北邮电磁场与电磁波测量实验报告5-信号源-波导波长
北邮电磁场与电磁波测量实验报告5-信号源-波导波长

北邮电磁场与电磁波测量实验报告5-信号源-波导波长————————————————————————————————作者:————————————————————————————————日期:北京邮电大学电磁场与电磁波测量实验实验报告实验内容:微波测量系统的使用和信号源波长功率的测量波导波长的测量学院:电子工程学院班级:2010211203班组员:崔宇鹏张俊鹏章翀2013年5月9日实验一微波测量系统的使用和信号源波长功率的测量一、实验目的(1) 学习微波的基本知识;(2) 了解微波在波导中传播的特点,掌握微波基本测量技术;(3) 学习用微波作为观测手段来研究物理现象。
二、实验仪器1.微波信号源微波信号源由振荡器、可变衰减器、调制器、驱动电路、及电源电路组成。
该信号源可在等幅波、窄带扫频、内方波调制方式下工作,并具有外调制功能。
在教学方式下,可实时显示体效应管的工作电压和电流的关系。
仪器输出功率不大,以数字形式直接显示工作频率,性能稳定可靠。
2.隔离器位于磁场中的某些铁氧化体材料对于来自不同方向的电磁波有着不同吸收,经过适当调节,可使其对微波具有单方向传播的特性,隔离器常用于振荡器与负载之间,起隔离和单向传输的作用。
3.衰减器把一片能吸微波能量的吸收片垂直于矩形波导的宽边,纵向插入波导管即成,用以部分衰减传输功率,沿着宽边移动吸收片可改变衰减量的大小。
衰减器起调节系统中微波功率从以及去耦合的作用。
4.波长计电磁波通过耦合孔从波导进入频率计的空腔中,当频率计的腔体失谐时,腔里的电磁场极为微弱,此时,它基本不影响波导中波的传输。
当电磁波的频率计满足空腔的谐振条件时,发生谐振,反映到波导中的阻抗发生剧烈变化,相应地,通过波导中的电磁波信号强度将减弱,输出幅度将出现明显的跌落,从刻度套筒可读出输入微波谐振时的刻度,通过查表可得知输入微波谐振频率。
5.测量线测量线是测量微波传输系统中电场的强弱和分布的精密仪器。
北邮电磁场实验报告

北邮电磁场实验报告北邮电磁场实验报告引言:电磁场是物理学中非常重要的一个概念,它涉及到电荷、电流和磁性物质之间的相互作用。
为了更好地理解电磁场的特性和行为,我们进行了一系列的实验。
本报告将详细介绍我们在北邮进行的电磁场实验及其结果。
实验一:静电场与电势分布在这个实验中,我们使用了一对带电的金属板,通过改变金属板的电荷量和距离,观察了电势分布的变化。
实验结果显示,电势随距离的增加而逐渐降低,符合电势随距离平方反比的规律。
此外,我们还观察到电势在金属板附近的区域呈现出均匀分布的特点。
实验二:磁场与磁力线在这个实验中,我们使用了一根通电导线和一块磁铁,通过改变电流的方向和大小,观察了磁场的行为。
实验结果显示,磁铁产生的磁场呈现出环形磁力线的分布。
当通电导线与磁铁相互作用时,导线会受到磁力的作用,其受力方向与电流方向、磁场方向之间存在一定的关系。
实验三:电磁感应与法拉第电磁感应定律在这个实验中,我们使用了一根通电导线和一个线圈,通过改变导线中的电流和线圈的位置,观察了电磁感应现象。
实验结果显示,当导线中的电流改变时,线圈中会产生感应电流。
根据法拉第电磁感应定律,感应电流的大小与导线中电流变化的速率成正比。
此外,我们还观察到线圈中感应电流的方向与导线中电流变化的方向存在一定的关系。
实验四:电磁波的传播在这个实验中,我们使用了一个发射器和一个接收器,通过改变发射器的频率和接收器的位置,观察了电磁波的传播行为。
实验结果显示,电磁波以波动的形式传播,其传播速度与真空中的光速相同。
此外,我们还观察到电磁波的频率与波长之间存在一定的关系,即频率越高,波长越短。
结论:通过以上实验,我们对电磁场的特性和行为有了更深入的了解。
我们发现电磁场的行为符合一系列的规律和定律,如电势随距离平方反比、磁力线的环形分布、法拉第电磁感应定律等。
这些规律和定律为我们理解电磁场的本质和应用提供了重要的指导。
同时,我们也意识到电磁场在日常生活中的广泛应用,如电磁感应用于发电机、电磁波用于通信等。
北邮电磁场与微波测量实验报告实验五极化实验

北邮电磁场与微波测量实验报告实验五极化实验北邮电磁场与微波测量实验报告实验五极化实验学院:电子工程学院班号:2011211204组员:执笔人:学号:**********一、实验目的1.培养综合性设计电磁波实验方案的能力 2.验证电磁波的马吕斯定理二、实验设备S426型分光仪三、实验原理平面电磁波是横波,它的电场强度矢量E 和波长的传播方向垂直。
如果E 在垂直于传播方向的平面内沿着一条固定的直线变化,这样的横电磁波叫线极化波。
在光学中也叫偏振波。
偏振波电磁场沿某一方向的能量有一定关系。
这就是光学中的马吕斯定律:20cos I I θ=式中I 为偏振波的强度,θ为I 与I0间的夹角。
DH926B 型分光仪两喇叭口面互相平行,并与地面垂直,其轴线在一条直线上,由于接收喇叭是和一段旋转短波导连在一起的;在该轴承环的90度范围内,每隔5度有一刻度,所以接收喇叭的转角可以从此处读到。
四、实验步骤1.设计利用S426型分光仪验证电磁波马吕斯定律的方案;根据实验原理,可得设计方案:将S426型分光仪两喇叭口面互相平行,并与地面垂直,其轴线在一条直线上,由于接收喇叭是和一段旋转短波导连在一起的;在该轴承环的90度范围内,每隔5度有一刻度,接收喇叭课程从此处读取θ(以10度为步长),继而进行验证。
2.根据设计的方案,布置仪器,验证电磁波的马吕斯定律。
实验仪器布置通过调节,使A1取一较大值,方便实验进行。
然后,再利用前面推导出的θ,将仪器按下图布置。
A1五、实验数据I(uA )0 10 20 30 40 50 60 70 80 90 θ°理论值90 87.3 79.5 67.5 52.8 37.2 22.5 10.5 2.7 0实验值90 88 82 69 54 37 20 8 2 0.2 相对误差% 0 0.8 0.6 2.2 2.3 0.5 11.1 14.3 25.9 -1、数据分析:由数据可看出,实验值跟理论值是接近的,相对误差基本都很小,在误差允许范围内,所以可以认为马吕斯定律得到了验证。
北邮电磁场与电磁波实验报告

.信息与通信工程学院电磁场与电磁波实验报告题目:校园无线信号场强特性的研究姓名班级学号序号一、 实验目的1、 掌握在移动环境下阴影衰落的概念以及正确测试方法;2、 研究校园内各种不同环境下阴影衰落的分布规律;3、 掌握在室内环境下场强的正确测试方法,理解建筑物穿透损耗的概念;4、 通过实地测量,分析建筑物穿透损耗随频率的变化关系;5、 研究建筑物穿透损耗与建筑材料的关系。
二、 实验内容利用DS1131场强仪,实地测量信号场强1) 研究具体现实环境下阴影衰落分布规律,以及具体的分布参数如何;2) 研究在校园内电波传播规律与现有模型的吻合程度,测试值与模型预测值的预测误差如何;3) 研究建筑物穿透损耗的变化规律。
三、 实验原理1) 阴影衰落在无线信道里,造成慢衰落的最主要原因是建筑物或其他物体对电波的遮挡。
在测量过程中,不同测量位置遇到的建筑物遮挡情况不同,因此接收功率不同,这样就会观察到衰落现象。
在阴影衰落的情况下,移动台被建筑物遮挡,它所收到的信号是各种绕射、反射、散射波的合成。
所以,在距基站距离相同的地方,由于阴影效应的不同,他们收到的信号功率有可能相差很大,理论和测试表明,对任意的d 值,特定位置的接收功率为随机对数正态分布即:00()[]()[]()[]10log(/)r r r P d dBm P d dBm X P d dBm n d d X σσ=+=-+其中,X σ为0均值的高斯分布随机变量,单位为dB ,标准偏差为σ,单位也是dB 。
对数正态分布描述了在传播路径上,具有相同的T-R 距离时,不同的随机阴影效应。
这样利用高斯分布可以方便的分析阴影的随机效应。
它的概率密度函数是:22()()2x m f x σ-- 应用于阴影衰落时,上式中的x 表示某一次测量得到的接受功率,m 表示以dB 表示的接收功率的均值或中值,σ表示接收功率的标准差,单位为dB 。
阴影衰落的标准差同地形、建筑物类型、建筑物密度等有关,在市区的150MHz 频段其典型值是5dB 。
北邮电磁场与微波测量实验实验五阻抗测量及匹配技术

电磁场与微波测量实验实验五阻抗测量及匹配技术学院:电子工程学院班号:2011211204组员:执笔人:学号:2011210986一、实验目的1、掌握利用驻波测量线测量阻抗的原理和方法2、熟悉利用螺钉调配器匹配的方法3、熟悉Smith 圆图的应用二、实验内容1、在测量线给定器件的阻抗和电压驻波系数,并观察其Smith 圆图。
2、在测量线系统中测量给定器件的ZL ,并应用三螺调配器对其进行匹配,使驻波系数小于1.1。
三、实验原理1. 阻抗测量原理微波元件的阻抗参数或者天线的输入阻抗等是微波工程中的主要参数,因而阻抗测量也是重要测量内容之一。
一般情况下,测量的对象可以是膜片、螺钉、滤波器、谐振腔及其它不均匀性等。
在阻抗测量的方法中常采用测量线法。
本实验着重应用测量线技术测量终端型(等效二端网络)微波元件的阻抗。
由传输线理论可知,传输线上任一点的输入阻抗Z in 与其终端负载阻抗Z L 关系为:ltg jZ ltg j Z Z L L in ββ++=1(2.1)其中,0Z 为传输线的特性阻抗,g λπβ/2=为相移常数,l 为至终端负载的距离。
设传输线上第一个电压驻波最小点离终端负载的距离为,min l 电压驻波最小点处的输入阻抗在数值上等于1/ρ即ρ1m in=l inZ(2.2)将min l l =及ρ1=in Z 代入式(2.2),整理得:minmin1l jtg l tg j Z L βρβρ--=(2.3)所以,负载阻抗的测量实质上归结为电压驻波系数ρ及驻波相位min l 值的测量,当测出ρ及min l 后,就能由上式计算负载阻抗Z L 。
但是,这是一个复数运算,在工程上,通常由ρ和min l 从圆图上求出阻抗或导纳来。
电压驻波系数ρ的测量,已在实验一中讨论过了,现在来讨论min l 的测量方法。
由于测量线结构的限制,直接测量终端负载Z L 端面到第一个驻波最小点的距离min l 是比较困难的。
北邮电磁波与微波测量第五次

北邮电磁波与微波测量第五次————————————————————————————————作者:————————————————————————————————日期:北京邮电大学电磁波与微波测量第五次实验报告学院:电子工程学院班级:姓名:学号:实验三微波驻波比的测量由于微波的波长很短,传输线上的电压、电流既是时间的函数,又是位置的函数,使得电磁场的能量分布于整个微波电路而形成“分布参数”,导致微波的传输与普通无线电波完全不同。
微波系统的测量参量是功率、波长和驻波参量,这也是和低频电路不同的。
电压驻波系数的大小往往是衡量一个微波元件性能优劣的主要指标。
驻波测量也是微波测量中最基本和最重要的内容之一,通过驻波测量不仅可以直接得知驻波系数值,而且还可以间接求得衰减器、相移量、谐振腔品质因数,介电常数。
一、实验目的(1)了解波导测量系统,熟悉基本微波元件的作用。
(2)掌握驻波测量线的正确使用和用驻波测量线校准晶体检波器特性的方法。
(3)掌握大、中、小电压驻波系数的测量原理和方法。
二、实验原理驻波测量是微波测量中最基本和最重要的内容之一,通过驻波测量可以测出阻抗、波长、相位和Q值等其他参量。
在传输线中若存在驻波,将使能量不能有效地传给负载,因而增加损耗。
在大功率情况下,由于驻波存在可能发生击穿现象。
此外,驻波存在还会影响微波信号发生器输出功率和频率的稳定度。
因此,驻波测量非常重要。
电压驻波比测量驻波测量是微波测量中最基本和最重要的内容之一,通过驻波测量可以测出阻抗、波长、相位和Q值等其他参量。
在测量时,通常测量电压驻波系数,即波导中电场最大值和最小值之比,即测量驻波比的方法与仪器种类很多,有直接法,等指示度法,功率衰减法等。
本实验着重熟悉用驻波测量线来测驻波系数的几种方法。
(1)直接法直接测量沿线驻波的最大点与最小点场强,从而求得驻波系数的方法称为直接法。
若驻波腹点和节点处电表读数分别为Umax,Umin则电压驻波系数ρ:当驻波系数1.5<ρ<5时直接读出,即可。
北邮电磁场实验-波导波长的测量

北邮电磁场实验-波导波长的测量————————————————————————————————作者:————————————————————————————————日期:北京邮电大学电磁场与微波测量实验实验二波导波长的测量学院:电子工程学院班级:2011211207组员:邹夫、马睿、李贝贝执笔:邹夫目录1.实验内容 (1)1.1实验目的 (1)1.2实验设备 (1)1.3实验系统框图 (1)1.3实验步骤 (2)2.实验原理 (3)2.1两点法 (3)2.2间接法 (3)3实验数据与分析 (4)3.1测量波导波长 (4)3.1.1两点法 (4)3.1.2直接法 (4)3.2晶体检波特性 (5)3.2.1晶体校准曲线图 (5)3.2.2晶体检波率公式计算 (7)3.3误差分析 (7)4.思考题 (7)5.实验心得与体会 (8)1.实验内容1.1实验目的通过博导波长测量系统测出波导波长。
1.2实验设备1.DH1121C型微波信号源2.DH364A00型3cm测量线1.3实验系统框图1.3实验步骤测量波导波长1.观察衰减器、空腔波长计、主播测量线的结构形式、读数方法;2.按照系统框图检查系统的连接装置以及连接电缆和电缆头;3.开启信号源,预热仪器,并按照操作规则调整信号工作频率以及幅度,并调整调制频率;4.利用两点发进行测量,将波导测量线终端短路,调测放大器的衰减量和可变衰减器使当探针位于波腹时,放大器只是电表接近满格,用两点法测量波导波长;5.将驻波测量线探针插入适当深度,将探针移到两个波节点的重点位置,然后调节其调谐贿赂,使测量放大器指示最大;6.利用间接法来测量波导波长λg。
首先用波长计测量信号波长λ0,测三次去平均值。
再计算λg。
测量完成后要将波长计从谐振点调开,以免信号衰减影响后面的测量;校准晶体二极管检波器的检波特性7.将探针沿线测量线移动,按测量放大器指示改变最大值刻度的10%,记录一次探针位置,给出U沿线的分布图形;8.设计表格,用驻波测量线校准晶体的检波特性;9.做出晶体检波器校准曲线图;10.再移动探针到驻波的波腹点,记录数据,分别找到波腹点两相邻边指示电表读数为波腹点50%对应的值,记录此刻探针的位置d1,d2,根据公式求得晶体检波率n,和8所得的数值进行比较。
微波实验报告波导波长测量

微波实验报告波导波长测量电磁场与微波测量实验报告实验二波导波长的测量一、实验内容波导波长的测量按上图连接测量系统,可变电抗可以采用短路片当矩形波导终端短路时,将形成驻波状态波导内部电场强度表达式为:E =EY =E0 sin sin?ZYZ?I?C?sin2?d?g??n、作出测量线探针在不同位置下的读数分布曲线北京邮电大学电磁场与微波测量实验报告实验二波导波长的测量一、实验内容波导波长的测量按上图连接测量系统,可变电抗可以采用短路片,在测量线中入射波与反射波的叠加为接近纯驻波图形,只要测得驻波相邻节点得位置L1、L2,由公式即可求得波导波长两点法确定波节点位置将测量线终端短路后,波导内形成驻波状态调探针位置旋钮至电压波节点处,选频放大器电流表表头指示值为零,测得两个相邻的电压波节点位置,就可求得波导波长为:’?g = 2 Tmin- Tmin响后面的测量校准晶体二极管检波器的检波特性将探针沿测量线由左向右移动,按测量放大器指示每改变最大值刻度的10%,记录一次探针位置,给出u沿线的分布图形设计表格,用驻波测量线校准晶体的检波特性作出晶体检波器校准曲线图令d作为测量点与波节点的距离;do是波节点的实际位置,d0+d 就是测量点的实际位置:再移动探针到驻波的波腹点,记录数据,分别找到波腹点相邻两边指示电表读数为波腹点50%对应的值,记录此刻探针位置d1和d2,根据公式n=()g求得晶体检波率n,和所得的数值进行比较三、实验结果分析数据分析:由于此时波导中存在的是驻波,并且测量的位置是从波腹到相邻的波节,所以画出来的波形应该是正弦曲线的四分之一,由上图可以看出,实验结果基本符合,误差在允许上图为对数坐标,横轴表示logE,纵轴表示logU分析:根据理论分析,上图应该是一条斜率为n的直线,而实际描出的点连成的线不是一条很直的直线,笔者决定采用理论拟合法拟合出一条直线拟合后直线的斜率为,所以晶体检波率为第二种定标法??=(λg==a.两点法测量波导波长+= 22+136T’min =? T1 ? T2 ?==22Tmin =? T1 ? T2 ?=‘?g = 2 Tmin- Tmin=b.间接法测量波导波长北京邮电大学电磁场与电磁波测量实验实验报告实验一微波测量系统的使用和信号源波长功率的测量一、实验目的(1) 学习微波的基本知识;(2) 了解微波在波导中传播的特点,掌握微波基本测量技术; (3) 学习用微波作为观测手段来研究物理现象二、实验仪器1.微波信号源微波信号源由振荡器、可变衰减器、调制器、驱动电路、及电源电路组成该信号源可在等幅波、窄带扫频、内方波调制方式下工作,并具有外调制功能在教学方式下,可实时显示体效应管的工作电压和电流的关系仪器输出功率不大,以数字形式直接显示工作频率,性能稳定可靠2.隔离器位于磁场中的某些铁氧化体材料对于来自不同方向的电磁波有着不同吸收,经过适当调节,可使其对微波具有单方向传播的特性,隔离器常用于振荡器与负载之间,起隔离和单向传输的作用3.衰减器把一片能吸微波能量的吸收片垂直于矩形波导的宽边,纵向插入波导管即成,用以部分衰减传输功率,沿着宽边移动吸收片可改变衰减量的大小衰减器起调节系统中微波功率从以及去耦合的作用 4.波长计电磁波通过耦合孔从波导进入频率计的空腔中,当频率计的腔体失谐时,腔里的电磁场极为微弱,此时,它基本不影响波导中波的传输当电磁波的频率计满足空腔的谐振条件时,发生谐振,反映到波导中的阻抗发生剧烈变化,相应地,通过波导中的电磁波信号强度将减弱,输出幅度将出现明显的跌落,从刻度套筒可读出输入微波谐振时的刻度,通过查表可得知输入微波谐振频率图1 实验原理框图表1 信号源波长测量表按上图连接测量系统,可变电抗可以采用短路片当矩形波导终端短路时,将形成驻波状态波导内部电场强度表达式为:E = EY = E0 sin sin?Z在波导宽面中线沿轴线方向开缝的剖面上,电场强度的幅度分布如图三所示将探针由缝中插入波导并沿轴向移动,即可检测电场强度的幅度沿轴线方向的分布状态微波测量线应用实验报告一、实验目的1、了解一般微波测试线的组成及其主要元、器件的作用,初步掌握它们的调整方法2、掌握波导中波导波长和驻波比的测量方法3、掌握调配器调配的方法及其对传输线驻波比的影响二、实验内容1、测量波导传输线中的横向场分布; 2、测量波导传输线中的波导波长;3、测量波导传输线中的驻波比;4、应用三螺调配器降低波导传输线中的驻波比三、微波测量线组成及测量原理常用的一般微波测试线组成如图1所示信号源能较稳定地工作可变衰减器也是由一小段波导构成的,其中放有一表面涂有损耗性材料,并与波导窄壁平行放置的薄介质片介质片越靠近波导中心处,衰减越大,反之,衰减越小利用可变衰减器可以连续地改变信号源传向负载方向功率的大小;另外,如同隔离器一样,可变衰减器也具有一定的隔离作用纵向场分布测量线是一段在其宽壁中心线开有一窄缝隙的矩形波导,电场探针从缝隙插入波导中,耦合出一定功率的微波信号,通过微波范围内用的晶体二极管检波器后变成为1kHz的低频信号,该信号测量放大器放大后,其幅度通过表头显示当电场探针沿着波导纵向移动时,测量放大器表头显示的数值变化就对应着波导中纵向电场幅度的分布横向场分布测量线是一段在其宽壁横向开有一窄缝隙的矩形波导,电场探针从缝隙插入波导中,耦合出一定功率的微波信号,通过微波范围内用的晶体二极管检波器后变成为1kHz的低频信号,该信号测量放大器放大后,其幅度通过表头显示当电场探针沿着波导横向移动时,测量放大器表头显示的数值变化就对应着波导中横向电场幅度的分布三螺调配器为波导传输线的终端负载,他由三根细圆柱金属棒分别在波导宽边中心线的不同纵向位置插入波导中,通过每一根金属棒伸进波导内部长度的变化改变反射波的幅度和相位,可以将传输线从终端短路状态调整到终端匹配状态四、实验方法与实验步骤1、首先按图1所示将测量系统安装好,然后接通电源和测量仪器的有关开关,观察微波信号源有无输出指示若有指示,当改变衰减量或移动测量线探针的位置时,测量放大器的表头指示会有起伏的变化,这说明系统已在工作了但这并不一定是最佳工作状态例如,若是反射式速调管信号源的话还应把它调到输出功率最大的振荡模式,并结合调节信号源处的短路活塞,以使能量更有效地传向负载若有必要,还可以调节测量线探头座内的短路活塞,以获得较高地灵敏度,或者调节测量线探针伸入波导的程度,以便较好地拾取信号的能量对于其它微波信号源也应根据说明书调到最佳状态有时信号源无输出,但测量放大器也有一定指示这可能是热噪声或其它杂散场的影响;若信号源有输出,但测量放大器的指示不稳定或者当测量线探针移动时,其指示不变,均属不正常情况,应检查原因,使之正常工作系统正常工作时,可调节测量放大器的有关旋钮或可变衰减器的衰减量,使测量放大器图3 终端短路状态下波导中纵向场幅度分布图3、测量波导传输线中的驻波比在上述条件下移动纵向场分布测量线中电场探针读取测量放大器读数的最大值和最小值,并记录五、实验报告内容1、画出一般微波测试线系统的装置简图,并说明各部分功能功能:微波源:提供信号隔离器:防止后级负载对信号源造成影响可变衰减器:防止信号太大使测量放大器超过量程纵向和横向场分布测量线:用于测量腔内的横向和纵向电场分布情况三螺调配器:用于接各种负载探针、检波器、测量放大器:用于测量和显示数据2、总结各实验项目的主要步骤,测试数据和计算结果 1)将负载短路片接上;找到峰值点,然后在峰值点两侧各找一点,使其幅度值相等,读取坐标位置;这两点中心点即为峰值点,测量两个峰值点的坐标,他们的差值即为半波长;半波长:波长为: 2)将负载接到终端找到波峰和波谷对应的幅度,作比值即可 Umax = 62 Umin = 30微波工作波长和波导波长测量一、实验原理:工作波长λ是微波源发射的电磁波在波导中传播的波长,它是连续的等幅波在自由空间或波导中传播工作波长是相同的这种波的发射机构是反射式速调管中的电子束经受速度调制后所发射的电磁波波导波长λg 则是工作电磁波在波导中两侧壁来回反射,形成电磁场场强沿波导传播方向的周期性分布,这种周期就对应于波导波长λg λ与λg可用下面公式计算:1 c?微波在波导两侧全反射沿Z方向传播 ?2?g?微波在波导中全反射使电磁场沿Z方向出现周期性分布,对应的长度称为波导波长λg二实验方法可用吸收谐振的方法测量微波发射频率,然后再计算工作波长λ圆柱形腔体经耦合孔与波导相通,改变腔体的固有频率,当与微波的频率相同时腔体就共振吸收微波能量,传播的微波能量就会减小,从而测到微波频率用驻波的方法测量波导波长在波导中形成驻波,用测量线测量驻波中的电场,可求得λg。
电磁场与微波实验报告波导波长的测量

电磁场与微波实验报告波导波长的测量实验目的:测量波导中的波长和相速度。
实验原理:波导是一种可以传输电磁波的导线或管道。
在波导内传播的波称为波导波。
波导波的波长和相速度是波导性质的重要参数。
在波导中,波长λ可以通过波导尺寸和相速度v的关系来计算,即λ=v/f,其中f为使用的频率。
而相速度v又可以通过测量电磁波在波导中传播的时间和波导长度L来计算,即v=L/t。
实验装置:1.波导:长度大于等于所测频率的波长,内壁光滑且无孔。
2.微波发生器:用于产生微波信号的电源。
3.接收天线:用于接收微波信号。
4.微波功率计:用于测量微波信号的功率。
5.方位角转台:用于调整接收天线的方位角。
6.指示器:用于读取方位角转台上的表盘读数。
实验步骤:1.将微波发生器和波导连接,并调节发生器频率为所需测量频率。
2.将接收天线与微波功率计连接,并将接收天线安装在方位角转台上。
3.将微波功率计与接收天线连接,调整微波功率计的灵敏度。
4.打开微波发生器,并调整微波功率计的灵敏度,使其显示尽可能大的数值。
5.将方位角转台旋转,找到接收微波信号最大的方向。
记录下方位角转台上的表盘读数。
6.断开接收天线和波导之间的连接。
7.将方位角转台旋转90°,并移动波导,使得波导的长度等于所测波长的整数倍。
8.重新连接接收天线和波导,并重复步骤4-69.根据记录的方位角转台表盘读数计算出微波在波导中的相速度,并根据相速度和已知频率计算出波长。
实验数据分析:根据实验步骤所得的方位角转台表盘读数,可以计算出微波在波导中的传播时间Δt。
由此可以计算出相速度v=L/Δt。
同时,已知频率f,可以利用波长λ=v/f计算出波长。
实验结果与讨论:根据实验数据和计算结果,可以得到微波在波导中的波长和相速度。
这些结果可以与理论值进行比较,从而验证实验的准确性。
同时,还可以通过调节微波发生器的频率,重复上述实验步骤,得到不同频率下的波长和相速度,从而研究波导中的波长和相速度与频率之间的关系。
北邮电磁场与电磁波测量实验报告信号源 波导波长

北京邮电大学电磁场与电磁波测量实验实验报告实验内容:微波测量系统的使用和信号源波长功率的测量波导波长的测量学院:电子工程学院班级:2010211203班组员:崔宇鹏张俊鹏章翀2013年5月9日实验一微波测量系统的使用和信号源波长功率的测量一、实验目的(1) 学习微波的基本知识;(2) 了解微波在波导中传播的特点,掌握微波基本测量技术;(3) 学习用微波作为观测手段来研究物理现象。
二、实验仪器1.微波信号源微波信号源由振荡器、可变衰减器、调制器、驱动电路、及电源电路组成。
该信号源可在等幅波、窄带扫频、内方波调制方式下工作,并具有外调制功能。
在教学方式下,可实时显示体效应管的工作电压和电流的关系。
仪器输出功率不大,以数字形式直接显示工作频率,性能稳定可靠。
2.隔离器位于磁场中的某些铁氧化体材料对于来自不同方向的电磁波有着不同吸收,经过适当调节,可使其对微波具有单方向传播的特性,隔离器常用于振荡器与负载之间,起隔离和单向传输的作用。
3.衰减器把一片能吸微波能量的吸收片垂直于矩形波导的宽边,纵向插入波导管即成,用以部分衰减传输功率,沿着宽边移动吸收片可改变衰减量的大小。
衰减器起调节系统中微波功率从以及去耦合的作用。
4.波长计电磁波通过耦合孔从波导进入频率计的空腔中,当频率计的腔体失谐时,腔里的电磁场极为微弱,此时,它基本不影响波导中波的传输。
当电磁波的频率计满足空腔的谐振条件时,发生谐振,反映到波导中的阻抗发生剧烈变化,相应地,通过波导中的电磁波信号强度将减弱,输出幅度将出现明显的跌落,从刻度套筒可读出输入微波谐振时的刻度,通过查表可得知输入微波谐振频率。
5.测量线测量线是测量微波传输系统中电场的强弱和分布的精密仪器。
由开槽波导、不调谐探头和滑架组成。
在波导的宽边有一个狭槽,金属探针经狭槽伸入波导。
线开槽波导中的场由不调谐探头取样,探头的移动靠滑架上的传动装置,探头的输出送到显示装置,就可以显示沿波导轴线的电磁场变化信息。
北邮-电磁场与电磁波实验报告--用谐振腔微扰法测量介电常数、天线的特性和测量

电磁场与微波测量实验班级:xxx成员:xxxxxxxxx撰写人:xxx实验六用谐振腔微扰法测量介电常数微波技术中广泛使用各种微波材料,其中包括电介质和铁氧体材料。
微波介质材料的介电特性的测量,对于研究材料的微波特性和制作微波器件,获得材料的结构信息以促进新材料的研制,以及促进现代尖端技术(吸收材料和微波遥感)等都有重要意义。
一、实验目的1.了解谐振腔的基本知识。
2.学习用谐振腔法测量介质特性的原理和方法二、实验原理本实验是采用反射式矩形谐振腔来测量微波介质特性的。
反射式谐振腔是把一段标准矩形波导管的一端加上带有耦合孔的金属板,另一端加上封闭的金属板,构成谐振腔,具有储能、选频等特性。
谐振条件:谐振腔发生谐振时,腔长必须是半个波导波长的整数倍,此时,电磁波在腔内连续反射,产生驻波。
谐振腔的有载品质因数QL由下式确定:式中:f0为腔的谐振频率,f1,f2分别为半功率点频率。
谐振腔的Q值越高,谐振曲线越窄,因此Q值的高低除了表示谐振腔效率的高低之外,还表示频率选择性的好坏。
如果在矩形谐振腔内插入一样品棒,样品在腔中电场作用下就会极化,并在极化的过程中产生能量损失,因此,谐振腔的谐振频率和品质因数将会变化。
电介质在交变电场下,其介电常数ε为复数,ε和介电损耗正切tanδ可由下列关系式表示:其中:ε’和ε’’分别表示ε的实部和虚部。
选择TE10n,(n为奇数)的谐振腔,将样品置于谐振腔内微波电场最强而磁场最弱处,即x=α/2,z=l/2处,且样品棒的轴向与y轴平行,如图2所示。
假设:1.样品棒的横向尺寸d(圆形的直径或正方形的边长)与棒长九相比小得多(一般d/h<1/10),y方向的退磁场可以忽略。
2.介质棒样品体积Vs远小于谐振腔体积V0,则可以认为除样品所在处的电磁场发生变化外,其余部分的电磁场保持不变,因此可以把样品看成一个微扰,则样品中的电场与外电场相等。
这样根据谐振腔的微扰理论可得下列关系式:式中:f0,fs分别为谐振腔放人样品前后的谐振频率,Δ(1/QL)为样品放人前后谐振腔的有载品质因数的倒数的变化,即QL0,QLS分别为放人样品前后的谐振腔有载品质因数。
电磁场与微波实验报告波导波长的测量

电磁场与微波测量实验报告学院:班级:组员:撰写人:学号:序号:实验二 波导波长的测量一、 实验内容波导波长的测量【方法一】两点法 实验原理如下图所示:按上图连接测量系统,可变电抗可以采用短路片。
当矩形波导(单模传输TE10模)终端(Z =0)短路时,将形成驻波状态。
波导内部电场强度(参见图三之坐标系)表达式为:Z aXE E E Y βπsinsin 0)(==在波导宽面中线沿轴线方向开缝的剖面上,电场强度的幅度分布如图三所示。
将探针由缝中插入波导并沿轴向移动,即可检测电场强度的幅度沿轴线方向的分布状态(如波节点和波腹点的位置等)。
两点法确定波节点位置将测量线终端短路后,波导内形成驻波状态。
调探针位置旋钮至电压波节点处,选频放大器电流表表头指示值为零,测得两个相邻的电压波节点位置(读得对应的游标卡尺上的刻度值1T 和2T ),就可求得波导波长为:T 2 min 'min g -=T λ由于在电压波节点附近,电场(及对应的晶体检波电流)非常小,导致测量线探针移动“足够长”的距离,选频放大器表头指针都在零处“不动”(实际上是眼睛未察觉出指针有微小移动或指针因惰性未移动),因而很难准确确定电压波节点位置,具体测法如下:把小探针位置调至电压波节点附近,尽量加大选频放大器的灵敏度(减小衰减量),使波节点附近电流变化对位置非常敏感(即小探针位置稍有变化,选频放大器表头指示值就有明显变化)。
记取同一电压波节点两侧电流值相同时小探针所处的两个不同位置,则其平均值即为理论节点位置:() 2121min T T T +=最后可得 T 2min 'min g -=T λ(参见图四)YZ【方法二】 间接法矩形波导中的 波,自由波长 和波导波长g λ满足公式:2 12⎪⎭⎫ ⎝⎛-a g λλλ=其中:f g /1038⨯=λ,cm a 286.2=通过实验测出波长,然后利用仪器提供的对照表确定波的频率,利用公式确定出 ,再计算出波导波长g λ。
北京邮电大学电磁场与电磁波实验报告

电磁场与电磁波实验报告无线信号场强特性的研究2013/5/13一、实验目的:1、掌握在移动环境下阴影衰落的概念以及正确的测试方法;2、研究国家体育馆——鸟巢周围各种不同环境下阴影衰落的分布规律;3、掌握在室内环境下场强的正确测量方法,理解建筑物穿透损耗的概念;4、通过实地测量,分析建筑物穿透损耗随频率的变化关系;5、研究建筑物穿透损耗与建筑材料的关系。
二、实验内容:利用DS1131场强仪,实地测量信号场强(单位:dBmW)。
1、研究具体现实环境下阴影衰落分布规律,以及具体的分布参数如何。
2、研究在国家体育馆鸟巢周围电波传播规律与现有模型的吻合程度,测试值与模型预测值的预测误差如何。
三、实验步骤:1、实验内容与研究对象的选择:我们想要研究学校外的建筑物的衰落现象,经过讨论,我们选择了国家体育馆鸟巢作为实验场所。
测量时,我们按照地图上逆时针方向沿着鸟巢边缘测量,具体路线见以下分布图:2、在选频方面,由于中央三套信号比较强,所以我们决定采用之,其图像信号的频率为487.25MHz,伴音信号的频率为493.75MHz,此时的波长约为0.616m,于是我们大约1m(也即2步左右)读取一个数据。
3、将测量得到的数据录入Excel表格,得到12个表格文件:即以每个入口之间测量段的字母来分类,如上图所示,共有:A、B、C、D、E、F、G、H、J、K、L、M等12个测量段。
文件截图如下:4、D文件里的数据截图:5、 数据处理过程:采集到的数据有512多组,需要对数据进行细致的处理以便得到明确的结论。
下图所示为数据处理的流程图。
四、 实验结果:1、 空间场强大小分析:图1是用Matlab 画的所有数据的大小起伏,虽然有大有小,但是难以确定空间场强的大小分布,所以再使用Mathematica 进行改进绘图,如图3、4:图1以下是图3是场强大小的图像分量空间分布图,扇形区域的半径表示大小。
图4是伴音信号大小的分布图,测量数据是按照六块区域划分的,具体划分图可以见图2;图2、所有数据研究区域划分图注:图中数字表示区域名,字母表示入口,命名方式如:AB入口,BC入口……图3、图像信号强弱的空间分布表3、图像信号强弱的空间分布根据上述结果,可以发现6区的图像信号最强,均值为-29dBmW,而3区最弱,为-40dBmW;我们组分析了原因,认为原因如下:1)6区附近比较开阔,所以信号受到的阻挡更小,衰减小,而2、3区附近面临闹市,所以受到干扰大;2)信号源在6区的方向,因为6区朝向信号源,所以6、1区的信号最强,而其他区域,由于信号要穿过鸟巢建筑有穿透损耗,因此衰减比较大。
北邮电磁场与微波测量实验报告实验五极化实验

北邮电磁场与微波测量实验报告实验五极化实验北邮电磁场与微波测量实验报告实验五极化实验学院:电子工程学院班号:2011211204组员:执笔人:学号:**********一、实验目的1.培养综合性设计电磁波实验方案的能力 2.验证电磁波的马吕斯定理二、实验设备S426型分光仪三、实验原理平面电磁波是横波,它的电场强度矢量E 和波长的传播方向垂直。
如果E 在垂直于传播方向的平面内沿着一条固定的直线变化,这样的横电磁波叫线极化波。
在光学中也叫偏振波。
偏振波电磁场沿某一方向的能量有一定关系。
这就是光学中的马吕斯定律:20cos I I θ=式中I 为偏振波的强度,θ为I 与I0间的夹角。
DH926B 型分光仪两喇叭口面互相平行,并与地面垂直,其轴线在一条直线上,由于接收喇叭是和一段旋转短波导连在一起的;在该轴承环的90度范围内,每隔5度有一刻度,所以接收喇叭的转角可以从此处读到。
四、实验步骤1.设计利用S426型分光仪验证电磁波马吕斯定律的方案;根据实验原理,可得设计方案:将S426型分光仪两喇叭口面互相平行,并与地面垂直,其轴线在一条直线上,由于接收喇叭是和一段旋转短波导连在一起的;在该轴承环的90度范围内,每隔5度有一刻度,接收喇叭课程从此处读取θ(以10度为步长),继而进行验证。
2.根据设计的方案,布置仪器,验证电磁波的马吕斯定律。
实验仪器布置通过调节,使A1取一较大值,方便实验进行。
然后,再利用前面推导出的θ,将仪器按下图布置。
A1五、实验数据I(uA )0 10 20 30 40 50 60 70 80 90 θ°理论值90 87.3 79.5 67.5 52.8 37.2 22.5 10.5 2.7 0实验值90 88 82 69 54 37 20 8 2 0.2 相对误差% 0 0.8 0.6 2.2 2.3 0.5 11.1 14.3 25.9 -1、数据分析:由数据可看出,实验值跟理论值是接近的,相对误差基本都很小,在误差允许范围内,所以可以认为马吕斯定律得到了验证。
微波实验报告波导波长测量

微波实验报告波导波长测量电磁场与微波测量实验报告实验二波导波长的测量一、实验内容波导波长的测量按上图连接测量系统,可变电抗可以采用短路片当矩形波导终端短路时,将形成驻波状态波导内部电场强度表达式为:E =EY =E0 sin sin?ZYZ?I?C?sin2?d?g??n、作出测量线探针在不同位置下的读数分布曲线北京邮电大学电磁场与微波测量实验报告实验二波导波长的测量一、实验内容波导波长的测量按上图连接测量系统,可变电抗可以采用短路片,在测量线中入射波与反射波的叠加为接近纯驻波图形,只要测得驻波相邻节点得位置L1、L2,由公式即可求得波导波长两点法确定波节点位置将测量线终端短路后,波导内形成驻波状态调探针位置旋钮至电压波节点处,选频放大器电流表表头指示值为零,测得两个相邻的电压波节点位置,就可求得波导波长为:’?g = 2 Tmin- Tmin响后面的测量校准晶体二极管检波器的检波特性将探针沿测量线由左向右移动,按测量放大器指示每改变最大值刻度的10%,记录一次探针位置,给出u沿线的分布图形设计表格,用驻波测量线校准晶体的检波特性作出晶体检波器校准曲线图令d作为测量点与波节点的距离;do是波节点的实际位置,d0+d 就是测量点的实际位置:再移动探针到驻波的波腹点,记录数据,分别找到波腹点相邻两边指示电表读数为波腹点50%对应的值,记录此刻探针位置d1和d2,根据公式n=()g求得晶体检波率n,和所得的数值进行比较三、实验结果分析数据分析:由于此时波导中存在的是驻波,并且测量的位置是从波腹到相邻的波节,所以画出来的波形应该是正弦曲线的四分之一,由上图可以看出,实验结果基本符合,误差在允许上图为对数坐标,横轴表示logE,纵轴表示logU分析:根据理论分析,上图应该是一条斜率为n的直线,而实际描出的点连成的线不是一条很直的直线,笔者决定采用理论拟合法拟合出一条直线拟合后直线的斜率为,所以晶体检波率为第二种定标法??=(λg==a.两点法测量波导波长+= 22+136T’min =? T1 ? T2 ?==22Tmin =? T1 ? T2 ?=‘?g = 2 Tmin- Tmin=b.间接法测量波导波长北京邮电大学电磁场与电磁波测量实验实验报告实验一微波测量系统的使用和信号源波长功率的测量一、实验目的(1) 学习微波的基本知识;(2) 了解微波在波导中传播的特点,掌握微波基本测量技术; (3) 学习用微波作为观测手段来研究物理现象二、实验仪器1.微波信号源微波信号源由振荡器、可变衰减器、调制器、驱动电路、及电源电路组成该信号源可在等幅波、窄带扫频、内方波调制方式下工作,并具有外调制功能在教学方式下,可实时显示体效应管的工作电压和电流的关系仪器输出功率不大,以数字形式直接显示工作频率,性能稳定可靠2.隔离器位于磁场中的某些铁氧化体材料对于来自不同方向的电磁波有着不同吸收,经过适当调节,可使其对微波具有单方向传播的特性,隔离器常用于振荡器与负载之间,起隔离和单向传输的作用3.衰减器把一片能吸微波能量的吸收片垂直于矩形波导的宽边,纵向插入波导管即成,用以部分衰减传输功率,沿着宽边移动吸收片可改变衰减量的大小衰减器起调节系统中微波功率从以及去耦合的作用 4.波长计电磁波通过耦合孔从波导进入频率计的空腔中,当频率计的腔体失谐时,腔里的电磁场极为微弱,此时,它基本不影响波导中波的传输当电磁波的频率计满足空腔的谐振条件时,发生谐振,反映到波导中的阻抗发生剧烈变化,相应地,通过波导中的电磁波信号强度将减弱,输出幅度将出现明显的跌落,从刻度套筒可读出输入微波谐振时的刻度,通过查表可得知输入微波谐振频率图1 实验原理框图表1 信号源波长测量表按上图连接测量系统,可变电抗可以采用短路片当矩形波导终端短路时,将形成驻波状态波导内部电场强度表达式为:E = EY = E0 sin sin?Z在波导宽面中线沿轴线方向开缝的剖面上,电场强度的幅度分布如图三所示将探针由缝中插入波导并沿轴向移动,即可检测电场强度的幅度沿轴线方向的分布状态微波测量线应用实验报告一、实验目的1、了解一般微波测试线的组成及其主要元、器件的作用,初步掌握它们的调整方法2、掌握波导中波导波长和驻波比的测量方法3、掌握调配器调配的方法及其对传输线驻波比的影响二、实验内容1、测量波导传输线中的横向场分布; 2、测量波导传输线中的波导波长;3、测量波导传输线中的驻波比;4、应用三螺调配器降低波导传输线中的驻波比三、微波测量线组成及测量原理常用的一般微波测试线组成如图1所示信号源能较稳定地工作可变衰减器也是由一小段波导构成的,其中放有一表面涂有损耗性材料,并与波导窄壁平行放置的薄介质片介质片越靠近波导中心处,衰减越大,反之,衰减越小利用可变衰减器可以连续地改变信号源传向负载方向功率的大小;另外,如同隔离器一样,可变衰减器也具有一定的隔离作用纵向场分布测量线是一段在其宽壁中心线开有一窄缝隙的矩形波导,电场探针从缝隙插入波导中,耦合出一定功率的微波信号,通过微波范围内用的晶体二极管检波器后变成为1kHz的低频信号,该信号测量放大器放大后,其幅度通过表头显示当电场探针沿着波导纵向移动时,测量放大器表头显示的数值变化就对应着波导中纵向电场幅度的分布横向场分布测量线是一段在其宽壁横向开有一窄缝隙的矩形波导,电场探针从缝隙插入波导中,耦合出一定功率的微波信号,通过微波范围内用的晶体二极管检波器后变成为1kHz的低频信号,该信号测量放大器放大后,其幅度通过表头显示当电场探针沿着波导横向移动时,测量放大器表头显示的数值变化就对应着波导中横向电场幅度的分布三螺调配器为波导传输线的终端负载,他由三根细圆柱金属棒分别在波导宽边中心线的不同纵向位置插入波导中,通过每一根金属棒伸进波导内部长度的变化改变反射波的幅度和相位,可以将传输线从终端短路状态调整到终端匹配状态四、实验方法与实验步骤1、首先按图1所示将测量系统安装好,然后接通电源和测量仪器的有关开关,观察微波信号源有无输出指示若有指示,当改变衰减量或移动测量线探针的位置时,测量放大器的表头指示会有起伏的变化,这说明系统已在工作了但这并不一定是最佳工作状态例如,若是反射式速调管信号源的话还应把它调到输出功率最大的振荡模式,并结合调节信号源处的短路活塞,以使能量更有效地传向负载若有必要,还可以调节测量线探头座内的短路活塞,以获得较高地灵敏度,或者调节测量线探针伸入波导的程度,以便较好地拾取信号的能量对于其它微波信号源也应根据说明书调到最佳状态有时信号源无输出,但测量放大器也有一定指示这可能是热噪声或其它杂散场的影响;若信号源有输出,但测量放大器的指示不稳定或者当测量线探针移动时,其指示不变,均属不正常情况,应检查原因,使之正常工作系统正常工作时,可调节测量放大器的有关旋钮或可变衰减器的衰减量,使测量放大器图3 终端短路状态下波导中纵向场幅度分布图3、测量波导传输线中的驻波比在上述条件下移动纵向场分布测量线中电场探针读取测量放大器读数的最大值和最小值,并记录五、实验报告内容1、画出一般微波测试线系统的装置简图,并说明各部分功能功能:微波源:提供信号隔离器:防止后级负载对信号源造成影响可变衰减器:防止信号太大使测量放大器超过量程纵向和横向场分布测量线:用于测量腔内的横向和纵向电场分布情况三螺调配器:用于接各种负载探针、检波器、测量放大器:用于测量和显示数据2、总结各实验项目的主要步骤,测试数据和计算结果 1)将负载短路片接上;找到峰值点,然后在峰值点两侧各找一点,使其幅度值相等,读取坐标位置;这两点中心点即为峰值点,测量两个峰值点的坐标,他们的差值即为半波长;半波长:波长为: 2)将负载接到终端找到波峰和波谷对应的幅度,作比值即可 Umax = 62 Umin = 30微波工作波长和波导波长测量一、实验原理:工作波长λ是微波源发射的电磁波在波导中传播的波长,它是连续的等幅波在自由空间或波导中传播工作波长是相同的这种波的发射机构是反射式速调管中的电子束经受速度调制后所发射的电磁波波导波长λg 则是工作电磁波在波导中两侧壁来回反射,形成电磁场场强沿波导传播方向的周期性分布,这种周期就对应于波导波长λg λ与λg可用下面公式计算:1 c?微波在波导两侧全反射沿Z方向传播 ?2?g?微波在波导中全反射使电磁场沿Z方向出现周期性分布,对应的长度称为波导波长λg二实验方法可用吸收谐振的方法测量微波发射频率,然后再计算工作波长λ圆柱形腔体经耦合孔与波导相通,改变腔体的固有频率,当与微波的频率相同时腔体就共振吸收微波能量,传播的微波能量就会减小,从而测到微波频率用驻波的方法测量波导波长在波导中形成驻波,用测量线测量驻波中的电场,可求得λg。
北邮电磁场实验 微波测量系统的使用和信号源波长功率的测量

2.隔离器
位于磁场中的某些铁氧化体材料对于来自不同方向的电磁波有着不同吸收,经过适当调节,可使其对微波具有单方向传播的特性,隔离器常用于振荡器与负载之间,起隔离和单向传输的作用。
5.按图一所示的框图连接微波实验系统。
6.微调单螺调配器,使腔偏离区配状态,检波电流计上有一定示数;
7.调节波长计使检波电流计再次出现最小值的时刻,读出此处波长计的刻度值;
8.按照波长计的刻度值去查找“波长计-频率刻度对照表”,就可以得到相应的信号源频率值;
9.改变信号频率,从8.6G开始测到9.6G,0.1G测一次,记录在数据表格中。
5.按照波长计的刻度值去查找“波长计-频率刻度对照表”,刻度值存在误差导致对应的频率也有误差
4
这次实验要比前两次难,主要在于又学习了不少新仪器的使用方法及了解它们的工作原理,也须回顾以前学过的微波技术基础的知识,而且实验仪器不是很完整,仪器误差较大。而且需要极大的耐心,转动手柄时必须要非常缓慢。发现同学们的学习热情都很高,大家遇到问题不仅组内积极讨论组与组之间也积极讨论,表示自己的疑惑或者提出自己的建议、解决问题的办法,我想这才是实验最有益的地方,让我们主动去积极思考,主动去互相讨论。
9.0
8.058
8.970
0.030
9.1
7.270
9.051
0.049
9.2
6.250
9.166
0.034
9.3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北邮电磁场与电磁波测量实验报告5-信号源-波导波长————————————————————————————————作者:————————————————————————————————日期:北京邮电大学电磁场与电磁波测量实验实验报告实验内容:微波测量系统的使用和信号源波长功率的测量波导波长的测量学院:电子工程学院班级:2010211203班组员:崔宇鹏张俊鹏章翀2013年5月9日实验一微波测量系统的使用和信号源波长功率的测量一、实验目的(1) 学习微波的基本知识;(2) 了解微波在波导中传播的特点,掌握微波基本测量技术;(3) 学习用微波作为观测手段来研究物理现象。
二、实验仪器1.微波信号源微波信号源由振荡器、可变衰减器、调制器、驱动电路、及电源电路组成。
该信号源可在等幅波、窄带扫频、内方波调制方式下工作,并具有外调制功能。
在教学方式下,可实时显示体效应管的工作电压和电流的关系。
仪器输出功率不大,以数字形式直接显示工作频率,性能稳定可靠。
2.隔离器位于磁场中的某些铁氧化体材料对于来自不同方向的电磁波有着不同吸收,经过适当调节,可使其对微波具有单方向传播的特性,隔离器常用于振荡器与负载之间,起隔离和单向传输的作用。
3.衰减器把一片能吸微波能量的吸收片垂直于矩形波导的宽边,纵向插入波导管即成,用以部分衰减传输功率,沿着宽边移动吸收片可改变衰减量的大小。
衰减器起调节系统中微波功率从以及去耦合的作用。
4.波长计电磁波通过耦合孔从波导进入频率计的空腔中,当频率计的腔体失谐时,腔里的电磁场极为微弱,此时,它基本不影响波导中波的传输。
当电磁波的频率计满足空腔的谐振条件时,发生谐振,反映到波导中的阻抗发生剧烈变化,相应地,通过波导中的电磁波信号强度将减弱,输出幅度将出现明显的跌落,从刻度套筒可读出输入微波谐振时的刻度,通过查表可得知输入微波谐振频率。
5.测量线测量线是测量微波传输系统中电场的强弱和分布的精密仪器。
由开槽波导、不调谐探头和滑架组成。
在波导的宽边有一个狭槽,金属探针经狭槽伸入波导。
线开槽波导中的场由不调谐探头取样,探头的移动靠滑架上的传动装置,探头的输出送到显示装置,就可以显示沿波导轴线的电磁场变化信息。
由于探针与电场平行,电场的变化在探针上就感应出的电动势经过晶体检波器变成电流信号输出。
6.检波晶体微波测量中,为指示波导(或同轴线)中电磁场强度的大小,是将它经过晶体二极管检波变成低频信号或直流电流,用电流电表的电流1来读数的。
从波导宽壁中点耦合出两宽壁间的感应电压,经微波二极管进行检波,调节其短路活塞位置,可使检波管处于微波的波腹点,以获得最高的检波效率。
7.选频放大器用于测量微弱低频信号,信号经升压、放大,选出1kHz 附近的信号,经整流平滑后输出级输出直流电平,由对数放大器展宽供给指示电路检测。
8.匹配负载 9.短路片三、实验原理测量微波传输系统中电磁场分布情况,测量驻波比、阻抗、调匹配等,是微波测量的重要工作,该实验系统主要的工作原理如图所示:图1 实验原理框图微波 信号源隔离器 波长表 检波 指示器检波器隔离器 测量线单螺调配器可变衰减器选频 放大器四、实验内容和实验步骤1. 微波测量系统的使用(1) 观察测量系统的微波仪器连接装置,衰减器,波长计,波导测量线的结构形式;(2) 熟悉信号源的使用将信号源的工作方式选择为:等幅位置,将衰减至于较大位置,输出端接相应指示器,观察输出;将信号源的工作方式选择为:方波位置,将衰减至于较大位置,输出端接相应指示器,观察输出;(3) 熟悉选频放大器的使用;(4) 熟悉谐振腔波长计的使用方法微波的频率测量是微波测量的基本内容之一。
其测量方法有两种:①谐振腔法;②频率比较法。
本实验采用了吸收式波长计测量信号源频率,为了确定谐振频率,用波长表测出微波信号源的频率。
具体做法是:旋转波长表的测微头,当波长表与被测频率谐振时,将出现吸收峰。
反映在检波指示器上的指示是一跌落点,此时,读出波长表测微头的读数,再从波长表频率与刻度曲线上查出对应的频率。
2. 信号源波长的测量(1) 微调单螺调配器,使腔偏离匹配状态,检波电流计上一定有示数;(2) 调节波长计是检波电流计再次出现最小值的时刻,读出此处波长计的刻度值;(3) 按照波长计的刻度值去查找“波长计-频率刻度对照表”,就可以得到相应的信号源频率值;(4) 改变信号频率,从8.6G开始测到9.6G,0.1G测一次,记录在数据表格中。
五、实验结果信号源频率(GHz)波长表读数(mm)查表的频率(GHz)信号源误差(GHz)8.6 13.116 8.632 0.032 8.7 11.784 8.730 0.030 8.8 10.786 8.814 0.014 8.9 9.675 8.913 0.0149.0 8.687 9.011 0.011 9.1 7.949 9.089 0.011 9.2 7.287 9.164 0.036 9.3 6.396 9.274 0.026 9.4 5.625 9.377 0.023 9.5 4.919 9.480 0.020 9.64.2659.5810.019平均误差:0.021GHz表1 信号源波长测量表实验二 波导波长的测量一.实验内容波导波长的测量【方法一】两点法实验原理如下图所示:按上图连接测量系统,可变电抗可以采用短路片。
当矩形波导(单模传输TE10模)终端(Z =0)短路时,将形成驻波状态。
波导内部电场强度(参见图三之坐标系)表达式为:可变衰测量微 波 信 号隔离器 波长可变选 频Z aXE E E Y βπsinsin 0)(==在波导宽面中线沿轴线方向开缝的剖面上,电场强度的幅度分布如图三所示。
将探针由缝中插入波导并沿轴向移动,即可检测电场强度的幅度沿轴线方向的分布状态(如波节点和波腹点的位置等)。
两点法确定波节点位置将测量线终端短路后,波导内形成驻波状态。
调探针位置旋钮至电压波节点处,选频放大器电流表表头指示值为零,测得两个相邻的电压波节点位置(读得对应的游标卡尺上的刻度值1T 和2T ),就可求得波导波长为:T 2 min 'min g -=T λ由于在电压波节点附近,电场(及对应的晶体检波电流)非常小,导致测量线探针移动“足够长”的距离,选频放大器表头指针都在零处“不动”(实际上是眼睛未察觉出指针有微小移动或指针因惰性未移动),因而很难准确确定电压波节点位置,具体测法如下:把小探针位置调至电压波节点附近,尽量加大选频放大器的灵敏度(减小衰减量),使波节点附近电流变化对位置非常敏感(即小探针位置稍有变化,选频放大器表头指示值就有明显变化)。
记取同一电压波节点两侧电流值相同时小探针所处的两个不同位置,则其平均值即为理论节点位置:() 2121min T T T +=最后可得 T 2 min 'min g -=T λ(参见图四) 终端短路面YbZ0 aX图【方法二】 间接法矩形波导中的H 10波,自由波长λ0和波导波长g λ满足公式:2 12⎪⎭⎫ ⎝⎛-a g λλλ=其中:f g /1038⨯=λ,cm a 286.2=通过实验测出波长,然后利用仪器提供的对照表确定波的频率,利用公式λ0=c f确定出λ0,再计算出波导波长g λ。
校准晶体二极管检波器的检波特性由于微波晶体检波二极管的非线性, 在不同信号幅度时具有不同的检波律。
在一般测量精度要求的场合, 可认为在小信号时为平方律检波,大信号时为直线律检波, 或在系统信号幅度范围内做平均检波律定标。
晶体检波二极管的定标准确与否, 直接影响微波相关参数的测量精度。
微波频率很高, 通常用检波晶体(微波晶体二极管)将微波信号转换成直流信号检测出来。
微波晶体二极管是一种非线性元件, 检波电流I 同微波场强E 之间不是线性关系,在一定范围内, 两者关系为:晶体检波二极管的检波电流随其微波电场而变化, 当微波场强较大时近似为线性检波律, 当微波场强较小时近似为平方检波律。
因此, 当微波功率变化较大时a 和k 就不是常数, 且和外界条件有关, 所以在精密测量中必须对晶体检波器进行定标。
本实验中采用两种定标方法 第一种定标方法图检波电压U 与探针的耦合电场成正比。
晶体管的检波律n 随检波电压U 改变。
在弱信号工作(检波电流不大于10 μA )情况下,近似为平方律检波,即n=2;在大信号范围,n 近似等于1,即直线律。
测量晶体检波器校准曲线最简便的方法是将测量线输出端短路,此时测量线上载纯驻波,其相对电压按正弦律分布,即:⎪⎪⎭⎫ ⎝⎛=g d U U λπ2sin max式中 ,d 为离波节点的距离,Umax 为波腹点电压,λg 为传输线上波长。
因此,传输线上晶体检波电流的表达式为ng d C I ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛=λπ2sin 根据上式就可以用实验的方法得到图所示的晶体检波器的校准曲线。
将上两式联立, 并取对数得到:作出曲线, 若呈现为近似一条直线, 则直线的斜率即是微波晶体检波器的检波律。
第二种定标方法测量线终端短路,测出半峰值读数间的距离W ,晶体检波率可以根据下式计算:n =log 0.5logcos(πWλg)二.实验步骤(1)、按照图示连接好测量系统(2)、利用两点法测量,将波导测量线终端短路,调测量放大器的衰减量和可变衰减器使当探针位于波腹时,放大器指示电表接近满格,用公式两点法测量波导波长(3)、利用间接法测量波导波长。
(4)、将探针沿测量线由左向右移动,按测量放大器指示每改变最大值刻度的10%,记录一次探针位置,给出U 沿线分布的图形 (5)、设计表格,用驻波测量线校准晶体的检波特性三.实验结果分析(1)波导波长第一点第二点第三点(mm)(mm) (mm) 左104.6 129.7 156.2 右107.8 133.7 159.1 平均 106.2 131.7 157.65第一,二点测得:Λg =51mm第二,三点测得:Λg =51.9mm平均:Λg =51.45mm间接法测量波导波长2 1 2⎪⎭⎫ ⎝⎛-a g λλλ==52.098mm(2)、给出检波晶体的校准曲线,求出晶体检波率。
波导波长Λg=51.45mm波节点位置:158.3mm 相对电场强度0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 理论值 0 0.817 1.644 2.498 3.363 4.288 5.25 6.352 7.567 9.188 12.863测量值0 1.9 2.52.93.54.34.75.46.16.98.4实际位置158.3156.4155.8155.4154.8154153.6152.9152.2151.4149.9U 0 8 16 24 32 40 48 56 64 72 80E'(绝对) 0 18.725198424.4705228.2270333.7280540.7656944.1375649.7707855.0271660.5221169.17401E(相对)' 0 0.234064980.3058810.3528380.4216010.5095710.551720.6221350.687840.7565260.864675相对场强与U的曲线Log(u)与log(e’)的曲线利用线性拟合法拟合出一条直线。