 顺时针旋转,使得点A 落在CB 的延长线上的点E 处,则BDC ∠的度数为 度.18.(3分)已知等腰OPQ ∆的顶点P 的坐标为(4,3),O 为坐标原点,腰长5OP =,。

山东枣庄滕州市2017-2018学年八年级数学下学期期中试

山东枣庄滕州市2017-2018学年八年级数学下学期期中试

山东枣庄滕州市2017-2018学年八年级数学下学期期中试题201人2018学年度第二学期期中考就 八年级数7试题J&号_ _ .J J232A 25 2ft27JM J I |■p*■b丿1 d*止噩二■干* F 中=的代号塗左答廉卡上.5』牛G 孑个口袖,那幺下列各式中正輸的是(JC.-2a<-2A,只有一项是符Du^a>-4;W養于"的不等式("1)4+1的解集为环1,那么住的取值柩隅坦 Ba<0C.a>-ID.a<-1A“ 彳尊*三概的两边拴分别是2和斗次滋誓蜃三灘的周拴制 讥或皿B ®CJO D 備12S.^ABCB® cao血 讥注上°乳虑户是肮边上的动点*过点户惟FD M ”匚姻円”您的抵纵 )A"«It 18€.3.8D.5M.*A4*C f^r AB*AC, "■ 120SflO6cm 肿的疹直平射1SI 削 人上闪的彳巾平为*£ 2 Hf : j 点忆丸#(?于剧北鼎牌N 的鮭舟f忠•则 細wv7如图准总初c 中起C90•.處F V 枇上HAJUI-Z2./W •亶甘M 軒 taf At ^<m.W4£W r( }A 3cmC.ScmD.ftctn1U.1T Ml >4i8•如图,点D f E 分别在AABC 的边AC 和BC 上“E 与BD 相交于点化给卄①门二£2;②血=肚;③M=EF ;④DF 二EF,从这四个条件中选取轟酬斛 是等腰三角形的是()小胡定心A.dXD B-(D®C ②S )D.③®9■如图,三条公路把ARC 三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三条公 路的距离相等,则这个集贸市场应建在()A.在AC^BC 两边髙线的交点处B 在、眈两边中线的交点处C.在LA^LB 两内角平分线的交点处 D*在AC 、BC 两边垂直平分线的交点处 ZABC 中”B=AC,点D 在AC 边上但BD=BC=.W^/_A 的度数为()A.360B.450C.5500.70°的解集为-1«1,则5和)(”1)值为() x~2o>JA.3B.6C.—3D. -612■已知MBC 中,AABC=45\4C = 4,//是高M 和高BE 的交点■则线段HH 的长度为()B 如图,在平面直角坐标系中,点人的坐标为(0*3),沿文轴向右平移后得到厶0册 3 点A 的对应点M 在直线y =亍上,则点B 与其对应点孑间的距离为()A 9 A7 C.4 ” D.514•如图,在△朋C 中上"90匕"=30。

2017-2018学年八年级下期中数学试卷含答案

2017-2018学年八年级下期中数学试卷含答案

2017-2018学年八年级下期中数学试卷含答案一、选择题1.把函数y=﹣2x的图象向下平移1个单位,所得图象的函数解析式为()A.y=﹣2x+1 B.y=﹣2x﹣1 C.y=﹣2(x﹣1)D.y=﹣2(x+1)2.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB∥DC,AD=BC3.下列各式从左到右的变形正确的是()A.=x+y B.=C.﹣=D.=4.已知点P(1﹣2a,a﹣2)关于原点的对称点在第一象限内,且a为整数,则关于x的分式方程=2的解是()A.5 B.1 C.3 D.不能确定5.在平面直角坐标系中,有A(0,1),B(﹣1,0),C(1,0)三点,若点D与A,B,C三点构成平行四边形,则点D的坐标不可能是()A.(0,﹣1)B.(﹣2,1)C.(﹣2,﹣1)D.(2,1)6.甲、乙两人赛跑,所跑路程与时间的关系如图(实线为甲的路程与时间的关系图象,虚线为乙的路程与时间的关系图象),小王根据图象得到如下四条信息,其中错误的是()A.这是一次1500m赛跑B.甲、乙同时起跑C.甲、乙两人中先到达终点的是乙D.甲在这次赛跑中的速度为5m/s7.如图,双曲线y=﹣的一个分支为()A.① B.② C.③ D.④8.函数y=﹣ax+a与(a≠0)在同一坐标系中的图象可能是()A.B.C.D.二、填空题9.﹣(﹣1)2016﹣(﹣)0+(﹣)﹣2﹣|﹣3|+=.10.如图,在▱ABCD中,AE⊥BC,AF⊥CD,E,F为垂足,若∠EAF=59°,则∠B=度.11.纳米是一种长度单位,1纳米等于10亿分之一米,1根头发丝直径是62000纳米,则一根头发丝的直径用科学记数法表示为米.12.在函数y=(k为常数)的图象上有三个点(﹣2,y1),(﹣1,y2),(,y3),在函数值y1,y2,y3中最大的为.13.如图,点A是反比例函数的图象上的一点,过点A作▱ABCD,使点B、C在x轴上,点D在y轴上,则▱ABCD的面积为.14.如图,已知直线y=﹣2x+b与直线y=ax﹣1相交于点(2,﹣2),由图象可得不等式﹣2x+b>ax﹣1的解集是.15.如图,▱ABCD的周长为60cm,△AOB的周长比△BOC大8cm,则AB=,BC=.三、解答题16.(1)先化简,再求值:÷(﹣)+,其中x=2﹣1﹣20160(2)阅读理解【提出问题】已知===k,求分式的值.【分析问题】本题已知条件是连等式,因此可用设参数法,即设出参数k,得出x,y,z与k的关系,然后再代入待求的分式化简即可.【解决问题】设===k,则x=4k,y=3k,z=2k,将它们分别代入中并化简,可得分式的值为.【拓展应用】已知=﹣=,求分式的值.17.如图,在正方形ABCD中,E是BC延长线上一点,且AC=EC,求∠DAE的度数.18.已知直线y=2x+6,解答下列问题:(1)在直角坐标系中,画出该直线;(2)求直线与坐标轴所围成的三角形的面积;(3)根据图象直接写出,当x取什么值时,函数值y>0?19.某校准备在甲、乙两家公司为毕业班制作一批VCD光盘作为毕业留念.甲公司提出:每个光盘收材料费5元,另收设计和制作费1500元;乙公司提出:每个光盘收材料费8元,不收设计费.(1)请写出制作VCD光盘的个数x与甲公司的收费y1(元)的函数关系式;(2)请写出制作VCD光盘的个数x与乙公司的收费y2(元)的函数关系式;(3)如果学校派你去甲、乙两家公司订做纪念光盘,你会选择哪家公司.20.如图1,已知双曲线y=(k>0)与直线y=k′x交于A、B两点,点A在第一象限,试解答下列问题:(1)若点A的坐标为(3,1),则点B的坐标为;当x满足:时,≤k′x;(2)过原点O作另一条直线l,交双曲线y=(k>0)于P,Q两点,点P在第一象限,如图2所示.①四边形APBQ一定是;②若点A的坐标为(3,1),点P的横坐标为1,求四边形APBQ的面积.21.如图,在▱ABCD中,DE平分∠ADC交AB于点G,交CB延长线于E,BF平分∠ABC交AD的延长线于F.(1)若AD=5,AB=8,求GB的长.(2)求证:∠E=∠F.22.甲、乙两人在某标准游泳池相邻泳道进行100米自由泳训练,如图是他们各自离出发点的距离y(米)与他们出发的时间x(秒)的函数图象.根据图象,解决如下问题.(注标准泳池单向泳道长50米,100米自由泳要求运动员在比赛中往返一次;返回时触壁转身的时间,本题忽略不计)(1)直接写出点A坐标,并求出线段OC的解析式;(2)他们何时相遇?相遇时距离出发点多远?(3)若甲、乙两人在各自游完50米后,返回时的速度相等;则快者到达终点时领先慢者多少米?23.我县万德隆商场有A、B两种商品的进价和售价如表:已知:用2400元购进A种商品的数量与用3000元购进B种商品的数量相同.(1)求m的值;(2)该商场计划同时购进的A、B两种商品共200件,其中购进A种商品x件,实际进货时,生产厂家对A 种商品的出厂价下调a(50<a<70)元出售,若商场保持同种商品的售价不变,商场售完这200件商品的总利润为y元.①求y关于x的函数关系式;②若限定A种商品最多购进120件最少购进100件,请你根据以上信息,设计出使该商场获得最大利润的进货方案.参考答案与试题解析一、选择题1.把函数y=﹣2x的图象向下平移1个单位,所得图象的函数解析式为()A.y=﹣2x+1 B.y=﹣2x﹣1 C.y=﹣2(x﹣1)D.y=﹣2(x+1)【考点】一次函数图象与几何变换.【分析】根据“上加下减”的平移原理,结合原函数解析式即可得出结论.【解答】解:根据“上加下减”的原理可得:函数y=﹣2x的图象向下平移1个单位后得出的图象的函数解析式为y=﹣2x﹣1.故选B.【点评】本题考查了一次函数图象与几何变换,解题的关键是根据平移原理找出平移后的函数解析式.本题属于基础题,难度不大,解决该题型题目时,依据“上加下减”的平移原理找出函数图象平移后的函数解析式是关键.2.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB∥DC,AD=BC【考点】平行四边形的判定.【分析】根据平行四边形判定定理进行判断.【解答】解:A、由“AB∥DC,AD∥BC”可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意;B、由“AB=DC,AD=BC”可知,四边形ABCD的两组对边相等,则该四边形是平行四边形.故本选项不符合题意;C、由“AO=CO,BO=DO”可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意;D、由“AB∥DC,AD=BC”可知,四边形ABCD的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意;故选D.【点评】本题考查了平行四边形的判定.(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.3.下列各式从左到右的变形正确的是()A.=x+y B.=C .﹣=D.=【考点】分式的基本性质.【分析】根据分式的分子分母都乘以或除以同一个不为零的数或者同一个整式,分式的值不变.【解答】解:A、分子与分母除的数不是同一个数,故A错误;B、分子分母的一部分乘以10,故B错误;C、分子、分母、分式改变其中两个的符号,分式的值不变,故C错误;D、分子分母都乘以2,故D正确;故选:D.【点评】本题考查了分式的基本性质,分式的分子分母都乘以或除以同一个不为零的数或者同一个整式,分式的值不变.4.已知点P(1﹣2a,a﹣2)关于原点的对称点在第一象限内,且a为整数,则关于x的分式方程=2的解是()A.5 B.1 C.3 D.不能确定【考点】解分式方程;关于原点对称的点的坐标.【专题】计算题.【分析】根据P关于原点对称点在第一象限,得到P横纵坐标都小于0,求出a的范围,确定出a的值,代入方程计算即可求出解.【解答】解:∵点P(1﹣2a,a﹣2)关于原点的对称点在第一象限内,且a为整数,∴,解得:<a<2,即a=1,当a=1时,所求方程化为=2,去分母得:x+1=2x﹣2,解得:x=3,经检验x=3是分式方程的解,则方程的解为3.故选:C【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.5.在平面直角坐标系中,有A(0,1),B(﹣1,0),C(1,0)三点,若点D与A,B,C三点构成平行四边形,则点D的坐标不可能是()A.(0,﹣1)B.(﹣2,1)C.(﹣2,﹣1)D.(2,1)【考点】平行四边形的判定;坐标与图形性质.【分析】根据两组对边分别平行的四边形是平行四边形可得到D点坐标的三种情况:①当AB∥CD,AD∥BC 时;②当AB∥CD,AC∥BD时;③当AD∥BC,AC∥BD时;分别求出D的坐标即可.【解答】解:如图所示∵两组对边分别平行的四边形是平行四边形∴可以分以下三种情况分别求出D点的坐标:如图所示:①当AB∥CD,AD∥BC时,D点的坐标为(2,1);②当AB∥CD,AC∥BD时,D点的坐标为(0,﹣1);③当AD∥BC,AC∥BD时,D点的坐标为(﹣2,1).故选:C.【点评】本题主要考查了平行四边形的判定,要求学生掌握平行四边形的判定并会灵活运用,注意分类讨论.6.甲、乙两人赛跑,所跑路程与时间的关系如图(实线为甲的路程与时间的关系图象,虚线为乙的路程与时间的关系图象),小王根据图象得到如下四条信息,其中错误的是()A.这是一次1500m赛跑B.甲、乙同时起跑C.甲、乙两人中先到达终点的是乙D.甲在这次赛跑中的速度为5m/s【考点】函数的图象.【专题】数形结合.【分析】根据函数图象对各选项分析判断后利用排除法求解.【解答】解:A、路程为1500m后不在增加,所以,这是一次1500m赛跑,正确,故本选项错误;B、加起跑后一段时间乙开始起跑,错误,故本选项正确;C、乙计时283秒到达终点,甲计时300秒到达终点,正确,故本选项错误;D、甲在这次赛跑中的速度为=5m/s,正确,故本选项错误.故选B.【点评】本题考查了函数图象,读函数的图象时首先要理解横、纵坐标表示的含义.7.如图,双曲线y=﹣的一个分支为()A.① B.② C.③ D.④【考点】反比例函数的图象.【分析】根据函数图象上图象经过的点的,利用待定系数法即可求得函数的解析式,即k的值,从而判断.【解答】解:A、反比例函数进过点(﹣3,4),代入函数解析式得k=﹣12,故选项正确;B、反比例函数进过点(﹣3,2),代入函数解析式得k=﹣6,故选项错误;C、反比例函数进过点(1,4),代入函数解析式得k=4,故选项错误;D、反比例函数进过点(2,4),代入函数解析式得k=8,故选项错误.故选A.【点评】本题考查了待定系数求函数的解析式,是一个基础题.8.函数y=﹣ax+a与(a≠0)在同一坐标系中的图象可能是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【专题】压轴题.【分析】根据反比例函数与一次函数的图象特点解答即可.【解答】解:a>0时,﹣a<0,y=﹣ax+a在一、二、四象限,(a≠0)在二、四象限,只有A符合;a<0时,﹣a>0,y=﹣ax+a在一、三、四象限,(a≠0)在一、三象限,无选项符合.故选A.【点评】本题主要考查了反比例函数的图象性质和一次函数的图象性质,关键是由a的取值确定函数所在的象限.二、填空题9.﹣(﹣1)2016﹣(﹣)0+(﹣)﹣2﹣|﹣3|+=2+1.【考点】立方根;零指数幂;负整数指数幂.【专题】计算题.【分析】首先将二次根式、幂运算、绝对值、立方根进行化简求值,然后根据实数的运算法则进行运算即可.【解答】解:﹣(﹣1)2016﹣(﹣)0+(﹣)﹣2﹣|﹣3|+,=2﹣1﹣1+4﹣3+2,=2+1.故答案为:2+1.【点评】题目考查了二次根式化简、幂运算、绝对值的运算、立方根的运算等知识点,考察知识较多,对学生要求较高,解决本题的关键是掌握各种运算法则,题目难易程度整体适中,适合课后训练.10.如图,在▱ABCD中,AE⊥BC,AF⊥CD,E,F为垂足,若∠EAF=59°,则∠B=59度.【考点】平行四边形的性质.【分析】直接利用垂直的定义结合平行四边形的性质得出∠BAE的度数,进而得出答案.【解答】解:∵在▱ABCD中,AE⊥BC,AF⊥CD,∴∠AEB=∠AFC=90°,AB∥DC,∴∠BAF=90°,∵∠EAF=59°,∴∠BAE=31°,∴∠B=59°.故答案为:59.【点评】此题主要考查了平行四边形的性质,根据题意得出∠BAE的度数是解题关键.11.纳米是一种长度单位,1纳米等于10亿分之一米,1根头发丝直径是62000纳米,则一根头发丝的直径用科学记数法表示为 6.2×10﹣6米.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:62000纳米=62000×10﹣10m=6.2×10﹣6m,故答案为:6.2×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.在函数y=(k为常数)的图象上有三个点(﹣2,y1),(﹣1,y2),(,y3),在函数值y1,y2,y3中最大的为y2.【考点】反比例函数图象上点的坐标特征.【分析】首先可判定函数y=(k为常数)的系数﹣k2﹣2<0,即可知此函数在二、四象限,然后画出图象,确定各点的位置,即可求得答案.【解答】解:∵函数y=(k为常数)的系数﹣k2﹣2<0,∴此函数在二、四象限,如图∴函数值y1,y2,y3中最大的为y2.故答案为:y2.【点评】此题考查了反比例函数图象上点的坐标特征.注意结合图象求解比较简单.13.如图,点A是反比例函数的图象上的一点,过点A作▱ABCD,使点B、C在x轴上,点D在y轴上,则▱ABCD的面积为6.【考点】反比例函数系数k的几何意义;平行四边形的性质.【专题】计算题.【分析】连结OA、CA,根据反比例函数y=(k≠0)中比例系数k的几何意义得到S△OAD=|k|=×6=3,再利用平行四边形的性质得BC∥AD,所以S△CAD=S△OAD=3,然后根据▱ABCD的面积=2S△CAD进行计算.【解答】解:连结OA、CA,如图,则S△OAD=|k|=×6=3,∵四边形ABCD为平行四边形,∴BC∥AD,∴S△CAD=S△OAD=3,∴▱ABCD的面积=2S△CAD=6.故答案为6.【点评】本题考查了反比例函数y=(k≠0)中比例系数k的几何意义:过反比例函数图象上任意一点分别作x轴、y轴的垂线,则垂线与坐标轴所围成的矩形的面积为|k|.也考查了平行四边形的性质.14.如图,已知直线y=﹣2x+b与直线y=ax﹣1相交于点(2,﹣2),由图象可得不等式﹣2x+b>ax﹣1的解集是x<2.【考点】一次函数与一元一次不等式.【分析】以交点(2,﹣2)为分界,交点的坐标,y=﹣2x+b的图象在直线y=ax﹣1的上边,故不等式的解集为x<2.【解答】解:根据图象可得不等式﹣2x+b>ax﹣1的解集是x<2,故答案为:x<2.【点评】此题主要考查了一次函数与一元一次不等式的关系,关键是正确从图象中得到信息.15.如图,▱ABCD的周长为60cm,△AOB的周长比△BOC大8cm,则AB=19cm,BC=11cm.【考点】平行四边形的性质.【分析】根据平行四边形的性质可知,平行四边形的对角线互相平分,由于△AOB的周长比△BOC的周长多8cm,则AB比BC大8cm,继而可求出AB、BC的长度.【解答】解:∵▱ABCD的周长为60cm,∴BC+AB=30cm,①又∵△AOB的周长比△BOC的周长大8cm,∴AB﹣BC=8cm,②由①②得:AB=19cm,BC=11cm.故答案为:19cm,11cm.【点评】此题主要考查平行四边的性质:平行四边形的两组对边分别相等且平行四边形的对角线互相平分.三、解答题16.(1)先化简,再求值:÷(﹣)+,其中x=2﹣1﹣20160(2)阅读理解【提出问题】已知===k,求分式的值.【分析问题】本题已知条件是连等式,因此可用设参数法,即设出参数k,得出x,y,z与k的关系,然后再代入待求的分式化简即可.【解决问题】设===k ,则x=4k ,y=3k ,z=2k ,将它们分别代入中并化简,可得分式的值为 .【拓展应用】已知=﹣=,求分式的值.【考点】分式的化简求值;分式的值;零指数幂;负整数指数幂.【分析】(1)先根据分式混合运算的法则把原式进行化简,再求出x 的值代入进行计算即可; (2)【解决问题】把x=4k ,y=3k ,z=2k 代入进行计算即可;【拓展应用】令=﹣==k ,则x=3k ,y=﹣2k ,z=4k ,再代入分式进行计算即可.【解答】解:(1)原式=÷+=÷+=÷+=•+=+= =,当x=2﹣1﹣20160=﹣1=﹣时,原式===.(2)【解决问题】把x=4k ,y=3k ,z=2k 代入得,原式===.故答案为:;【拓展应用】令=﹣==k ,则x=3k ,y=﹣2k ,z=4k ,原式====.【点评】本题考查的是分式的化简求值,在解答此类题目时要注意,当条件是连等式,因此可用设参数法,即设出参数k,得出x,y,z与k的关系,然后再代入待求的分式化简即可.17.如图,在正方形ABCD中,E是BC延长线上一点,且AC=EC,求∠DAE的度数.【考点】正方形的性质.【分析】根据正方形的对角线平分一组对角可得∠DAC=∠ACB=45°,再根据等边对等角可得∠E=∠EAC,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠EAC,再根据∠DAE=∠DAC﹣∠EAC代入数据进行计算即可得解.【解答】解:∵四边形ABCD为正方形,∴∠DAC=∠ACB=45°,∵AC=CE,∴∠E=∠EAC,∵2∠EAC=∠E+∠EAC=∠ACB=45°,∴∠EAC=22.5°,∴∠DAE=∠DAC﹣∠EAC=45°﹣22.5°=22.5°.【点评】本题考查了正方形的性质,主要利用了正方形的对角线平分一组对角,等边对等角的性质,三角形的外角性质,是基础题,熟记各性质是解题的关键.18.已知直线y=2x+6,解答下列问题:(1)在直角坐标系中,画出该直线;(2)求直线与坐标轴所围成的三角形的面积;(3)根据图象直接写出,当x取什么值时,函数值y>0?【考点】一次函数的图象;一次函数图象上点的坐标特征.【分析】(1)首先求出图象与坐标轴交点,进而画出图象;(2)直接利用(1)中所求,结合直角三角形面积求法得出答案;(3)利用函数图象得出不等式的解.【解答】解:(1)当x=0,则y=6;当y=0,则x=﹣3,如图所示:(2)直线与坐标轴所围成的三角形的面积为:×3×6=9;(3)如图所示:当x>﹣3时,函数值y>0.【点评】此题主要考查了一次函数图象以及三角形面积求法,正确求出一次函数与坐标轴交点是解题关键.19.某校准备在甲、乙两家公司为毕业班制作一批VCD光盘作为毕业留念.甲公司提出:每个光盘收材料费5元,另收设计和制作费1500元;乙公司提出:每个光盘收材料费8元,不收设计费.(1)请写出制作VCD光盘的个数x与甲公司的收费y1(元)的函数关系式;(2)请写出制作VCD光盘的个数x与乙公司的收费y2(元)的函数关系式;(3)如果学校派你去甲、乙两家公司订做纪念光盘,你会选择哪家公司.【考点】一次函数的应用.【专题】应用题.【分析】根据题意,y1与x是一次函数关系,y2与x成正比例,可直接写出它们的关系式y1=5x+1500,y2=8x;若要选择公司订做光盘,则要看学校订做纪念光盘的数量,当甲、乙两家公司的收费相等时,即y1=y2时可计算出订做的光盘数,再与学校订做的光盘数相比较,就可做出选择.【解答】解:(1)y1=5x+1500,(2)y2=8x;(3)当y1=y2时,即5x+1500=8x,解得x=500,当光盘为500个是同样合算,当光盘少于500个时选乙公司合算,当光盘多于500个时选甲公司合算.【点评】此题不难,关键要仔细审题,懂得计算两家公司收费相等时的光盘数,再与学校需订的数量相比较.20.如图1,已知双曲线y=(k>0)与直线y=k′x交于A、B两点,点A在第一象限,试解答下列问题:(1)若点A的坐标为(3,1),则点B的坐标为(﹣3,﹣1);当x满足:﹣3<x<0或x>3时,≤k′x;(2)过原点O作另一条直线l,交双曲线y=(k>0)于P,Q两点,点P在第一象限,如图2所示.①四边形APBQ一定是平行四边形;②若点A的坐标为(3,1),点P的横坐标为1,求四边形APBQ的面积.【考点】反比例函数综合题.【分析】(1)根据双曲线关于原点对称求出点B的坐标,结合图象得到≤k′x时,x的取值范围;(2)①根据对角线互相平分的四边形是平行四边形证明即可;②过点A、B分别作y轴的平行线,过点P、Q分别作x轴的平行线,分别交于C、D、E、F,根据正方形的面积公式和三角形的面积公式计算即可.【解答】解:(1)∵双曲线y=关于原点对称,点A的坐标为(3,1),∴点B的坐标为(﹣3,﹣1),由图象可知,当﹣3<x<0或x>3时,≤k′x,故答案为:(﹣3,﹣1);﹣3<x<0或x>3;(2)①∵双曲线y=关于原点对称,∴OA=OB,OP=OQ,∴四边形APBQ一定是平行四边形,故答案为:平行四边形;②∵点A的坐标为(3,1),∴k=3×1=3,∴反比例函数的解析式为y=,∵点P的横坐标为1,∴点P的纵坐标为3,∴点P的坐标为(1,3),由双曲线关于原点对称可知,点Q的坐标为(﹣1,﹣3),点B的坐标为(﹣3,﹣1),如图2,过点A、B分别作y轴的平行线,过点P、Q分别作x轴的平行线,分别交于C、D、E、F,则四边形CDEF是矩形,CD=6,DE=6,DB=DP=4,CP=CA=2,则四边形APBQ的面积=矩形CDEF的面积﹣△ACP的面积﹣△PDB的面积﹣△BEQ的面积﹣△AFQ的面积=36﹣2﹣8﹣2﹣8=16.【点评】本题考查的是反比例函数的图形和性质、反比例函数图象上点的坐标特征、中心对称图形的概念和性 质以及平行四边形的判定,掌握双曲线是关于原点的中心对称图形、平行四边形的判定定理是解题的关键.21.如图,在▱ ABCD 中,DE 平分∠ADC 交 AB 于点 G,交 CB 延长线于 E,BF 平分∠ABC 交 AD 的延长线 于 F. (1)若 AD=5,AB=8,求 GB 的长. (2)求证:∠E=∠F.【考点】平行四边形的性质. 【分析】(1)直接利用平行四边形的性质结合角平分线的性质得出∠2=∠AGD,进而得出 AD=AG,得出答 案即可; (2)首先证明∠CDE=∠ABF,再证明 ED∥FB,然后再根据平行四边形的性质可得 AF∥CE,根据两组对边 分别平行的四边形是平行四边形可得四边形 BFDE 是平行四边形,进而得出答案. 【解答】(1)解:∵在▱ ABCD 中,DE 平分∠ADC 交 AB 于点 G,BF 平分∠ABC 交 AD 的延长线于 F, ∴∠1=∠2,∠3=∠4,AB∥DC, ∴∠2=∠AGD, ∴∠1=∠AGD, ∴AD=AG=5, ∵AB=8, ∴BG=8﹣5=3;(2)证明:∵四边形 ABCD 是平行四边形, ∴∠ADC=∠ABC,DC∥AB,AD∥BC, ∵DE 平分∠ADC, ∴∠CDE= ∠ADC, ∵BF 平分∠ABC, ∴∠ABF= ∠ABC, ∴∠CDE=∠ABF, ∵DC∥AB, ∴∠AGD=∠CDE, ∴∠AGD=∠FBA, ∴ED∥FB, ∵AF∥CE, ∴四边形 BFDE 是平行四边形, ∴∠E=∠F.【点评】此题主要考查了平行四边形的性质和判定,关键是掌握平行四边形两组对边分别平行,两组对边分别 平行的四边形是平行四边形.22.甲、乙两人在某标准游泳池相邻泳道进行 100 米自由泳训练,如图是他们各自离出发点的距离 y(米)与 他们出发的时间 x(秒)的函数图象.根据图象,解决如下问题.(注标准泳池单向泳道长 50 米,100 米自由 泳要求运动员在比赛中往返一次;返回时触壁转身的时间,本题忽略不计) (1)直接写出点 A 坐标,并求出线段 OC 的解析式; (2)他们何时相遇?相遇时距离出发点多远? (3)若甲、乙两人在各自游完 50 米后,返回时的速度相等;则快者到达终点时领先慢者多少米?【考点】一次函数的应用. 【专题】综合题. 【分析】(1)由图得点 A(30,50),C(40,50),用待定系数法,即可求出解析式;(2) 用待定系数法可求出, 线段 AB 的解析式为 y2=﹣ x+100, (30≤x≤60) , 然后, 联立方程组,解出即可; (3)甲乙两人在各自游完 50 米后,在返程中的距离保持不变,把 x=30 与 40 分别代入 y1 和 y2,解出即可解 答; 【解答】解:(1)由图得点 A(30,50),C(40,50), 设线段 OC 的解析式为:y1=k1x, 把点 C(40,50)代入得,k1= , ∴线段 OC 的解析式为:y1= x(0≤x≤40);(2)设线段 AB 的解析式为 y2=k2x+b, 把点 A(30,50)、点 B(60,0)代入可知: ,解得,,∴线段 AB 的解析式为 y2=﹣ x+100,(30≤x≤60);解方程组,解得,,∴线段 OC 与线段 AB 的交点为(,),即出发秒后相遇,相遇时距离出发点米;(3)∵甲乙两人在各自游完 50 米后,在返程中的距离保持不变, 把 x=30 代入 y1= x,得 y1= 米, 米, = 米.把 x=40 代入 y2=﹣ x+100,得 y2= ∴快者到达终点时,领先慢者 50﹣【点评】本题主要考查了一次函数的应用,考查了学生获取信息的能力,读懂图是解答的关键.23.我县万德隆商场有 A、B 两种商品的进价和售价如表: 商品 A 价格 进价(元/件) 售价(元/件) m 160 m+20 240 B已知:用 2400 元购进 A 种商品的数量与用 3000 元购进 B 种商品的数量相同. (1)求 m 的值;(2)该商场计划同时购进的 A、B 两种商品共 200 件,其中购进 A 种商品 x 件,实际进货时,生产厂家对 A 种商品的出厂价下调 a(50<a<70)元出售,若商场保持同种商品的售价不变,商场售完这 200 件商品的总 利润为 y 元. ①求 y 关于 x 的函数关系式; ②若限定 A 种商品最多购进 120 件最少购进 100 件,请你根据以上信息,设计出使该商场获得最大利润的进 货方案. 【考点】一次函数的应用. 【分析】(1)根据等量关系:用 2400 元购进 A 种商品的数量与用 3000 元购进 B 种商品的数量相同,列出方 程即可解决问题. (2)①根据总利润=A 商品利润+B 商品利用计算即可解决问题. ②分 50<a<60,60<a<70,a=60 三种情形,根据一次函数的性质讨论即可解决问题. 【解答】解:(1)由题意 解得:m=88. ∴m=80. (2)①y=[160﹣(80﹣a)]x+(240﹣100)(200﹣x)=(a﹣60)x+28000.(0<x<200) ②∵y=(a﹣60)x+28000,100≤x≤120, ∴当 50<a<60 时,a﹣60<0,y 随 x 增大而减小, ∴x=100 时,y 有最大值, 此时进货方案是购买 100 件 A 种商品,100 件 B 种商品利润最大. 当 60<a<70 时,y 随 x 增大而增大, ∴x=120 时,y 有最大值, 此时进货方案是购买 120 件 A 种商品,80 件 B 种商品利润最大. 当 a=60 时, 利润是定值为 28000 元, 此时进货方案是购买 m 件 A 种商品, (200﹣m) 件 B 种商品 (100≤m≤120) . 【点评】本题考查一次函数的应用,一元一次不等式等知识,解题的关键是连接题意,学会利用不等式解决实 际问题,学会利用一次函数的性质解决实际问题中最值问题,属于中考常考题型. =。

2017-2018学年山东省枣庄市山亭区八年级(下)期中数学试卷(解析版)

2017-2018学年山东省枣庄市山亭区八年级(下)期中数学试卷(解析版)

2017-2018学年山东省枣庄市山亭区八年级(下)期中数学试卷一、选择题(本大题共12小题,共36.0分)1.下列汽车标志中既是轴对称图形又是中心对称图形的是()A. B.C. D.2.下列不等式一定成立的是()A. B. C. D.3.下列各式从左到右的变形中,为因式分解的是()A. B.C. D.4.把不等式组的解集表示在数轴上,正确的是()A. B.C. D.5.如图:一次函数y=kx+b的图象经过A、B两点,则不等式kx+b>0的解集是()A. B. C. D.6.不等式组>>的解集是x>4,那么m的取值范围是()A. B. C. D.7.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=20°,则∠B的度数是()A.B.C.D.8.不等式组+有()个整数解.A. 2B. 3C. 4D. 59.如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AB=8,将△ABC沿CB向右平移得到△DEF.若四边形ABED的面积等于8,则平移距离等于()A. 2B. 4C. 8D. 1610.已知关于x的不等式组的解集为3≤x<5,则a、b的值分别为()A. ,6B. 6,C. 1,2D. 0,311.西宁市天然气公司在一些居民小区安装天然气与管道时,采用一种鼓励居民使用天然气的收费办法,若整个小区每户都安装,收整体初装费10000元,再对每户收费500元.某小区住户按这种收费方法全部安装天然气后,每户平均支付不足1000元,则这个小区的住户数()A. 至少20户B. 至多20户C. 至少21户D. 至多21户12.在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=5,BD=4,则以下四个结论中:①△BDE是等边三角形;②AE∥BC;③△ADE的周长是9;④∠ADE=∠BDC.其中正确的序号是()A. ②③④B. ①③④C. ①②④D. ①②③二、填空题(本大题共6小题,共24.0分)13.因式分解:x3-9x=______.14.已知a>b,试比较3a______3b.15.将点A(3,2)向上平移6个单位长度得到点B的坐标是______.16.如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是______.17.某景点拟在如图的矩形荷塘上架设小桥,若荷塘中小桥的总长为100米,则荷塘周长为______.18.在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是______.三、解答题(本大题共7小题,共60.0分)19.解下列不等式或不等式组,并将解集在数轴上表示出来.(1)4x+5≥6x-3.(2)>20.已知x2+ax+3=(x-1)(x-b),试求直线y=2x-a与直线y=bx+3的交点坐标,并直接写出关于x的不等式2x-a≥bx+3的解集.21.某汽车租赁公司要购买轿车和面包车共10辆,轿车每辆7万元,面包车每辆4万元,其中轿车至少要购买5辆,公司可投入的购车款不超过61万元.(1)符合公司要求的购买方案有几种?请说明理由;(2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于1650元,那么应选择以上哪种购买方案?22.给出三个多项式:①2x2+4x-4;②2x2+12x+4;③2x2-4x请你把其中任意两个多项式进行加法运算(写出所有可能的结果),并把每个结果因式分解.23.如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(-2,2),B(0,5),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形;(2)平移△ABC,使点A的对应点A2坐标为(-2,-6),请画出平移后对应的△A2B2C2的图形;(3)若将△A1B1C绕某一点旋转180°可得到△A2B2C2,请直接写出旋转中心的坐标.24.甲、乙两家超市以相同的价格出售同样的商品,五一期间,为了吸引顾客,各自推出了不同的优惠方案,在甲超市累计购买商品超出了400元后,超过部分按原价七折优惠;在乙超市购买商品只按原价的八折优惠;设顾客累计购物x元(x>400)在甲,乙两个超市所支付的费用分别为y1元,y2元.(1)写出y1,y2与x之间的关系式.(2)试比较顾客到哪家超市购物更优惠?说明你的理由.25.如图,在平面直角坐标系中,已知点A(0,2),△AOB为等边三角形,P是x轴上一个动点(不与原点O重合),以线段AP为一边在其右侧作等边三角形△APQ.(1)求点B的坐标;(2)在点P的运动过程中,∠ABQ的大小是否发生改变?如不改变,求出其大小;如改变,请说明理由.(3)连接OQ,当OQ∥AB时,求P点的坐标.答案和解析1.【答案】C【解析】解:A、是轴对称图形不是中心对称图形;B、既不是轴对称图形又不是中心对称图形;C、既是轴对称图形又是中心对称图形;D、是轴对称图形不是中心对称图形.故选:C.逐一分析四个选项中的图形,可那个图形既是轴对称图形又是中心对称图形,由此即可得出结论.本题考查了中心对称图形以及轴对称图形,解题的关键是牢记中心对称图形及轴对称图形的特点.本题属于基础题,难度不大,解决该题型题目时,对折(或旋转)图形验证其是否为轴对称(或中心对称)图形是关键.2.【答案】B【解析】解:A、因为5>4,不等式两边同乘以a,而a≤0时,不等号方向改变,即5a≤4a,故错误;B、因为2<3,不等式两边同时加上x,不等号方向不变,即x+2<x+3正确;C、因为-1>-2,不等式两边同乘以a,而a≤0时,不等号方向改变,即-a≤-2a,故错误;D、因为4>2,不等式两边同除以a,而a≤0时,不等号方向改变,即,故错误.故选:B.根据不等式的性质分析判断.主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.3.【答案】B【解析】解:A、x2+1=x(x+),不是因式分解,故此选项错误;B、a2b+ab2=ab(a+b),从左到右的变形中为因式分解,故此选项正确;C、x2+x-5=(x-2)(x+3)+1,不符合因式分解的定义,故此选项错误;D、(a+3)(a-3)=a2-9,从左到右的变形中为整式乘法,故此选项错误.故选:B.直接利用因式分解的定义分析得出答案.此题主要考查了因式分解的意义,正确把握因式分解的定义是解题关键.4.【答案】B【解析】解:解不等式x+1>0得:x>-1,解不等式2x-4≤0得:x≤2,则不等式的解集为:-1<x≤2,在数轴上表示为:.故选:B.先求出两个不等式的解,然后表示出解集,并在数轴上表示出来.本题考查了解一元一次不等式组以及在数轴上表示不等式的解集,解答本题的关键是熟练掌握不等式的解法以及求不等式解集的规律.5.【答案】C【解析】解:当x>-3时,y=kx+b>0,即不等式kx+b>0的解集为x>-3.故选:C.观察函数图象,写出图象在x轴上方所对应的函数值即可.本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.6.【答案】A【解析】解:解不等式(x+2)-3>0,得:x>4,由不等式组的解集为x>4知m≤4,故选:A.求出第一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了,结合不等式组的解集即可得答案.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.【答案】B【解析】解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,∴AC=A′C,∴△ACA′是等腰直角三角形,∴∠CAA′=45°,∴∠A′B′C=∠1+∠CAA′=20°+45°=65°,由旋转的性质得∠B=∠A′B′C=65°.故选:B.根据旋转的性质可得AC=A′C,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠CAA′=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠A′B′C,然后根据旋转的性质可得∠B=∠A′B′C.本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.8.【答案】C【解析】【分析】此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.求出不等式组的解集,即可确定出整数解.【解答】解:,由①得:x>-,由②得:x≤3,∴不等式组的解集为-<x≤3,则整数解为0,1,2,3,共4个,故选C.9.【答案】A【解析】解:在Rt△ABC中,∵∠ABC=30°,∴AC=AB=4,∵△ABC沿CB向右平移得到△DEF,∴AD=BE,AD∥BE,∴四边形ABED为平行四边形,∵四边形ABED的面积等于8,∴AC•BE=8,即4BE=8,∴BE=2,即平移距离等于2.故选:A.先根据含30度的直角三角形三边的关系得到AC=AB=4,再根据平移的性质得AD=BE,AD∥BE,于是可判断四边形ABED为平行四边形,则根据平行四边形的面积公式得到AC•BE=8,即4BE=8,则可计算出BE=2,所以平移距离等于2.本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.也考查了平行四边形的判定与性质.10.【答案】A【解析】解:不等式组由①得,x≥a+b,由②得,x<,∵关于x的不等式组的解集为3≤x<5,∴,解得.故选A.先解不等式组,再由不等式组的解集为3≤x<5,转化成关于a,b的方程组来解即可.本题是一道综合性的题目.考查了不等式组和二元一次方程组的解法,是中考的热点,要灵活运用.11.【答案】C【解析】解:设这个小区的住户数为x户.则1000x>10000+500x,解得x>20.∵x是整数,∴这个小区的住户数至少21户.故选:C.根据“x户居民按1000元计算总费用>整体初装费+500x”列不等式求解即可.本题考查一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等关系式即可求解.注意本题中的住户数是整数,所以在x>20的情况下,至少取21.12.【答案】D【解析】解:∵△BCD绕点B逆时针旋转60°,得到△BAE,∴BD=BE,∠DBE=60°,∴△BDE是等边三角形,所以①正确;∵△ABC为等边三角形,∴BA=BC,∠ABC=∠C=∠BAC=60°,∵△BCD绕点B逆时针旋转60°,得到△BAE,∴∠BAE=∠BCD=60°,∠BCD=∠BAE=60°,∴∠BAE=∠ABC,∴AE∥BC,所以②正确;∴∠BDE=60°,∵∠BDC=∠BAC+∠ABD>60°,∴∠ADE≠∠BDC,所以④错误;∵△BDE是等边三角形,∴DE=BD=4,而△BCD绕点B逆时针旋转60°,得到△BAE,∴AE=CD,∴△AED的周长=AE+AD+DE=CD+AD+DE=AC+4=5+4=9,所以③正确.故选:D.先由△BCD绕点B逆时针旋转60°,得到△BAE得到BD=BE,∠DBE=60°,则可判断△BDE是等边三角形;根据等边三角形的性质得BA=BC,∠ABC=∠C=∠BAC=60°,再根据旋转的性质得到∠BAE=∠BCD=60°,∠BCD=∠BAE=60°,所以∠BAE=∠ABC=60°,则根据平行线的判定方法即可得到AE∥BC;根据等边三角形的性质得∠BDE=60°,而∠BDC>60°,则可判断∠ADE≠∠BDC;由△BDE是等边三角形得到DE=BD=4,再利用△BCD绕点B 逆时针旋转60°,得到△BAE,则AE=CD,所以△AED的周长=AE+AD+DE=CD+AD+DE=AC+BD.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的判定与性质.13.【答案】x(x+3)(x-3)【解析】解:x3-9x,=x(x2-9),=x(x+3)(x-3).先提取公因式x,再利用平方差公式进行分解.本题主要考查提公因式法分解因式和利用平方差公式分解因式,本题要进行二次分解,分解因式要彻底.14.【答案】>【解析】解:∵a>b,3>0,∴3a>3b.答案:>.根据不等式的性质求解即可.本题考查了不等式的性质,不等式的两边都乘以同一个正数不等号的方不变.15.【答案】(3,8)【解析】解:原来点的横坐标是3,纵坐标是2,向上平移6个单位长度得到新点的横坐标不变,纵坐标为2+6=8.即该坐标为(3,8).故答案为:(3,8).根据向上平移横坐标不变,纵坐标加解答.本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.16.【答案】a<-1【解析】解:∵(a+1)x>a+1的解集为x<1,∴a+1<0,∴a<-1.本题是关于x的不等式,应先只把x看成未知数,求得x的解集,再根据数轴上的解集,来求得a的值.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.17.【答案】200m【解析】解:∵荷塘中小桥的总长为100米,∴荷塘周长为:2×100=200(m)故答案为:200m.根据图形得出荷塘中小桥的总长为矩形的长与宽的和,进而得出答案.此题主要考查了生活中的平移现象,得出荷塘中小桥的总长为矩形的长与宽的和是解题关键.18.【答案】(4n+1,)【解析】解:∵△OA1B1是边长为2的等边三角形,∴A 1的坐标为(1,),B1的坐标为(2,0),∵△B2A2B1与△OA1B1关于点B1成中心对称,∴点A2与点A1关于点B1成中心对称,∵2×2-1=3,2×0-=-,∴点A2的坐标是(3,-),∵△B2A3B3与△B2A2B1关于点B2成中心对称,∴点A3与点A2关于点B2成中心对称,∵2×4-3=5,2×0-(-)=,∴点A 3的坐标是(5,),∵△B3A4B4与△B3A3B2关于点B3成中心对称,∴点A4与点A3关于点B3成中心对称,∵2×6-5=7,2×0-=-,∴点A4的坐标是(7,-),…,∵1=2×1-1,3=2×2-1,5=2×3-1,7=2×3-1,…,∴A n的横坐标是2n-1,A2n+1的横坐标是2(2n+1)-1=4n+1,∵当n为奇数时,A n的纵坐标是,当n为偶数时,A n的纵坐标是-,∴顶点A 2n+1的纵坐标是,∴△B 2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是(4n+1,).故答案为:(4n+1,).首先根据△OA1B1是边长为2的等边三角形,可得A1的坐标为(1,),B1的坐标为(2,0);然后根据中心对称的性质,分别求出点A2、A3、A4的坐标各是多少;最后总结出A n的坐标的规律,求出A2n+1的坐标是多少即可.此题主要考查了坐标与图形变化-旋转问题,要熟练掌握,解答此题的关键是分别判断出A n的横坐标、纵坐标各是多少.19.【答案】解:(1)移项,得:4x-6x≥-3-5,合并同类项,得:-2x≥-8,系数化为1,得:x≤4,表示在数轴上如下:(2)解不等式x-3(x-2)≤4,得:x≥1,解不等式>x-1,得:x<4,∴不等式组的解集为1≤x<4,表示在数轴上如下:【解析】(1)根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.【答案】解:∵x2+ax+3=(x-1)(x-b)=x2-(b+1)x+b,∴b=3,a=-(b+1)=-4.联立两函数解析式成方程组,,解得:,∴直线y=2x+4与直线y=3x+3的交点坐标为(1,6).画出两直线,如图所示,观察函数图象可知,当x<1时,直线y=2x+4在直线y=3x+3的上方,∴不等式2x+4≥3x+3的解集为x≤1.【解析】根据给定等式可求出a、b的值,联立两函数解析式成方程组,通过解方程组可求出两直线的交点坐标,画出两直线,根据直线的上下位置关系,即可得出不等式2x+4≥3x+3的解集.本题考查了一次函数与一元一次不等式、两直线相交或平行以及一次函数的图象,联立两函数解析式成方程组,通过解方程组求出交点坐标是解题的关键.21.【答案】解:(1)设轿车要购买x辆,那么面包车要购买(10-x)辆.由题意得7x+4(10-x)≤61,解得x≤7.又∵x≥5,∴x=5,6,7,∴购买方案有三种:方案一:购买轿车5辆,面包车5辆;方案二:购买轿车6辆,面包车4辆;方案三:购买轿车7辆,面包车3辆.(2)方案一的日租金为5×200+5×110=1550(元);方案二的日租金为6×200+4×110=1640(元);方案三的日租金为7×200+3×110=1730(元).因此,为保证日租金不低于1650元,应选择购买方案三.【解析】(1)设面包车购买x辆,根据某汽车租赁公司要购买轿车和面包车共10辆.其中轿车至少要购买5辆,公司可投入的购车款不超过61万元可列不等式求解.(2)根据求出的方案,可依次求出每种方案的租金,求出符合要求的方案.本题考查一元一次不等式的应用和理解题意的能力,关键轿车和面包车的数量关系做为不等量关系,以及购车款做为不等量关系列不等式求解,求出每种方案租金收入,从而可求出购买方案.22.【答案】解:①+②得:2x2+4x-4+2x2+12x+4=4x2+16x=4x(x+4);①+③得:2x2+4x-4+2x2-4x=4x2-4=4(x+1)(x-1);②+③得:2x2+12x+4+2x2-4x=4x2+8x+4=4(x2+2x+1)=4(x+1)2.【解析】求①+②的和,可得4x2+16x,利用提公因式法,即可求得答案;求①+③的和,可得4x2-4,先提取公因式4,再根据完全平方差进行二次分解;求②+③的和,可得4x2+8x+4,先提取公因式4,再根据完全平方公式进行二次分解.本题考查了提公因式法,公式法分解因式.注意因式分解的步骤,先提公因式,再利用公式法分解.注意分解要彻底.23.【答案】解:(1)如图所示,△A1B1C即为所求;(2)如图所示,△A2B2C2即为所求;(3)旋转中心坐标(0,-2).【解析】(1)利用旋转的性质得出对应点坐标进而得出答案;(2)利用平移规律得出对应点位置,进而得出答案;(3)利用旋转图形的性质,连接对应点,即可得出旋转中心的坐标.此题主要考查了旋转的性质以及图形的平移等知识,根据题意得出对应点坐标是解题关键.24.【答案】解:(1)y1=400+(x-400)×0.7=0.7x+120,y2=0.8x;(2)由y1=y2,即0.7x+120=0.8x,解得x=1200,由y1>y2,即0.7x+120>0.8x,解得x<1200,由y1<y2得,0.7x+120<0.8x,解得x>1200,因为x>400,所以,当x=1200时,甲,乙哪个超市购买所支付的费用相同,当400<x<1200时,乙超市购买更合算,当x>1200时,甲超市购买购买更合算.【解析】(1)根据题意写出y1,y2与x之间的关系式;(2)分y1=y2,y1>y2,y1<y2三种情况列出方程或不等式,解方程或不等式即可.本题考查的是一次函数的应用,根据题意正确列出一次函数关系式是解题的关键.25.【答案】解:(1)如图1,过点B作BC⊥x轴于点C,∵△AOB为等边三角形,且OA=2,∴∠AOB=60°,OB=OA=2,∴∠BOC=30°,而∠OCB=90°,∴BC=OB=1,OC=,∴点B的坐标为B(,1);(2)∠ABQ=90°,始终不变.理由如下:∵△APQ、△AOB均为等边三角形,∴AP=AQ、AO=AB、∠PAQ=∠OAB,∴∠PAO=∠QAB,在△APO与△AQB中,,∴△APO≌△AQB(SAS),∴∠ABQ=∠AOP=90°;(3)当点P在x轴负半轴上时,点Q在点B的下方,∵AB∥OQ,∠BQO=90°,∠BOQ=∠ABO=60°.又OB=OA=2,可求得BQ=,由(2)可知,△APO≌△AQB,∴OP=BQ=,∴此时P的坐标为(-,0).当点P在x轴正半轴时,点Q必在第一象限,OQ和AB不可能平行;【解析】(1)如图,作辅助线;证明∠BOC=30°,OB=2,借助直角三角形的边角关系即可解决问题;(2)证明△APO≌△AQB,得到∠ABQ=∠AOP=90°,即可解决问题;(3)根据点P在x的正半轴还是负半轴两种情况讨论,再根据全等三角形的性质即可得出结果.本题主要考查了等边三角形的性质以及全等三角形的判定及性质以及梯形的性质,注意利用分类讨论得出是解题关键.。

山东省枣庄市八年级下学期数学期中考试试卷

山东省枣庄市八年级下学期数学期中考试试卷

山东省枣庄市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列命题正确的个数是()①两个全等三角形必关于某一点中心对称②关于中心对称的两个三角形是全等三角形③两个三角形对应点连线都经过同一点,则这两个三角形关于该点成中心对称④关于中心对称的两个三角形,对应点连线都经过对称中心A . 1B . 2C . 3D . 42. (2分)平行四边形相邻两角中,其中一个角的度数y与另一个角的度数x 之间的关系是()A . y=xB . y=90–xC . y=180–xD . y=180+x3. (2分) (2017八下·宜兴期中) 矩形具有而菱形不一定具有的性质是()A . 对角线互相垂直B . 对角线相等C . 对角线互相平分D . 对角相等4. (2分)如图,下列条件,不能判断直线l1∥l2的是()A . ∠1=∠3B . ∠1=∠4C . ∠2+∠3=180°D . ∠3=∠55. (2分)如图,选项中的四个三角形不能由△ABC经过旋转或平移得到的是()A . AB . BC . CD . D6. (2分)一个三角形的三边的长分别是3、4、5,则这个三角形最长边上的高是()A . 4B .C .D .7. (2分)某商场一楼与二楼之间的手扶电梯示意图如图所示,其中AB,CD分别表示一楼、二楼地面的水平线,∠ABC=150°,BC的长是8 m,则乘电梯从点B到点C上升的高度h是()A . 4mB . mC . 8mD . 16m8. (2分)在正方形ABCD所在平面内找一点P,使P点与A、B、C、D中两点都连在一个等边三角形,那么这样的P点有()A . 5个B . 12个C . 9个D . 15个9. (2分)已知函数y=,则下列函数图象正确的是()A .B .C .D .10. (2分)(2012·成都) 如图,在平面直角坐标系xOy中,点P(﹣3,5)关于y轴的对称点的坐标为()A . (﹣3,﹣5)B . (3,5)C . (3.﹣5)D . (5,﹣3)二、填空题 (共7题;共9分)11. (1分) (2020八上·河池期末) 若分式有意义,则的取值范围是________.12. (1分)(2017·宁波模拟) 直线y= x+ 与x轴的交点坐标为________.13. (1分) (2019八上·温州期末) 如图是小章为学校举办的数学文化节没计的标志,在△ABC中,∠ACB=90°,以△ABC的各边为边作三个正方形,点G落在HI上,若AC+BC=6,空白部分面积为10.5,则阴影部分面积为 ________.14. (2分) (2016八下·西城期末) 如图,在△ABC中,点P从点A出发向点C运动,在运动过程中,设x 表示线段AP的长,y表示线段BP的长,y与x之间的关系如图2所示,则线段AB的长为________,线段BC的长为________.15. (1分)如图所示,在▱ABCD中,∠C=40°,过点D作AD的垂线,交AB于点E,交CB的延长线于点F,则∠BEF的度数为________.16. (2分) (2019九上·开州月考) 如图,四边形ABDC中,∠ABD=120°,AB⊥AC,BD⊥CD,AB=8,CD=,则该四边形的面积是_______.A .B .C .D .17. (1分)(2018·白银) 若正多边形的内角和是1080°,则该正多边形的边数是________.三、解答题 (共8题;共81分)18. (1分)如图,在△ABC,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB,AC于点E,F;②分别以点E、F为圆心,大于EF的长为半径画弧,两弧相交于点G;③作射线AG交BC边与点D.则∠ADB的度数为________ °19. (10分) (2015七上·郯城期末) 如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC.问:此时直线ON是否平分∠AOC?请说明理由.(2)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,求∠AOM﹣∠NOC的度数.20. (5分)如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.21. (10分) (2017八下·丰台期中) 如图,在平面直角坐标系中,一次函数的图象与 x轴交点为A,与y轴交点为B,且与正比例函数的图象的交于点C(m,4) .(1)求m的值及一次函数的表达式;(2)若点P是y轴上一点,且△BPC的面积为6,请直接写出点P的坐标。

北师大版2017-2018学年滕州市八年级数学下学期期中试卷及解析

北师大版2017-2018学年滕州市八年级数学下学期期中试卷及解析

滕州市2017-2018学年八年级(下)期中数学试卷一、选择题:每题3分,共45分。

1.下列图形中,既是轴对称图形,又是中心对称图形的有()A.1个B.2个C.3个D.4个2.如果a>b,那么下列各式中正确的是()A.a﹣2<b﹣2B.<C.﹣2a<﹣2b D.﹣a>﹣b3.如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是()A.a>0B.a<0C.a>﹣1D.a<﹣14.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()A.8或10B.8C.10D.6或125.△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是()A.4.8B.4.8或3.8C.3.8D.56.如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为()A.4cm B.3cm C.2cm D.1cm7.如图,在△ABC中,∠C=90°,点E是AC上的点,且∠1=∠2,DE垂直平分AB,垂足是D,如果EC=3cm,则AE等于()A.3cm B.4cm C.6cm D.9cm8.已知:如图,点D,E分别在△ABC的边AC和BC上,AE与BD相交于点F,给出下面四个条件:①∠1=∠2;②AD=BE;③AF=BF;④DF=EF,从这四个条件中选取两个,不能判定△ABC是等腰三角形的是()A.①②B.①④C.②③D.③④9.如图,三条公路把A、B、C三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三个条公路的距离相等,则这个集贸市场应建在()A.在AC、BC两边高线的交点处B.在AC、BC两边中线的交点处C.在∠A、∠B两内角平分线的交点处D.在AC、BC两边垂直平分线的交点处10.如图,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为()A.30°B.36°C.45°D.70°11.已知不等式组的解集为﹣1<x<1,则(a+1)(b﹣1)值为()A.6B.﹣6C.3D.﹣312.如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()A.B.4C.D.513.如图,在平面直角坐标系中,点A的坐标为(0,3),△OAB沿x轴向右平移后得到的△O′A′B′,点A的对应点A′在直线y=x上,则点B与其对应点B′间的距离为()A.B.3C.4D.514.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC 于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.A.1B.2C.3D.415.如图,在直角坐标系中,已知点A(﹣3,0)、B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4、…,△16的直角顶点的坐标为()A.(60,0)B.(72,0)C.(67,)D.(79,)二、填空题:每题3分,共18分,将答案填在题的横线上16.在平面直角坐标系中,若点P(2x+6,5x)在第四象限,则x的取值范围是.17.如图所示,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A落在CB的延长线上的点E处,则∠BDC的度数为度.18.已知等腰△OPQ的顶点P的坐标为(4,3),O为坐标原点,腰长OP=5,点Q位于y轴正半轴上,则点Q的坐标为.19.初三的几位同学拍了一张合影作为留念,已知拍一张底片需要5元,洗一张相片需要0.5元.拍一张照片,在每位同学得到一张相片的前提下,平均每人分摊的钱不足1.5元,那么参加合影的同学人数为.20.如图,在△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为10cm,那么△ABC的周长为cm.21.如图,边长为1的等边△ABO在平面直角坐标系的位置如图所示,点O为坐标原点,点A在x 轴上,以点O为旋转中心,将△ABO按逆时针方向旋转60°,得到△OA′B′,则点A′的坐标为.三、解答题:共7小题,满分57分,解答应写出文字说明过程或演算步骤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【市级联考】山东省枣庄市滕州市2017--2018学年
八年级(下)期中数学试题
学校_________ 班级__________ 姓名__________ 学号__________
一、单选题
1. 下列图形中,既是轴对称图形,又是中心对称图形的有()
A.1个B.2个C.3个D.4个
2. 如果a>b,那么下列各式中正确的是()
C.﹣2a<﹣2b D.﹣a>﹣b
A.a﹣2<b﹣2
B.
3. 如果关于x的不等式 (a+1) x>a+1的解集为x<1,那么a的取值范围是( )
A.a>0 B.a<0 C.a>-1 D.a<-1
4. 已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()A.8或10 B.8 C.10 D.6或12
5. △ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是()
A.4.8 B.4.8或3.8 C.3.8 D.5
二、填空题
6. 如图,在△ABC中,AB=AC,∠A=120°,BC=9cm,AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,则MN的长为
______cm.
三、单选题
7. 如图,在中,,点是上的点,且,
垂直平分,垂足是,如果,则等于()
A.B.C.D.
8. 已知:如图,点D,E分别在△ABC的边AC和BC上,AE与BD相交于点F,给出下面四个条件:①∠1=∠2;②AD=BE;③AF=BF;④DF=EF,从这四个条件中选取两个,不能判定△ABC是等腰三角形的是()
A.①②B.①④C.②③D.③④
9. 如图,三条公路把、、三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,则这个集贸市场应建在( )
A.在、两边高线的交点处
B.在、两边中线的交点处
C.在、两内角平分线的交点处
D.在、两边垂直平分线的交点处
10. 如图,△ABC中AB=AC,点D在AC边上,且BD=BC=AD,则∠A度数为
()
A.30°B.36°C.45°D.70°
11. 已知不等式组的解集为﹣1<x<1,则(a+1)(b﹣1)值为()
A.6 B.﹣6 C.3 D.﹣3
12. 如图,已知△ABC中,AD=BD,AC=4,H是高AD和BE的交点,则线段BH的长度为().
A.B.4 C.D.5
13. 如图,在平面直角坐标系中,点A的坐标为(0,3),△OAB沿x轴向右
平移后得到△O′A′B′,点A的对应点在直线上一点,则点B与其对应点B′间的距离为
B.3 C.4 D.5
A.
14. 如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画
弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S
△DAC

S
△ABC
=1:3.
A.1 B.2 C.3 D.4
15. 如图,在直角坐标系中,已知点A(﹣3,0)、B(0,4),对△OAB连续
作旋转变换,依次得到△
1、△
2
、△
3
、△
4
、…,△
16
的直角顶点的坐标为
()
A.(60,0)B.(72,0)
C.(67,)D.(79,)
四、填空题
16. 在平面直角坐标系中,若点P(2x+6,5x)在第四象限,则x的取值范围是_________;
17. 如图,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A 与CB的延长线上的点E重合连接CD,则∠BDC的度数为_____
度.
18. 已知等腰△OPQ的顶点P的坐标为(4,3),O为坐标原点,腰长OP=5,点Q位于y轴正半轴上,则点Q的坐标为_____.
19. 初三的几位同学拍了一张合影作为留念,已知拍一张底片需要5元,洗一张相片需要0.5元.拍一张照片,在每位同学得到一张相片的前提下,平均每人分摊的钱不足1.5元,那么参加合影的同学人数为____
20. 如图,在△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为
10cm,那么△ABC的周长为_____cm.
21. 如图,边长为1的等边△ABO在平面直角坐标系的位置如图所示,点O为坐标原点,点A在x轴上,以点O为旋转中心,将△ABO按逆时针方向旋转60°,得到△OA′B′,则点A′的坐标为_____.
五、解答题
22. 解下列不等式(组):
(1)
(2),并把它的解集表示在数轴上.
23. 已知关于x的不等式组恰有两个整数解,求实数a的取值范围.
24. 如图,在△ABC中,AB=AC,D为BC上一点,∠B=30°,连接AD.(1)若∠BAD=45°,求证:△ACD为等腰三角形;
(2)若△ACD为直角三角形,求∠BAD的度数.
25. 如图,在平面直角坐标系中,△ABO的三个顶点坐标分别为A(1,3),B (4,0),O(0,0).
(1)画出将△ABO向左平移4个单位长度,再向上平移2个单位长度后得到的△A1B1O1;
(2)在(1)中,若△ABC上有一点M(3,1),则其在△A1B1O1中的对应点M1的坐标为;
(3)若将(1)中△A1B1O1看成是△ABO经过一次平移得到的,则这一平移的距离是;
(4)画出△ABO关于点O成中心对称的图形
△A2B2O.
26. 如图1,已知△ABC中,AB=AC,点D是△ABC外一点(与点A分别在直线BC 两侧).且DB=DC,过点D作DE//AC,交射线AB于E,连接AD交BC于
A.
(1)求证:AD垂直BC;
(2)如图1,点E在线段AB上且不与B重合时,求证:DE=AE;
(3)如图2,当点E在线段AB的延长线上时,请直接写出线段DE,AC,BE的数量关系.
27. 如图,△ABC中,AB=AC,∠BAC=50°,P是BC边上一点,将△ABP绕点A逆时针旋转50°,点P旋转后的对应点为点P′.
(1)画出旋转后的三角形;
(2)连接PP′,若∠BAP=20°,求∠PP′C的度数.
28. 为了更好的治理西流湖水质,保护环境,市治污公司决定购买 10 台污水处理设备.现有 A、B 两种型号的设备,其中每台的价格,月处理污水量如下
A 型
B 型
价格(万元/台)a b
处理污水量(吨/
240 200
月)
经调查:购买一台 A 型设备比购买一台 B 型设备多 2 万元,购买 2 台 A 型设备比购买 3 台 B 型设备少 6 万元.
(1)求 a,b 的值;
(2)经预算:市治污公司购买污水处理设备的资金不超过 105 万元,你认为该公司有哪几种购买方案;
(3)在(2)问的条件下,若每月要求处理西流湖的污水量不低于 2040 吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.。

相关文档
最新文档