前推回代法计算流程

合集下载

配电自动化的合环潮流算法研究

配电自动化的合环潮流算法研究

配电自动化的合环潮流算法研究摘要:配网自动化是指一种常在智能电网中使用的集科学化、自动化与智能化于一体的现代先进系统化装置,这种先进装置主要应用于低频电网领域中,因此在我国的绝大多数多电力企业中,它常常作为建设配网过程中的首选目标之一。

关键词:配电网;合环转负荷;前推回代法;两阶段法引言随着现代化科学技术水平的提升。

如今,我国各个领域当中都已经实现了自动化管理和生产。

而且随着自动化水平的不断提高,使得我国一些建设工作变得更加高效。

1配电自动化合解环决策概述智能配电网的合解环操作能够减少停电时间,但也会影响电网的稳定运行。

当进行合环操作时,合环点两侧的电压矢量差会在合环瞬间消失,由此产生的电流可能会导致线路过载或出现保护失误操作,影响合解环决策;在进行解环时,线路负荷会突然增加,容易出现馈线末端电压过低的现象,对导线、电气设备造成损害,严重者会导致合环失败,出现大面积停电事故。

因此,很多供电公司采用“先断后通”的冷倒方式进行负荷转移,会增加用户停电次数,影响用户的用电体验。

另外,目前进行合解环操作时大多依赖于调度人员的自身经验判断,缺乏一定科学性,容易出现判断失误的现象。

因此,开发一个辅助决策分析软件成为提升合解环操作合理性的最佳方式。

2配网自动化的特点针对配网自动化建设工作进行深入的分析和研究,这样才能够更好地把握配电网建设工作的主要目的和系统。

随着我国越来越重视新型技术的研究和发展,在配网建设的过程中,逐渐诞生了配网自动化这项技术,而且这项技术在整个电网系统当中得到了普遍的运用,同时还使得我国传统的供电模式和方式发生了一定的变革。

我国电网系统可以借助一些先进的设备,就能够对整个配电网的供电运行状态进行实时的监测。

这种工作模式相比之前能够减少人力和物力的消耗,同时还能够有效控制故障的发生,促使系统自动完成相关操作,在一定程度上能够减少人工带来的误差和安全隐患问题。

通过运用配网自动化技术,还能够实现故障区域和非故障区域的独立工作。

前推回代法介绍

前推回代法介绍

前推回代法前推回代法配电网的始端电压和末端负荷,以馈线为根本计算单位。

最初假设全网电压都为额定电压,根据负荷功率由末端j向始端k逐段推算,仅计算各元件中的功率损耗而不计算节点电压,求得各支路上的电流和功率损耗,并据此获得始端功率,这是回代过程;再根据给定的始端电压和求得的始端功率,由始端向末端逐段推算电压降落,求得各节点电压,这是前推过程。

如此重复上述过程,直至各个节点的功率偏差满足允许条件为止。

图3-1所示的网络结构即为典型的辐射状配电网结构[31]。

首先要搜索节点关系,确定拓扑结构表。

为了配合算法和防止复杂的网络编号,采用以下原始数据输入结构,不用形成节点导纳矩阵,就可以自动搜索节点关系,确定网络的拓扑结构。

节点结构体:{节点号节点有功节点无功}支路结构体:{支路首端节点号支路末端节点号支路电阻支路电抗}根据线路首末节点,就可以确定每个节点连接的节点及其关系,从而可以形成整体的树状的关系结构。

为了形成层次关系,确定节点计算顺序,要利用网络拓扑结构,经过屡次按层遍历的广度优先搜索,形成层次关系,确定前推后代潮流算法的节点计算顺序。

具体方法如下:(1)搜索末梢节点作为第一层节点;(2)搜索末梢节点的父节点作为第二层节点;(3)继续搜索第二层节点的父节点作为第三层节点,这样反的搜索下去,直到搜索到某层节点的父节点全部是根节点时停止搜索;(4)删除在后面层次中有重复的前面层次中的节点,形成真正的层次关系,确定潮流计算的节点顺序。

前推回代法基于支路电流进行,首先假定各节点的电压幅值为1,幅角为0,具体计算步骤为:1〕从第一层节点开始,根据基尔霍夫电流定律,求支路上的电流://j j j j j S U P jQ U ij I 〔3-1〕式中,j S 是节点 j 的功率,j U 是节点 j 的电压。

2〕从第二层开始逐层计算非末梢节点的注入电流,根据基尔霍夫电流定律应等于〔3-1〕式与该节点流出电流之和:1()/()()m jk k k k k ij j j I S U I 〔3-2〕 3〕由步骤1〕和2〕可求出所有支路的支电流,再利用的根节点电压,从根节点向后顺次求得各个负荷节点的电压 (1)(1)(0)j ij ij i U I Z U 〔3-3〕其中i 为父节点,j 为子节点,Z 为i 、j 间支路的阻抗。

第一章-电力系统潮流计算的概述

第一章-电力系统潮流计算的概述

摘要潮流计算是电力系统的各种计算的基础,同时它又是研究电力系统的一项重要分析功能,是进行故障计算,继电保护鉴定,安全分析的工具。

电力系统潮流计算是计算系统动态稳定和静态稳定的基础。

在电力系统规划设计和现有电力系统运行方式的研究中,都需要利用电力系统潮流计算来定量的比较供电方案或运行方式的合理性、可靠性和经济性。

潮流计算的目的在于:确定是电力系统的运行方式;检查系统中的各元件是否过压或过载;为电力系统继电保护的整定提供依据;为电力系统的稳定计算提供初值,为电力系统规划和经济运行提供分析的基础。

因此,电力系统潮流计算是电力系统中一项最基本的计算,既具有一定的独立性,又是研究其他问题的基础。

传统的潮流计算程序缺乏图形用户界面,结果显示不直观,难于与其他分析功能集成。

本文以潮流计算软件的开发设计为重点,在数学模型与计算方法的基础上,利用MATELAB语言进行软件编写,和进行了数据测试工作,结果较为准确,收敛效果较好,并且程序设计方法是结构化程序设计方法,该方法基于功能分解,把整个软件工程看作是一个个对象的组合,由于对某个特定问题域来说,该对象组成基本不变,因此,这种基于对象分解方法设计的软件结构上比较稳定,易于维护和扩充。

设计主要采用牛顿—拉扶逊法为算法背景.本软件的主要特点是:(1)操作简单;(2)图形界面直观;(3)运行稳定。

计算准确;关键词:潮流计算;牛顿—拉扶逊法; MATLAB;第一章电力系统潮流计算的概述1。

1电力系统叙述电力工业发展初期,电能是直接在用户附近的发电站(或称发电厂)中生产的,各发电站孤立运行。

随着工农业生产和城市的发展,电能的需要量迅速增加,而热能资源(如煤田)和水能资源丰富的地区又往往远离用电比较集中的城市和工矿区,为了解决这个矛盾,就需要在动力资源丰富的地区建立大型发电站,然后将电能远距离输送给电力用户。

同时,为了提高供电可靠性以及资源利用的综合经济性,又把许多分散的各种形式的发电站,通过送电线路和变电所联系起来。

中低压配电网的三项潮流计算方法

中低压配电网的三项潮流计算方法

中低压配电网的三项潮流计算方法作者:王耀贤来源:《科学与财富》2017年第25期摘要:配电网潮流计算是配电网分析的基础,配电网的网络重构,故障处理、无功优化和状态估计等都需要配电网潮流数据。

配电网的配电线路的总长度较输电线路要长且分支较多,配电线的线径比输电网细导致配电网的R/X比值较大,且线路的充电电容可以忽略。

正是由于配电线路的R/X较大,无法满足P, Q解耦条件X>R,所以在输电网中常用的快速解耦法(FDLF)在配电网中则常常难收敛。

关键词:潮流计算;中低配电网;程序设计;验证分析潮流计算是电力系统中应用最为广泛。

最基本和最重要的一种电气计算。

电力系统潮流计算的任务是根据给定的网络结构及其运行条件,求出整个网络的运行状态,其中包括各母线的电压、网络中的功率分布以及功率损耗等等。

潮流计算的结果,无论是对于现有系统运行方式的分析研究,还是对规划中供电方案的分析比较,都是必不可少的。

它为判别这些运行方式及规划设计方案的合理性、安全可靠性及经济性提供了定量分析的依据。

1.中低配电网的模型配电网中的元件有很多,如变压器、线路、电容器、调相机等。

1.1元件模型---电力线路的数学模型电力系统中线路模型是以电阻、电抗、电纳、电导来表示的等值电路。

在求得单位长度导线的电阻、电抗、电纳、电导后,就可作最原始的电力线路等值电路。

这是单相等值电路。

之所以用单相等值电路代表三相,一方面由于本设计中讨论的是三相对称运行方式,另一方面也因为设架空线路都已经整循环换位。

通常,由于线路的导线截面积选择,以晴朗天气不发生电晕为前提,而沿绝缘子的泄漏又很小。

短线路,就是指长度不超过100km的架空线路。

线路的电压不高时,这种线路导纳B的影响一般不大,可以忽略。

因此,这种线路的等值电路最简单。

中等长度线路,是指长度在 100-300km之间的架空线路,不超过100km的电力电缆线路。

这种线路的电纳一般不能省略。

这种线路的等值电路有П型等值电路和 T 型等值电路,其中,常用的是П型等值电路。

电力系统分析潮流计算课程序设计及其MATLAB程序设计-范本模板

电力系统分析潮流计算课程序设计及其MATLAB程序设计-范本模板

电力系统分析潮流计算程序设计报告题目:13节点配电网潮流计算学院电气工程学院专业班级学生姓名学号班内序号指导教师房大中提交日期 2015年05月04日目录一、程序设计目的 (1)二、程序设计要求 (3)三、13节点配网潮流计算 (3)3.1主要流程................................................................................................... 错误!未定义书签。

3。

1.1第一步的前推公式如下(1—1)-(1—5): ................................. 错误!未定义书签。

3。

1.2第二步的回代公式如下(1-6)—(1-9): ..................................... 错误!未定义书签。

3.2配网前推后代潮流计算的原理 (7)3。

3配网前推后代潮流计算迭代过程 (7)3.3计算原理 (8)四、计算框图流程 (9)五、确定前推回代支路次序.......................................................................................... 错误!未定义书签。

六、前推回代计算输入文件 (10)主程序: (10)输入文件清单: (11)计算结果: (12)数据分析: (12)七、配电网潮流计算的要点 (13)八、自我总结 (13)九、参考文献 (14)附录一 MATLAB的简介 (14)一、程序设计目的开式网络潮流计算:配电网的结构特点呈辐射状,在正常运行时是开环的;配电网的潮流计算采用的方法是前推回代法,本程序利用前推回代法的基本原理、收敛性。

(1)在电网规划阶段,通过潮流计算,合理规划电源容量及接入点,合理规划网架,选择无功补偿方案,满足规划水平年的大、小方式下潮流交换控制、调峰、调相、调压的要求。

第3章 手算潮流

第3章 手算潮流
29
例3.1:已知末端功率和末端电压 3.1:已知末端功率 末端功率和
如何理解:正常运行时要求低压侧母线电压达36kV? 如何理解:正常运行时要求低压侧母线电压达36kV? 注意:1.根据题目要求,低压侧母线电压(36kV)应 注意:1.根据题目要求,低压侧母线电压(36kV)应 归算到高压侧!(本例中线路、变压器参数不用归 归算到高压侧!(本例中线路、变压器参数不用归 算);2.本题应计及电压降落的横分量。 算);2.本题应计及电压降落的横分量。
24
线路等值电抗消耗的无功:与负荷视在功率平方 线路等值电抗消耗的无功:与负荷视在功率平方 成正比。 线路对地电纳支路发出的无功:充电功率,与所 线路对地电纳支路发出的无功:充电功率,与所 加电压平方成正比,与通过负荷无直接关系。 加电压平方成正比,与通过负荷无直接关系。 轻载时,线路消耗很少的无功,甚至发出无功。 对于超高压输电线路,可能引起线路末端电压升 对于超高压输电线路,可能引起线路末端电压升 高,导致设备绝缘损坏,故线路末端常设并联电 ,导致设备绝缘损坏,故线路末端常设并联电 抗器,在线路空载或轻载时吸收一部分充电功率 抗器,在线路空载或轻载时吸收一部分充电功率 (多余的感性无功),避免线路上出现过电压。
33
计算步骤(续3) 计算步骤(
表格3.2(计算线路充电功率时用的是不计电压降落 表格3.2(计算线路充电功率时用的是不计电压降落 横分量时的电压值U 横分量时的电压值U2、U1,不规范) 不规范)
行号 19 20 21 22 内容 不计电压降落横分量时求U 不计电压降落横分量时求U1 求U1和U2的相角差(U2滞后U1) 的相角差(U 滞后U 计算线路左端充电功率(注意箭头方向、 计算线路左端充电功率(注意箭头方向、 正负号) 正负号) 根据KCL计算首端功率S 根据KCL计算首端功率S1(复功率)

自-配电网络的拓扑分析及潮流计算

自-配电网络的拓扑分析及潮流计算

配电网络的拓扑分析及潮流计算李晨在当前经济迅猛发展、供电日趋紧张的情况下,通过配电网络重构,充分发挥现有配电网的潜力,提高系统的安全性和经济性,具有很大的经济效益和社会效益。

本文对配电网拓扑分析、对配电网络潮流计算作分析研究,应用MATLAB编程来验证并分析配电网结构特点。

配电网的拓扑分析用树搜索法,并采用前推回代法进行潮流计算分析,通过树搜索形成网络拓扑表,然后利用前推回代法计算潮流分布。

1 配电网的接线分析配电网是指电力系统中二次降压侧直接或降压后向用户供电的网络。

配电网由馈线、降压变压器、断路器、各种开关构成。

就我国电力系统而言,配电网是指110kV及以下的电网。

在配电网中,通常把110kV,35kV级称为高压,10kV级称为中压,0.4kV级称为低压。

从体系结构上,配电网可以分作辐射状网、树状网和环状网,如图2.3所示。

我国配电网大部分是呈树状结构。

辐射网树状网环状网图1-1配电网的体系结构1.1 配电网的支路节点编号通过简化可把一个复杂的配电网络简化成一个节点一边关系的树状网络,于是就可以运行图论的知识进行网络拓扑分析。

按照这种简化模型,易知:节点数目比支路数目和开关数目多1,所以节点从0开始编号,而支路数和开关数从1开始编号,这样编号三者在序号上就可以完全一致,为后面的网损计算打下良好的基础。

联络线支路和上面的联络开关编号放在最后处理。

图1-2节点支路编号示意图图中①为节点号,1为支路号,其它节点、支路编号的含义相同。

节点、支路编号原则:将根节点编为0,并按父节点小于子节点号的原则由根节点向下顺序编号,规定去路正方向为父节点指向子节点,且支路编号与其子节点同号,则网络结构为层次结构如图1-2所示。

但是在配电网重构中,每次重构后的网络要重新进行编号,这样工作量将非常巨大,不得于工作的进行,因此必须寻找新的网络数据存储方法。

1.2 配电网的支路数据存储方式为了判断网络是否为辐射网和方便配电网潮流计算,本文采用上文所提到的编号方法,用结构数组来存储网络之间的连接关系和网络参数。

基于前推回代法的配电网潮流计算设计

基于前推回代法的配电网潮流计算设计

基于前推回代法的配电网潮流计算设计哈尔滨理工大学毕业设计(论文)任务书基于前推回带法的配电网潮流计算的研究摘要电力系统的潮流计算在电力系统稳态分析和电力系统设计中有很重要的作用,潮流计算也是电力系统暂态分析的基础。

潮流计算是根据给定的系统运行条件来计算系统各个部分的运行状况,主要包括电压和功率的计算。

配电网潮流计算是配电管理系统高级应用软件功能组成之一。

本课题在分析配电网元件模型的基础上,建立了配电网潮流计算的数学模型。

由于配电网的结构和参数与输电网有很大的区别,因此配电网的潮流计算必须采用相适应的算法。

配电网的结构特点呈辐射状,在正常运行时是开环的;配电网的另一个特点是配电线路的总长度较输电线路要长且分支比较多,配电线路的线径比输电网细导致配电网的R/X较大,且线路的充电电容可以忽略。

配电网的潮流计算采用的方法是前推回代法,文中对前推回代法的基本原理、收敛性及计算速度等进行了理论分析比较。

经过C语言编程,运行算例表明,前推回代法具有编程简单、计算速度快、收敛性好的特点,此方法是配电网潮流计算的有效算法,具有很强的实用性。

关键词:电力系统;配电网;潮流计算;前推回代法- IV -Study on distribution network power flowcalculationAbstractPower flow calculation has a very important role in power system steady-state analysis and power system design, and it is also the basis of transient analysis in power system. Flow calculation is based on given conditions of the power system and calculates the operational status of every part of the system, including voltage and power.With the development and application of the power electronics installations, the pollution of the harmonics becomes more and more serious in the network. The reactive source is used widely in many fields. Many kinds of methods based on the active filter to restrain the harmonics and to compensate the reactive power are taken into this field. And the detection of harmonics and reactive current is very crucial to harmonic restraint and reactive compensation. This thesis starts with the definition of the Fryze time-domain theory and the instantaneous reactive power theory, and the methods for harmonics detecting and reactive current based on these theories is also discussed respectively in this thesis. Thereafter , taking the three-phase three-wire symmetrical circuits as research object, using the software which named PSCAD/EMTDC, simulation model through which we can make computer simulation is built based on Fryze theory and instantaneous reactive power theory. From the interrelated wave we got from simulation, the fundamental reactive current we got from calculation and generalized instantaneous reactive current we got from detection. Those theories have the advantage of their own in detecting the harmonic- IV -result of the research indicates that Fryze theory has specific physical meanings, easily to be realized and calculated, but it need a longer delay time. Instantaneous reactive power theory has the advantage of a shorter delay time, much more exactly in detecting the harmonic and reactive current.Keywords:Power systems;fryze theory;instantaneous reactive power theory;harmonic;reactive current- IV -目录摘要 (I)Abstract .............................................................................................................. I I 第1章绪论.. (1)1.1 配电网潮流计算研究目的及意义 (1)1.2 潮流计算问题的发展及配电网潮流计算的现状 (2)1.3 本文主要内容 (4)第2章配电网潮流计算方法 (5)2.1 配电网特点及对算法的要求 (5)2.1.1配电网的分类 (5)2.1.2配电网的特点 (5)2.1.3配电网潮流算法的要求 (6)2.2 电力网数学模型 (6)2.2.1 输电线路的数学模型 (7)2.2.2 变压器的等值电路 (8)2.3配电网潮流计算概述 (9)2.3.1 潮流计算的概述 (10)2.3.2配电网潮流计算的概念 (10)2.3.3 配电网潮流计算的特点 (10)2.4 配电网潮流常用求解算法 (11)2.4.1 主干馈线节点功率计算 (11)2.4.2 主干馈线节点电压计算 (13)第3章配电网潮流计算前推回代法编程 (16)3.1程序流程图 (16)3.2程序编译 (17)第4章配电网潮流计算程序仿真 (19)4.1算例分析 (19)4.2程序运行 (20)结论 (25)致谢 (26)参考文献 (27)附录A英文文献 (28)附录B中文译文 (36)- IV -第1章绪论电力系统潮流计算是研究电力系统稳态运行情况的一种计算,它根据给定的运行条件以及系统的界限情况确定整个电力系统各个部分的运行状态:各母线的电压。

(完整版)前推回代法计算流程

(完整版)前推回代法计算流程

前推回代法计算流程要看懂前推回代法计算程序, 报告叙述计算原理及计算流程。

绘制计算流程框图。

确定前推回代 支路次序(广度优先,或深度优先) ,编写前推回代计算输入文件。

进行潮流计算。

下列为节点配电网结构图及系统支路参数和系统负荷参数表。

16211 1213210主程序清单:[PQ,FT,RX]=case114(); %调用数据文件NN=size(PQ,1); %节点数NB=size(FT,1); %支路数数%V 初始电压相量V=PQ(:,1);maxd=1k=1while maxd>0.0001PQ2=PQ; %每一次迭代各节点的注入有功和无功相同PL=0.0;for i=1:NBkf=FT(i,1); %前推始节点号kt=FT(i,2); %前推终节点号x=(PQ2(kf,2)^2+PQ2(kf,3)^2)/V(kf)/V(kf); %计算沿线电流平方APQ1(i,1)=PQ2(kf,2)+RX(i,1)*x; %计算支路首端有功/MW RX(i,1)~RPQ1(i,2)=PQ2(kf,3)+RX(i,2)*x; %计算沿支路的无功损耗/Mvar RX(i,2)~XPQ2(kt,2)= PQ2(kt,2)+PQ1(i,1); %用PQ1去修正支路末端节点的有功P 单位MW PQ2(kt,3)= PQ2(kt,3)+PQ1(i,2); %用PQ1去修正支路末端节点的有功Q 单位Mvarend angle(1)=0.0;for i=NB:-1:1kf=FT(i,2); %回代始节点号kt=FT(i,1); %回代终节点号dv1=(PQ1(i,1)*RX(i,1)+PQ1(i,2)*RX(i,2))/V(kf);dv2=(PQ1(i,1)*RX(i,2)-PQ1(i,2)*RX(i,1))/V(kf);V2(kt)=sqrt((V(kf)-dv1)^2+dv2^2);angle(kt)=angle(kf)+atand(dv2/(V(kf)-dv1));end maxd=abs(V2(2)-V(2));V2(1)=V(1);for i=3:1:NNif abs(V2(i)-V(i))>maxd;maxd=abs(V2(i)-V(i));endendmaxdk=k+1PQ1 %潮流分布即支路首端潮流M V=V2 % 节点电压模计算结果kVangle %节点电压角度计算结果单位度PL %网损单位MWendclear输入文件清单:function [PQ,FT,RX]=case114()PQ=[%节点电压有功无功PL=PL+RX(i,1)*x;%计算支路电压损耗的纵分量%计算支路电压损耗的横分量%计算支路末端电压/kV %计算支路dv1 dv210.4 0 010.0 0.0342 0.0301 10.0 0.0693 0.0642 10.0 0.0845 0.0763 10.0 0.0295 0.0261 10.0 0.0474 0.0409 10.0 0.1176 0.0957 10.0 0.0946 0.0857 10.0 0.0916 0.0859 10.0 0.0271 0.0229 10.0 0.0696 0.0643 10.0 0.0676 0.0579 10.0 0.0298 0.0242 ];FT=[%首端末端5 413 44 310 312 1111 37 66 29 88 23 22 1];RX=[% R X4.5245.043.521 3.9661.145 1.284.14 4.6962.436 2.8661.328 1.7632.745 2.9650.856 1.142.237 2.7563.7434.2512.356 2.5413.367 3.685]; 计算过程maxd = 1maxd =0.1780k =2PQ1 =0.0296 0.02620.0299 0.02430.1443 0.12720.0272 0.02300.0678 0.05810.1378 0.12300.1182 0.09640.1660 0.13780.0920 0.08630.1890 0.17480.3847 0.34390.8099 0.7260V =Columns 1 through 810.4000 9.8807 9.8220 9.9672 9.9734 9.97019.9390 9.8550Columns 9 through 139.9556 9.9780 9.9600 9.9668 9.9799 angle =Columns 1 through 80 0.3011 0.3986 0.4211 0.4387 0.3421 0.39160.3878Columns 9 through 130.0471maxd =0.1787PQ1 =0.0296 0.02620.0299 0.02430.1443 0.12720.0272 0.02300.0678 0.05810.1378 0.12300.1182 0.09640.1660 0.13780.0920 0.08630.1890 0.17490.3849 0.34420.8112 0.7274V =Columns 1 through 810.4000 9.8798 9.7004 9.7886 9.9405 9.8504 9.9089 9.7338Columns 9 through 139.8100 9.7996 9.7813 9.9267 9.9470 angle =Columns 1 through 80 0.3011 0.4011 0.4244 0.4421 0.34310.3929 0.3899Columns 9 through 130.0484 maxd =0.1793PQ1 =0.0296 0.02620.0299 0.02430.1444 0.12720.0272 0.02300.0678 0.05810.1379 0.12310.1182 0.09640.1661 0.13780.0920 0.08640.1891 0.17490.3851 0.34440.8115 0.7277Columns 1 through 810.4000 9.8796 9.6994 9.6666 9.7614 9.8495 9.7884 9.7329Columns 9 through 139.6883 9.6777 9.6591 9.7474 9.7680 angle = Columns 1 through 80 0.3011 0.4011 0.4250 0.4433 0.3431 0.3942 0.3899Columns 9 through 130.4266 0.4209 0.4498 0.4814 0.4447PL =0.0487maxd =0.1226k =5PQ1 =0.0296 0.02620.0299 0.02430.1444 0.12720.0272 0.02300.0678 0.05810.1379 0.12310.1183 0.09640.1661 0.13790.0920 0.08640.1891 0.17500.3852 0.34440.8115 0.7278V =Columns 1 through 810.4000 9.8795 9.6991 9.6656 9.6391 9.8493 9.7875 9.7326Columns 9 through 139.6873 9.6767 9.6581 9.6248 9.6457angle =Columns 1 through 80 0.3011 0.4011 0.4250 0.4438 0.3431 0.3942 0.3899Columns 9 through 130.4266 0.4209 0.4498 0.4822 0.4452PL =0.0487maxd =0.0010k =PQ1 =0.0296 0.02620.0299 0.02430.1444 0.12730.0272 0.02300.0678 0.05810.1379 0.12310.1183 0.09640.1661 0.13790.0920 0.08640.1891 0.17500.3852 0.34450.8116 0.7278V =Columns 1 through 810.4000 9.8795 9.6991 9.6653 9.6381 9.8492 9.7873 9.7326Columns 9 through 139.6870 9.6764 9.6579 9.6238 9.6447 angle = Columns 1 through 80 0.3011 0.4011 0.4250 0.4438 0.3431 0.3942 0.3899Columns 9 through 130.4266 0.4209 0.4498 0.4823 0.4452PL =0.0488maxd =2.6021e-004PQ1 =0.0296 0.02620.0299 0.02430.1444 0.12730.0272 0.02300.0678 0.05810.1379 0.12310.1183 0.09640.1661 0.13790.0920 0.08640.1891 0.17500.3852 0.34450.8116 0.7278V =Columns 1 through 810.4000 9.8795 9.6991 9.6652 9.6378 9.8492 9.7872 9.7326Columns 9 through 139.6870 9.6764 9.6578 9.6235 9.6445 angle =Columns 1 through 80 0.3011 0.4011 0.4250 0.4438 0.3431 0.3942 0.3899 Columns 9 through 13110.4266 0.4209 0.4498 0.4823 0.4452PL =0.0488 maxd =6.1046e-005PQ1 =0.0296 0.02620.0299 0.02430.1444 0.12730.0272 0.02300.0678 0.05810.1379 0.12310.1183 0.09640.1661 0.13790.0920 0.08640.1891 0.17500.3852 0.34450.8116 0.7278V =Columns 1 through 810.4000 9.8795 9.6991 9.6652 9.6377 9.8492 9.7326Columns 9 through 13angle =9.78729.6870 9.6764 9.6578 9.6235 9.644412Columns 1 through 80 0.3011 0.4011 0.4250 0.4438 0.3431 0.39420.3899Columns 9 through 130.4266 0.4209 0.4498 0.4823 0.4452PL =0.0488计算结果清单:maxd = 1k = 1maxd = 0.1780k = 2maxd = 0.1787k = 3maxd = 0.1793k = 4maxd = 0.1226k = 5maxd = 0.0010k = 6maxd = 2.6021e-04k = 7maxd = 6.1046e-05k = 8PQ1 =0.0296 0.02620.0299 0.02430.1444 0.12730.0272 0.02300.0678 0.05810.1379 0.12310.1183 0.09640.1661 0.13790.0920 0.08640.1891 0.17500.3852 0.34450.8116 0.7278V =1310.4000 9.8795 9.6991 9.6652 9.6377 9.8492 9.7872 9.7326 9.6870 9.6764 9.6578 9.6235 9.6444angle =0 0.3011 0.4011 0.4250 0.4438 0.3431 0.3942 0.3899 0.4266 0.42090.4498 0.4823 0.4452PL = 0.0488参考文献[1] 何仰赞温增银《电力系统分析》.华中科技大学出版社.[2] 李维波. 《MATLAB在电气工程中应用》.中国电力出版社.200714。

10kV城市配电网潮流研究

10kV城市配电网潮流研究

10kV城市配电网潮流研究摘要:面对着科技的进步和经济的高速发展,社会生活中方方面面对电力需求和电能质量都提出了更高的要求。

潮流计算是电力调度中各种分析计算的基础,城市配电网潮流计算是城市配电网规划、运行分析、状态估计、网络重构等的重要依据。

本文阐明10kV城市配电网类型和结构特点,进而研究对比目前常用的各类城市配电网潮流计算的方法,通过分析对比各种城市配电网的方法,从而得出牛顿--拉夫逊法是目前最常用也是收敛效果最好的城市配电网潮流计算的方法。

关键词:潮流计算,电力调度,城市配电网,牛顿--拉夫逊法1 引言无论对于电力系统稳态分析还是暂态分析,电力系统潮流计算永远是最基本的计算,用以研究整个电力网络系统规划和网络重构等问题。

对于非正常运行中的电力系统,通过潮流计算可以检验出电力系统的问题所在;对于正常运行中的电力系统,通过潮流计算可以预知是否会出现过负载现象,系统中所有母线的电压是否偏离电力网络的额定电压值。

城市配电网是整个电力系统中与用户直接联系、向用户供应电能和分配电能的重要环节。

一旦发生故障或对电力设施设备进行检修、试验就会造成系统对用户供电的中断。

城市配电网的潮流计算是整个配电网络供电能力及运行特性的集中表现。

2 城市配电网2.1 结构特点最近十年来,输电网的自动化程度已经有了很大的提高,然而配电网自动化程度仍然很低。

10kV环形城市配电网属于中压配电网。

以前的城市配电网一般都采用闭环设计和开环运行的方式,呈辐射状。

在线路参数方面,城市配电网的线路长度远比输电网线路要长,且分支线众多线径小,从而导致配电网的支路电阻和支路电抗的比值R/X较大,不满足支路电阻远远小于支路电抗的条件,并且线路的对地并联导纳比较小,在配电网潮流计算中有时可忽略不计。

2.2 潮流计算基本要求城市配电网潮流计算方法的基本要求如下:(1)收敛性好,对城市配电网中不同的接线方式以及在不同的运行条件下都能够收敛;(2)计算的速度快;(3)占用的内存少;(4)调整和修改时方便,工程运用中可维护。

配电网潮流计算方法分析与实现

配电网潮流计算方法分析与实现

毕业设计报告(论文) 题目:配电网潮流计算方法分析与实现所属系电子工程系专业电气工程及其自动化学号********姓名刘坚圣指导教师刘海涛起讫日期2010.3 -------- 2010.6设计地点东南大学成贤学院毕业设计报告(论文)诚信承诺本人承诺所呈交的毕业设计报告(论文)及取得的成果是在导师指导下完成,引用他人成果的部分均已列出参考文献。

如论文涉及任何知识产权纠纷,本人将承担一切责任。

学生签名:日期:摘要配电网潮流计算是配电管理系统高级应用软件功能组成之一。

本课题在分析配电网元件模型的基础上,建立了配电网潮流计算的数学模型。

由于配电网的结构和参数与输电网有很大的区别,因此配电网的潮流计算必须采用相适应的算法。

配电网的结构特点呈辐射状,在正常运行时是开环的;配电网的另一个特点是配电线路的总长度较输电线路要长且分支较多,配电线路的线径比输电网细导致配电网的R/X较大,且线路的充电电容可以忽略。

配电网的潮流计算采用的方法是前推回代法,文中对前推回代法的基本原理、收敛性及计算速度等进行了理论分析比较。

仿真算例表明,前推回代法具有编程简单、计算速度快、收敛性好的特点,此方法是配电网潮流计算的有效算法,具有很强的实用性。

关键词配电网,潮流计算,前推回代法AbstractFlow solution of distribution networks is one of software in DMS. Because of the different structures between transmission networks and distribution networks, the corresponding methods in flow solution of distribution networks must be applied. Distributions network is radial shape and in the condition of regular is annular. Another characteristic of distribution networks is cabinet minister of distribution long than transmission networks. The line diameter of distribution networks is thin than transmission networks, it cause R/X is large of distribution networks and the line’s capacitance can neglect. Load flow calculation of distributions network use back/ forward sweep. It has some peculiarities such as simple procedures and good restrain and so on. This method of distribution network is an effective method of calculating the trend, with some practicality.Key words :distribution network,load flow calculation,back/ forward sweep目录摘要 (III)Abstract (IV)1绪论 (1)1.1配电网的分类 (1)1.2配电网运行的特点及要求 (1)1.3配电网潮流计算的意义 (1)1.4配电网潮流计算的研究现状 (2)1.5Matlab运用简介 (2)1.6本课题要完成的工作 (4)2电力网基本元件模型 (5)2.1线路模型 (5)2.2变压器的模型 (8)2.3负荷的模型 (13)2.4电力系统节点分类 (14)2.5小结 (15)3配电网潮流计算的介绍与分析 (16)3.1配电网潮流计算的概述 (16)3.2配电网潮流计算的基本要求 (16)3.3配电网潮流计算的特点 (17)3.4配电网潮流计算的方法 (17)3.5辐射状配电网潮流计算方法比较 (21)3.6小结 (26)4 基于前推回代法的配电网潮流计算实例分析 (27)4.1配电网前推回代的基本算法 (27)4.2基于支路电流的前推回代法 (30)4.3基于支路电流的前推回代法求解步骤 (31)4.4基于支路电流的前推回代法德流程图 (34)4.5算例分析 (35)4.6小结 (42)5结论 (43)致谢 (44)参考文献(Referevces) (45)附录1:外文资料翻译………………………………………………………………………附录2:源程序………………………………………………………………………………1绪论1.1 配电网的分类在电力网中重要起分配电能作用的网络就称为配电网;配电网按电压等级来分类,可分为高压配电网(35—110KV),中压配电网(6—10KV,苏州有20KV的),低压配电网(220/380V);在负载率较大的特大型城市,220KV电网也有配电功能。

计算机常用算法设计方法

计算机常用算法设计方法

常用算法设计方法宁波高等专科学校电子系周文革要使计算机能完成人们预定的工作,首先必须为如何完成预定的工作设计一个算法,然后再根据算法编写程序。

计算机程序要对问题的每个对象和处理规则给出正确详尽的描述,其中程序的数据结构和变量用来描述问题的对象,程序结构、函数和语句用来描述问题的算法。

算法数据结构是程序的两个重要方面。

算法是问题求解过程的精确描述,一个算法由有限条可完全机械地执行的、有确定结果的指令组成。

指令正确地描述了要完成的任务和它们被执行的顺序。

计算机按算法指令所描述的顺序执行算法的指令能在有限的步骤内终止,或终止于给出问题的解,或终止于指出问题对此输入数据无解。

通常求解一个问题可能会有多种算法可供选择,选择的主要标准是算法的正确性和可靠性,简单性和易理解性。

其次是算法所需要的存储空间少和执行更快等。

算法设计是一件非常困难的工作,经常采用的算法设计技术主要有迭代法、穷举搜索法、递推法、贪婪法、回溯法、分治法、动态规划法等等。

另外,为了更简洁的形式设计和藐视算法,在算法设计时又常常采用递归技术,用递归描述算法。

一、迭代法迭代法是用于求方程或方程组近似根的一种常用的算法设计方法。

设方程为f(x)=0,用某种数学方法导出等价的形式x=g(x),然后按以下步骤执行:(1)选一个方程的近似根,赋给变量x0;(2)将x0的值保存于变量x1,然后计算g(x1),并将结果存于变量x0;(3)当x0与x1的差的绝对值还小于指定的精度要求时,重复步骤(2)的计算。

若方程有根,并且用上述方法计算出来的近似根序列收敛,则按上述方法求得的x0就认为是方程的根。

上述算法用C程序的形式表示为:【算法】迭代法求方程的根{ x0=初始近似根;do {x1=x0;x0=g(x1);/*按特定的方程计算新的近似根*/} while ( fabs(x0-x1)>Epsilon);printf(“方程的近似根是%f\n”,x0);}迭代算法也常用于求方程组的根,令X=(x0,x1,…,xn-1)设方程组为:x i=g i(X) (I=0,1,…,n-1)则求方程组根的迭代算法可描述如下:【算法】迭代法求方程组的根{ for (i=0;i<n;i++)x[i]=初始近似根;do {for (i=0;i<n;i++)y[i]=x[i];for (i=0;i<n;i++)x[i]=gi(X);for (delta=0.0,i=0;i<n;i++)if (fabs(y[i]-x[i])>delta) delta=fabs(y[i]-x[i]);} while (delta>Epsilon);for (i=0;i<n;i++)printf(“变量x[%d]的近似根是%f”,I,x[i]);printf(“\n”);}具体使用迭代法求根时应注意以下两种可能发生的情况:(1)如果方程无解,算法求出的近似根序列就不会收敛,迭代过程会变成死循环,因此在使用迭代算法前应先考察方程是否有解,并在程序中对迭代的次数给予限制;(2)方程虽然有解,但迭代公式选择不当,或迭代的初始近似根选择不合理,也会导致迭代失败。

前推回代潮流计算程序

前推回代潮流计算程序

前推回代潮流计算程序潮流计算是电力系统分析的基本方法之一,用于计算电力系统中各节点的电压、功率和电流等参数,并确定各设备的潮流分布情况。

在电力系统规划,运行和故障分析等方面都有广泛应用。

过去,潮流计算主要依赖于人工计算,需要大量的手工作业和时间。

随着计算机技术的发展,前推回代法(FDP)逐渐成为常用的潮流计算方法之一前推回代法是一种解决非线性方程组的数值迭代方法,其基本思想是根据节点电压相等和节点功率平衡的条件,将电力系统的潮流计算问题转化为求解非线性方程组的问题。

其核心是通过迭代计算,不断逼近方程的解。

前推回代法的步骤如下:1.建立节点潮流计算方程组:将电力系统的节点电压和节点功率平衡方程表示为非线性方程组。

其中节点电压方程是根据节点注入功率和导纳矩阵计算得到的,节点功率平衡方程是根据节点注入功率与节点出力功率之间的关系建立的。

2.初始化迭代计算:给定节点电压和相位的初始猜测值。

3.前推计算:从发电节点开始,根据节点电压的计算公式,逐个迭代计算各节点的电压和相位值,直到达到收敛条件。

4.回代计算:根据回代公式,从负荷节点开始,逐个迭代计算各节点的潮流值,直到达到收敛条件。

5.收敛判断:根据设定的收敛判断条件,判断迭代计算是否收敛。

如果未达到收敛条件,则返回第3步进行迭代计算;如果达到收敛条件,则结束计算。

前推回代法的优势在于可以较为准确地计算非线性电力系统的潮流分布情况。

与传统的手工计算相比,前推回代法具有计算速度快、准确度高、可靠性好等优点。

而且,通过计算机编程实现前推回代法,可以大大减少人工计算的工作量,提高计算效率。

然而,前推回代法也存在一些问题和限制。

首先,前推回代法在计算过程中需要不断迭代计算,迭代的次数与收敛的速度成正比。

如果系统存在严重的不平衡或不稳定问题,可能导致计算结果不收敛或收敛速度很慢。

其次,前推回代法在计算大规模电力系统时,可能会面临存储和计算能力的限制。

因此,在实际应用中,需要根据具体情况选择合适的潮流计算方法。

基于前推回代法的配电网潮流计算

基于前推回代法的配电网潮流计算

基于前推回代法的配电网潮流计算配电网潮流计算是优化配电网运行的关键技术之一。

配电网潮流计算的目的是计算待测电网中各个节点的电压和电流,以验证电网的可靠性和合法性。

前推回代法是一种求解配电网潮流的方法,能够准确地计算电网各个节点的电压和电流值。

一、前推回代法基本原理前推回代法是一种基于节点电压式的潮流计算方法。

它通过从各个节点出发,找出每个节点的电流值,并不断向前推导,直到达到电源节点。

然后,它利用回代法依次求解各个节点的电压值。

本方法的基本原理是:利用潮流方程组和节点电压数学模型解算出各个节点的电压和电流值。

1. 前推法前推法的核心思想是:从负荷节点出发,向电源节点逐个迭代求解电流值。

具体求解过程如下所示:(1)根据负荷节点的负荷功率和电压值,求出该节点的发生功率和吸收功率,即P和Q;(2)从负荷节点出发,按照电线的电阻、电抗和电导计算每条线路的电流值;(3)根据每条线路上的负荷功率和该线路的电流值,求出该线路的电阻势降和电感势降,计算出该节点的电压值。

(4)从该节点继续前推,重复步骤(1)-(3),直到达到电源节点。

2. 回代法回代法的核心思想是:从电源节点出发,依次反推各个节点的电压值。

具体求解过程如下所示:(1)从电源节点出发,根据电源的电压值、线路的电阻和电抗计算出负荷节点相对电源节点的电压值;(2)根据相对电源节点的电压值和每个节点的电流值计算出各个节点的电压值。

(3)重复步骤(1)和(2),直到计算出所有节点的电压值。

二、前推回代法的优点前推回代法相对于其他潮流计算方法具有以下优点:1. 计算精度高前推回代法采用节点电压式求解方式,可以精确计算每个节点的电压和电流值,因此计算精度更高,可靠性更强。

2. 计算速度快前推回代法不仅计算精度高,而且计算速度相对较快。

这是因为前推法和回代法的计算过程非常简单,只需要进行简单的数学运算就能解算出每个节点的电压和电流值。

因此,它不需要太多的计算资源和时间,可以快速解决大型电网的计算问题。

分布式电源的配网合环短路电流分析

分布式电源的配网合环短路电流分析

其 中, e为计 算 精度 。 若 满足 上述 收敛 条件 , 则 计算 结 束 , 得
出潮流 计算 结果 , 否 则继 续进 行前 推 回代过 程 。 改进 的前 推 回代 算法 流 程如 图 2 所示 。
1 . 2 算 例 分 析
前推 法计算 各 支路 电流
回代法 求解 各 节点 电压
仍 以图 3所示 的 系统为 例 , 设 节 点 4和节 点 1 2满足 合
环条 件 , 进行合环 , 节 点 5处 发 生 短 路 故 障 , 如 图 5所 示 , D G并 网不 同位置对 短 路 电流 的影响 如下 。 1 ) D G1 并 入短 路点 的前 端 在短 路 点前端 接 人 D G1后进 行 重 新计 算 , 结果如图 6 所示 , 短 路 点的故 障 电 流及 D G 接 入 点 与 短 路 点 间 的各 支 路( 如支路 3 ) 的 电流 都有 增 加 , 而且 D G 离 短 路点 越 近 , 电 流增 量越 多 。而 DG 对 合 环 稳 态 电 流 的 影 响 主要 取 决 于
Vo I 3 2 No 2
A0 r 2 01 3
1 . 0 6

口 未并入D I
目并 AD G
1 . 0 4
知, 短路 点的故 障 电流亦有 增加 , 但此 时 D G对 故
障点 上游 支路 的影 响与故 障类型 有关 。当发 生三 相对 称 短 路 故 障 时 , D G2被 故 障 点 隔 离 , 从 而 对 上游各支路不产生影响; 在发生不对称短路时, D G2 会 对 短路 点 之 前 的各 支 路 产 生 一 个 逆 向 电 流, 此时 D G会 在 一 定程 度 上 减 小 待合 环 线 路 的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

前推回代法计算流程要看懂前推回代法计算程序,报告叙述计算原理及计算流程。

绘制计算流程框图。

确定前推回代支路次序(广度优先,或深度优先),编写前推回代计算输入文件。

进行潮流计算。

下列为节点配电网结构图及系统支路参数和系统负荷参数表。

图1-2 节点配电网结构图表2 系统负荷参数主程序清单:[PQ,FT,RX]=case114(); %调用数据文件NN=size(PQ,1); %节点数NB=size(FT,1); %支路数数V=PQ(:,1); %V初始电压相量maxd=1k=1while maxd>0.0001PQ2=PQ; %每一次迭代各节点的注入有功和无功相同PL=0.0;for i=1:NBkf=FT(i,1); %前推始节点号kt=FT(i,2); %前推终节点号x=(PQ2(kf,2)^2+PQ2(kf,3)^2)/V(kf)/V(kf); %计算沿线电流平方APQ1(i,1)=PQ2(kf,2)+RX(i,1)*x; %计算支路首端有功/MW RX(i,1)~RPQ1(i,2)=PQ2(kf,3)+RX(i,2)*x; %计算沿支路的无功损耗/Mvar RX(i,2)~XPQ2(kt,2)= PQ2(kt,2)+PQ1(i,1); %用PQ1去修正支路末端节点的有功P 单位MWPL=PL+RX(i,1)*x;endangle(1)=0.0;for i=NB:-1:1kf=FT(i,2); %回代始节点号kt=FT(i,1); %回代终节点号dv1=(PQ1(i,1)*RX(i,1)+PQ1(i,2)*RX(i,2))/V(kf); %计算支路电压损耗的纵分量dv1 dv2=(PQ1(i,1)*RX(i,2)-PQ1(i,2)*RX(i,1))/V(kf); %计算支路电压损耗的横分量dv2 V2(kt)=sqrt((V(kf)-dv1)^2+dv2^2); %计算支路末端电压/kVangle(kt)=angle(kf)+atand(dv2/(V(kf)-dv1)); %计算支路endmaxd=abs(V2(2)-V(2));V2(1)=V(1);for i=3:1:NNif abs(V2(i)-V(i))>maxd;maxd=abs(V2(i)-V(i));endendmaxdk=k+1PQ1 %潮流分布即支路首端潮流MVAV=V2 %节点电压模计算结果kVangle %节点电压角度计算结果单位度PL %网损单位MWendclear输入文件清单:function [PQ,FT,RX]=case114()PQ=[%节点电压有功无功10.0 0.0342 0.0301 10.0 0.0693 0.0642 10.0 0.0845 0.0763 10.0 0.0295 0.0261 10.0 0.0474 0.0409 10.0 0.1176 0.0957 10.0 0.0946 0.0857 10.0 0.0916 0.0859 10.0 0.0271 0.0229 10.0 0.0696 0.0643 10.0 0.0676 0.0579 10.0 0.0298 0.0242 ];FT=[%首端末端5 413 44 310 312 1111 37 66 29 88 23 22 1];RX=[% R X4.5245.043.521 3.9661.145 1.284.14 4.6962.436 2.8661.328 1.7632.745 2.9650.856 1.142.237 2.7563.7434.2512.356 2.5413.367 3.685];计算过程maxd =k =1maxd =0.1780k =2PQ1 =0.0296 0.02620.0299 0.02430.1443 0.12720.0272 0.02300.0678 0.05810.1378 0.12300.1182 0.09640.1660 0.13780.0920 0.08630.1890 0.17480.3847 0.34390.8099 0.7260V =Columns 1 through 810.4000 9.8807 9.8220 9.9672 9.9734 9.9701 9.9390 9.8550 Columns 9 through 139.9556 9.9780 9.9600 9.9668 9.9799angle =0 0.3011 0.3986 0.4211 0.4387 0.3421 0.3916 0.3878 Columns 9 through 130.4225 0.4173 0.4444 0.4747 0.4400PL =0.0471maxd =0.1787k =3PQ1 =0.0296 0.02620.0299 0.02430.1443 0.12720.0272 0.02300.0678 0.05810.1378 0.12300.1182 0.09640.1660 0.13780.0920 0.08630.1890 0.17490.3849 0.34420.8112 0.7274V =Columns 1 through 810.4000 9.8798 9.7004 9.7886 9.9405 9.8504 9.9089 9.7338 Columns 9 through 139.8100 9.7996 9.7813 9.9267 9.9470angle =Columns 1 through 80 0.3011 0.4011 0.4244 0.4421 0.3431 0.3929 0.3899 Columns 9 through 130.4257 0.4204 0.4486 0.4791 0.4434PL =0.0484maxd =0.1793k =4PQ1 =0.0296 0.02620.0299 0.02430.1444 0.12720.0272 0.02300.0678 0.05810.1379 0.12310.1182 0.09640.1661 0.13780.0920 0.08640.1891 0.17490.3851 0.34440.8115 0.7277V =Columns 1 through 810.4000 9.8796 9.6994 9.6666 9.7614 9.8495 9.7884 9.7329 Columns 9 through 139.6883 9.6777 9.6591 9.7474 9.7680angle =Columns 1 through 80 0.3011 0.4011 0.4250 0.4433 0.3431 0.3942 0.3899 Columns 9 through 130.4266 0.4209 0.4498 0.4814 0.4447PL =0.0487maxd =0.1226k =5PQ1 =0.0296 0.02620.0299 0.02430.1444 0.12720.0272 0.02300.0678 0.05810.1379 0.12310.1183 0.09640.1661 0.13790.0920 0.0864V =Columns 1 through 810.4000 9.8795 9.6991 9.6656 9.6391 9.8493 9.7875 9.7326 Columns 9 through 139.6873 9.6767 9.6581 9.6248 9.6457angle =Columns 1 through 80 0.3011 0.4011 0.4250 0.4438 0.3431 0.3942 0.3899 Columns 9 through 130.4266 0.4209 0.4498 0.4822 0.4452PL =0.0487maxd =0.0010k =6PQ1 =0.0296 0.02620.0299 0.02430.1444 0.12730.1183 0.09640.1661 0.13790.0920 0.08640.1891 0.17500.3852 0.34450.8116 0.7278V =Columns 1 through 810.4000 9.8795 9.6991 9.6653 9.6381 9.8492 9.7873 9.7326 Columns 9 through 139.6870 9.6764 9.6579 9.6238 9.6447angle =Columns 1 through 80 0.3011 0.4011 0.4250 0.4438 0.3431 0.3942 0.3899 Columns 9 through 130.4266 0.4209 0.4498 0.4823 0.4452PL =0.0488maxd =2.6021e-004k =7PQ1 =0.0296 0.02620.0299 0.02430.1444 0.12730.0272 0.02300.0678 0.05810.1379 0.12310.1183 0.09640.1661 0.13790.0920 0.08640.1891 0.17500.3852 0.34450.8116 0.7278V =Columns 1 through 810.4000 9.8795 9.6991 9.6652 9.6378 9.8492 9.7872 9.7326 Columns 9 through 139.6870 9.6764 9.6578 9.6235 9.6445angle =Columns 1 through 80 0.3011 0.4011 0.4250 0.4438 0.3431 0.3942 0.3899 Columns 9 through 130.4266 0.4209 0.4498 0.4823 0.4452PL =0.0488maxd =6.1046e-005k =8PQ1 =0.0296 0.02620.0299 0.02430.1444 0.12730.0272 0.02300.0678 0.05810.1379 0.12310.1183 0.09640.1661 0.13790.0920 0.08640.1891 0.17500.3852 0.34450.8116 0.7278V =Columns 1 through 810.4000 9.8795 9.6991 9.6652 9.6377 9.8492 9.7872 9.7326 Columns 9 through 139.6870 9.6764 9.6578 9.6235 9.6444angle =Columns 1 through 80 0.3011 0.4011 0.4250 0.4438 0.3431 0.3942 0.3899 Columns 9 through 130.4266 0.4209 0.4498 0.4823 0.4452PL =0.0488计算结果清单:maxd = 1k = 1maxd = 0.1780k = 2maxd = 0.1787k = 3maxd = 0.1793k = 4maxd = 0.1226k = 5maxd = 0.0010k = 6maxd = 2.6021e-04k = 7maxd = 6.1046e-05k = 8PQ1 =0.0296 0.02620.0299 0.02430.1444 0.12730.0272 0.02300.0678 0.05810.1379 0.12310.1183 0.09640.1661 0.13790.0920 0.08640.1891 0.17500.3852 0.34450.8116 0.7278V =10.4000 9.8795 9.6991 9.6652 9.6377 9.8492 9.7872 9.7326 9.6870 9.6764 9.6578 9.6235 9.6444angle =0 0.3011 0.4011 0.4250 0.4438 0.3431 0.3942 0.3899 0.4266 0.4209 0.4498 0.4823 0.4452PL = 0.0488参考文献[1] 何仰赞温增银《电力系统分析》.华中科技大学出版社.[2] 李维波. 《MATLAB在电气工程中应用》.中国电力出版社.2007 .。

相关文档
最新文档