过控课设

合集下载

过程控制及仪表课程设计

过程控制及仪表课程设计

过程控制及仪表课程设计一、课程目标知识目标:1. 让学生理解过程控制的基本原理,掌握仪表的种类及其工作原理;2. 使学生能够运用所学知识,分析实际工业生产过程中存在的问题,并设计合理的控制方案;3. 培养学生对过程控制及仪表相关知识的综合运用能力。

技能目标:1. 培养学生具备操作和调试常见仪表的能力;2. 培养学生运用计算机及相关软件进行过程模拟和优化的能力;3. 培养学生团队协作,沟通协调和解决问题的能力。

情感态度价值观目标:1. 培养学生对过程控制及仪表技术的兴趣,激发学生的创新意识和探索精神;2. 培养学生严谨的科学态度,注重实践,提高学生的工程素养;3. 增强学生的环保意识,使其在设计和实施过程控制方案时,充分考虑节能、环保等因素。

课程性质:本课程为理论与实践相结合的课程,强调知识的应用性和实践性。

学生特点:学生具备一定的物理、数学和工程基础知识,具有较强的学习能力和动手能力。

教学要求:结合课程特点和学生实际,注重启发式教学,引导学生主动探究,提高学生的实践操作能力。

在教学过程中,将目标分解为具体的学习成果,以便进行有效的教学设计和评估。

二、教学内容1. 过程控制基本原理:包括过程控制的基本概念、分类、性能指标、控制系统数学模型等,对应教材第1章内容。

2. 常见仪表的种类及工作原理:涵盖压力、温度、流量、液位等传感器及执行器的工作原理和特性,对应教材第2章内容。

3. 控制器的设计与实现:介绍PID控制算法、控制器参数整定方法,结合实际案例进行讲解,对应教材第3章内容。

4. 计算机过程控制系统:包括集散控制系统、现场总线控制系统、工业以太网控制系统等,对应教材第4章内容。

5. 过程控制系统的仿真与优化:运用计算机及相关软件进行过程控制系统的建模、仿真和优化,对应教材第5章内容。

6. 实践教学环节:组织学生进行仪表操作、调试和过程控制系统的设计、实施,提高学生的实际操作能力。

教学内容安排和进度:1. 第1-2周:过程控制基本原理、常见仪表的种类及工作原理;2. 第3-4周:控制器的设计与实现;3. 第5-6周:计算机过程控制系统;4. 第7-8周:过程控制系统的仿真与优化;5. 第9-10周:实践教学环节。

过控课程设计乙苯

过控课程设计乙苯

过控课程设计乙苯一、教学目标本章节的教学目标为:1.知识目标:学生能够理解乙苯的性质、制备方法和应用场景;掌握乙苯过控的基本原理和操作步骤。

2.技能目标:学生能够运用乙苯过控的原理和操作步骤,解决实际生产中遇到的问题;能够使用相关仪器和设备进行乙苯过控实验。

3.情感态度价值观目标:学生能够认识到乙苯过控在化工生产中的重要性,培养对化工行业的兴趣和责任感。

二、教学内容本章节的教学内容为:1.乙苯的性质:介绍乙苯的结构、物理性质和化学性质。

2.乙苯的制备方法:讲解乙苯的制备原理和工艺流程。

3.乙苯过控原理:阐述乙苯过控的基本原理和操作步骤。

4.乙苯过控应用:介绍乙苯过控在实际生产中的应用场景。

三、教学方法本章节的教学方法为:1.讲授法:讲解乙苯的性质、制备方法和应用场景。

2.讨论法:学生讨论乙苯过控的原理和操作步骤。

3.案例分析法:分析实际生产中遇到的乙苯过控问题,引导学生运用所学知识解决。

4.实验法:指导学生进行乙苯过控实验,巩固所学知识。

四、教学资源本章节的教学资源为:1.教材:乙苯过控相关章节。

2.参考书:乙苯过控的理论与应用。

3.多媒体资料:乙苯过控实验操作视频。

4.实验设备:乙苯过控实验装置。

五、教学评估本章节的教学评估方式为:1.平时表现:评估学生的课堂参与度、提问回答等情况,占总评的30%。

2.作业:布置相关作业,评估学生的理解和应用能力,占总评的30%。

3.考试:期末进行闭卷考试,评估学生对乙苯过控知识的掌握程度,占总评的40%。

六、教学安排本章节的教学安排如下:1.教学进度:共10课时,每课时45分钟。

2.教学时间:安排在每周三下午第三节课。

3.教学地点:教室201。

七、差异化教学针对不同学生的学习风格、兴趣和能力水平,本章节差异化教学措施如下:1.针对学习风格不同的学生,采用多样化的教学方法,如讲授、讨论、实验等。

2.针对兴趣不同的学生,引入相关案例和实际应用,激发学生学习兴趣。

过程控制的课程设计

过程控制的课程设计

过程控制的课程设计一、课程目标知识目标:1. 让学生理解过程控制的基本概念,掌握其核心原理;2. 使学生能够运用所学知识,分析并解决实际过程中的控制问题;3. 引导学生了解过程控制在不同领域的应用,拓展知识视野。

技能目标:1. 培养学生运用数学模型描述实际过程的能力;2. 提高学生设计简单过程控制系统并进行仿真实验的能力;3. 培养学生运用现代工具对过程控制问题进行分析和解决的能力。

情感态度价值观目标:1. 培养学生对过程控制学科的兴趣和热情,激发求知欲;2. 引导学生树立正确的工程观念,认识到过程控制在国民经济发展中的重要作用;3. 培养学生的团队合作意识和严谨的科学态度,提高责任感。

课程性质:本课程为应用性较强的学科,旨在培养学生的实际操作能力和创新精神。

学生特点:学生具备一定的物理、数学基础,具有较强的逻辑思维能力和动手能力。

教学要求:结合学生特点,注重理论与实践相结合,强调在实际问题中发现、分析、解决问题的能力。

通过课程学习,使学生能够将所学知识内化为具体的学习成果,为后续相关课程的学习和实际工作打下坚实基础。

二、教学内容1. 过程控制基本概念:控制系统组成、开环与闭环控制、控制系统的性能指标;2. 数学模型描述:传递函数、状态空间表示、线性系统的特性;3. 过程控制原理:PID控制算法、超前-滞后校正、串并行控制;4. 过程控制系统设计:系统建模、控制器设计、系统仿真;5. 过程控制应用案例分析:工业生产过程、生物医学工程、环境监测等领域的应用实例;6. 现代过程控制技术:智能控制、网络控制、大数据在过程控制中的应用。

教学大纲安排:第一周:过程控制基本概念及性能指标;第二周:数学模型描述及传递函数;第三周:过程控制原理及PID控制算法;第四周:过程控制系统设计及建模;第五周:过程控制应用案例分析;第六周:现代过程控制技术及其发展趋势。

教学内容与教材关联性:教学内容紧密结合教材章节,涵盖教材中过程控制的核心知识,注重理论与实践相结合,以提高学生的实际应用能力。

过控原理课程设计

过控原理课程设计

过控原理课程设计一、教学目标本节课的教学目标是让学生掌握过控原理的基本概念、原理和应用。

具体包括:1.知识目标:a.了解过控原理的定义和发展历程;b.掌握过控原理的基本原理和关键技术;c.了解过控原理在工程应用中的广泛性。

2.技能目标:a.能够运用过控原理分析和解决实际问题;b.能够运用过控原理设计和优化控制系统;c.能够运用过控原理进行实验操作和数据分析。

3.情感态度价值观目标:a.培养学生的科学精神和创新意识;b.培养学生的团队合作能力和沟通交流能力;c.培养学生的社会责任感,使其认识到过控原理在工程应用中的重要性。

二、教学内容本节课的教学内容主要包括过控原理的基本概念、原理和应用。

具体包括:1.过控原理的定义和发展历程;2.过控原理的基本原理和关键技术;3.过控原理在工程应用中的广泛性;4.过控原理的实验操作和数据分析。

三、教学方法为了达到本节课的教学目标,我们将采用以下教学方法:1.讲授法:通过讲解过控原理的基本概念、原理和应用,使学生了解和掌握过控原理的基本知识。

2.案例分析法:通过分析实际案例,使学生了解过控原理在工程应用中的广泛性。

3.实验法:通过实验操作和数据分析,使学生掌握过控原理的实验方法和技巧。

四、教学资源为了支持本节课的教学内容和教学方法的实施,我们将准备以下教学资源:1.教材:过控原理教材,用于为学生提供系统的学习材料;2.参考书:过控原理相关参考书籍,用于为学生提供更多的学习资源;3.多媒体资料:过控原理相关的视频、动画和图片,用于为学生提供直观的学习材料;4.实验设备:过控原理实验所需的仪器设备和工具,用于为学生提供实践操作的机会。

五、教学评估为了全面、客观地评估学生的学习成果,我们将采用以下评估方式:1.平时表现:通过观察学生在课堂上的参与程度、提问回答、小组讨论等表现,评估学生的学习态度和理解程度。

2.作业:布置与课程内容相关的作业,要求学生在规定时间内完成,通过作业的完成质量评估学生的掌握程度。

过控课程设计绪论

过控课程设计绪论

过控课程设计绪论一、教学目标通过本章的学习,学生将掌握过控课程的基本概念、原理和应用;能够运用所学知识分析和解决实际问题;培养学生对过控技术的兴趣和好奇心,提高学生科学探究和创新能力。

具体目标如下:1.知识目标:(1)了解过控课程的定义、发展历程和应用领域;(2)掌握过控系统的基本组成、工作原理和性能指标;(3)理解过控技术在工程实践中的应用和意义。

2.技能目标:(1)能够运用过控知识分析简单的问题;(2)具备过控系统设计和优化的基本能力;(3)学会使用过控相关软件和工具。

3.情感态度价值观目标:(1)培养学生对过控技术的热爱和敬业精神;(2)增强学生团队合作和交流沟通能力;(3)提高学生创新意识和持续学习的动力。

二、教学内容本课程主要内容包括过控课程的基本概念、原理、应用和技术发展趋势。

具体安排如下:1.过控课程概述:介绍过控课程的定义、发展历程和应用领域;2.过控系统组成:讲解过控系统的基本组成、工作原理和性能指标;3.过控技术应用:分析过控技术在工程实践中的应用和意义;4.过控系统设计:介绍过控系统设计和优化的方法和技术;5.过控相关软件和工具:学习使用过控相关软件和工具。

三、教学方法本课程采用多种教学方法,包括讲授法、讨论法、案例分析法和实验法等,以激发学生的学习兴趣和主动性。

1.讲授法:通过讲解过控课程的基本概念、原理和应用,使学生掌握相关知识;2.讨论法:学生进行课堂讨论,培养学生的思考和表达能力;3.案例分析法:分析实际案例,使学生更好地理解和运用所学知识;4.实验法:进行实验操作,培养学生的动手能力和实践能力。

四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将使用以下教学资源:1.教材:选用权威、实用的过控课程教材,为学生提供系统的学习资料;2.参考书:提供相关领域的参考书籍,帮助学生拓展知识面;3.多媒体资料:制作精美的课件、视频等多媒体资料,增强课堂趣味性;4.实验设备:提供实验所需的设备和器材,确保学生能够进行实际操作。

过控课程设计心得体会

过控课程设计心得体会

过控课程设计心得体会我的课程设计之路虽然不算太长,但却颇有心得。

在学习过程中,我逐渐意识到,过控是课程设计中的一把利器。

所谓过控,即通过设计的方法,使整个课程更加系统化,有层次地呈现知识点,让学生更好地领会和掌握知识,达到透彻理解的效果。

过控的方法有很多,以下是我在课程设计中所运用的一些体会。

1. 提前制定详细的教学计划在开始设计课程之前,制定详细的教学计划非常必要。

教学计划应该包括所需时间,知识点分布,教学方法等等。

这样做的好处是,能让你事先规划好整个课程的脉络,更好地掌握和安排进度,避免中途出现紧急情况导致进度拖慢。

2. 突出重点,分段教学在课堂教学中,经常会遇到一些比较难理解的知识点。

这时候就需要我们将重点知识逐一突出,进行分段教学。

例如,如果学习的是一个较为复杂的编程语言,那就可以先讲解语言的基本语法,再加深语言中一些重要的概念和技巧。

这样不仅能够使学生更好地理解,也能够逐渐提高他们的学习兴趣。

3. 设计测验评估和小练习在课程的末尾或过程中,设立一些测验或小练习能够很好地检测学生的学习成果和水平。

这些测验和小练习可以是选择题、填空题,也可以是简答题。

通过这些测试,学生能够更好地了解自己的学习状况,从而更好地进行下一步的学习。

4. 多媒体教学现在,多媒体教学已经成为一种趋势,如何合理地运用多媒体技术,达到过控的效果,已成为课程设计中的重要命题。

在制作多媒体教学课件时,应注意抓住重点,切忌各种信息杂糅,过多的干扰。

另外,选择合适的音效与动作,使课件更加生动有趣,让学生更好地理解和掌握知识点。

总之,过控是课程设计中的一把重要利器。

通过各种方法的合理运用,能够更好地指导学生的学习,达到更好的掌握知识的效果。

当然,最重要的还是我们设计的目的,即让学生更好地学习,在实践中不断检验与完善,始终把学生的学习效果作为最终目标,根据学生的实际情况进行不断的优化。

过程控制与仪表课程设计

过程控制与仪表课程设计

过程控制与仪表课程设计一、课程目标知识目标:1. 让学生理解过程控制的基本概念,掌握仪表的种类、工作原理及其在工业中的应用。

2. 使学生掌握过程控制系统的数学模型,了解被控对象、控制器、执行器等组成部分的特性。

3. 让学生了解过程参数的检测与变送原理,掌握各类传感器的使用方法和调试技巧。

技能目标:1. 培养学生运用所学知识分析、解决实际过程控制问题的能力,能设计简单的过程控制系统。

2. 培养学生动手操作仪表,进行系统调试、故障排除的能力。

3. 提高学生的团队协作能力和沟通能力,能在小组合作中发挥各自优势,共同完成过程控制系统的设计与优化。

情感态度价值观目标:1. 培养学生对过程控制与仪表领域的兴趣,激发学生主动学习的积极性。

2. 培养学生严谨的科学态度,注重实践与理论相结合,提高学生的工程素养。

3. 引导学生关注过程控制技术在实际生产中的应用,认识到学习本课程的实际意义,增强学生的社会责任感。

课程性质:本课程为专业技术课程,旨在使学生掌握过程控制与仪表的基本理论、方法和技术,培养学生的实际操作能力和工程素养。

学生特点:高二年级学生,已具备一定的物理、数学基础,对工程技术有一定了解,具备初步的分析问题和动手能力。

教学要求:结合学生特点和课程性质,注重理论与实践相结合,强化学生的实际操作能力,提高学生解决实际问题的能力。

将课程目标分解为具体的学习成果,以便于教学设计和评估。

二、教学内容1. 过程控制基本概念:控制系统的分类、性能指标、稳定性与可控性。

2. 仪表及传感器:仪表的分类及工作原理,常见传感器(如温度、压力、流量传感器)的原理与应用。

3. 过程控制系统的数学模型:被控对象、控制器、执行器的数学描述,传递函数与方框图。

4. 控制器设计:PID控制算法,参数整定方法,串、并联控制系统的设计与分析。

5. 过程参数检测与变送:检测原理,变送器的种类及特性,信号处理与传输。

6. 过程控制系统的实现:控制系统硬件、软件组成,系统调试与优化。

过控原理课程设计

过控原理课程设计

过控原理课程设计一、课程目标知识目标:1. 理解并掌握过控原理的基本概念,包括开环控制与闭环控制的特点及应用;2. 学会分析控制系统的性能,了解稳定性、快速性及准确性等评价指标;3. 掌握典型控制系统的数学模型及其建立方法。

技能目标:1. 能够运用所学的过控原理知识,进行控制系统的设计与仿真;2. 培养学生运用数学工具解决实际控制问题的能力;3. 提高学生团队协作和沟通交流的能力。

情感态度价值观目标:1. 培养学生对自动化控制技术的兴趣,激发学习热情;2. 引导学生认识到控制技术在国民经济发展中的重要性,增强社会责任感;3. 培养学生严谨、务实的科学态度,提高创新意识和实践能力。

课程性质分析:本课程为自动化及相关专业高年级学生设置,旨在使学生掌握过控原理的基础知识,提高解决实际控制问题的能力。

学生特点分析:高年级学生对专业知识有一定的基础,具有较强的学习能力和自主性,对实际应用有较高的兴趣。

教学要求:1. 结合实际案例,注重理论与实践相结合;2. 创设情境,引导学生主动参与,培养学生的创新精神和实践能力;3. 注重过程评价,关注学生的个体差异,提高教学质量。

二、教学内容1. 引言:介绍过控原理的概念、发展及应用领域,激发学生兴趣,为后续学习打下基础。

教材章节:第一章 绪论内容列举:控制系统的基本概念、发展历程、应用领域。

2. 控制系统的数学模型:讲解控制系统的数学描述方法,使学生掌握建模方法。

教材章节:第二章 控制系统的数学模型内容列举:微分方程、传递函数、状态空间模型。

3. 控制系统的性能分析:学习控制系统的稳定性、快速性及准确性等性能评价指标。

教材章节:第三章 控制系统的性能分析内容列举:稳定性分析、快速性分析、准确性分析。

4. 开环控制与闭环控制:对比分析开环控制与闭环控制的优缺点,了解其在实际应用中的选择。

教材章节:第四章 开环控制与闭环控制内容列举:开环控制原理、闭环控制原理、开环与闭环控制的区别与联系。

过控课程设计指导书

过控课程设计指导书

过程控制系统课程设计指导书1.设计题目金弘基供热锅炉测控系统设计。

说明:金弘基供热锅炉系统由两台40吨热水锅炉构成,负责向大连市西南部的书香园一期、二期、三期住宅小区冬季供暖。

为保证锅炉的安全、经济运行,需要设计相应的测量、控制系统。

本设计仅包含1#锅炉的测量、控制系统。

2.设计目标住宅供热锅炉测控系统主要实现目标:⑴保证锅炉的安全运行。

设计控制参数有:炉膛温度、炉膛负压、出水温度、出水压力、总管温度、总管压力等。

⑵保证住宅供暖室内温度。

控制回水温度。

⑶锅炉运行考核管理。

出水温度、出水压力、回水温度、炉膛温度等重要参数的当班记录。

煤、水消耗的当班记录,考核评价等其他管理需要。

3. 设计指导思想作为民用供暖锅炉,在保证实现要求前提下,尽量降低测控系统建造成本、运行成本。

在测控设备选型方面,只要能满足要求,不追求较高的技术指标。

在方案设计方面,考虑所设计的系统将不会配备专业人员维护、操作,因此,尽量避免设计复杂的控制系统。

能采用人工监测的参数,就不采用自动监测。

能够开环控制的参数,就不采用闭环控制。

4. 设计任务供热热水锅炉测控系统方案设计、扩大初步设计。

主要完成以下设计任务:(1)供热热水锅炉测控系统方案设计。

(2)设备选型设计。

(3)仪表盘正面布置设计。

(4)仪表盘盘后接线图设计。

(5)仪表供电系统设计。

5. 设计指导本课程设计题目源自实际工程项目,学生设计之前,应仔细分析、研究设计任务书,研究类似的实际设计案例,了解相应的设计规范。

需要到实际现场观察、了解热水锅炉设备运行过程,测量、控制要求。

各项设计任务要求:(1)测量、控制方案设计根据具体要求,作出方案设计。

将测、控方案标注在工艺流程图上,形成带控制点的工艺流程图。

根据具体的应用场合,实际需要,测控方案应包括如下内容:①测量参数:炉膛温度、炉膛负压、出水温度、出水压力、回水温度、省煤器入口温度、省煤器出口温度、省煤器出入口压差。

②闭环控制参数:出水压力操纵变量:出水泵电机功率。

过程控制仿真课程设计

过程控制仿真课程设计

过程控制仿真课程设计一、课程目标知识目标:1. 学生能理解过程控制的基本原理,掌握仿真软件的使用方法。

2. 学生能运用控制理论分析实际工程问题,设计出合理的控制策略。

3. 学生了解过程控制在不同行业中的应用,如化工、热能等。

技能目标:1. 学生能够运用仿真软件搭建过程控制系统模型,进行系统仿真。

2. 学生能够对仿真结果进行分析,优化控制策略,提高系统性能。

3. 学生能够独立完成课程设计任务,具备一定的工程实践能力。

情感态度价值观目标:1. 学生培养对自动化及控制技术的兴趣,提高学习的主动性和积极性。

2. 学生通过课程学习,认识到过程控制在国民经济发展中的重要作用,增强社会责任感。

3. 学生在课程实践过程中,培养团队协作精神,提高沟通与交流能力。

课程性质分析:本课程为高二年级自动化及机器人兴趣小组的选修课程,旨在通过过程控制仿真课程设计,帮助学生将理论知识与实际应用相结合,提高学生的实践能力和创新能力。

学生特点分析:学生具备一定的物理、数学基础和控制理论知识,对自动化技术有一定兴趣,具备一定的自学能力和动手能力。

教学要求:1. 结合课本内容,注重理论与实践相结合,提高学生的实际操作能力。

2. 注重培养学生的创新意识和团队协作能力,提高学生的综合素质。

3. 通过课程设计,让学生深入了解过程控制领域的前沿动态,为将来的专业发展奠定基础。

二、教学内容1. 过程控制基本原理回顾:包括开环控制与闭环控制、控制系统的数学模型、稳定性分析等,对应教材第3章内容。

2. 仿真软件介绍与操作:介绍过程控制仿真软件(如MATLAB/Simulink),并进行基本操作培训,对应教材第4章内容。

3. 控制系统建模与仿真:教授如何利用仿真软件搭建控制系统模型,进行仿真实验,分析系统性能,对应教材第5章内容。

4. 控制策略设计与优化:学习PID控制、模糊控制等常见控制策略,并通过仿真软件进行参数优化,对应教材第6章内容。

5. 过程控制应用案例:分析化工、热能等领域的过程控制应用实例,了解控制技术在工程实际中的应用,对应教材第7章内容。

过控课设

过控课设

目录一、绪论 (1)1.1、精馏塔串级控制的过程 (1)1.2、精馏塔串级控制的原理 (1)二、总体设计方案 (2)三、系统器件选择(包括器件参数) (2)3.1温度传感器选择 (2)3.2调节器与执行器、传感器的选型 (2)四、硬件设计方案 (3)4.1主、副调节器正反作用方式确定 (3)五、控制算法选择 (4)六、控制参数整定 (5)七、心得体会 (7)参考文献 (8)一、绪论精馏是石油化工、炼油生产过程中的一个十分重要的环节,其目的是将混合物中各组分分离出来,达到规定的纯度。

精馏过程的实质就是迫使混合物的气、液两相在塔体中作逆向流动,利用混合液中各组分具有不同的挥发度,在互相接触的过程中,液相中的轻组分逐渐转入气相,而气相中的重组分则逐渐进入液相,从而实现液体混合物的分离。

一般精馏装置由精馏塔、再沸器、冷凝器、回流罐等设备组成。

1.1、精馏塔串级控制的过程进料流量从精馏塔中段某一塔板上进入塔内,这块塔板称为进料板。

进料板将精馏塔分为上下两段,进料板以上部分称为精馏段,进料板以下部分称为提馏段。

溶液中组分的数目可以是两个或两个以上。

实际工业生产中,只有两个组分的溶液不多,大量需要分离的溶液往往是多组分溶液。

多组分溶液的精馏在基本原理方面和两组分溶液的精馏是一样的。

1.2、精馏塔串级控制的原理我们的控制目的是使塔温保持恒定,现选用精馏段的温度, 与回流量来构成串级随动控制.温度调节器通常按PID调节规律,流量调节器按P调节规律。

当温度发生变化时,由主调节器(温度调节器)进行控制,其输出作为副调节器(液位调节器)的给定值,最终控制阀门的开度,主控回路的输出作为副控回路设定值修正的依据,副控回路的输出作为真正的控制量作用于被控对象,液位一旦发生变化,副控回路及时地控制阀门的开度位置,较快地克服了液位的变化对出料温度的影响如果液位是恒定的,只需测量实际温度,并使其与温度设定值相比较,利用二者的偏差控制管道上的阀门就能保持温度的恒定。

过程控制理论课程设计

过程控制理论课程设计

过程控制理论课程设计一、教学目标本课程的教学目标是使学生掌握过程控制理论的基本概念、原理和方法,能够运用这些知识分析和解决实际过程控制问题。

具体来说,知识目标包括了解过程控制的基本概念、熟悉过程控制的原理和方法、掌握过程控制的数学模型和仿真技术;技能目标包括能够运用过程控制理论进行简单的系统分析和设计、能够使用相关的软件工具进行过程控制仿真和实验;情感态度价值观目标包括培养学生的创新意识、团队合作精神和对过程控制理论的兴趣。

二、教学内容根据课程目标,教学内容主要包括过程控制的基本概念、原理和方法,以及相关的数学模型和仿真技术。

具体来说,包括以下几个方面:1. 过程控制的基本概念,如过程、控制、反馈等;2. 过程控制的原理和方法,如PID控制、模糊控制、神经网络控制等;3. 过程控制的数学模型,如连续时间系统模型、离散时间系统模型等;4. 过程控制仿真技术,如MATLAB/Simulink等。

三、教学方法为了达到课程目标,我们将采用多种教学方法,如讲授法、讨论法、案例分析法和实验法等。

讲授法用于传授基本概念和原理,讨论法用于探讨和解决实际问题,案例分析法用于分析和研究具体案例,实验法用于验证和应用所学知识。

通过多样化的教学方法,我们将激发学生的学习兴趣和主动性,提高他们的学习效果。

四、教学资源我们将选择和准备适当的教学资源,包括教材、参考书、多媒体资料和实验设备等。

教材和参考书将用于提供基础知识和扩展内容,多媒体资料将用于辅助讲解和演示,实验设备将用于进行实际操作和验证。

教学资源将支持教学内容和教学方法的实施,丰富学生的学习体验。

五、教学评估本课程的评估方式包括平时表现、作业和考试等。

平时表现主要评估学生的课堂参与和讨论,作业评估学生的知识理解和应用能力,考试评估学生的综合运用和分析能力。

我们将采用定量和定性相结合的方式进行评估,确保评估的客观性和公正性。

评估结果将全面反映学生的学习成果,用于指导和调整教学。

过控课设蒸发器前馈-反馈控制

过控课设蒸发器前馈-反馈控制

目录第一章前馈-反馈控制与设计任务 (1)1.1 前馈控制 (1)1.2 反馈控制 (1)1.3 设计任务 (1)1.4 设计要求 (1)1.5 设计报告 (1)第二章前馈-反馈系统 (2)2.1 前馈控制系统的组成 (2)2.2 前馈控制系统的特点 (2)2.3 前馈-反馈复合控制系统特性分析 (3)第三章前馈-反馈仿真分析 (6)3.1 系统分析 (6)3.2 静态系统仿真图 (6)3.2 动态系统仿真 (7)3.3 系统跟踪性能与抗干扰性能 (9)第四章总结 (11)参考文献 (12)第一章 前馈-反馈控制与设计任务1.1 前馈控制前馈控制(英文名称为Feedforward Control ),是按干扰进行调节的开环调节系统,在干扰发生后,被控变量未发生变化时,前馈控制器根据干扰幅值,变化趋势,对操纵变量进行调节,来补偿干扰对被控变量的影响,使被控变量保持不变的方法。

1.2 反馈控制反馈控制(英文名称为Feedback Control ),是指从被控对象获取信息,按照偏差的极性而向相反的方向改变控制量,再把调节被控量的作用馈送给控制对象,这种控制方法称为反馈控制,也称作按偏差控制。

反馈控制总是通过闭环来实现的。

反馈控制的特点:反馈控制的特点有:按偏差进行调节;调节量小,失调量小;能随时了解被控变量变化情况;输出影响输入(闭环)。

反馈控制必须有偏差才能进行调节,调节作用落后于干扰作用;调节不及时,被控变量总是变化的。

1.3 设计任务蒸发器的控制通道传递函数为,3011()501s G s e s -=+,扰动通道的传递函数为,702 1.2()401sG s e s -=+,试设计前馈-反馈控制系统,具体要求如下: 1.4 设计要求1) 采用matlab 仿真分析不同形式前馈控制器对系统性能的影响; 2) 采用matlab 仿真分析不同形式前馈-反馈控制器对系统性能的影响;3) 选择一种较为理想的控制方案进行设计,给出相应的闭环系统原理图; 4) 进行仿真实验,给出系统的跟踪性能和抗干扰性能。

过程控制工程课程设计

过程控制工程课程设计

过程控制工程 课程设计一、课程目标知识目标:1. 让学生掌握过程控制工程的基本概念,理解控制系统的结构、原理及分类。

2. 使学生了解过程控制系统中各环节的作用,掌握主要参数的测定与调整方法。

3. 帮助学生理解过程控制系统的数学模型,并学会运用相关理论分析控制系统的性能。

技能目标:1. 培养学生运用所学理论知识,分析实际过程控制工程问题的能力。

2. 培养学生设计简单的过程控制系统方案,并进行模拟与优化的能力。

3. 培养学生团队协作、沟通表达和动手实践的能力。

情感态度价值观目标:1. 培养学生对过程控制工程的兴趣,激发他们探究未知、解决问题的热情。

2. 培养学生严谨、务实的科学态度,使他们具备良好的工程素养。

3. 引导学生关注过程控制工程在国民经济和生活中的应用,提高他们的社会责任感。

本课程针对高年级学生,结合过程控制工程学科特点,注重理论与实践相结合,旨在提高学生的专业知识水平、实际操作能力和综合素养。

课程目标明确、具体,便于教师进行教学设计和评估,同时有利于学生明确学习方向,提高学习效果。

二、教学内容1. 过程控制工程基本概念:控制系统定义、分类、性能指标。

教材章节:第一章第一节2. 控制系统数学模型:传递函数、方框图、信号流图。

教材章节:第一章第二节3. 控制系统元件及环节:传感器、执行器、控制器、滤波器等。

教材章节:第二章4. 过程控制系统设计:系统建模、控制器设计、系统仿真。

教材章节:第三章5. 常见过程控制系统分析:PID控制、模糊控制、自适应控制。

教材章节:第四章6. 过程控制系统应用实例:化工、热工、电力等领域。

教材章节:第五章教学内容安排和进度:第一周:过程控制工程基本概念第二周:控制系统数学模型第三周:控制系统元件及环节第四周:过程控制系统设计第五周:常见过程控制系统分析第六周:过程控制系统应用实例教学内容根据课程目标进行选择和组织,确保科学性和系统性。

通过制定详细的教学大纲,明确教材章节和内容,有助于教师按计划进行教学,同时便于学生跟进学习进度。

过控课设

过控课设

摘要在人们生活以及工业生产等诸多领域经常涉及到液位和流量的控制问题,例如居民生活用水的供应,饮料、食品加工,溶液过滤,化工生产等多种行业的生产加工过程,通常需要使用蓄液池,蓄液池中的液位需要维持合适的高度,既不能太满溢出造成浪费,也不能过少而无法满足需求。

因此液面高度是工业控制过程中一个重要的参数,特别是在动态的状态下,采用适合的方法对液位进行检测、控制,能收到很好的效果。

PID控制(比例、积分和微分控制)是目前采用最多的控制方法。

本文主要是对双容器液位控制系统的设计过程,涉及到液位的动态控制、控制系统的建模、PID算法、传感器和调节阀、smith预估等一系列的知识。

作为双容水箱液位的控制系统,其模型为带纯滞后的二阶惯性函数,控制方式采用了PID算法,调节阀为电动调节阀。

选用合适的器件设备、控制方案和算法,是为了能最大限度地满足系统对诸如控制精度、调节时间和超调量等控制品质的要求。

基于smith预估的两容器液位控制系统设计1双容过程双容过程是过程控制中重要模型,它是由两只水箱串联工作组成。

双容水箱系统是一种比较常见的工业现场液位系统,在实际生产中,双容水箱控制系统在石油、化工﹑环保﹑水处理﹑冶金等行业尤为常见。

通过液位的检测与控制从而调节容器内的输入输出物料的平衡,以便保证生产过程中各环节的物料搭配得当。

1.1两容器液位控制模型图1 双容液位系统模型双容水槽是工业生产过程中的常见控制对象,它是由两个具有自平衡能力的单容水槽上下串联而成,通常要求对其下水槽液位进行定值控制,双容水槽中的下水槽液位即为这个系统中的被控量,通常选取上水槽的进水流量为操纵量。

对其液位的控制通常采用模拟仪表、计算机、PLC 等单回路控制。

双容水槽一般表现出二阶特性。

此模型在现实中也有着很广泛的应用。

1.2 水箱模型分析系统中上水箱和下水箱液位变化过程各是一个具有自衡能力的单容过程。

如图,上水箱的流入量为Qi,流出量为Q1,即下水箱的流入量,下水箱流出量为Q2。

过控课程设计格式参考[1]

过控课程设计格式参考[1]

《过程控制与自动化仪表》课程设计报告院系电子与电气工程学院专业自动化班级学号姓名年月绕线转子异步电动机串级调速系统一、控制要求1、了解绕线转子异步电动机串级调速的工作原理。

2、设计出220KW电机的串级调速系统。

二、设计思路绕线式转子异步电动机常采用改变转差率S调速, 可采用改变串接于转子回路附加电阻的方法进行调速,这种方法操作简单, 投资少, 但由于串入附加电阻而增加的转差功率P S, 是以发热的形式消耗在附加电阻上的, 故使得系统的效率降低, 而且调速范围小, 静差率大, 平滑性差(有级调速), 只能用于小功率电动机和对调速性能要求不高的场合。

这种调速方法的实质, 是通过改变消耗于转子外串电阻中的功率, 来改变转差率S, 从而达到调速的目的, 因此它属于转差功率消耗型调速方法。

为了充分利用转差功率, 采用在转子回路串入一个三相的附加电动势E f, 其频率应与转子电动势E2的频率相同, 改变附加电动势E f的大小及相位, 均能改变转子电流及转矩, 也就可以改变转差功率, 同样可以改变转差率, 实现调速, 这种调速方法称为串级调速。

由于这种调速方法可以将串入附加电动势而增加的转差功率P S回馈到电网或电动机轴上, 因此它属于转差功率回馈型调速方法。

绕线转子异步电动机采用串级调速方法, 克服了转子回路串电阻的缺点, 能提高调速的经济性, 具有节能作用, 可以使系统获得较高的运行效率。

它能实现无级平滑调速, 低速时机械特性也比较硬。

特别是晶闸管低同步串级调速系统, 技术难度小, 性能比较完善, 因而在大功率调速系统中获得了广泛的应用。

三、串级调速原理在转子回路中串入附加电动势E f进行串级调速的基本原理, 如图1 所示。

图2为其等效电路图,分析如下:图1 串级调速原理图图2 串级调速原理等效电路图假设电源电压、负载转矩均不变, 在E f=0的情况下, 异步电动机以接近额定值的转速稳定运行。

此时, 转子的感应电动势为E2=S E20, 转子电流的值为:I 2=2202220)(s R E X s + (1) 式中: E 20—转子开路时的相电动势; R 2—转子绕组每相的电阻;X 20—转子静止时的每相漏电抗。

过程控制类课程设计

过程控制类课程设计

过程控制类课程设计一、课程目标知识目标:1. 学生能理解过程控制的基本概念,掌握其原理和应用范围。

2. 学生能够掌握过程控制系统的数学模型,并能够运用相关公式进行简单计算。

3. 学生能够了解过程控制中的常见参数,如偏差、控制变量、扰动等,并理解它们在控制系统中的作用。

技能目标:1. 学生能够运用所学的过程控制知识,设计简单的控制系统,并分析其性能。

2. 学生能够运用图表、仿真软件等工具对过程控制系统进行模拟和优化。

3. 学生能够通过实验操作,观察过程控制现象,培养实际操作能力和观察能力。

情感态度价值观目标:1. 学生能够认识到过程控制在实际工程领域的重要性和广泛应用,增强对工程技术的兴趣。

2. 学生能够在团队合作中发挥个人优势,培养沟通协作能力和解决问题的能力。

3. 学生能够关注过程控制技术对社会和环境的影响,树立正确的工程伦理观念。

分析课程性质、学生特点和教学要求,本课程目标旨在使学生在掌握过程控制基本知识的基础上,能够将其应用于实际问题的分析和解决。

通过本课程的学习,学生将具备一定的过程控制系统设计和优化能力,同时培养良好的团队合作精神和工程伦理观念。

为实现这些目标,课程将重点关注知识点的实际应用,结合实验、案例分析等教学方法,使学生能够将理论知识与实际操作相结合,提高教学效果。

二、教学内容本章节教学内容主要包括以下几部分:1. 过程控制基本概念:介绍过程控制定义、分类及应用领域,使学生了解过程控制的基本框架。

教学内容:第一章第一节“过程控制的基本概念”。

2. 过程控制数学模型:讲解过程控制系统的数学描述,包括传递函数、状态空间表达式等。

教学内容:第一章第二节“过程控制的数学模型”。

3. 过程控制参数:阐述偏差、控制变量、扰动等参数的定义及在控制系统中的作用。

教学内容:第一章第三节“过程控制参数及其作用”。

4. 过程控制策略:介绍PID控制、模糊控制等常见控制策略,分析其优缺点及适用场景。

教学内容:第一章第四节“过程控制策略”。

过程控制类课程设计

过程控制类课程设计

过程控制类课程设计一、教学目标本课程的教学目标是让学生掌握过程控制的基本概念、原理和方法,培养学生分析和解决实际问题的能力。

具体目标如下:1.知识目标:(1)掌握过程控制的基本概念和分类;(2)了解过程控制系统的组成和原理;(3)熟悉常见的过程控制算法和应用。

2.技能目标:(1)能够运用过程控制理论分析和解决实际问题;(2)具备过程控制系统的设计和调试能力;(3)掌握过程控制软件的使用和维护。

3.情感态度价值观目标:(1)培养学生的创新意识和团队合作精神;(2)增强学生对过程控制技术的兴趣和信心;(3)培养学生关注社会发展和科技进步的责任感。

二、教学内容本课程的教学内容主要包括以下几个方面:1.过程控制基本概念:介绍过程控制的发展历程、定义、分类和应用领域;2.过程控制系统组成:讲解过程控制系统的硬件和软件组成部分,包括传感器、执行器、控制器等;3.过程控制原理:阐述过程控制的基本原理,如PID控制、模糊控制、神经网络控制等;4.过程控制算法:介绍常见的过程控制算法及其优缺点和适用场景;5.过程控制应用:分析实际过程中的控制案例,讲解过程控制系统的设计和调试方法。

三、教学方法为了提高教学效果,本课程将采用多种教学方法:1.讲授法:通过讲解和演示,使学生掌握过程控制的基本概念和原理;2.讨论法:学生分组讨论,培养学生的思考能力和团队协作精神;3.案例分析法:分析实际过程中的控制案例,提高学生解决实际问题的能力;4.实验法:安排实验室实践,让学生动手设计和调试过程控制系统。

四、教学资源为了支持教学内容和教学方法的实施,我们将准备以下教学资源:1.教材:选用权威、实用的过程控制教材,为学生提供系统的理论知识;2.参考书:提供相关领域的参考书籍,丰富学生的知识体系;3.多媒体资料:制作精美的课件和教学视频,提高学生的学习兴趣;4.实验设备:配置齐全的实验室设备,确保学生能够动手实践。

五、教学评估本课程的教学评估将采用多元化评价方式,全面、客观地评价学生的学习成果。

过控送风控制课程设计

过控送风控制课程设计

过控送风控制课程设计一、课程目标知识目标:1. 学生能理解过控送风系统的工作原理,掌握相关的专业术语及概念;2. 学生能描述过控送风系统的组成及其功能,了解各部件间的相互关系;3. 学生掌握过控送风系统控制策略的基本原理,能够分析不同工况下的系统运行特点。

技能目标:1. 学生能够运用所学的知识,设计简单的过控送风控制系统方案,并进行初步的参数设置;2. 学生能够通过实验和模拟操作,对过控送风系统进行调试和故障排查;3. 学生能够运用相关的软件工具,对过控送风系统的运行性能进行评估。

情感态度价值观目标:1. 学生在探究过控送风系统的过程中,培养对自动化控制技术的兴趣,激发创新意识;2. 学生通过团队合作,培养沟通协调能力和团队精神,增强解决问题的自信心;3. 学生能够认识到过控送风系统在现代建筑中的重要作用,关注节能环保,提高社会责任感。

课程性质:本课程为自动化控制技术的应用课程,旨在让学生掌握过控送风系统的设计与调试方法。

学生特点:高二年级学生,具备一定的物理知识和动手能力,对新技术感兴趣,但需加强对专业知识的理解。

教学要求:注重理论与实践相结合,鼓励学生动手操作和团队合作,提高学生的实际应用能力。

通过本课程的学习,使学生能够将理论知识与实际工程相结合,为未来的职业发展奠定基础。

二、教学内容1. 引入过控送风系统基本概念,介绍系统的工作原理及在现代建筑中的重要性。

- 教材章节:第二章第一节- 内容:过控送风系统的定义、发展历程、应用领域。

2. 讲解过控送风系统的组成及各部分功能,分析系统运行中的相互关系。

- 教材章节:第二章第二节- 内容:风机、传感器、执行器、控制器的功能及选型。

3. 探讨过控送风系统的控制策略,学习不同工况下的运行特点。

- 教材章节:第二章第三节- 内容:定风量控制、变风量控制、节能控制策略。

4. 设计过控送风系统方案,进行参数设置和模拟操作。

- 教材章节:第二章第四节- 内容:系统方案设计、参数计算、软件模拟操作。

过程控制课程设计

过程控制课程设计
动对系统稳定性的影响。
05
02
问题分析
温度控制是工业过程中常见的控制问题,涉 及传感器选择、控制算法设计和执行机构配 置等方面。
04
案例二
液位控制系统设计
06
解决方案
通过设计合理的液位传感器、控制器和执行机 构,实现液位的稳定控制,并考虑系统的安全 性和可靠性。
学生作品展示及评价标准
作品展示
学生将完成的过程控制课程设计作品 进行展示,包括设计思路、实现过程 、实验结果等方面。
随着互联网、物联网等技术的普及,过程控制领域将逐渐实现网络化控制,即通过网络实 现对远程设备的监控与控制,提高生产过程的自动化程度和效率。
对未来学习的建议
深入学习先进控制技术
为了适应过程控制领域的发展趋势,我们需要深入学习先进控制技术,如智能控制、多 变量协同控制等,提高自己的专业素养和竞争力。
加强实践能力和创新能力培养
解析法
通过建立被控对象的数学模型, 利用数学方法求解控制器参数, 以获得最优的控制性能。
仿真法
利用计算机仿真技术,模拟被控 对象的动态特性和控制系统的性 能,通过调整控制器参数优化系 统性能。
先进控制技术应用
预测控制
01
利用被控对象的历史数据和模型预测未来输出,通过优化算法
求解未来控制量,实现对系统的精确控制。
经验分享与改进建议
01
经验分享:在完成过程控制课程设计的过程中,学 生可以获得以下经验
02
掌握过程控制的基本原理和方法,了解不同类型的 控制系统设计。
03
熟悉常见的传感器、控制器和执行机构,以及它们 在过程控制中的应用。
经验分享与改进建议
1
学会使用仿真软件进行系统建模和仿真实验,验 证控制算法的有效性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要
在过程工业中被控制量通常有以下四种: 液位、压力、流量、温度。

而液位不仅是工业过程中常见的参数,且便于直接观察,也容易测量。

过程时间常数一般比较小。

以液位过程构成实验系统,可灵活地进行组态,实施各种不同的控制方案。

液位控制装置也是过程控制最常用的实验装置。

国外很多实验室有此类装置,如瑞典LUND大学等。

很多重要的研究报告、模拟仿真均出自此类装置!
本次设计也是基于这套水箱液位控制装置来实现的。

这套系统由多个水箱,液位检测变送器,电磁流量计,涡轮流量计,自动调节阀,控制面板等喝多器件构成。

液位控制的发展从七十年代到九十年代经历了几个阶段,控制理论由经典控制理论到现代控制理论,再到多学科交叉;控制工具由模拟仪表到DCS,再到计算机网络控制;控制要求与控制水平也由原来的简单、安全、平稳到先进、优质、低耗、高产甚至市场预测、柔性生产。

而其中应用最广泛的就是PID 控制器。

这次首先是用一天半的时间让我们熟悉各种建模的方法。

学会建立了最初的四种模型。

接着后几天就是开始熟悉各种控制系统,以及运用它们去控制水箱的液位,从而更加深刻的理解控制的概念。

并且在过程中,要熟练学会调整PID的参数,学会使用MATLAB等。

关键词:水箱液位 PID控制前馈控制
一. 设计题目
双容水箱液位前馈—反馈控制系统设计
二. 设计任务
如图所示双容水箱液位系统,由水泵1、2分别通过支路1、2向上水箱注水,在支路一中通过变频器对下水箱液位施加干扰,支路二则设置调节阀为保持下水箱液位恒定。

试设计前馈—反馈控制系统以维持下水箱液位的恒定。

2
图1 双容水箱液位控制系统示意图
三. 设计要求
设上、下水箱系统均以进水量为输入、水箱水位高度为输出,且均可用一阶惯性环节近似,其中上水箱系统的稳态增益为2,惯性时间常数为10;下水箱系统稳态增益为1,惯性时间常数为96。

两水箱串联工作。

1)当只有第二支路向上水箱注水时,试对该双容水箱液位系统的动态特性进行仿真,并画出相应的单位阶跃响应曲线。

若用一阶惯性环节对该双容对象加以近似,试用作图法确定相应的模型参数,并比较新建模型与原模型的单位阶跃响应。

2)当第二支路投运10s后,第一支路由变频器控制向上水箱注水施加干扰,干扰量位均值为0、方差为0.01的白噪声,试对该双容水箱液位系统在此种情况下的动态过程进行仿真;
3)针对双容水箱液位系统设计单回路控制,要求画出控制系统方框图,并分别对控制系统在有、无干扰作用下的动态过程进行仿真,其中PID参数的整定要求写出整定的依据(选择何种整定方法,P、I、D各参数整定的依据如何),对仿真结果进行评述;
4)针对该受扰的液位系统设计前馈—反馈控制,要求画出控制系统方框图及实施方案图,对控制系统的动态过程进行仿真,并对仿真结果进行评述。

四、设计报告
1)设计任务分析(包括系统建模、单回路控制以及前馈—反馈控制方案的理论
比较);
1.系统建模基本方法有机理法建模和测试法建模两种,机理法建模主要
用于生产过程的机理已经被人们充分掌握,并且可以比较确切的加以数学描述的情况;测试法建模是根据工业过程的实际情况对其输入输出进行某些数学处理得到,测试法建模一般较机理法建模简单,特别是在一些高阶的工业生产对象。

对于本设计而言,由于双容水箱的数学模型已知,故采用机理建模法。

控制对象特性:
1
102
)()()(111+=
∆∆=
T s U s H s G p (上水箱传递函数); 1
961
)()()(122+=∆∆=T s H s H s G p (下水箱传递函数)。

控制器:PID ; 执行器:控制阀;
干扰信号:在系统单位阶跃给定下运行10s 后,施加均值为0、方差为0.01的白噪声 为保持下水箱液位的稳定,设计中采用闭环系统,将下水箱液位信号经水位检测器送至控制器(PID ),控制器将实际水位与设定值相比较,产生输出信号作用于执行器(控制阀),从而改变流量调节水位。

当对象是单水箱时,通过不断调整PID 参数,单闭环控制系统理论上可以达到比较好的效果,系统也将有较好的抗干扰能力。

该设计对象属于双水箱系统,整个对象控制通道相对较长,如果采用单闭环控制系统,当上水箱有干扰时,此干扰经过控制通路传递到下水箱,会有很大的延迟,进而使控制器响应滞后,影响控制效果,在实际生产中,如果干扰频繁出现,无论如何调整PID 参数,都将无法得到满意的效果。

考虑到前馈-反馈控制可以使某些主要干扰提前被发现,及早控制,引入前馈,检测上水箱干扰,将信号送至控制器,然后直接作用于控制阀,以此得到较好的控制效果。

设计中,首先进行单回路闭环系统的建模,系统框图如下:
Q 3
在无干扰情况下,整定主控制器的PID参数,整定好参数后,分别改变P、I、D参数,观察各参数的变化对系统性能的影响;然后加入干扰(白噪声),比较有无干扰两种情况下系统稳定性的变化。

然后,加入前馈控制,在有干扰的情况下,比较单回路控制、前馈-反馈控制系统性能的变化,前馈-反馈控制系统框图如下:
2)设计任务
A.当只有第二支路向上水箱注水时,对该双容水箱液位系统的动态特性进行
仿真,相应的单位阶跃响应曲线如下:
由作图法:
2
1
2)0()(=-=∆-∞=
u y y K 其中,τ=8,T=130
由动态参数法进行整定:
B. 当第二支路投运10s 后,第一支路由变频器控制向上水箱注水施加干扰,
干扰量位均值为0、方差为0.01的白噪声时,对该双容水箱液位系统在此种情况下的动态过程进行仿真:
开环:MATLAB 仿真图形如下:
闭环:MATLAB仿真图形如下:
3) 单回路PID控制的设计(包括PID参数的整定方法与步骤、Simulink的建模与仿真、有、无干扰情况下仿真结果的比较);
1.单回路PID控制的设计
MATLAB仿真框图如下(无干扰):
先对控制对象进行PID参数整定,这里采用衰减曲线法,衰减比为4:1。

A.将积分时间Ti调为最大值,即MATLAB中I参数为0,微分时间常数TD调为
零,比例带δ为较大值,即MATLAB中K为较小值。

B.待系统稳定后,做阶跃响应,系统衰减比为4:1时,阶跃响应如下图:
从图上读出衰减振荡周期:
s T s
301545=-=
进而得到整定参数为:
032.025
8
.08.0===s δδ,即25.31=p K s T T s 93.01==
s T T s d
31.0==
使用以上PID 整定参数得到阶跃响应曲线如下:
观察以上曲线可以初步看出,经参数整定后,消除了稳态误差,系统的性能
有了很大的改善。

2.现向控制系统中加入干扰,以检测系统的抗干扰能力:
MATLAB仿真框图如下(有干扰):
使用以上PID整定参数得到阶跃响应曲线如下:
观察以上曲线,并与无干扰时的系统框图比较可知,系统稳定性下降较大,在干扰作用时,很难稳定下来,出现了长时间的小幅震荡,由此可见,单回路控制系统,在有干扰的情况下,很难保持系统的稳定性能,考虑前馈控制。

2)前馈—反馈控制系统的设计(包括前馈—反馈控制结构的设计、全补偿控制
器的设计、Simulink的建模与仿真、全补偿与非全补偿仿真结构的比较);
前馈—反馈控制结构方块图如下:
系统的MATLAB仿真框图如下(有噪声):完全补偿:
非完全补偿:
观察以上曲线,并与完全补偿的系统框图比较可知,系统稳定性下降,完全补偿能很好的控制精度。

3)总结(包括课程设计过程中的学习体会与收获)。

通过这段时间的努力尝试,过程控制课程设计已经接近尾声。

这其中的酸甜苦辣只有亲自经历过,才能深刻体会到。

我自己也从这次课程设计中收获颇丰。

在先前已经进行的过程控制课程学习,让我们对各种控制系统以及
生产控制过程中所运用的一些理论知识有了初步的了解。

课程设计让我有了这次机会,我们利用水箱系统,探究了书本中所学的一些理论知识。

包括前馈——反馈控制系统等。

也让我们对PID参数的整定有了详细的了解。

刚开始建模时,难免遇到了许多困难,但是经过学习后,慢慢走上了正轨。

很多东西也变得轻车熟路起来。

这也让我对MATLAB的应用有了很好的认识。

为我以后的学习及工作奠定了很好的基础。

二○○八~二○○九学年第一学期信息科学与工程学院课程设计报告书课程名称:过程控制与集散系统课程设计班级:
学号:
姓名:
指导教师:
二○一三年十月。

相关文档
最新文档