初三中考数学专题卷---立体图形

合集下载

中考数学几何图形专题训练50题含答案

中考数学几何图形专题训练50题含答案

中考数学几何图形专题训练50题含答案(单选、填空、解答题)一、单选题1.下列各图经过折叠后不能围成一个正方体的是()A.B.C.D.【答案】C【分析】根据平面图形的折叠、正方体的展开图的特点即可得出答案.【详解】解:A.是正方体的展开图,经过折叠后能围成一个正方体,故A不符合题意;B.是正方体的展开图,经过折叠后能围成一个正方体,故B不符合题意;C.不是正方体的展开图,经过折叠后不能围成一个正方体,故C符合题意;D.是正方体的展开图,经过折叠后能围成一个正方体,故D不符合题意.故选:C.【点睛】本题主要考查了展开图折叠成几何体,属于基础题,要充分展开想象,注意培养自己的立体感.2.一副三角板按如图所示的方式摆放,则∠1补角的度数为()A.45︒B.135︒C.75︒D.165︒【答案】D【分析】根据题意得出∠1=15°,再求∠1补角即可.∠=︒-︒=︒【详解】由图形可得1453015∠∠1补角的度数为18015165︒-︒=︒故选:D.【点睛】本题考查利用三角板求度数和补角的定义,熟记各个三角板的角的度数是解题的关键.3.用一个放大10倍的放大镜看一个10°的角,这个角是()A .100°B .10°C .110°D .170° 【答案】B 【分析】根据放大镜看一个角只会改变边的长度,不会改变角本身的度数即可求解.【详解】解:用放大镜看一个角,不会改变角本身的度数,故选:B .【点睛】本题考查角的大小比较,放大镜看到的角不会改变角本身的度数. 4.如果点C 在线段AB 所在直线上,则下列各式中AC AB =,AC CB =,2AB AC =,AC CB AB +=,能说明C 是线段AB 中点的有( )A .1个B .2个C .3个D .4个 【答案】A【分析】根据线段中点的定义,能判断AC=CB 的条件都能说明C 是线段AB 中点.【详解】根据分析得:若AC=AB ,则不能判断C 是线段AB 中点;若AC=CB ,则可判断C 是线段AB 中点;若AB=2AC ,则不能判断C 是线段AB 中点;若AC+CB=AB ,则不能判断C 是线段AB 中点;综上可得共有1个正确.故选A.【点睛】本题考查线段中点的定义,解题的关键是掌握线段中点的定义.5.如图,已知BD CF =,B F ∠=∠,//AC DE 下列结论不正确的是( )A .FD BC =B .EF CB =C .//EF ABD .AE ∠=∠【答案】B 【分析】根据全等三角形的判定和性质、平行线的判定和性质以及线段的和差进行判断即可得解.【详解】解:∠//AC DE∠ACB EDF ∠=∠∠BD CF =∠BD CD CF CD +=+∠BC DF =∠在ABC 和EFD △中B F BC FDACB EDF ∠=∠⎧⎪=⎨⎪∠=∠⎩∠()ABC EFD ASA ≌∠A E ∠=∠故说法D 正确;∠B F ∠=∠∠//EF AB故说法C 正确;∠BD CF =∠BD CD CF CD +=+∠BC DF =故说A 正确,说法B 错误.故选:B【点睛】本题考查了全等三角形的判定和性质、平行线的判定和性质以及线段的和差,熟悉各知识点是解题的关键.6.如图,OC 平分AOD ∠,30DOC AOB ∠-∠=︒,有下列结论:∠30BOC ∠=︒;∠BOC ∠的度数无法确定;∠若20AOB ∠=︒,则100AOD ∠=︒;∠若60AOB ∠=︒,则A ,O ,D 三点在同一条直线上.其中,正确的有( )A .1个B .2个C .3个D .4个【答案】C 【分析】根据角平分线定义得出DOC AOC ∠=∠,根据30DOC AOB ∠-∠=︒,即可求出30BOC ∠=︒,判断出∠正确,∠错误;根据30BOC ∠=︒,20AOB ∠=︒,求出50AOC AOB BOC ∠=∠+∠=︒,根据角平分线定义求出100AOD ∠=︒,即可判断∠正确;求出180AOD ∠=︒,即可判断∠正确.【详解】解:∠OC 平分AOD ∠,∠DOC AOC ∠=∠,∠30DOC AOB AOC AOB BOC ∠-∠=∠-∠=∠=︒,故∠正确,∠错误.由∠知,30BOC ∠=︒,∠50AOC AOB BOC ∠=∠+∠=︒,∠2100AOD AOC ∠=∠=︒,故∠正确.∠30BOC ∠=︒,60AOB ∠=︒,∠90AOC BOC AOB ∠=∠+∠=︒,∠2180AOD AOC ∠=∠=︒,∠A 、O 、D 三点在一条直线上,故∠正确.综上,正确的为∠∠∠,共3个,故C 正确.故选:C .【点睛】本题主要考查了角平分线的定义,几何图形中角的计算,解题的关键是根据角平分线的定义和已知条件,求出30BOC ∠=︒.7.如图,120AOB ∠=︒,13AOC BOC ∠=∠,OM 平分BOC ∠,则AOM ∠的度数为( )A .45︒B .65︒C .75︒D .80︒故选C.【点睛】本题考查了角平分线定义,角的有关计算的应用,解此题的关键是求出∠AOC和∠COM的大小.8.如图,这是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体的表面上,与汉字“爱”相对的面上的汉字是()A.西B.电C.附D.中【答案】C【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“电”是相对面,“爱”与“附”是相对面,“西”与“中”是相对面.故选:C.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.9.如果A、B、C三点在同一直线上,线段AB=3cm,BC=2cm,那么A、C两点之间的距离为()A.1cmB.5cmC.1cm或5cmD.无法确定【答案】C【详解】试题解析:由题意可知,C点分两种情况,∠C点在线段AB延长线上,如图1,AC=AB+BC=3+2=5cm;∠C点在线段AB上,如图2,AC=AB-BC=3-2=1cm.综合∠∠A、C两点之间的距离为1cm或5cm.故选C.【点睛】由题意可知,点C分两种情况,画出线段图,结合已知数据即可求出结论.本题考查了两点间的距离,解题的关键是根据题意画出线段图,找准线段间的关系.10.如图,AD平分∠BAC,点E在AB上,EF∥AC交AD于点G,若∠DGF=40°,则∠BEF的度数为()A.20°B.40°C.50°D.80°【答案】D【分析】由EF∥AC,∠DGF=40°,得出∠DAC=∠DGF=40°,∠BEF=∠BAC,又AD 平分∠BAC,则∠BEF=∠BAC=2∠DAC=80°.【详解】解:∠EF∥AC,∠DGF=40°,∠∠DAC=∠DGF=40°,∠BEF=∠BAC,∠AD平分∠BAC,∠∠BEF=∠BAC=2∠DAC=80°.故选:D.【点睛】本题主要考查平行线的性质以及角平分线的定义,熟练掌握平行线的性质以及角平分线的定义是解决本题的关键.11.若钟表分针走30分钟,则钟表的时针转()A.5︒B.15︒C.30︒D.120︒【答案】B【分析】根据“整个钟面12小时,时针每小时转30︒”即可得..将一副直角三角尺按如图所示的不同方式摆放,则图中与不一定...相等的是( )A .B .C .D .【答案】B 【分析】A 选项由图形即直角三角形的性质即可判断;B 选项由两角互余即可的判断;C 选项由对顶角相等即可判断;D 选项由同角的余角相等即可判断.【详解】A 选项中,90,45αβα∠+∠=︒∠=︒,45βα∴∠=∠=︒,故不符合题意;B 选项中,90αβ∠+∠=︒,则α∠与∠β不一定相等,故符合题意;C 选项中,,αβ∠∠是对顶角,αβ∴∠=∠,故不符合题意;D 选项如图,190,190αβ∠+∠=︒∠+∠=︒,αβ∴∠=∠,故不符合题意;故选:B .【点睛】本题考查了对顶角相等,余角,同角的余角相等等知识点,熟练掌握这些知识是解题的关键.13.如下图的正方体,选项中哪一个图形是它的展开图( )A .B .C .D .【答案】A【分析】根据正方体相邻面及其表面展开图的特点解答即可.【详解】解:A 、展开图中,其三个相邻面上的线段位置,符合题意,B 、展开图中,其中有两个有线段的两个面相对,不符合题意;C 、展开图中,其中有两个面上的线段平行,不符合题意;D 、展开图中,其中有两个有线段的两个面相对,不符合题意,故选:A .【点睛】本题考查正方体的展开图,弄清正方体展开图中哪些面相邻,哪些面相对是解答的关键.14.把立方体的六个面分别涂上六种不同的颜色,并画出朵数不等的花,各面上的颜色与花朵的朵数情况列表如下:现将上述大小相同,颜色、花朵分布完全样的四个立方体拼成一个水平放置的长方体,如图所示,那么长方体的下底面共有花朵数是( )A .11B .13C .15D .17 【答案】D【分析】由图中显示的规律,可分别求出,右边正方体的下边为白色,左边为绿色,后面为紫色,按此规律,可依次得出右二的立方体的下侧为绿色,右三的为黄色,左一的为紫色,即可求出下底面的花朵数.【详解】解:由题意可得,右一的立方体的下侧为白色,右二的立方体的下侧为绿色,右三的为黄色,左一的为紫色,那么长方体的下底面共有花数4+6+2+5=17朵.故长方体的下底面共有17朵花.故选D .【点睛】本题考查生活中的立体图形与平面图形,同时考查了学生的空间思维能力.注意正方体的空间图形,从相对面入手,分析及解答问题.15.如图,在四边形ABCD 中,90A BCD ∠=∠=︒,BC DC =,CE AD ⊥,垂足为E ,若3AE CE ==.则四边形ABCD 的面积为( )A .9B .12C .272D .无法求出 【答案】A 【分析】过点C 作CF 垂直AB 的延长线于点F ,先证明四边形AFCE 是矩形,再证明FCB ECD △≌△,进而将四边形ABCD 的面积转化为矩形AFCE 的面积求解即可.【详解】解:如图,过点C 作CF 垂直AB 的延长线于点F ,∠90A BCD ∠=∠=︒, CE AD ⊥,CF AF ⊥,∠四边形AFCE 是矩形,90==︒CED F ∠∠,∠90FCE FCB BCE ∠=∠+∠=︒,3CF AE CE === ,∠90BCD BCE DCE ∠=∠+∠=︒,∠FCB ECD ∠=∠,在FCB 和ECD 中,CED F FCB ECD BC DC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠FCB ECD △≌△,∠==339ABCD AFCE AE CE S S ⋅=⨯=四边形矩形,故选:A .【点睛】本题主要考查了全等三角形的判定及性质、同角的余角相等,垂直定义以及矩形的判定及性质,熟练掌握全等三角形的判定及性质是解题的关键.16.如图,在ABC 中,以A 为圆心,适当长为半径作弧,分别交AB 、AC 于点D 、E ,再分别以D 、E 为圆心,相同长为半径作弧,分别交DB、EC 于点F 、G ,连接EF 、DG ,交于点H ,连接AH 并延长交BC 于点I ,则线段AI 是( )A .ABC 的高B .ABC 的中线 C .ABC 的角平分线D .以上都不对【答案】C 【分析】根据题意利用SAS 可证AFE AGD △≌△,即可得EG DF =,再利用AAS 可证EHG DHF ≌△△,即可得EH DH =,用SSS 可证明AHE AHD △≌△,即可得EAH DAH ∠=∠,即可得.【详解】解:由作图可知,AE AD =,EG DF =,∠AE EG AD DF +=+,即AG AF =,在AFE △和AGD △中,AE AD EAF DAG AF AG =⎧⎪∠=∠⎨⎪=⎩,∠AFE AGD △≌△(SAS ),∠AFE AGD ∠=∠,在EHG 和DHF △中,EHG DHF EGH DFH EG DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠EHG DHF ≌△△(AAS ),∠EH DH =在AHE 和AHD 中,AE AD AH AH EH DH =⎧⎪=⎨⎪=⎩,∠AHE AHD △≌△(SSS ),∠EAH DAH ∠=∠,∠AI 是ABC 的角平分线.故选:C .【点睛】本题考查了全等三角形的判定与性质,角平分线的判定,解题的关键是掌握全等三角形的判定与性质.17.如图:∠AOB :∠BOC :∠COD =2:3:4,射线OM 、ON ,分别平分∠AOB 与∠COD ,又∠MON =84°,则∠AOB 为( )A .28°B .30°C .32°D .38°【答案】A 【分析】首先设∠AOB =2x °,则∠BOC =3x °,∠COD =4x °,然后利用角的和差关系和角平分线的定义列出方程,即可求出∠AOB 的度数.【详解】解:设∠AOB =2x °,则∠BOC =3x °,∠COD =4x °,∠射线OM 、ON 分别平分∠AOB 与∠COD ,18.如图,在ABCD 中,DAB ∠的平分线AE 交CD 于E ,6AB =,4BC =,则EC的长为( )A .2B .2.5C .3D .3.5【答案】A 【分析】根据平行四边形的性质及AE 为角平分线可知:BC=AD=DE=4,又有CD=AB=6,可求EC 的长.【详解】解:根据平行四边形的对边相等,得:CD=AB=6,AD=BC=4.根据平行四边形的对边平行,得:CD∠AB ,∠∠AED=∠BAE ,又∠DAE=∠BAE ,∠∠DAE=∠AED .∠ED=AD=4,∠EC=CD-ED=6-4=2.故选:A .【点睛】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.19.如图,直线EO∠CD ,垂足为点O ,AB 平分∠EOD ,则∠BOD 的度数为( )A.120°B.130°C.135°D.140°【答案】C【详解】试题分析:根据直线EO∠CD,可知∠EOD=90°,根据AB平分∠EOD,可知∠AOD=45°,再根据邻补角的定义即可求出∠∠BOD=180°-45°=135°考点:垂线、角平分线的性质、邻补角定义.二、填空题20.已知:∠AOC=146°,OD为∠AOC的平分线,∠AOB=90°,∠BOD的度数_____.21.2022年10月16日,党的第二十次全国代表大会在北京召开,这是一次在全党全国各族人民迈上全面建设社会主义现代化国家新征程、向第二个百年奋斗目标进军的关键时刻召开的十分重要的大会.如图是一个正方体的展开图,请你判断,正方体上与“荣”字相对的面上的汉字是_______.【答案】祖【分析】根据正方体展开图中相对的面总是隔着一个面的特征解题即可.【详解】解:根据正方体展开图中相对的面总是隔着一个面的特征可得荣字相对的面上的汉字为“祖”,故答案为:祖.【点睛】本题主要考查正方体展开图的特征,能够根据特征得出结论是解题关键.22.用一个平面截圆锥,可以得到________、________及类似拱形形状.如图:【答案】圆等腰三角形【解析】略23.如图,要用一张长方形的纸片折成一个纸袋,两条折痕的夹角为80°(即∠POQ=80°),就可以做成一个纸袋,那么粘胶水部分所构成的这个角∠A'OB'=_____.【答案】20°【分析】根据折叠性质得出∠POA=∠POA′,∠QOB=∠QOB′,根据∠AOB为平角,∠POA+∠QOB=180°-∠POQ=100°,再利用∠A′OB′=∠POA′+∠QOB′-∠POQ=20°即可.【详解】解:∠OP为折痕,OQ为折痕,∠∠POA=∠POA′,∠QOB=∠QOB′,∠∠AOB为平角∠∠POA+∠QOB=180°-∠POQ=100°,∠∠A′OB′=∠POA′+∠QOB′-∠POQ=∠POA+∠QOB-∠POQ=100°-80°=20°.故答案为:20°.【点睛】本题考查折叠性质,平角,角的和差,掌握折叠性质,平角,角的和差是解题关键.24.下午三点半时,时针与分针所夹的锐角的大小为________.【答案】75︒##75度【分析】先求出时钟上,每一个大格的度数为30︒,再根据下午三点半时,时针与分针所夹的锐角为2.5个大格即可得.︒÷=︒,【详解】解:时钟上,共有12个大格,每一个大格的度数为3601230因为下午三点半时,时针与分针所夹的锐角为2.5个大格,⨯︒=︒,所以下午三点半时,时针与分针所夹的锐角的大小为2.53075故答案为:75︒.【点睛】本题考查了钟面角,熟练掌握时钟上,每一个大格的度数为30︒是解题关键.25.点C是线段AB上的一点,2=,点M、N分别是线段AC、BC的中点,BC ACMN BC等于_________.那么:26.已知∠a=50°18′,则∠a的余角是________°________′.【答案】3942【分析】互余的概念:和为90度的两个角互为余角.用90°减去一个角的余角就等于这个角的度数.【详解】根据余角的定义,知∠A的余角是90°﹣50°18'=39°42'.故答案为39,42.【点睛】本题考查了余角和角度的计算,关键是记住互为余角的两个角的和为90度.27.在一个圆形时钟的表面,OA 表示秒针,OB 表示分针(O 为两针的旋转中心)若现在时间恰好是12点整,则经过__________秒钟后,∠OAB 的面积第一次达到最大. 【答案】151559##9005928.如图,直线AB 、CD 相交于点O ,OE 平分BOD ∠,COB ∠为100︒,则AOE ∠=___________度识是解题的关键.29.小王从家出发向南偏东30°的方向走了100米到达小军家,此时小王家在小军家的_________方向. 【答案】北偏西30︒【分析】根据方向角的定义作出示意图,根据图形即可解答.【详解】解:如图所示,由题意知∠BAC =30°,则在∠ABC 中,∠BAC +∠ACB =90°,∠∠ACB =60°.又∠∠ACB +∠ACD =90°,∠∠ACD =30°,即小王家在小军家北偏西30°方向.故答案是:北偏西30°.【点睛】本题考查了方向角的定义,理解定义作出示意图是关键.30.如图所示,已知ABC 的周长为12,5BC =,在边AC 、AB 上有两个动点P 、Q ,它们同时从点A 分别向点C 、B 运动,速度分别为m 和n ,运动时间t 后,PC CB BQ ++=__________.【答案】()12m n t -+【分析】根据PC AC AP BQ AB AQ =-=-,,可得PC BQ AC AB AP AQ +=+--,进一步得到PC CB BQ ++,依此即可求解.【详解】解:PC AC AP BQ AB AQ =-=-,,()1257PC BQ AC AB AP AQ mt nt m n t ∴+=+--=---=-+,()()7512PC CB BQ m n t m n t ∴++=-++=-+.故答案为:()12m n t -+.【点睛】本题考查了列代数式,线段的和差关系,整式的加减运算,关键是得到PC BQ +的表达式.31.已知∠α=60°,则∠α的补角等于_______. 【答案】120°【分析】利用互为补角的两个角之和为180°,解题即可【详解】因为∠α=60°,所以∠α的补角是180°-60°=120°故填120°32.将三角尺按右图所示的方式放置在一张长方形纸片上,90EGF ∠=︒,30FEG ∠=︒,1130∠=︒,则BFG ∠的度数为___________.【答案】110°【分析】由长方形AD 与BC 平行,求出∠EFB ,由直角三角形求∠EFG ,再求两角的和即可.【详解】∠AD ∠BC ,∠∠1+∠EFB =180゜∠∠1=130゜∠∠EFB =180゜-130゜=50゜,∠∠EGF =90°,∠FEG =30°,∠∠EFG =180°-∠EGF -∠FEG =60°∠∠BFG =∠EFB +∠EFG =50°+60゜=110゜.故答案为:110゜.【点睛】本题考查角的度数问题,关键抓住平行线,同旁内角互补,三角形两锐角互余.33.若船A 在灯塔B 的北偏东30°方向上,则灯塔B 在船A 的_________方向上.【答案】南偏西30°【分析】本题画出A 、B 的位置,即分别以A 、B 为为原点,分别画出A 、B 的正北、正南、正西、正东方向,标出A 与B 的关系即可求解.【详解】从图中可以看出,B 在A 的南偏西30°.故答案为南偏西30°.【点睛】本题考查一个物体相对于另一物体的位置,注意这类题中“北偏东30°”的含义,是从正北方向开始,向东方向偏,偏角为30°.34.18°33′25″×3=_________.【答案】55°40′15″【分析】将度分秒分别乘以3后进位化简即可.【详解】1833253549975'''︒'"⨯==55°40′15″,故答案为:55°40′15″.【点睛】此题考查角度的计算,根据乘法法则进行计算,计算后每个单位满60向前一单位进一.35.如图,将一副三角板()90CAB DAE ∠=∠=︒按如图放置,则下列结论:∠13∠=∠;∠如果230∠=︒,则有//AC DE ;∠如果230∠=︒,则有//BC AD ;∠如果230∠=︒,必有4C ∠=∠.其中正确的有________.(填序号)【答案】∠∠∠【分析】根据两种三角板的各角的度数,利用平行线的判定与性质结合已知条件对各个结论逐一验证,即可得出答案.【详解】解:∠∠∠CAB=∠EAD=90°,∠∠1=∠CAB-∠2,∠3=∠EAD-∠2,∠∠1=∠3.∠∠正确.∠∠∠2=30°,∠∠1=90°-30°=60°,∠∠E=60°,∠∠1=∠E,∠AC∠DE.∠∠正确.∠∠∠2=30°,∠∠3=90°-30°=60°,∠∠B=45°,∠BC不平行于A D.∠∠错误.∠由∠得AC∠DE.∠∠4=∠C.∠∠正确.故答案为:∠∠∠.【点睛】此题主要考查学生对平行线判定与性质、余角和补角的理解和掌握,解答此题时要明确两种三角板各角的度数.36.如图,OC是∠AOB的平分线,如果∠AOB=130°,∠BOD=24°48',那么∠COD=_____.【答案】40.2°【分析】由角平分线定义,求出∠BOC的度数,然后利用角的和差关系,即可得到答案.【详解】解:∠OC是∠AOB的平分线,∠AOB=130°,37.如图,,AC BD 在AB 的同侧,2,8,8AC BD AB ===,点M 为AB 的中点,若120CMD ∠=,则CD 的最大值是_____.【答案】14 【分析】如图,作点A 关于CM 的对称点A ′,点B 关于DM 的对称点B ′,证明△A ′MB ′为等边三角形,即可解决问题.【详解】解:如图,作点A 关于CM 的对称点'A ,点B 关于DM 的对称点B'. 120CMD ∠=,60AMC DMB ∴∠+∠=,∴''60CMA DMB ∠+∠=,''60A MB ∴∠=,''MA MB =,''A MB ∴∆为等边三角形''''14CD CA A B B D CA AM BD ≤++=++=,CD ∴的最大值为14,故答案为14.【点睛】本题考查等边三角形的判定和性质,两点之间线段最短,解题的关键是学会添加常用辅助线,学会利用两点之间线段最短解决最值问题38.如图,在四边形ABCD 中,DAB ∠的角平分线与ABC ∠的外角平分线相交于点P ,且240D C ∠+∠=°,则P ∠=______.【答案】30︒##30度39.如图,在边长为2的菱形ABCD 中,60ABC ∠=︒,将BCD △沿直线BD 平移得到B C D ''',连接AC '、AD ',则AC AD ''+的最小值为________.ABC∠=由对称性可得:三、解答题∠,40.按要求补全图形并证明.如图,150∠=︒,OC垂直OB,OD平分AOCAOB∠.OE平分BOC(1)利用三角板依题意补全图形(2)求DOE∠的度数75【分析】(190,根据150,得出60,根据∠∠,即可得出EOC BOC30AOC=,4575.)解:补全图形,如图所示:90,150,60,AOC ,30AOC ∠, 45, 75.【点睛】本题主要考查了角平分线的定义,垂线的定义,解题的关键是数形结合,熟练掌握角平分线的定义.41.已知,,,AE GF BC GF EF DC EF AB ∥∥∥∥,猜想A ∠与C ∠的关系如何?并说明理由.解:因为,AE GF BC GF ∥∥(已知)所以AE BC ∥(______)所以______180(______)A ∠+=︒;同理,______180C ∠+=︒;所以______(______).【答案】平行于同一条直线的两直线平行;∠B ;两直线平行,同旁内角互补;∠A =∠C ;同角的补角相等或等式性质【分析】根据平行线的判定和性质以及同角的补角相等求解即可.【详解】解:因为AE GF ∥,BC GF ∥(已知)所以AE BC ∥(平行于同一条直线的两直线平行);所以∠A+∠B=180°(两直线平行,同旁内角互补);同理,∠C+∠B=180°;∠∠A=∠C(同角的补角相等或等式的性质).故答案为:平行于同一条直线的两直线平行;∠B;两直线平行,同旁内角互补;∠A =∠C;同角的补角相等或等式的性质.【点睛】本题主要考查了平行线的性质与判定,同角的补角相等,熟知平行线的性质与判定是解题的关键.42.如图,点B在线段AC上,点E在线段DF上,EC,AF,DB∠EC,下面写出了说明“∠C=∠D”的过程.说明:∠∠A=∠F(已知),∠DF∠.根据:∠∠DEC+∠C=180°.根据:∠DB∠EC(已知),∠∠DEC+∠=180°.根据:∠∠C=∠D.根据:.【答案】AC;内错角相等,两直线平行;两直线平行,同旁内角互补;D;两直线平行,同旁内角互补;同角的补角相等.【分析】根据平行线的性质与判定进行求解即可.【详解】说明:∠∠A=∠F(已知),∠DF∥AC.根据:内错角相等,两直线平行;∠∠DEC+∠C=180°.根据:两直线平行,同旁内角互补;∠DB∥EC(已知),∠∠DEC+∠D=180°.根据:两直线平行,同旁内角互补;∠∠C=∠D.根据:同角的补角相等.故答案为:AC;内错角相等,两直线平行;两直线平行,同旁内角互补;D;两直线平行,同旁内角互补;同角的补角相等.【点睛】本题主要考查了平行线的性质与判定,同角的补角相等,解题的关键在于能够熟练掌握相关知识进行求解.43.如图,O为直线AB上一点,∠BOC=α.(1)若α=40°,OD平分∠AOC,∠DOE=90°,如图(a)所示,求∠AOE的度数;(2)若∠AOD=13∠AOC,∠DOE=60°,如图(b)所示,请用α表示∠AOE的度数;(3)若∠AOD=1n∠AOC,∠DOE=180n︒(n≥2,且n为正整数),如图(c)所示,请用α和n表示∠AOE的度数(直接写出结果).44.如图,在△ABC中,AB∠BC,BE∠AC于E,AF平分∠BAC交BE于点F,DF∠BC.(1)试说明:BF=DF;(2)延长AF交BC于点G,试说明:BG=DF.【答案】(1)说明见解析;(2)说明见解析.【分析】(1)由角平分线的性质可得FE=FH,由“ASA”可证∠DEF∠∠BHF,可得BF=DF;(2)由等角的余角相等可得∠AFE=∠AGB=∠BFG,可得BF=BG=DF.【详解】解:(1)如图,延长DF交AB于H,延长AF交BC于G,∠AB∠BC,DF∠BC,∠DH∠AB,∠AF平分∠BAC,BE∠AC,DH∠AB,∠FE=FH,又∠∠DFE=∠BFH,∠DEF=∠BHF=90°,∠∠DEF∠∠BHF(ASA),∠BF=DF;(2)∠AF平分∠BAC,∠∠EAF=∠BAG,∠∠EAF+∠AFE=90°,∠BAG+∠AGB=90°,∠∠AFE=∠AGB,∠∠BFG=∠AGB,∠BF=BG,∠BG=DF.【点睛】本题考查了全等三角形的判定和性质,角平分线的性质,直角三角形的性质,灵活运用全等三角形的性质是本题的关键.45.如图,在Rt∠ABC中,∠ACB=90°,∠A=40°,∠ABC的外角∠CBD的平分线BE 交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.(3)若把直线FD绕点F旋转,直线DF和直线BE相交于点M,当DF和三角形ABC的一边平行时,请直接写出∠FME的度数.【答案】(1)65°(2)25°(3)65°或115°.【分析】(1)根据三角形外角的性质得出∠CBD的度数,再根据角平分线定义即可求得∠CBE的度数;(2)先根据三角形外角的性质得出∠CEB的度数,再根据平行线的性质求出∠F的度数;(3)根据题意分别画出图形,再利用平行线的性质解决.(1)解:∠Rt∠ABC中,∠ACB=90°,∠A=40°,∠∠CBD=∠ACB+∠A=130°,∠BE是∠CBD的角平分线,46.已知a=﹣(﹣2)2×3,b=|﹣9|+7,c=1115 53⎛⎫-⨯⎪⎝⎭.(1)求3[a﹣(b+c)]﹣2[b﹣(a﹣2c)]的值.(2)若A=2212119272⎛⎫⎛⎫⎛⎫-÷-+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭×(1﹣3)2,B=|a|﹣b+c,试比较A和B的大小.(3)如图,已知点D是线段AC的中点,点B是线段DC上的一点,且CB:BD=2:3,若AB=ab12ccm,求BC的长.∠BC =2cm .【点睛】本题主要考查了有理数的混合运算以及与线段的中点有关的计算,熟练掌握运算法则是解答本题的关键.47.如图1,已知直线EF 与直线AB 交于点E ,直线EF 与直线CD 交于点F ,EM 平分AEF ∠交直线CD 于点M ,且FEM FME ∠=∠,点G 是射线MD 上的一个动点(不与点M F 、重合),EH 平分FEG ∠交直线CD 于点H ,过点H 作HN EM ∥交直线AB 于点N ,设EHN a ∠=,EGF β∠=.(1)求证:AB CD ∥;(2)当点G 在点F 的右侧时,∠依据题意在图1中补全图形;∠若70β=︒,则α=________°;(3)当点G 在运动过程中,α和β之间有怎样的数量关系?直接写出你的结论. AB CD ;根据题目要求画出图形即可;110︒=,再根据,再根据ME )分两种情况进行讨论:当点G 在点F2248.如图,上面的图形分别是下面哪个立体图形展开的形状,请你把有对应关系的平面图形与立体图形连接起来.【答案】见解析.【分析】根据常见的各种立体几何图形的展开图的特征即可得答案.【详解】∠三个长方形和两个三角形如图摆放是三棱柱的展开图,一个扇形和一个圆是圆锥如图摆放的展开图,六个长方形如图摆放是长方体的展开图,一个长方形和两个圆如图摆放是圆柱的展开图,∠连接如图:【点睛】本题考查常见立体几何图形的展开图,熟记各立体几何图形的展开图是解题关键.49.如图,把一个棱长8厘米的正方体的六个面都涂上红色,再将它的棱四等分,然后从等分点把正方体锯开.(1)能得到多少个棱长为2厘米的小正方体?(2)三个面有红色的小正方体有多少个?(3)两个面有红色的小正方体有多少个?(4)一个面有红色的小正方体有多少个?(5)有没有各面都没有红色的小正方体?如果有,那么有多少个?【答案】(1)64个(2)8个(3)24个(4)24个(5)有,8个【分析】(1)棱长是8cm的立方体体积512cm3,棱长为2cm的小正方体体积为8cm3,由此能求出共得到多少个棱长为2cm的小正方体;(2)三面涂色的小正方体是位于棱长是8cm的立方体的顶点处的小正方体,由此能求出三面涂色的小正方体有多少个;(3)二面涂色的小正方体是位于棱长是8cm的立方体的各边上的正方体,由此能求出二面涂色的小正方体有多少个;(4)一个面有红色的小正方体位于棱长是8cm的立方体的表面上既不是顶点又不是各边上的正方体,由此能求出二面涂色的小正方体有多少个;(5)六个面均没涂色的小正方体为棱长是8cm的立方体中心的正方体,由此能求出六个面均没有涂色的小正方体有多少个.【详解】(1)棱长是8cm的立方体体积为:8×8×8=512(cm3),棱长为2cm的小正方体体积为8cm3,∠共得到512÷8=64个小正方体.(2)三面涂色的小正方体是位于棱长是8cm的立方体的顶点处的小正方体,∠立方体共有8个顶点,∠三面涂色的小正方体有8个,(3)二面涂色的小正方体是位于棱长是8cm的立方体的各边上的正方体,∠立方体共有12条边,每边有2个正方体,∠二面涂色的小正方体有24个,(4)一面涂色的小正方体在棱长是8cm的立方体的表面上既不是顶点又不是各边上的正方体,∠立方体共有6个面,每个面有4个正方体,∠一面涂色的小正方体有24个,(5)六个面均没涂色的小正方体为棱长是8cm的立方体中心的正方体,共有64-8-24-24=8个,【点睛】本题考查大正方体分割成小正方体的计算,是中档题,解题时要认真审题,要熟练掌握正方体的结构特征.。

初三数学立体几何题目及答案汇编

初三数学立体几何题目及答案汇编

初三数学立体几何题目及答案汇编立体几何是初中数学中一个重要的内容,涉及到空间中的图形、体积、表面积等概念。

在初三数学学习中,立体几何也占有一定的比重。

为了帮助同学们更好地复习和巩固立体几何的知识,特别整理了一些典型的立体几何题目以及详细的解答,供大家参考。

一、立体几何基础知识回顾在继续解答立体几何题目之前,我们先来回顾一些基础知识。

1.1 立体几何的基本概念立体几何是研究空间中图形、体积、表面积等属性的数学学科。

其中,常见的几何体包括球体、圆柱体、锥体、棱柱、棱锥等。

1.2 几何体的公式不同几何体的体积和表面积计算公式不同。

常见的一些公式包括:- 球体的体积公式:V = 4/3 * π * r³- 球体的表面积公式:S = 4 * π * r²- 圆柱体的体积公式:V = π * r² * h- 圆柱体的表面积公式:S = 2 * π * r * (r + h)(其中h为高)- 锥体的体积公式:V = 1/3 * π * r² * h- 锥体的表面积公式:S = π * r * (r + l)(其中l为斜高)- 棱柱的体积公式:V = 底面积 * h- 棱柱的表面积公式:S = 2 * 底面积 + 周长 * h(其中h为高)二、立体几何题目及答案解析下面,我们将分别列举一些典型的立体几何题目,并给出详细的解答。

2.1 球体题目题目:一个直径为10cm的球体的体积和表面积分别是多少?答案:根据球体的体积公式和表面积公式,可以计算得出:- 球体的体积为:V = 4/3 * π * (5)³ ≈ 523.6 cm³- 球体的表面积为:S = 4 * π * 5² ≈ 314 cm²2.2 圆柱体题目题目:一个圆柱体的底面半径为8cm,高为12cm,求其体积和表面积分别是多少?答案:根据圆柱体的体积公式和表面积公式,可以计算得出:- 圆柱体的体积为:V = π * 8² * 12 ≈ 2419.2 cm³- 圆柱体的表面积为:S = 2 * π * 8 * (8 + 12) ≈ 601.6 cm²2.3 锥体题目题目:一个锥体的底面半径为6cm,斜高为10cm,求其体积和表面积分别是多少?答案:根据锥体的体积公式和表面积公式,可以计算得出:- 锥体的体积为:V = 1/3 * π * 6² * 10 ≈ 376.8 cm³- 锥体的表面积为:S = π* 6 * (6 + 10) ≈ 282.7 cm²2.4 棱柱题目题目:一个棱柱的底面是一个边长为5cm的正方形,高为8cm,求其体积和表面积分别是多少?答案:根据棱柱的体积公式和表面积公式,可以计算得出:- 棱柱的体积为:V = 5² * 8 = 200 cm³- 棱柱的表面积为:S = 2 * 5² + 4 * 5 * 8 = 240 cm²通过以上题目的解答,我们可以看到在解决立体几何题目时,要灵活运用相关的公式,准确计算出体积和表面积等属性的值。

2023年九年级人教版数学中考复习考点专练:几何体的三视图原卷版

2023年九年级人教版数学中考复习考点专练:几何体的三视图原卷版

2023年九年级人教版数学中考复习考点专练:几何体的三视图原卷版一、选择题(本大题共10道小题)1. (2021•兰州)如图,该几何体的主视图是( )A. B. C. D.2. (2021•苏州)如图,圆锥的主视图是( )A. B. C. D.3. (2021•湖北)如图所示的几何体的左视图是( )A. B. C. D.4. (2021•鄂州)下列四个几何体中,主视图是三角形的是( )A. B. C. D.5. (2022·安徽·定远县)如图,这是一个带“矮”圆柱形底的半球形的碗,则该几何体的俯视图是( )A. B. C. D.6. (2021•海南)如图是由5个大小相同的小正方体组成的几何体,则它的主视图是( )A. B. C. D.7. (2022·安徽·合肥市第四十五中学二模)如图,几何体的主视图是( )A. B. C. D.8. (2021•朝阳)如图所示的几何体是由6个大小相同的小立方块搭成的,它的左视图是( )A. B. C. D.9. (2022·河北邯郸)如图,一个圆柱体在正方体上沿虚线从左向右平移,平移过程中不变的是( )A.主视图B.左视图C.俯视图D.主视图和俯视图10. (2021•河南)如图所示,几何体由7个小正方体搭成,将图中标甲、乙、丙的三个小正方体中的一个拿走,得到的新几何体与原来几何体的三视图一样,那么应该拿走( )A.甲B.乙C.丙D.都不行二、填空题(本大题共6道小题)11. (2021•房山区二模)如图是某几何体的三视图,该几何体是.12. (2022·河北保定)一个几何体的三视图如图所示,则这个几何体是_____;它的侧面积是_____cm2.13. (2022·安徽定远县)已知一个几何体的三视图如图,则该几何体的体积为____cm314. (2022·云南模拟)如图是一个几何体的三视图,则该几何体的体积为.15. (2022·胶州模拟)已知某几何体的三视图如图所示,则该几何体的体积为.16. (2021•云南)如图图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图).已知主视图和左视图是两个全等的矩形.若主视图的相邻两边长分别为2和3,俯视图是直径等于2的圆,则这个几何体的体积为.三、解答题(本大题共6道小题)17. (2022·安徽定远县)一几何体的三视图如右所示,求该几何体的体积.18. (2022·安徽淮南·模拟预测)如图,一个几何体的三视图分别是两个矩形,一个扇形,求这个几何体表面积的大小(结果保留π).19. (2022七上·东港期中)如图是由小正方体搭成的一个几何体从上面着到的形状图,小正方形中的数字表示在该位置的小正方体的个数,请你画出它从正面和从左面看到的形状图.20. (2022·河北唐山)第24届冬奥会吉祥物“冰墩墩”收获无数“迷弟”“迷妹”而一“墩”难求;为了满足需求,其中一间正规授权生产厂通过技术改造来提高产能,两次技术改造后,由日产量2000个扩大到日产量2420个.(1)求这两次技术改造日产量的平均增长率;(2)这生产厂家还设计了三视图如图所示的“冰墩墩”盲盒,(单位:cm),请计算此类盲盒的表面积.21. (2022·安徽·定远县育才学校一模)如图所示,一幢楼房AB背后有台阶CD,台阶每层高0.2米,且AC=17.2米,设太阳光线与水平地面的夹角为α,当α=60°时,测得楼房在地面上的影长AE=10米,现有一只小猫睡在台阶MN上晒太阳.(1)求楼房的高度约为多少米?(结果精确到0.1米)(2)过了一会儿,当α=45°时,小猫还能不能晒到太阳?请说明理由.(参考数据:1.732)22. (2021七上·和平期中)用棱长都为5cm的小立方块搭成几何体,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数.(1)请你分别画出从正面和从左面看到的这个几何体的形状图;(2)若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加大小相同的小立方块,以搭成一个大正方体,至少还需要个小立方块;(3)①图中的几何体的表面积(包括与桌面接触的部分)为cm2;②若新搭一个几何体,且满足如下三个条件:图中从上面看到的几何体的形状图不变,小立方块的总数不变,从上面看到的小正方形中的数字可以改变,则新搭几何体的表面积(包括与桌面接触的部分)最小值和最大值分别为cm2, cm2.。

2020中考立体图形的展开图专题复习题及答案

2020中考立体图形的展开图专题复习题及答案

立体图形的展开图(时间:100分钟总分:100分)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.如左图所示的圆台中,可由右图中的()图形绕虚线旋转而成.2.如图所示图形中,不是正方体的展开图的是()3.如图所示,经折叠可以围成一个棱柱的是()4.如图1是一个正方体纸盒的展开图,若在其中的三个正方形A、B、C内分别填入适当的数,使得它们折成正方体后相对的面上互为相反数,则填入正方形A、B、C 的三个数依次是()A.-1,2,0 B.0,2,-1 C.2,0,-1 D.2,-1,0(1) (2) (3)5.用平面去截正方体,截出的平面图形中不可能是()A.梯形B.六边形C.五边形D.七边形6.某物体的三视图是如图(2)所示的图形,那么该图形的形状是()A.长方体B.圆锥体C.正方体D.圆柱体7.棱长是1cm的小立方体组成如图(3)所示的几何体,那么这个几何体的表面积是()A.36cm2B.33cm2C.30cm2D.27cm2 8.将一个正方体的盒子沿棱剪开成如图4所示的平面图形,至少需要剪()•刀A.5 B.6 C.7 D.8(4) (5) (6)9.把10个相同的小正方体按如图5所示的位置堆放,•它的外表含有若干个小正方形,如果将图中标字母A的一个小正方形搬去,•这时外表含有的小正方形个数与搬运前比较是()A.不增不减B.减少一个C.减少2个D.减少3个10.从n边形的同一个顶点可以引()条对角线n n D.n(n-3)A.n-3 B.n-2 C.(3)2二、填空题(本大题共8题,每题3分,共24分)11.从四边形的同一个顶点可以引一条对角线,将四边形分割成2个三角形,则从n边形的同一个顶点引对角线可以将n边形分割成_________个三角形.12.日常生活中,部分几何体的三视图都是同一种图形,•试举一例这样的几何体_______.13.一个正方体的棱长为5cm,则这个正方体的侧面积是_________.14.圆锥的侧面与底面的相交线是________.15.如图6,含有开心表情图形“”的正方形有________.16.图7中左边的图形是右边物体的三视图中的__________.(7) (8) (9)17.如图8,正方形ABCD─A1B1C1D1中,连接AB1,AC,B1C,则△AB1C的形状是______.18.一串有黑有白,其排列有一定规律的珠子,被盒子遮住一部分(如图9),•则这串珠子被盒子遮住的部分有________颗.三、解答题(本大题共46分,19~23题每题6分,24题、25题每题8分.解答题应写出文字说明、证明过程或演算步骤)19.如图所示是由几个小正方体所组成的几何体的俯视图,•正方体中的数字表示在该位置的小立方体的个数,请在图中画出这个几何体的主视图和左视图.主视图左视图20.平面图形经过旋转可以形成几何体,请将图•用线将对应的图形连接起来.21.如图,是由几个小正方体所组成的几何体,请画出这个几何体的三视图.22.如图,这两个几何体各由几个面组成?面与面相交成几条线?它们是直线还是曲线?23.一个透明的几何体如图,粗线表示一根嵌在几何体内的铁丝,右边是它的主视图,请你画出它的左视图和俯视图,并用彩笔标明铁丝位置.24.如图是一个正方体的展开图,每个面都标注了字母.(1)如果面A在多面体的底部,上面是哪一个面?(2)如果F在前面,从左看是面B,上面是哪一面?(3)从右面看到面C,面D在后面,上面是哪一面?25.如图是由些大小相同的小正方体组成的简单几何体的主视图和俯视图.(1)请你画出这个几何体的一种左视图;(2)若组成这个几何体的小正方体的块数为n,你写出n的所有可能值.答案:一、选择题1.A 2.C 3.C 4.A 5.D 6.D 7.C 8.C 9.A 10.A二、填空题11.(n-2)12.球13.100cm214.圆15.3个16.左视图17.等边三角形• 18.27三、解答题19.解:主视图:左视图:20.解:略.21.解:主视图:左视图:俯视图:22.解:圆台由三个面组成,面与面相交成两条曲线,六棱柱由8个面组成,面与面相交成18条直线.23.解:左视图:俯视图:24.解:(1)面F.(2)面E.(3)面F.25.解:(1)有5种情况:(2)8、9、10、11.。

中考数学几何图形专题训练50题含参考答案

中考数学几何图形专题训练50题含参考答案

中考数学几何图形专题训练50题含答案(单选、填空、解答题)一、单选题1.如图是一正方体展开图,则有、志、者三面的对面分别是()A.事竟成B.事成竟C.成竟事D.竟成事2.下列四个图中,每个都是由六个相同的小正方形组成,折叠后能围成正方体的是()A.B.C.D.3.如图,下列说法正确的是()A.直线OM与直线MN是同一条直线B.射线MO与射线MN是同一条射线C.线段OM与线段ON是同一条线段D.射线NO与射线MO是同一条射线4.如图是某同学在数学实践课上设计的正方体纸盒的展开图,每个面上都有一个汉字,其中与“明”字相对的面上的字是()A.诚B.信C.友D.善5.图是一个正方体的表面展开图,将它折成正方体后,“法”字在上面,那么在下面的一定是()A .明B .诚C .信D .制 6.如图,在直线l 上的点是( )A .点AB .点BC .点CD .点D 7.如图,C 为线段AB 上一点,点D 为AC 的中点,且2AD =,10AB =.若点E 在直线AB 上,且1BE =,则DE 的长为( )A .7B .10C .7或9D .10或11 8.已知3725α∠=︒',则α∠的补角是( )A .14235︒'B .15235︒'C .14275︒'D .15275︒' 9.能解释:“用两个钉子就可以把木条固定在墙上”这实际问题的数学知识是( ) A .垂线段最短B .两点确定一条直线C .两点之间线段最短D .同角的补角相等10.一副直角三角板如图放置,使两三角板的斜边互相平行,每块三角板的直角顶点都在另一三角板的斜边上,则∠1的度数为( )A .90°B .75°C .65°D .60° 11.用度、分、秒表示21.24为( )A .211424'''B .212024'''C .21144'''D .2114' 12.在下面的四个几何体中,它们各自的主视图、左视图与俯视图都一样的是( )A .正方体B .正四棱台C .有正方形孔的正方体D .底面是长方形的四棱锥 13.有5个大小一样的正方形制成如图所示的拼接图形(阴影部分),请你在图中的拼接图形上再接一个正方形,使新拼接成的图形折叠后能成为一个封闭的正方体盒子,你不能选择图中A ,B ,C ,D 中的( )位置拼接正方形.A .AB .BC .CD .D14.下列立体图形中,俯视图与主视图不同的是( )A .B .C .D .15.下列图形中,不可以作为一个正方体的表面展开图的是A .B .C .D . 16.如图,将ABC 绕点C 顺时针旋转得到DEC ,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE ,下列四个结论:∠AC CD =;∠A BEC ∠=∠;∠AB EB ⊥;∠CD 平分ADE ∠;其中一定正确的是( )A .∠∠∠B .∠∠∠C .∠∠∠D .∠∠∠∠17.下列说法中,正确的是( )∠射线AB 和射线BA 是同一条射线;∠等角的余角相等;∠若AB BC =,则点B 为线段AC 的中点;∠点C 在线段AB 上,M ,N 分别是线段AC ,CB 的中点,若5MN =,则线段10AB =.A .∠∠B .∠∠C .∠∠D .∠∠ 18.已知射线OC 是∠AOB 的平分线,若∠AOC=30°,则∠AOB 的度数为( ) A .15 B .30 C .45 D .60 19.用两把常用三角板不可能拼成的角度为( )A .45B .105C .125D .150 20.如图,在∠ABC 中,BF 平分∠ABC ,过A 点作AF∠BF ,垂足为F 并延长交BC 于点G ,D 为AB 中点,连接DF 延长交AC 于点E .若AB=12,BC=20,则线段EF 的长为( )A .2B .3C .4D .5二、填空题21.已知2437α'∠=︒,那么α∠的补角等于______.22.已知∠α=60°,则∠α的余角等于____度.23.在空间搭4个大小一样的等边三角形,至少要_______根游戏棒.24.已知线段14cm AB =,点C 是直线AB 上一点,4cm BC =,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是___________cm .25.下午12:20 分,钟表上时针与分针所夹角的度数为_____度(所求夹角小于180︒).26.和都是 的余角,则______.27.图,∠AOC =∠BOD =90°,OB 在∠AOC 的内部,OC 在∠BOD 的内部,OE 是∠AOB 的一条三等分线.请从A ,B 两题中任选一题作答.A.当∠BOC=30°时,∠EOD的度数为__________.B.当∠BOC=α°时,∠EOD的度数为__________(用含α的代数式表示).28.将一副三角尺如图所示叠放在一起,则∠AEC=______度.29.对几何体分类时,首先确定标准,即:(1)从形状方面,按柱体、________、球划分;(2)从面的方面,按组成的面有无__________划分;(3)从顶点方面,按有无________划分.30.几个同学在公园玩,发现一个漂亮的“古董”. 甲:它有10个面;乙:它有24条棱;丙:它有8个面是正方形,2个面是多边形;丁:如果把它的侧面展开,是一个长方形,这个长方形有八种颜色,挺好看. 通过这四个同学的对话,从几何体的名称来看,这个“古董“的形状是_____________.31.如图,一艘船由A港沿北偏东65︒方向航行30km至B港,然后再沿北偏西40︒方向航行至C港,C港在A港北偏东20︒方向,则A,C两港之间的距离为______km.32.如图是一个正方体的展开图,将它折叠成正方体后,字母B的对面是________.(用图中字母表示)33.甲、乙两艘客轮同时离开港口,航行的速度都是40m /min ,甲客轮沿北偏东30°的方向航行15min 到达点A ,乙客轮沿南偏东60°的方向航行20min 到达点B .则A 、B 两点的直线距离为______m .34.平行四边形ABCD 中,AE 平分∠BAD 交BC 与点E ,且将BC 分成4cm 和6cm 两部分,则平行四边形ABCD 的周长为_____________.35.如图,AB 是∠O 的直径,点C 、D 是AB 两侧∠O 上的点,若∠CAB =34°,则∠ADC =_____°.36.点C 在直线AB 上,若AB =3,BC =2,则AC 为_____.37.由O 点引出的7条射线如图,若OA OE ⊥,OC OG ⊥,BOC FOG ∠>∠,则图中以O 为顶角的锐角共有________个.38.一个由125个同样的小正方体组成的大正方体,从这个大正方体中抽出若干个正方体,把大正方体中相对的两面打通,结果如图,则图中剩下的小正方有______个.39.如图,∠α=120°,∠β=90°,则∠γ的度数是________ °.40.Rt△ABC中,∠ACB=90°,AC=20,BC=10,D、E分别为边AB、CA上两动点,则CD+DE的最小值为______.三、解答题41.如图,AD为△ABC的角平分线,点E在AC上,点F在BC上,连接BE交AD于点G,连接EF,∠1=∠2.(1)求证:∠BEF与∠AGB互补;(2)若∠C=75°,EF∠BC,求∠ABC的度数.42.如图,OD平分∠BOC,OE平分∠AOC.若∠BOC=70°,∠AOC=50°.求出∠D0E及其补角的度数.43.小明用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的∠和∠.根据你所学的知识,回答下列问题:(1)小明总共剪开了条棱.(2)现在小明想将剪断的∠重新粘贴到∠上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,请你帮助小明在∠上补全.(作图要求:先用尺和铅笔画图,再用黑色的签字笔描一遍)(3)小明说:已知这个长方形纸盒高为3cm ,底面是一个正方形,并且这个长方形纸盒所有棱长的和是92cm ,请计算,这个长方体纸盒的体积是___________cm 3.44.如图1,已知AB //CD ,点G 在AB 上,点H 在EF 上,连接CG 、CH ,CG CH ⊥,90CHE CGA ∠+∠=︒.(1)求证:AB //EF ;(2)如图2,若90BAE ∠=︒,延长HC 交BA 的延长线于点M ,请直接写出图2中所有与AGC ∠互余的角.45.如图,100AOB ∠=︒,射线OC 以2/s ︒的速度从OA 位置出发,射线OD 以10/s ︒的速度从OB 位置出发,设两条射线同时绕点O 逆时针旋转s t .(1)当10t =时,求COD ∠的度数;(2)若015t ≤≤.∠当三条射线OA 、OC 、OD 构成的三个度数大于0︒的角中,有两个角相等,求此时t 的值;∠在射线OD ,OC 转动过程中,射线OE 始终在BOD ∠内部,且OF 平分AOC ∠,当110EOF ∠=︒,求BOE AOD∠∠的值. 46.如图:点A ,B ,E 在同一条直线上,AD AC ⊥,且BD AD AE EC ⊥⊥,,垂足分别为A ,D ,E .(1)求证:ABD ∽CAE ;(2)若1356AB BD AC ===,,,求CE 的值.47.如图,AF BC ∥.72FAC ∠=︒,CD 平分ACB ∠,4CDE BCD ∠=∠.(1)求CDE ∠的度数.(2)求证:AED B ∠=∠.48.(1)如图1,已知点C ,D 在线段AB 上,P 是BD 的中点,线段AB ,CP 的长度m ,n 满足227(15)0m n -+-=,AD :BC =5:7,求线段CD 的长度;(2)已知∠AOB =140°,将射线OB 绕着点O 逆时针旋转一定的角度α(0°<α<140°)得到射线OD ,作∠BOD 的平分线OP ,将射线OP 绕着点O 逆时针旋转60°得到射线OC .∠AOD :∠BOC =1:t .∠如图2,若t <1,请直接用含有t 的式子表示出∠AOD 的度数;∠若∠COD =12∠AOC ,求t 的值. 49.问题提出(1)如图1,点A ,B 在直线l 的同侧,在直线l 上作一点P ,使得AP BP +的值最小.问题探究(2)如图2,正方形ABCD 的边长为6,点M 在DC 上,且2DM =,N 是AC 上的一动点,则DN MN +的最小值是_________.问题解决(3)现在各大景区都在流行“真人CS ”娱乐项目,其中有一个“快速抢点”游戏,游戏规则如图3,在用绳子围成的一个边长为12m 的正方形ABCD 场地中,游戏者从AB 边上的点E 处出发,分别先后赶往边,,BC CD DA 上插小旗子,最后回到点E .求游戏者所跑的最少路程.50.如图,已知,在Rt ABC 中,斜边10AB =,4sin 5A = ,点P 为边AB 上一动点(不与A ,B 重合),PQ 平分CPB ∠交边BC 于点Q ,QM AB ⊥于M QN CP ⊥,于N .(1)当AP=CP 时,求QP ;(2)若CP AB ⊥ ,求CQ ;(3)探究:AP 为何值时,四边形PMQN 与BPQ 的面积相等?参考答案:1.A【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:这是一个正方体的平面展开图,共有六个面,其中面“有”与面“事”相对,面“志”与面“竟”相对,“者”与面“成”相对.故选A.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.2.C【详解】试题解析:A、折叠后,没有上下底面,故不能围成正方体;B、折叠后,缺少一个底面,故也不能围成正方体;C、折叠后能围成正方体;D、折叠后第一行两个面无法折起来,而且下边没有面,不能折成正方体;故选C.考点:展开图折叠成几何体.3.A【分析】根据直线、射线、线段的概念求解即可【详解】解:同一条直线可由这条直线上任意两点的大写字母表示,选项A正确;同一条射线必须满足端点相同,延伸方向相同,选项B,D错误;同一条线段的两个端点相同,选项C错误.故选:A.【点睛】本题考查的知识点是线段、射线以及直线的概念,熟记概念定义是解题的关键. 4.B【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,在正方体盒子上与“明”字相对的面上的字是“信”.故选:B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.5.C【分析】根据正方体的表面展开图,相对的面之间一定相隔一个正方形,这一特点作答即可.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∠与“法”字相对的面上的汉字是“信”.故应选:C .【点睛】本题主要考查了正方体相对两个面上的文字,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键6.B【分析】根据图像点与线的关系可直接得出答案.【详解】解:由图像可知点A 、C 、D 在直线l 外,点B 在直线l 上故选B .【点睛】本题考查了点线关系,比较简单.7.C【分析】由题意根据线段中点的性质,可得AD 、DC 的长,进而根据线段的和差,可得DE 的长.【详解】解:∠点D 为AC 的中点,且2AD =,∠2AD DC ==,∠10AB =,∠6BC AB AD DC =--=,∠1BE =,当E 在B 左侧,2617DE DC BC BE =+-=+-=,当E 在B 右侧,2619DE DC BC BE =++=++=.∠DE 的长为7或9.故选:C.【点睛】本题考查两点间的距离,解题的关键是利用线段的和差以及线段中点的性质. 8.A【分析】根据互补两角之和180°计算即可.【详解】∠3725α∠=︒'∠α∠的补角=1803725︒-︒'=14235︒',故选A .【点睛】本题考查补角定义和角度计算,需要注意角度度分秒计算时进制时60. 9.B【分析】根据两点确定一条直线解答即可.【详解】解:“用两个钉子就可以把木条固定在墙上”这实际问题的数学知识是:两点确定一条直线,故选B .【点睛】本题考查了直线的性质,熟练掌握两点确定一条直线是解答本题的关键. 10.B【分析】根据平行线的性质可得∠FDC =∠F =30°,然后根据三角形外角的性质可得结果.【详解】解:如图,∠EF ∠BC ,∠∠FDC =∠F =30°,∠∠1=∠FDC +∠C =30°+45°=75°,故选:B .【点睛】本题主要考查了平行线的性质以及三角形外角的性质,熟知三角板各个角的度数是解本题的关键.11.A【分析】根据度、分、秒之间的进制,先将度中的小数部分转化为分,再将分的小数部分转化为秒即得.【详解】解:21.24210.2460︒'︒=+⨯2114.4︒'=+21140.460'''=︒++⨯211424'''=︒++211424'''=︒.故选:A .【点评】本题考查了度、分、秒运算,熟练掌握度、分、秒之间的六十进制是解题关键,六十进制与十进制易混淆.12.A【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,找到三个图形一致的几何体即可.【详解】解:A、正方体的三视图是全等的正方形,符合题意;B、正四棱台的三视图分别为梯形,梯形,两个正方形的组合图形,不符合题意;C、有正方孔的正方体的左视图与主视图都是正方形里面有两条竖直的虚线,俯视图是两个正方形的组合图形,不符合题意;D、四棱锥的三视图分别是三角形,三角形,四边形及中心,不符合题意;故选A.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意看不到的棱用虚线表示.13.A【分析】结合正方体的平面展开图的特征,只要折叠后能围成正方体即可.【详解】解:如图所示:根据立方体的展开图可知,不能选择图中A的位置接正方形.故选:A.【点睛】此题主要考查了应用与设计作图.正方体的平面展开图共有11种,应灵活掌握,不能死记硬背.14.C【分析】从正面看所得到的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图.【详解】A .俯视图与主视图都是正方形,故该选项不合题意;B .俯视图与主视图都是矩形,故该选项不合题意;C .俯视图是圆,左视图是三角形;故该选项符合题意;D .俯视图与主视图都是圆,故该选项不合题意;故选C .【点睛】此题主要考查了三视图,关键是把握好三视图所看的方向.属于基础题,中考常考题型.15.B【分析】利用不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况进行判断也可.【详解】A .可以作为一个正方体的展开图,B .不可以作为一个正方体的展开图,C .可以作为一个正方体的展开图,D .可以作为一个正方体的展开图,故选B .【点睛】本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.16.A【分析】根据旋转的性质得到AC CD =,BC CE =,A EDC ∠=∠,故∠正确;得到ACD BCE ∠=∠,CBE BEC ∠=∠,根据三角形的内角和得到1802ACD A ADC ︒-∠∠=∠=,1802BCE CBE BEC ︒-∠∠=∠=,求得A BEC ∠=∠,故∠正确;由于A ABC ∠+∠不一定等于90︒,于是得到ABC CBE ∠+∠不一定等于90︒,故∠错误,可求得ADC EDC ∠=∠,故可判定∠.【详解】解:∠ABC 绕点C 顺时针旋转得到DEC ,∠AC CD =,BC CE =,A EDC ∠=∠,ACB ECD ∠=∠,故①正确;∴A ADC EDC ∠=∠=∠,ACD DCB DCB BCE ∠+∠=∠+∠,∠CD 平分ADE ∠,ACD BCE ∠=∠,故∠正确;∠BC CE =,∠CBE BEC ∠=∠,∠根据三角形内角和定理可知1802ACDA ADC︒-∠∠=∠=,1802BCECBE BEC ︒-∠∠=∠=,∠A BEC∠=∠,故∠正确;∠A ABC∠+∠不一定等于90︒,ABC CBE∴∠+∠不一定等于90︒,故∠错误.综上,正确的由①②④,故选:A.【点睛】本题考查了旋转的性质,等腰三角形的性质、、三角形的内角和定理、角平分线的定义,正确的识别图形是解题的关键.17.C【分析】根据射线及线段的定义及特点可判断各项,从而得出答案.【详解】∠射线AB和射线BA不是同一条射线,错误;∠同角的余角相等,正确;∠若AB=BC,点B在线段AC上时,则点B为线段AC的中点,错误;∠点C在线段AB上,M,N分别是线段AC,CB的中点.若MN=5,则线段AB=10,正确.故选:C.【点睛】本题考查射线及线段的知识,注意基本概念的掌握是解题的关键.18.D【分析】根据角平分线的定义即可求解.【详解】解:∠射线OC是∠AOB的平分线,∠AOC=30°,∠∠AOB=60°.故答案选:D.【点睛】此题考查了角的计算,以及角平分线的定义,关键是熟练掌握角平分线的定义.19.C【分析】根据两个三角板可拼出的角度有15°,30°,45°,60°,75°,90°,105°,120°,135°,150°,180°【详解】∠三角板的度数为30°,60°,90°;45°,45°,90°∠可拼出的角度有15°,30°,45°,60°,75°,90°105°,120°,135°,150°,180°.故答案选:C.【点睛】本题考查的知识点是角的计算,解题的关键是熟练的掌握角之间的转换.20.CAB,由角平分线的定义可证得【分析】由直角三角形的性质可求得DF=BD=12DE∠BC,利用三角形中位线定理可求得DE的长,则可求得EF的长.【详解】解:∠AF∠BF,D为AB的中点,∠DF=DB=1AB=6,2∠∠DBF=∠DFB,∠BF平分∠ABC,∠∠DBF=∠CBF,∠∠DFB=∠CBF,∠DE∠BC,∠DE为∠ABC的中位线,∠DE=1BC=10,2∠EF=DE−DF=10−6=4,故选C.【点睛】本题考查直角三角形斜边上的中线的性质,角平分线的性质,等腰三角形的判定与性质,三角形中位线定理.根据直角三角形斜边上的中线是斜边是斜边的一半可得∠DBF 为等腰三角形,通过角平分线的性质和等角对等边可得DF//BC,即DE为∠ABC的中位线,从而计算出DE,继而求出EF.21.155°23′【分析】根据补角的概念,直接作答即可.【详解】解:根据题意,∠α=24°37′,则∠α的补角=180°-24°37′=155°23′.故答案为:155°23′.【点睛】此题考查补角的问题.解题的关键是掌握补角的定义,涉及角度问题时,需要特别注意题干中是否带有单位.22.30【详解】∠互余两角的和等于90°,∠α的余角为:90°-60°=30°.故答案为:3023.6【分析】根据题意可知在同一平面内用游戏棒搭4个大小一样的等边三角形(两个菱形),至少要9根游戏棒,在空间搭4个大小一样的等边三角形,如三棱锥,至少要6根游戏棒.【详解】由题可知:因为4个等边三角形需12根游戏棒,但可共用3根,所以至少要9根游戏棒;因为空间可以共棱,所以至少要6根游戏棒.【点睛】此题涉及到规律型:数字的变化类.主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.24.7【分析】本题需要分两种情况讨论,∠当点C在线段AB上时,∠当点C在线段AB的延长线上时,根据线段中点的定义,计算即可.【详解】如图,当点C在线段AB上时,则14410AC=-=∠M是AC的中点,N是BC的中点,∠1152722MN MC CN AC BC=+=+=+=;如图,当点C在线段AB的延长线上时,则14418AC=+=,∠M是AC的中点,N是BC的中点,∠1192722MN MC CN AC BC=-=-=-=,综上所述,段MN的长度是7cm,故答案为:7【点睛】本题考查了两点间的距离,关键是利用了线段的中点的定义,分情况讨论.25.110【分析】因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出时针和分针之间相差的大格数,用大格数乘30°即可.【详解】解:∠时针在钟面上每分钟转0.5°,分针每分钟转6°,∠钟表上12时20分钟时,时针与分针的夹角可以看成时针转过12时0.5°×20=10°,分针在数字4上.∠钟表12个数字,每相邻两个数字之间的夹角为30°,∠12时20分钟时分针与时针的夹角4×30°-10°=110°.故答案为:110.【点睛】本题考查钟表分针所转过的角度计算.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动(112)°,并且利用起点时间时针和分针的位置关系建立角的图形.26.=【详解】解:∠α=90°-∠AOB ,∠β=90°-∠AOB ,故∠α=∠β.故答案为=. 27. 110°或130° 1203α⎛⎫-︒ ⎪⎝⎭或21503α⎛⎫-︒ ⎪⎝⎭ 【分析】A 、根据角的和差得到∠AOB =90°-30°=60°,根据OE 是∠AOB 的一条三等分线,分类讨论,当∠AOE =13∠AOB =20°,∠当∠BOE ′=13∠AOB =20°,根据角的和差即可得到结论;B 、根据角的和差得到∠AOB ,根据OE 是∠AOB 的一条三等分线,分类讨论,当∠AOE =13∠AOB ,∠当∠BOE ′=13∠AOB ,根据角的和差即可得到结论. 【详解】解:A 、如图,∠∠AOC =90°,∠BOC =30°,∠∠AOB =90°-30°=60°,∠OE 是∠AOB 的一条三等分线,∠∠当∠AOE =13∠AOB =20°, ∠∠BOE =40°,∠∠BOD=90°,∠∠EOD=∠BOD+∠BOE=130°,∠当∠BOE′=13∠AOB=20°,∠∠DOE′=90°+20°=110°,综上所述,∠EOD的度数为130°或110°,故答案为:130°或110°;B、∠∠AOC=90°,∠BOC=α°,∠∠AOB=90°-α°,∠OE是∠AOB的一条三等分线,∠∠当∠AOE=13∠AOB=30°-13α°,∠∠BOE=90°-α-(30-13α)°=60°-23α°,∠∠BOD=90°,∠∠EOD=∠BOD+∠BOE=150°-23α°,∠当∠BOE′=13∠AOB=30°-13α°,∠∠DOE′=90°+30°-13α°=120°-13α°,综上所述,∠EOD的度数为150°-23α°或120°-13α°,故答案为:150°-23α°或120°-13α°;【点睛】本题考查了余角和补角的定义,角的倍分,熟练掌握余角和补角的性质是解题的关键.28.75【分析】由∠BAC=∠ACD=90°,可得AB∠CD,所以∠BAE=∠D=30°,利用三角形的外角关系即可求出∠AEC的度数.【详解】解:∠∠BAC=∠ACD=90°,∠AB∠CD,∠∠BAE=∠D=30°,∠∠AEC=∠B+∠BAE=75°,故答案为:75.【点睛】此题主要三角形的外角的性质,平行线的性质与判定,三角板中角度的计算,判断出AB ∠CD 是解本题的关键.29. 锥体 曲的面 顶点【分析】根据不同的分类标准的要求即可求解.【详解】解:(1)从形状方面,按柱体、__锥体______、球划分;(2)从面的方面,按组成的面有无____曲的面______划分;(3)从顶点方面,按有无____顶点____划分.故答案为(1)锥体,(2)曲的面,(3)顶点.【点睛】本题考查立体图形的不同分类方法,掌握各种分类标准及要求是解题关键. 30.八棱柱【分析】棱柱有两个面互相平行,其余各面都是多边形,并且每相邻两个四边形的公共边都互相平行;据此,再结合“这个‘古董’有8个面是正方形,2个面是多边形”,即可确定答案.【详解】根据甲:它有10个面;乙:它有24条棱;丙:它有8个面是正方形,2个面是多边形;丁:如果把它的侧面展开,是一个长方形.可知它符合棱柱的特征,可知是一个八棱柱.故答案为八棱柱.【点睛】本题考查了认识立体图形,解题的关键是熟练掌握棱柱的特征.31.【分析】根据题意得,6520CAB ∠=︒-︒,402060ACB ∠=︒+︒=︒,30AB =,过B 作BE AC ⊥于E ,解直角三角形即可得到结论.【详解】解:根据题意得,652045CAB ∠=︒-︒=︒,402060ACB ∠=︒+︒=︒,30AB =, 过B 作BE AC ⊥于E ,90AEB CEB ∴∠=∠=︒,在Rt ABE ∆中,45ABE ∠=︒,30AB =,AE BE ∴== 在Rt CBE ∆中,60ACB ∠=︒,CE ∴=AC AE CE ∴=+=∴,C两港之间的距离为km,A故答案为:【点睛】本题考查了解直角三角形的应用,方向角问题,三角形的内角和,是基础知识比较简单.32.D【分析】由平面图形的折叠及立体图形的表面展开图的特点解答即可.【详解】解:正方体的平面展开图中,相对的面一定相隔一个正方形,所以字母B的对面是D.故答案为D.【点睛】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.33.1000【分析】先画出草图,根据∠COA=30°,∠EOB=60°,∠EOC=180°,得到∠AOB=90°,根据路程=速度×时间,得到OA=40×15=600,OB=40×20=800,利用勾股定理计算AB即可.【详解】画出草图如下,∠∠COA=30°,∠EOB=60°,∠EOC=180°,∠∠AOB=90°,∠路程=速度×时间,∠OA =40×15=600,OB =40×20=800,∠AB =1000,故答案为:1000.【点睛】本题考查了方位角,勾股定理,正确理解方位角的意义,熟练掌握勾股定理是解题的关键.34.32cm 或28cm【分析】根据角平分线性质,得BAE DAE ∠=∠;根据平行四边形及平行线性质,得BEA DAE ∠=∠,从而得BAE BEA ∠=∠;根据等腰三角形性质,得BA BE =;根据题意,分两种情况分析,通过计算即可得到答案.【详解】根据题意,如图:∠AE 平分∠BAD 交BC 与点E ,∠BAE DAE ∠=∠∠平行四边形ABCD∠//AD BC∠BEA DAE ∠=∠∠BAE BEA ∠=∠∠BA BE =AE 将BC 分成4cm 和6cm 两部分,当6cm BE =时,得6cm BA BE ==∠10cm BC BE EC =+=∠平行四边形ABCD 的周长为2232cm BA BC +=当4cm BE =时,得4cm BA BE ==∠平行四边形ABCD 的周长为2228cm BA BC +=故答案为:32cm 或28cm .【点睛】本题考查了角平分线、平行四边形、平行线、等腰三角形的知识;解题的关键是熟练掌握角平分线、平行四边形、等腰三角形的性质,从而完成求解.35.56【分析】先由圆周角定理得∠ACB =90°,求得∠ABC 的度数,然后由圆周角定理,即可求得∠ADC 的度数.【详解】解:∠AB 为∠O 的直径,∠∠ACB =90°,∠∠CAB =34°,∠∠ABC =90°﹣∠CAB =56°,∠∠ADC =∠ABC =56°.故答案为:56.【点睛】本题考查了圆周角定理以及直角三角形的性质等知识;熟练掌握圆周角定理是解题的关键.36.1或5【分析】分为两种情况,画出图形,根据线段的和差即可得出答案.【详解】解:当C 在线段AB 上时,AC=AB-BC=3-2=1,当C 在线段AB 的延长线时,AC=AB+BC=3+2=5,即AC=1或5,故答案为:1或5.【点睛】本题考查了线段的和差,能求出符合的所有情况是解此题的关键,注意要进行分类讨论.37.15【分析】分别以OA 、OB 、OC 、OD 、OE 、OF 为一边,数出所有角,找出其中的非锐角,相减即可得答案.【详解】解:以OA 、OB 、OC 、OD 、OE 、OF 为始边,分别有角6个,5个,4个,3个,2个,1个,图中共有角21个,OA OE ⊥,所以以OA 为边的非锐角有3个,分别为,,AOG AOF AOE ,,OC OG ,BOC FOG∠∠COF +∠BOC >90°,∠∠FOB >90°.所以以OB 为边的非锐角有2个,分别为,BOG BOF ,以OC 为边的非锐角有1个,为COG ∠.于是图中共有锐角21-(3+2+1)=15个.故答案为15.【点睛】此题考查了角的数法,要以每条边为始边,数出所有角,要注意,不能漏数,也不能多数,要注意去掉非锐角.38.73【分析】根据题意:我们把相对面打通需要去掉的小正方体分三种情况,按一定的顺序数去掉的小正方体数量,如前后面,上下面,左右面分别去数数,然后用总数125减掉数出来的三部分即可,注意:前面数过的后面的一定去掉,否则会重复的.【详解】解:前后面少(3+2)×5=25(个),上下面少的(去掉与前后面重复的)(5-3)+2×3+1×5=13(个),左右面少的(去掉与前后,上下重复的)(5-3)+(5-1)+(5-2)+(5-2-1)+(5-2)=14(个), 125-(25+13+14)=73(个),答:图中剩下的小正方体有73个.故答案为:73.【点睛】本题考查了正方体的对面上的数字,要注意不能重复和遗漏.39.150.【分析】根据周角的定义,利用360度减去∠α和∠β即可求解.【详解】由题意可得,∠γ=360°-∠α-∠β=360°-120°-90°=150°.故答案是:150.【点睛】本题考查了角度的计算,正确得到图中三个角之间的关系是解决问题的关键.40.16【分析】作点C关于AB的对称点C',过点C'作C'E∠AC,交AB于点D',即可确定C'E 就是CD+DE的最小值,然后运用勾股定理和相似三角形的知识求解即可.【详解】作点C关于AB的对称点C',过点C'作C'E∠AC,交AB于点D',则CD+DE的最小值为C'E的长;∠∠ACB=90°,AC=20,BC=10,,∠∠A=∠C',∠''C E AC CC AB,∠C'E=16;故答案为16;【点睛】本题考查了相似三角形、勾股定理和最短距离问题,其中运用作对称点确定最短距离是解答的关键.41.(1)证明见解析(2)∠ABC=75°【分析】(1)先利用角平分线的定义得到∠DAC=∠1,则∠DAC=∠2,于是可判断。

初三数学立体几何练习题及答案

初三数学立体几何练习题及答案

初三数学立体几何练习题及答案【答案】1. 题目描述:初三数学立体几何练习题及答案2. 答案内容:以下是一套初三数学立体几何的练习题及答案,供同学们进行巩固复习。

题目一:已知正方体的边长为3cm,求其表面积和体积。

解答一:正方体的表面积为正方形的表面积的6倍。

其中正方形的边长为3cm,则其面积为3cm × 3cm = 9cm²。

因此,正方体的表面积为 9cm² ×6 = 54cm²。

正方体的体积等于正方形的面积再乘以高度,而高度等于边长。

所以,正方体的体积为 9cm² × 3cm = 27cm³。

题目二:一长方体箱子的长、宽、高分别为5cm、4cm、3cm,求其体积和表面积。

解答二:长方体的表面积是各个面积之和。

其中长方体的底面积为长乘以宽,即 5cm × 4cm = 20cm²。

长方体的侧面积可以看成是长和高围成的长方形的面积,即 5cm × 3cm = 15cm²。

由于长方体有六个面,所以总的表面积为 20cm² + 15cm² + 15cm² = 50cm²。

长方体的体积为长方形的底面积乘以高度,即 5cm × 4cm × 3cm =60cm³。

题目三:一个圆柱的底面积为36π cm²,高度为10cm,求该圆柱的体积和侧面积。

解答三:圆柱的侧面积可以看作是圆的周长乘以高度,而圆的周长等于底面的周长。

所以,圆柱的侧面积为36π cm² × 10cm = 360π cm²。

圆柱的体积等于圆的面积乘以高度。

而已知底面的面积为36π cm²,所以圆柱的体积为36π cm² × 10cm = 360π cm³。

题目四:在一个正方形的底面上,放置一个高为6cm的四棱锥,四棱锥的底面是一个边长为3cm的正方形,求该四棱锥的体积。

初三数学立体图形试题答案及解析

初三数学立体图形试题答案及解析

初三数学立体图形试题答案及解析1.如图是一个正方体的表面展开图,则原正方体中与“祝”字所在的面相对的面上标的字是()A.考B.试C.顺D.利【答案】D.【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,“祝”与“利”是相对面,“你”与“试”是相对面,“考”与“顺”是相对面.故选D.【考点】正方体的表面展开图.2.如图是正方体的一种平面展开图,它的每个面上都有一个汉字,那么在原正方体的表面上,与汉字“香”相对的面上的汉字是.【答案】泉【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点,得“力”与“城”是相对面,“香”与“泉”是相对面,“魅”与“都”是相对面。

∴与汉字“香”相对的面上的汉字是泉。

3.如图是一个几何体的三视图,根据图中提供的数据(单位:cm)可求得这个几何体的体积为A.2cm3B.3cm3C.6cm3D.8cm3【答案】B【解析】该几何体的主视图以及左视图都是相同的矩形,俯视图也为一个矩形,可确定这个几何体是一个长方体,此长方体的长与宽都是1,高为3,所以该几何体的体积为1×1×3=3cm3。

故选B。

4.以下三组图形都是由四个等边三角形组成.能折成多面体的选项序号是.【答案】(1)(3)【解析】由平面图形的折叠及三棱锥的展开图知,只有图(1)、图(3)能够折叠围成一个三棱锥。

5.如图是某一立方体的侧面展开图,则该立方体是()A B C D【答案】D【解析】从立方体的侧面展开图来看,两个有圆的面是隔开的,不相邻,所以排除A、B;观察立方体的侧面展开图,立方体中小正方形中含有三角形的两个面是相邻的,且其两面都与含有深色的一个圆的那个面相邻,所以选D【考点】正方体点评:本题考查正方体,解答本题需要掌握正方体的图形结构,本题考查考生的观察能力和空间想象能力6.如图,是空心圆柱的两种视图,正确的是()【答案】B【解析】主视图是从正面看到的图形,俯视图是从上面看到的图形.由图可得空心圆柱的两种视图正确的是第二个,故选B.【考点】几何体的三视图点评:本题属于基础应用题,只需学生熟练掌握几何体的三视图,即可完成.7.一个长8厘米,宽7厘米,高6厘米的长方体容器平放在桌面,里面盛有高2厘米的水(如图一); 将这个长方体沿着一条宽旋转90°,平放在桌面(如图二). 在旋转的过程中,水面的高度最高可以达到 ( )A.厘米B.4厘米C.3厘米D.厘米【答案】B【解析】由题意知,容积底面积是,棱长6的正方体,从而得到水面上升时,则有所以水深是1.5+2.5=4故选B【考点】容积点评:本题属于对正方体以及变换的四边形的基本度的变换以及分析8.如图,四种图形各是哪种立体图形的表面展开所形成的?画出相应的四种立体图形.【答案】【解析】根据四棱锥、三棱柱、圆柱、圆锥及其表面展开图的特点解答并作图.观察图形,由立体图形及其表面展开图的特点可知相应的立体图形顺次是四棱锥、三棱柱、圆柱、圆锥.作图如下:【考点】立体图形点评:本题考查立体图形,要画出立体图形关键是要对立体图形的概念熟悉9.如图给定的是纸盒的外表面,下面能由它折叠而成的是【】A.B.C.D.【答案】B。

中考数学总复习《立体图及其平面展开图》练习题(含答案)

中考数学总复习《立体图及其平面展开图》练习题(含答案)

立体图及其平面展开图一、选择题(本大题共12小题)1.下面四个图形中,是三棱柱的平面展开图的是()A.B.C.D.2.下列四个图中,是三棱锥的表面展开图的是()A B.C.D.3.下列图形中,不是三棱柱的表面展开图是()A. B. C. D.4.一个正方体的表面展开图可以是下列图形中的()A.B.C.D.5.将一个正方体沿某些棱展开后,能够得到的平面图形是()A.B.C.D.6.如图,哪一个是左边正方体的展开图()A. B. C. D.7.芳芳制作了一个如图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的平面展开图可能是()A.B. C.D.8.图1是由白色纸板拼成的立体图形,将此立体图形中的两面涂上颜色,如图2所示.下列四个图形中哪一个是图2的展开图()A、 B、 C、 D、9.下列图形中,恰好能与右图拼成一个矩形的是()A. B. C. D.10.下列立体图形中,侧面展开图是扇形的是()A.B.C.D.11.如图是一个正四面体,它的四个面都是正三角形,现沿它的三条棱AC、BC、CD剪开展成平面图形,则所得的展开图是()A、 B、 C、 D、12.下列图形中为正方体的平面展开图的是()A.B.C.D.二、填空题(本大题共2小题)13.底面直径为m的圆柱体(如图),沿它的一条母线AB(也就是圆柱的高,且AB=h)剪开展平,则圆柱侧面展开后的面积为.14.下列图形是某些立体图形的平面展开图,说出这些立体图形的名称.三、解答题(本大题共4小题)15.下图是一个长方体纸盒的展开图,请把-5,3,5,-1,-3,1分别填入六个长方形,使得按虚线折成长方体后,相对面上的两数互为相反数.16.图中四个图形是多面体的展开图,你能说出这些多面体的名称吗?17.如图,正方体的下半部分漆上了黑色,在如图的正方体表面展开图上把漆油漆的部分涂黑(图中涂黑部分是正方体的下底面).18.哪种几何体的表面能展成如图所示的平面图形?需剪几条棱才能得到如此形状的平面图?你是怎样数出来的?请总结其规律.立体图及其平面展开图答案解析一、选择题1.A;【解析】根据三棱柱的展开图的特点作答.A、是三棱柱的平面展开图;B、是三棱锥的展开图,故不是;C、是四棱锥的展开图,故不是;D、两底在同一侧,也不符合题意.故选A.2.B;【解析】三棱锥的四个面都是三角形,还要能围成一个立体图形,可排除C,D,而A不能围成立体图形,故可得答案.3.D;【解析】利用棱柱及其表面展开图的特点解题.A、B、C中间三个长方形能围成三棱柱的侧面,上、下两个三角形围成三棱柱的上、下两底面,故均能围成三棱柱,均是三棱柱的表面展开图.D围成三棱柱时,两个三角形重合为同一底面,而另一底面没有.故D不能围成三棱柱.4.C;【解析】A,B,D折叠后有一行两个面无法折起来,从而缺少面,不能折成正方体,只有C是一个正方体的表面展开图.故选C.5.C;【解析】本题考查图形的展开与折叠中,正方体的常见的十余种展开图有关内容.可将这四个图折叠后,看能否组成正方形.A、出现了田字格,故不能;B、D、上底面不可能有两个,故不是正方体的展开图;C、可以拼成一个正方体.故选C.6.D;【解析】本题考查正方体的表面展开图及空间想象能力.在验证立方体的展开图式,要细心观察每一个标志的位置是否一致,然后进行判断.根据有图案的表面之间的位置关系,正确的展开图是D.7.A8.A;【解析】由平面图形的折叠及立体图形的表面展开图的特点解题.由图中阴影部分的位置,首先可以排除B、D,又阴影部分正方形在左,三角形在右.9.C;【解析】由平面图形的折叠及立体图形的表面展开图的特点解题.因为矩形的两对边相等,ABD都不能与与右图拼成一个矩形,只有C,可与右图拼成一个长宽都为4个小格的矩形.故选C.10.B;【解析】根据圆锥的特征可知,侧面展开图是扇形的是圆锥.11.B;【解析】亲自动手具体操作,或根据三棱锥的图形特点作答.根据三棱锥的图形特点,可得展开图为B.12.C;【解析】由四棱柱四个侧面和上下两个底面的特征可知,A,B,D上底面不可能有两个,故不是正方体的展开图.选项C可以拼成一个正方体.二、填空题13.mhπ ;【解析】根据圆柱侧面积=底面周长×高计算即可.圆柱的侧面积=mhπ.14.①五棱锥②圆柱③三棱柱三、解答题15.如下图:【解析】根据题意,找到相对的面,把互为相反数的数字分别填入即可.16.正方体;三棱柱;四棱锥;长方体.17.平面图形的折叠及正方体的展开图解题.如图所示.18.五棱柱;9;()-+=-.n n n3121【解析】侧面为五个长方形,底边为五边形,故原几何体为五棱柱.五棱柱能展成如图所示的平面图形.由五棱柱展开成平面图形,需要剪9条棱.因为五棱柱共有15条棱,7个面,展成平面图形时,7个面需有6条棱相连,共需留下6条棱不剪,所以需剪15-6=9(条)棱.总结规律:n棱柱有n+2个面,3n条棱,展成平面图形时,n+2个面需有n+1条棱相连,故应留下n+1条棱不剪,所以要把n棱柱展成平面图形,共需剪3n-(n+1)=(2n-1)条棱.。

初三数学立体图形试题

初三数学立体图形试题

初三数学立体图形试题1.下列图形中,是正方体的平面展开图的是【答案】B.【解析】A、折叠后缺少两个底面,故此选项错误;B、可以是一个正方体的平面展开图,故此选项正确;C、缺少一个侧面,故此选项错误;D、折叠后缺少一个底面,上面重合,故此选项错误;故选B.【考点】几何体的展开图.2.明明用纸(如下图左)折成了一个正方体的盒子,里面装了一瓶墨水,与其它空盒子混放在一起,只凭观察,选出墨水在哪个盒子中【答案】B.【解析】根据展开图中各种符号的特征和位置,可得墨水在B盒子里面.故选B.【考点】展开图折叠成几何体.3.如图是一个长方体包装盒,则它的平面展开图是A.B.C.D.【答案】A【解析】长方体的四个侧面中,有两个相对面的小长方形,另两个是相对面的大长方形,B、C 中两个小的与两个大的相邻,错误,D中底面不符合,只有A符合。

故选A。

4.(2013年四川绵阳3分)把如图中的三棱柱展开,所得到的展开图是【】A.B.C.D.【答案】B。

【解析】根据两个全等的三角形,在侧面三个长方形的两侧,这样的图形围成的是三棱柱。

把图中的三棱柱展开,所得到的展开图是B。

故选B。

【考点】几何体的展开图。

5.以下三组图形都是由四个等边三角形组成.能折成多面体的选项序号是.【答案】(1)(3)【解析】由平面图形的折叠及三棱锥的展开图知,只有图(1)、图(3)能够折叠围成一个三棱锥。

6.如图是正方形的一种张开图,其中每个面上都标有一个数字。

那么在原正方形中,与数字“2”相对的面上的数字是A.1B.4C.5D.6【答案】B。

【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点,“2”与“4”对应,“3”与“5”对应,“1”与“6”对应。

故选B。

7.右图中是左面正方体的展开图的是【答案】D【解析】正方体的平面展开图的特征:相对面展开后间隔一个正方形.右图中是左面正方体的展开图的是第四个图,故选D.【考点】正方体的平面展开图点评:本题属于基础应用题,只需学生熟练掌握正方体的平面展开图的特征,即可完成.8.有六个面,且主视图、俯视图和左视图都相同的几何体是.【答案】正方体(立方体)【解析】主视图是从正面看到的图形,俯视图是从上面看到的图形,左视图是从左面看到的图形. 有六个面,且主视图、俯视图和左视图都相同的几何体是正方体(立方体).【考点】几何体的三视图点评:本题属于基础应用题,只需学生熟练掌握几何体的三视图,即可完成.9.将一直径为17cm的圆形纸片(图①)剪成如图②所示形状的纸片,再将纸片沿虚线折叠得到正方体(图③)形状的纸盒,则这样的纸盒体积最大为 cm3.【答案】【解析】根据勾股定理求得正要想使正方体的体积最大,那么图2的中间4个正方形组成的矩形的四个顶点就应该都在圆上,设正方形的边长为x,连接AC,则AC是直径,AC=17,在Rt△ABC中,由勾股定理得:AC2=AB2+BC2,172=x2+(4x)2,x=,因此正方体的体积就是××=17cm310.下列空间图形中是圆柱的为()【答案】A【解析】圆柱的侧面是光滑的曲面,且上下底面是全等的两个圆.结合图形的特点,A是圆柱,B是圆锥,C是圆台,D是棱柱.故选A.11.如图,把一张长10cm,宽8cm的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).(1)要使长方体盒子的底面积为48cm2,那么剪去的正方形的边长为多少?(2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由;【答案】(1)设正方形的边长为cm,则.即.解得(不合题意,舍去),.剪去的正方形的边长为1cm.(2)有侧面积最大的情况.设正方形的边长为cm,盒子的侧面积为cm2,则与的函数关系式为:.即.改写为.当时,.即当剪去的正方形的边长为2.25cm时,长方体盒子的侧面积最大为40.5cm2.【解析】(1)等量关系为:(原来长方形的长-2正方形的边长)×(原来长方形的宽-2正方形的边长)=48,把相关数值代入即可求解;(2)同(1)先用x表示出不同侧面的长,然后根据矩形的面积将4个侧面的面积相加,得出关于侧面积和正方形边长的函数式,然后根据函数的性质和自变量的取值范围来得出侧面积的最大值.12.从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积为.【答案】24。

中考数学立体几何题目练习与参考答案

中考数学立体几何题目练习与参考答案

中考数学立体几何题目练习与参考答案一、选择题1. 下列说法正确的是()A. 对称轴是一个面B. 一个平面体可以没有对称轴C. 一个棱柱可以只有一个对称轴D. 一个棱锥可以有无限多个对称轴2. 如图所示,正方形ABCDEFGH的边长为2cm,点P为平面ABCD上一点,且PA = 1cm,PE与平面ABCD垂直,PE = 2cm,则直线PE的立体图形相对于平面ABCD的称为()A. 平行线B. 垂直线C. 形成45°角D. 不能确定3. 半轴长为 r 的椭球心上存在的点到球面上的任一点的最短距离为()A. rB. r/2C. r^2D. 2r4. 当直角棱台的上底面积减去下底面积为90m²,高为10m时,该直角棱台的体积是()A. 600 m³B. 400 m³C. 360 m³D. 240 m³5. 被一个面切割得到的图形称为截形体,与切割的面平行的底面称为底面,有一个底面和切割面不平行的棱称为()A. 高B. 侧棱C. 底棱D. 棱切二、计算题1. 如图,正方体ABCD-EFGH中,M、N、P、Q为AB边上的点,DQ ⊥ BM,AN ⊥ ED,AP ⊥ BF.已知BN = 3cm,AN = 4cm,MQ = 1cm,PN = 5cm,则下列结论不正确的是()A. AP ⊥ QCB. DM ⊥ DPC. DP ⊥ BND. AP ⊥ BF2. 如图,右侧为棱长为10cm和5cm的棱台,其底面的面积为30cm²,棱台的体积需要在320cm³到480cm³之间,求腰高EF的长。

(图略)3. 一个长方体,三视图如下图所示,已知长方体的高为10cm,侧面的宽为6cm,为了方便调整,不妨将该长方体沿着一条适当的棱进行切割,使得其切割后的底面为正方形。

则切割面与切割面垂直的棱的长度为多少?(图略)4. 如图,正方体ABCD-EFGH为一个立方凳,其中AB = 6cm,BQ⊥CG,BP⊥AF,则过点Q和P的平面与平面ABCD-EFGH的交线为()A. 线段BQ和BPB. 线段GH和FEC. 线段CQ和CPD. 线段DE和FG三、解答题1. 如图所示,四个平面绘制在一个正方体的四个立体图中,请你标出对应平面,每个平面只标出一个点并且是四个平面重合的点。

2019年中考数学专题复习17——立体图形(含答案解析)

2019年中考数学专题复习17——立体图形(含答案解析)

2019年中考数学专题复习17——立体图形(含答案解析)一、选择题1. 如图,左面的平面图形绕直线旋转一周,可以得到的立体图形是A. B.C. D.2. 如图所示,几何体的左视图为A. B.C. D.3. 如图是某个几何体的侧面展开图,则该几何体是A. 三棱锥B. 四棱锥C. 三棱柱D. 四棱柱4. 一个几何体的三视图如图所示,则这个几何体是A. 三棱锥B. 三棱柱C. 圆柱D. 长方体5. 过正方体上底面的对角线和下底面一顶点的平面截去一个三棱锥所得到的几何体如图所示,它的俯视图为A. B.C. D.6. 如图所示的几何体是由六个小正方体组合而成的,它的左视图是A. B.C. D.7. 下图的长方体是由,,,四个选项中所示的四个几何体拼接而成的,而且这四个几何体都是由个同样大小的小正方体组成的,那么长方体中,第四部分所对应的几何体应是A. B.C. D.8. 一个立体图形的三视图如图所示,根据图中数据求得这个立体图形的的表面积为A. B. C. D.9. 某超市货架上摆放着某品牌红烧牛肉方便面,如图是它们的三视图,则货架上的红烧牛肉方便面至少有A. B. C. D.10. 如图是某几何体的三视图,则该几何体的表面积为A. B. C. D.二、填空题11. 如图,在长方体中,所有与棱平行的棱是.12. 一个几何体,是由许多规格相同的小正方体堆积而成的,其主视图、左视图如图所示,要摆成这样的图形,至少需用块小正方体.13. 如图,是某种工件的三视图,其俯视图为正六边形,它的表面积是.14. 如图是正方体的一种展开图,其每个面上都标有一个数字,那么在原正方体中,与数字“ ”相对的面上的数字是.15. 如图是由棱长相等的小立方体摆成的几何体的主视图与俯视图,根据视图可以判断组成这个几何体至少要个小立方体.16. 如图,圆桌面正上方的灯泡发出的光线照射桌面后,在地面上形成阴影(圆形).已知灯泡距离地面,桌面距离地面(桌面厚度不计算),若桌面的面积是,则地面上的阴影面积是.17. 在中,,,,将绕边所在的直线旋转一周得到圆锥,则该圆锥的表面积是.18. 如图,正三棱柱的底面周长为,截去一个底面周长为的正三棱柱,所得几何体的俯视图的周长是.19. 如图,在一次数学活动课上,张明用个边长为的小正方体搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭成几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要个小立方体,王亮所搭几何体的表面积为.20. 从棱长为的正方体毛坯的一角,挖去一个棱长为的小正方体,得到一个如图所示的零件,则这个零件的表面积是.三、解答题21. 由几个相同的边长为的小立方块搭成的几何体的俯视图如图所示.方格中的数字表示该位置的小立方块的个数.(1)请在下面方格纸中分别画出这个几何体的正视图和左视图.(2)根据三视图,请你求出这个组合几何体的表面积(包括底面积).22. 一个长方体盒子的体积,底面为.(1)如果盒子底面是边长为的正方形,这个盒子的表面积是多少?(2)如果盒子底面是长为,宽为的长方形,这个盒子的表面积是多少?(3)上面两种情况下,如果盒子的底面的面积相等,那么两种盒子的表面积相差多少?23. 如图是一个上下底密封纸盒的三视图,请你根据图中数据,计算这个密封纸盒的表面积.(结果保留根号)24. 下列物体是由六个棱长为的正方体组成如图的几何体.(1)该几何体的体积是,表面积是;(2)分别画出从正面、左面、上面看到的立体图形的形状.25. 如图,一个高,底面周长的圆柱形水塔,现制造一个螺旋形登梯,为了减小坡度,要求登梯绕塔环绕一周半到达顶端,问登梯至少多长?26. 由若干个相同的小立方体搭成的一个几何体的主视图和俯视图如图所示,俯视图的方格中的字母和数字表示该位置上小立方体的个数,求,的值.27. 如图是由两个长方体组合而成的一个几何体的三个视图,根据图中所标的尺寸(单位:),求这个几何体的表面积.28. 如图是某工厂设计生产的某种手电筒的三视图,利用图中标出的数据求该手电筒的表面积和体积.29. 数学活动课上,老师提出问题:如图,有一张长,宽的长方形纸板,在纸板的四个角裁去四个相同的小正方形,然后把四边折起来,做成一个无盖的盒子,问小正方形的边长为多少时,盒子的体积最大.下面是探究过程,请补充完整.(1)设小正方形的边长为,体积为,根据长方体的体积公式得到和的关系式:;(2)确定自变量的取值范围是;(3)列出与的几组对应值;(说明:表格中相关数值保留一位小数)(4)在如图的平面直角坐标系中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(5)结合画出的函数图象,解决问题:当小正方形的边长约为时,盒子的体积最大,最大值约为.30. 把如图①的正方体切去一块,得到图②~⑤的几何体.(1)它们各有多少个面?多少条棱?多少个顶点?(2)举例说明其他形状的几何体也切去一块,所得到的几何体的面数、棱数和顶点数各是多少.(3)若面数记为,棱数记为,顶点数记为,则应满足什么关系?答案第一部分1. B2. A3. B4. B5. B6. C7. A8. D 【解析】根据三视图得到该立体图形为圆柱,再由圆柱的展开图是一个矩形和两个圆,根据题目中的数据,求出表面积.9. B 【解析】易得第一层有碗,第二层最少有碗,第三层最少有碗,所以至少共有个碗.10. A第二部分11. ,,12.13.【解析】正六边形的面积为:,六棱柱的侧面积为:,它的表面积是.14.15.16.17.18.19. ,20.第三部分21. (1)(2)几何体的表面积为:.22. (1)根据题意长方体盒子高为:,长方体盒子的表面积为:.(2)根据题意长方体盒子高为:,长方体盒子的表面积为:.(3)根据题意,底面积相等即,体积差为:.23. 根据几何体的三视图知,该几何体是一个六棱柱,因为其高为,底面半径为,所以其侧面积为,密封纸盒的底面积为,所以密封纸盒的表面积为.24. (1);【解析】几何体的体积:,表面积:.(2)如图所示:25. 将圆柱表面切开展开呈长方形,设登梯长为米.圆柱高,底面周长,,登梯至少(米).答:登梯至少米.26. 由俯视图可知,该组合体有两行两列,左边一列前一行有两个正方体,结合主视图可知;由主视图右边一列可知,右边一列最高可以叠个正方体,故或.27.28. 先求圆台的表面积和体积.构造如图所示的三角形.,,,,,则梯形可表示圆台的主视图.,,.在中,.,..解得..由,得..圆台的体积为.又手电筒圆柱部分的表面积为.圆柱的体积为.该手电筒的表面积.该手电筒的体积.29. (1)(2)(3)如表.(4)如图.(5)至均可;至均可30. (1)图②有个面、条棱、个顶点;图③有个面、条棱、个顶点;图④有个面、条棱、个顶点;图⑤有个面、条棱、个顶点.(2)例如:三棱锥被切去一块,如图所示,有个面、条棱、个顶点.(3)由()总结归纳可得:.。

中考数学几何图形专题训练50题(含答案)

中考数学几何图形专题训练50题(含答案)

中考数学几何图形专题训练50题含答案(单选、填空、解答题)一、单选题1.下列四个图形中,不是正方体展开图的()A.B.C.D.2.小军从A地沿北偏西60°方向走10m到B地,再从B地向正南方向走20m到C 地,此时小军离A地().A.B.10m C.15m D.3.如图,在直线l上有A,B,C三点,则图中线段共有()A.4条B.3条C.2条D.1条4.如图,将下面的平面图形绕直线l旋转一周,得到的立体图形是()A.B.C.D.5.下列四个立体图形中,是棱锥的是()A.B.C .D .6.已知线段10cm AB =,点C 是直线AB 上一点,4cm BC =,点M 是线段AB 的中点,点N 是线段BC 的中点,则线段MN 的长度是( )A .3cmB .5cmC .3cm 或7cmD .5cm 或7cm7.下列说法正确的是( )A .一个平角就是一条直线B .连接两点间的线段,叫做这两点的距离C .两条射线组成的图形叫做角D .经过两点有一条直线,并且只有一条直线8.如图,OC 平分∠AOB ,若∠AOC =27°32′,则∠AOB =( )A .55°4′B .55°24′C .54°14′D .54°4′ 9.图,有一块含有30︒角的直角三角板的两个顶点放在直尺的对边上.如果242∠=︒,那么1∠的度数是( )A .18︒B .17︒C .16︒D .15︒ 10.下列各图都是由6个正方形组成的平面图形,其中不能看做是正方体表面展开图的是( )A.B.C.D.11.如图是一个正方体的表面展开图,则原正方体中与“中”字所在的面相对的面上标的字是()A.我B.的C.梦D.国12.如图所示,以O为顶点且小于180 的角有()A.6个B.7个C.8个D.9个13.下列说法中,正确的是().A.平角是一条直线B.周角是一条射线C.两条射线组成的图形是角D.一条射线绕它的端点旋转而成的图形叫做角14.如图,是一个正方体骰子的表面展开图,将其折叠成正方体骰子(点数朝外),如果1点在上面,3点在左面,在前面的点数为()A.2B.4C.5D.615.如图是一个小正方形的展开图,把展开图折叠成小正方形后,有“祝”字一面的相对面上的字是()A.考B.试C.成D.功16.如图,点C,D在线段AB上,AC=13AB,CD=12CB,若AB=3,则图中所有线段长的和是()A.6B.8C.10D.1217.下列几何体中,由曲面和平面围成的是()A.三棱柱B.圆锥C.球体D.正方体18.已知:如图,C是线段AB的中点,D是线段BC的中点,AB=20 cm,那么线段AD等于()A.15 cm B.16 cm C.10 cm D.5 cm19.下列说法中正确的是()A.两条射线组成的图形叫做角;B.各边相等的多边形叫做正多边形;C.一个圆分割成圆心角度数比位1∠2∠3的三个扇形,则最小扇形的圆心角是60°;D.小于平角的角可分为锐角和钝角两类.20.A、B两辆汽车沿着笔直的公路行驶,A车从甲地出发,B车从乙地出发,行驶到途中两车相遇,各自仍朝前进的方向行驶,到了目的地后立即返回,过了某一时刻,两车又在原地点相遇,则两车必定是()A.沿着同一条公路行驶B.沿着两条不同的公路行驶C.以上两种情况都有可能D.以上都不对二、填空题21.已知36a∠=︒,则a∠的补角的度数是__________.22.已知∠α=65°30′,则∠α的余角大小是_______.23.图中以A 为端点的线段共有______条.24.计算:34°25′20″×3=_______________25.一个角的余角比它的补角的14还少12︒,则这个角的度数为_______. 26.如图,从A 处观测C 处仰角30CAD ∠=︒,从B 处观测C 处的仰角45CBD ∠=︒,从C 处观测A 、B 两处的视角ACB =∠______度.27.一副三角板叠在一起如图放置,最小锐角的顶点D 恰好放在等腰直角三角形的斜边上,AC 与DM 、DN 分别交于点E 、F ,把∠DEF 绕点D 旋转到一定位置,使得DE=DF ,则∠BDN 的度数是_________ .28.数轴上的点P 对应的数是1-,将点P 向右移动8个长度单位得到点Q ,则线段PQ 的中点在数轴上对应的数是____________.29.在∠ABC 中,∠ABC 和∠ACB 的平分线交于点O ,且∠BOC =110°,则∠A 的度数是____________.30.若∠α=20°40′,则∠α的补角的大小为_____.31.如图,A 岛在B 岛的北偏东30°方向,C 岛在B 岛的北偏东80°方向,A 岛在C 岛北偏西40°方向,从A 岛看B ,C 两岛的视角∠BAC 是______ 度.32.点A 和点B 在同一平面上,如果从A 观察B ,B 在A 的北偏东14°方向,那么从B 观察A ,A 在B 的_____方向.33.已知线段AB=10cm ,直线AB 上有一点C ,且BC=4cm ,M 是线段AC 的中点,则线段BM 的长是_cm .34.如图,O 的弦AB 长为2,CD 是O 的直径,30,15ADB ADC ∠=︒∠=︒.∠O 的半径长为_________.∠P 是CD 上的动点,则PA PB +的最小值是_________.35.如图,将一副直角三角尺按图∠放置,使三角尺∠的长直角边与三角尺∠的某直角边在同一条直线上,则图∠中的∠1=______°.36.如图,已知∠ABC 的内角∠A=α°,分别作内角∠ABC 与外角∠ACD 的平分线,两条平分线交于点A 1,得∠A 1;∠A 1BC 和∠A 1CD 的平分线交于点A 2,得∠A 2;…以此类推得到∠A 2014,则∠A 2014的度数是_______.37.一副直角三角板叠放如图,90C E ∠=∠=︒.现将含45°角的三角板ADE 固定不动,把含30°角的三角板ABC (其中30CAB ∠=︒)绕顶点A 顺时针旋转角α(0180α︒<<︒).当旋转角在30°~180°的旋转过程中,使得两块三角板至少有一组对应边(所在的直线)互相平行,此时符合条件的α=________.38.已知∠AOB =80°,OC 为从O 点引出的任意一条射线,若OM 平分∠AOC ,ON 平分∠BOC ,则∠MON 的度数是_____.39.如图所示,若图中共有m 条线段,n 条射线,则m n +=__________________.40.如图,请你在有序号的方格中选出两个画出阴影,使它们与图中四个有阴影的正方形一起可以构成正方体表面的展开图,你选择的两个正方形是____________ (填序号,任填一组即可).三、解答题41.如图,直线AB 和CD 相交于点O ,35BOD ∠=︒,OA 平分EOC ∠,求EOD ∠的度数.42.图中哪些图形是立体图形,哪些是平面图形?平面图形:_______________;立体图形:_______________.43.如图,已知长方形ABCD 的长AB x =米,宽BC y =米,x ,y 满足()2540x y -+-=,一动点P 从A 出发以每秒1米的速度沿着A D C B →→→运动,另一动点Q 从B 出发以每秒2米的速度沿B C D A →→→运动,P ,Q 同时出发,运动时间为t .(1)x =______________,y =______________.(2)当 4.5t =时,求APQ △的面积;(3)当P ,Q 都在DC 上,且PQ 距离为1时,求t 的值44.如图1,已知A 、O 、B 三点在同一直线上,射线OD 、OE 分别平分∠AOC 、∠BOC .(1)求∠DOE 的度数;(2)如图2,在∠AOD 内引一条射线OF OC ⊥,其他不变,设()090DOF αα∠=︒︒<<︒.∠求∠AOF 的度数(用含α的代数式表示);∠若∠BOD 是∠AOF 的2倍,求∠DOF 的度数.45.如图,在77⨯的正方形网格中有一个格点ABC .(1)在图中作出ABC 关于直线l 对称的111A B C △(2)在直线l 上找到一点D ,使得AD CD +的值最小(在图中标出D 点位置,保留作图痕迹)46.如图,直线,EF CD 相交于点,,O OA OB OC ⊥平分AOF ∠.(1)若40AOE ∠=︒,求∠BOD 的度数;(2)若30BOE ∠=︒,求∠DOE 的度数.47.如图,点C 是线段AB 的中点,点D 在线段AB 上,且13AD AB =.(1)若4cm AD =,求线段CD 的长.(2)若3cm CD =,求线段AB 的长.48.(1)如图1,将两个正方形的一个顶点重合放置,若40AOD ∠=︒,则COB ∠=______度;(2)如图2,将三个正方形的一个顶点重合放置,求∠1的度数;(3)如图3,将三个正方形的一个顶点重合放置,若OF 平分DOB ∠,那么OE 平分AOC ∠吗?为什么?49.如图,90,60AOB COD AOC ∠=∠=︒∠=︒,射线ON 以10度/秒的速度从OD 出发绕点O 顺时针转动到OA 时停止,同时射线OM 以25度/秒的速度从OA 出发绕点O 逆时针转动到OD 时停止,设转动时间为t 秒.(1)当OM ON 、重合时,求t 的值;(2)当ON 平分BOD ∠时,试通过计算说明OM 平分AOD ∠;(3)当t 为何值时,MON ∠与AOD ∠互补?参考答案:1.D【分析】由正方体展开图的特征即可判定出正方体的展开图.【详解】解:由正方体展开图的特征即可判定D不是正方体的展开图,故选:D.【点睛】本题主要考查了几何体的展开图,解题的关键是熟记正方体展开图的特征.2.D【详解】试题分析:根据题意可得:A、B、C三点构成直角三角形,BC为斜边,则根据直角三角形的性质可得:,故选D.3.B【详解】线段有:AB、AC、BC.故选:B.4.D【分析】根据面动成体,梯形绕下底边旋转是圆锥加圆柱,可得答案.【详解】面动成体,直角三角形绕直角边旋转一周可得圆锥,长方形绕一边旋转一周可得圆柱,那么所求的图形是下面是圆锥,上面是圆柱的组合图形.故选D.【点睛】此题考查点、线、面、体的问题,解决本题的关键是得到所求的平面图形是得到几何体的主视图的被纵向分成的一半.5.B【分析】逐一判断出各选项中的几何体的名称即可得答案.【详解】A是棱柱,不符合题意;B是棱锥,符合题意,C是球体,不符合题意;D是圆柱,不符合题意;故选B.【点睛】本题考查了几何体的识别,熟练掌握常见几何体的图形特征是解题的关键.6.C=-;点C在点B右侧时,【分析】根据题意知,点C在点B左侧时,MN BM BN+MN BM BN =,因为点M 是线段AB 的中点,点N 是线段BC 的中点,分别算出,BM BN 长度,代入计算即可.【详解】解:因为点C 是直线AB 上一点,所以需要分类讨论:(1)点C 在点B 左侧时,作图如下:∠10cm AB =,4cm BC =, ∠152BM AB cm ==,122BN BC cm ==, 又∠MN BM BN =-,∠=523MN cm -=.(2)当点C 在点B 右侧时,作图如下:由(1)知,152BM AB cm ==,122BN BC cm ==, ∠+MN BM BN =,∠+=5+2=7cm MN BM BN =,综上所述,MN 的长度是3cm 或7cm .故选:C【点睛】本题考查线段长度的计算,根据题意分类讨论是解题关键.7.D【分析】根据平角、两点间的距离、角的定义和直线公理逐项进行解答即可得.【详解】A 、平角的两条边在一条直线上,故本选项错误;B 、连接两点的线段的长度叫做两点间的距离,故此选项错误;C 、有公共端点是两条射线组成的图形叫做角,故此选项错误;D 、经过两点有一条直线,并且只有一条直线,正确,故选:D .【点睛】本题考查了平角、两点间的距离、角的概念以及直线公理的内容,熟练掌握相关知识是解题的关键.8.A【分析】由OC 平分∠AOB 可得到∠AOB=2∠AOC ,代入计算可得解.【详解】解:OC 平分∠AOB ,则227322?554AOB AOC ∠=∠=︒'⨯=︒', 故选:A【点睛】本题考查了角平分线和角的计算,比较基础.9.A【分析】如解图所示,依据60ABC ∠=︒,242∠=︒,即可得到18EBC ∠=︒,再根据BE CD ,即可得出118EBC ∠=∠=︒.【详解】:如图,∠60ABC ∠=︒,242∠=︒,∠18EBC ∠=︒,∠BE CD ,∠118EBC ∠=∠=︒,故选:A .【点睛】此题考查了平行线的性质,掌握两直线平行,内错角相等是解决此题的关键. 10.D【分析】由平面图形的折叠及正方体的展开图解题.【详解】解:正方体共有11种表面展开图,A 、B 、C 项都是正方体的展开图,D 出现了“田”字格,故不是正方体的展开图;故选择:D.【点睛】本题考查的是正方体的展开图,以及学生的立体思维能力.解题时勿忘记四棱柱的特征及正方体展开图的各种情形.11.C【分析】利用正方体及其表面展开图的特点解题.【详解】解:这是一个正方体的平面展开图,共有六个面,其中面“国”与面“我”相对,面“梦”与面“的”相对,“中”与面“梦”相对.故选:C.12.D【分析】根据图形,找出以O为顶点的所有小于180°的角即可.【详解】解:以O为顶点且小于180°的角有:∠AOC,∠COD,∠DOE,∠EOB,∠AOD,∠AOE,∠COE,∠COB,∠DOB.一共有9个;故选择:D.【点睛】本题考查了角的表示,解题的关键是要找到图中两两相交直线的交点,作为角的顶点,且找出的角要小于180°.13.D【分析】根据角的定义即可判断.【详解】如果一个角的终边继续旋转,旋转到与始边成一条直线时,所成的角叫做平角,故A错误;当终边旋转到与始边重合时,所成的角叫做周角,故B错误;有公共端点的两条不重合的射线组成的图形叫做角,故C错误;一条射线绕它的端点旋转而成的图形叫做角,故D正确.故选D.【点睛】此题考查了角的定义,掌握角的两种定义和周角、平角的定义是解题的关键. 14.A【分析】利用正方体及其表面展开图的特点可知“3点”和“4点”相对,“5点”和“2点”相对,“6点”和“1点”相对,当1点在上面,3点在左面,可知5点在后面,继而可得出2点在前面.【详解】这是一个正方体的表面展开图,共有六个面,其中面“3点”和面“4点”相对,面“5点”和面“2点”相对,面“6点”和面“1点”相对,如果1点在上面,3点在左面,可知5点在后面,2点在前面;故选A.【点睛】此题考查学生的空间想象能力,先找到每个面的对面,进而确定它们的位置. 15.D【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答即可.【详解】正方体的表面展开图,相对的面之间一定相隔一个正方形,∠“祝”与“功”是相对面.故选:D.【点睛】本题主要考查了展开与折叠,注意正方体的空间图形,从相对面入手,分析及解答问题.16.C【详解】解:∠AB=3,∠AC=13AB=13×3=1,∠BC=3-1=2,∠CD=12CB=12×2=1,∠AD=1+1=2,CB=1+1=2,DB=2-1=1,即图中所有线段长的和是AC+AD+AB+CD+CB+DB=1+2+3+1+2+1=10.故选C.17.B【分析】三棱柱由平面组成、圆锥由曲面和平面组成、球体由曲面组成、正方体由平面组成,结合各图形的特点可得出答案.【详解】解:三棱柱由平面组成、圆锥由曲面和平面组成、球体由曲面组成、正方体由平面组成;故选:B【点睛】此题考查了认识立体图形的知识,熟练掌握是解题的关键.18.A【分析】根据C点为线段AB的中点,D点为BC的中点,可知AC=CB=12AB,CD=12CB,AD=AC+CD,又AB=4cm,继而即可求出答案.【详解】∠点C是线段AB的中点,AB=20cm,∠BC=12AB=12×20cm=10cm,∠点D是线段BC的中点,∠BD=12BC=12×10cm=5cm,∠AD=AB-BD=20cm-5cm=15cm.故选A.【点睛】本题考查了两点间的距离的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.19.C【详解】A. 由公共端点的两条射线组成的图形叫做角,故不正确;B. 各边相等,且各角也相等的多边形叫做正多边形,故不正确;C. 一个圆分割成圆心角度数比位1∠2∠3的三个扇形,则最小扇形的圆心角是1360123⨯++=60°,正确; D. 小于平角的角可分为锐角,直角和钝角三类,故不正确.故选C .【点睛】本题考查了角、正多边形、圆心角的定义,以及角的分类,熟练掌握各知识点是解答本题的关键.20.A【详解】解:根据题意,两车必定沿着同一条公路行驶.故选A .21.144°【分析】根据补角的定义即可求出a ∠的补角的度数.【详解】解: a ∠的补角的度数是180°-a ∠=180°-36°=144°故答案为: 144°.【点睛】此题考查的是求一个角的补角,掌握补角的定义是解决此题的关键.22.24°30′##24.5°【分析】如果两个角的和为90°,则这个两个角互为余角,根据互为余角的两个角的和为90°作答.【详解】解:根据定义∠α的余角度数是90°﹣65°30′=24°30′.故答案为:24°30′.【点睛】本题考查角互余的概念:和为90度的两个角互为余角.属于基础题,较简单. 23.3【分析】根据线段的定义分别写出各条线段即可【详解】解:图中以A 为端点的线段有线段AB ,线段AC ,线段AD ,共3条故答案为:3【点睛】本题考查了线段的定义,属于基础题,较简单24.10316'︒【分析】直接根据角的运算计算即可.【详解】160',1'60''︒==3425'20''310316'∴︒⨯=︒故答案为:10316'︒.【点睛】本题主要考查角的运算,掌握度分秒之间的关系是解题的关键.25.76︒【分析】设这个角为x ,则它的余角为90x ︒-,补角为180x ︒-,根据题意列出方程即可求解.【详解】设这个角为x ,则它的余角为90x ︒-,补角为180x ︒-()190180124x x ∴-=-- 19045124x x -=-- 3574x = 4573x =⨯ 76x =︒即这个角为76︒故答案为76︒.【点睛】此题主要考查角度的计算,解题的关键是根据题意列出方程求解.26.15【分析】根据三角形外角的性质求解即可.【详解】解:∠CBD ∠是ABC 的外角,∠CBD CAD ACB ∠=∠+∠,∠453015ACB CBD CAD ∠=∠-∠=︒-︒=︒.故答案为:15【点睛】本题考查了仰角的概念和三角形外角性质,掌握三角形的外角等于与它不相邻的两个内角的和是解题关键.27.120°【分析】根据等腰三角形的性质和特殊直角三角形的角度求得∠DFC ,进一步利用三角形外角的性质即可得到结果.【详解】解:如图,∠DE=DF ,∠EDF=30°, ∠∠DFC=12(180°-∠EDF )=75°,∠∠C=45°,∠∠BDN=∠DFC+∠C=75°+45°=120°.故答案为:120°.【点睛】本题考查了旋转的性质,直角三角形的性质,等腰三角形的性质,掌握三角形的内角和与外角的性质是解题的关键.28.3【分析】利用数轴得到点Q表示的数,再根据线段中点定义可得答案.【详解】解:∠点P对应的数是-1,将点P向右移动8个长度单位得到点Q,∠点Q表示的数为:-1+8=7,∠线段PQ的中点对应的数是1713 2-+-=故答案为:3.【点睛】本题考查了数轴,掌握数轴上两点间的距离是解决此题的关键.29.40°【分析】根据三角形内角和定理列式求出∠OBC+∠OCB,再根据角平分线的定义求出∠ABC+∠ACB,然后利用三角形的内角和定理列式计算即可得解.【详解】解:如图,在∠BOC中,∠BOC = 110°,∴∠OBC + ∠OCB = 180°- 110°= 70°,OB、OC分别是∠ABC和∠ACB的平分线,∴∠ABC = 2∠OBC,∠ACB=2∠OCB,∴∠ABC +∠ACB = 2×70°= 140°,∴在∠ABC中,∠A = 180°-(∠ABC+∠ACB)= 180°- 140°= 40°,故答案为:40°.【点睛】本题考查了三角形的内角和定理,角平分线的定义,整体思想的利用是解题的关键.30.159°20′【详解】试题分析:根据∠α的补角=180°﹣∠α,代入求出即可.解:∠∠α=20°40′,∠∠α的补角=180°﹣20°40′=159°20′,故答案为159°20′.考点:余角和补角;度分秒的换算.31.70°【详解】由题意可知∠DBC=80°,∠DBA=30°,∠∠ABC=50°,又∠DB∠EC,∠ECA=40°,∠∠ECB=100°,∠∠ACB=60°,∠∠BAC=180°-60°-50°=70°32.南偏西14°.【分析】根据方位角的概念,画图正确表示出方位角,利用平行线的性质即可求解.【详解】由题意可知,∠1=14°,∠AC∠BD,∠∠1=∠2=14°,根据方向角的概念可知,由点B测点A的方向为南偏西14°方向.故答案为:南偏西14°.【点睛】此题考查的知识点是方向角,解答此类题需要从运动的角度,正确画出方位角,即可解答.33.3或7【分析】根据线段的和差,可得BC的长,根据线段中点的性质,可得答案.【详解】当点C在线段AB上时,AC=AB−BC=10−4=6,点M是线段AC的中点,AC=3,MA=12BM=AB−AM=10−3=7;当点C在线段的反向延长线上时,AC=AB+BC=10+4=14,点M是线段AC的中点,AM=1AC=7,2BM=AB−AM=10−7=3,故答案为:3或7.【点睛】本题考查了两点间的距离,利用线段的和差、线段中点的性质是解题关键,要分类讨论,以防遗漏.34. 2 【分析】∠连接,OA OB ,易证AOB 是等边三角形,弦AB 长为2,2OA OB ==,即可得到答案;∠先证90BOC AOB AOC ∠=∠+∠=︒,延长BO 交O 于点E ,连接AE 交CD 于点P ,连接BP ,则此时PA PB PA PE AE +=+=,即PA PB +的最小值是AE 的长,再用勾股定理求出AE 即可.【详解】解:∠连接,OA OB ,∠30,ADB ∠=︒ ∠60AOB ∠=︒, ∠OA OB =,∠AOB 是等边三角形, ∠弦AB 长为2, ∠2OA OB ==, 即O 的半径长为2, 故答案为:2 ∠∠15ADC ∠=︒, ∠230AOC ADC ︒∠=∠=, ∠90BOC AOB AOC ∠=∠+∠=︒,延长BO 交O 于点E ,连接AE 交CD 于点P ,连接BP ,则此时PA PB PA PE AE +=+=,即PA PB +的最小值是AE 的长,∠60BAO ∠=︒,∠2OA OE ==, ∠30OAE AEB ︒∠=∠=, ∠90BAE BAO OAE ∠=∠+∠=︒,∠AE ==即PA PB +的最小值是故答案为:【点睛】此题考查了圆周角定理、勾股定理、等边三角形的判定和性质、轴对称最短路径等知识,熟练掌握相关定理并灵活应用是解题的关键. 35.105【分析】利用三角形外角性质求解. 【详解】如图,∠∠2=30︒,∠3=45︒, ∠∠4=∠2+∠3=75︒, ∠∠1=1804105︒-∠=︒, 故答案为:105..【点睛】此题考查三角板的角度计算,三角形外角的性质,观察图形掌握各角度之间的位置关系是解题的关键. 36.201420141A 2α∠=【分析】由三角形的外角性质知:∠A=∠ACD-∠ABC ,而∠A 1=12(∠ACD-∠ABC ),即∠A 1=12∠A ,同理可得,∠A 2=12∠A 1,依此类推即可. 【详解】∠∠ACD 是∠ABC 的外角, ∠∠ACD =∠A +∠ABC ,∠1B A 平分∠ABC ,1CA 平分∠ACD ,∠112A BC ABC ∠=∠,112ACD ACD ∠=∠, ∠1A CD ∠是1A CB 的外角, ∠111ACD A BC A ∠=∠+∠, ∠11122ACD ABC A ∠=∠+∠, ∠()11122A ACD ABC A ∠=∠-∠=∠, 同理可得:1212A A ∠=∠, 根据规律可得:201420141A 2α∠=【点睛】本题考查的是三角形内角和定理及三角形外角的性质,找出规律是解答此题的关键.37.60°或105°或135°【分析】分类讨论:当//BC AD 时,当//AC DE 时,当//AB DE 时,利用角度之间的关系计算即可;【详解】解:如图当//BC AD 时,,90C CAD ︒∠=∠=∠903060a DAB ︒=-︒=∠=︒, 如图,当//AC DE 时,90E CAE ︒∠=∠=,则459030105DAB α︒=∠=︒+︒-︒=, 如图,当//AB DE 时,90A E B E ∠=∠=︒,∠4590135BAD α=∠=︒+︒=︒;综上:符合条件的α为60°或105°或135°, 故答案为:60°或105°或135°.【点睛】本题考查角度之间的计算,平行的性质,解题的关键是对平行的边进行分情况讨论.38.40°或140°【分析】根据角平分线的定义求得∠MOC =12∠AOC ,∠CON =12∠BOC ;然后根据图形中的角与角间的和差关系来求∠MON 的度数. 【详解】解:∠OM 平分∠AOC ,ON 平分∠BOC .∠∠MOC=12∠AOC,∠CON=∠BON=12∠BOC.如图1,∠MON=∠MOC-∠CON=12(∠AOC-∠BOC)=12∠AOB=12×80°=40°;如图2,∠MON=∠MOC+∠CON=12(∠AOC+∠BOC)=12(360°﹣∠AOB)=12×280°=140°.如图3,∠MON=∠MOC+∠CON=12(∠AOC+∠BOC)=12∠AOB=12×80°=40°;故答案为:40°或140°.【点睛】此题主要考查了角平分线的定义.注意“数形结合”数学思想在解题过程中的应用.39.26【分析】根据射线、线段的定义进而判断得出m,n的值再代入计算即可.【详解】解:图中共有10条线段,共有16条射线,则m=10,n=16,所以m n+=10+16=26.故答案为26.【点睛】此题主要考查了射线、线段的定义,熟练掌握它们的定义是解题关键.40.∠∠或∠∠或∠∠或∠∠【分析】观察所给图形结合正方体的平面展开图的特点进行填涂即可.【详解】根据正方体的展开图的特点,按如下方式进行填涂后可以构成正方体表面的展开图:故答案为:∠∠或∠∠或∠∠或∠∠.【点睛】本题主要考查正方体展开图的2-3-1型和2-2-2-型,掌握正方体的展开图是解题关键.41.110EOD ∠=︒.【分析】根据对顶角相等先求出∠AOC 的度数,然后根据角平分线的定义求出∠COE 的度数,最后根据∠OCE 与∠EOD 互为邻补角即可得出答案. 【详解】35BOD ∠=︒,35AOC ∴∠=︒OA 平分EOC ∠,223570COE AOC ∴∠=∠=⨯︒=︒ 180110EOD COE ∴∠=︒-∠=︒.【定睛】本题主要考查了角的和差运算,根据对顶角相等和角平分线的定义求出∠COE 是 解决此题的关键.42. ②③⑧ ①④⑤⑥⑦【分析】根据立体图形和平面图形定义分别进行判断. 【详解】解:∠∠∠是平面图形;∠∠∠∠∠是立体图形.【点睛】本题考查认识立体图形:有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一个平面内,这就是立体图形. 43.(1)5,4(2)1APQ S =△平方米 (3)4t =【分析】(1)根据绝对值和乘方的非负性,即可求解;(2)根据题意得:当t =4.5时,点P 在CD 上,DP =0.5米,点Q 刚好到达点D 处,可得12PQ =米,再由12APQ S PQ AD =⋅⋅△,即可求解; (3)当P ,Q 都在DC 上,可得4 4.5t ≤≤,然后分两种情况讨论:当P 左Q 右时,当Q 左P 右时,即可求解.【详解】(1)解∠∠()2540x y -+-=, ∠50,40x y -=-=, ∠x =5,y =4, 故答案为:5,4;(2)解:当t =4.5时,P 走过的路程为4.5米,此时点P 在CD 上,DP =0.5米,Q 走过的路程为9米,刚好到达点D 处, ∠12PQ =米, ∠11141222APQ S PQ AD =⋅⋅=⨯⨯=△平方米;(3)解:点P 在DC 上,49t ≤≤,点Q 在DC 上,2 4.5t ≤≤, ∠4 4.5t ≤≤,当P 左Q 右时,4DP t =-,24CQ t =-,∠()()5424133PQ CD DP CQ t t t =--=----=-, ∠1331t -=, 解得:4t =当Q 左P 右时,4DP t =-,24CQ t =-,∠()()4245313PQ DP CQ CD t t t =+-=-+--=-, ∠3131t -=, 解得144.53t =>,不符题意,舍去. 综上,满足题意的4t =.【点睛】本题主要考查了动点问题,涉及绝对值和平方式的非负性,三角形面积的求解,解题的关键是关键题意用时间t表示出线段长度,列式求出t的值.44.(1)90°;(2)∠90°-2α°∠18°【分析】(1)根据角平分线的定义和平角的定义,即可求解;(2)∠根据余角的性质得:∠COE=∠DOF=α°,根据角平分线的定义,可得∠BOC=2α°,进而即可求解;∠用α分别表示出∠BOD和∠AOF的度数,结合∠BOD是∠AOF的2倍,列出关于α的方程,即可求解.【详解】(1)∠点A、O、B三点在同一直线上,射线OD、OE分别平分∠AOC、∠BOC,∠∠COD=12∠AOC,∠COE=12∠BOC,∠∠COD+∠COE=12∠AOC+12∠BOC=12(∠AOC+∠BOC)=12×180°=90°,∠∠DOE=∠COD+∠COE=90°;(2)∠∠OE平分∠BOC,∠∠BOC=2∠COE,∠OF∠OC,∠∠COF=∠COD+∠DOF=90°,∠∠COE+∠COD=90°,∠∠COE=∠DOF=α°,∠∠BOC=2α°,∠∠AOF+∠BOC=90°,∠∠AOF=90°-2α°;∠∠∠BOE=∠COE=α°,∠∠BOD=∠BOE+∠DOE=90°+α°,∠∠BOD=2∠AOF=2(90°-2α°)=180°-4α°,∠90°+α°=180°-4α°,∠α=18,即:∠DOF=18°.【点睛】本题主要考查角的和差倍分,涉及余角的定义和性质,平角的定义,角平分线的定义,根据题意,列出一元一次方程,是解题的关键.45.(1)图见解析(2)图见解析【分析】(1)分别作出A ,B ,C 的对应点111A B C ,,即可; (2)连接1AA ,1CA 交l 于点D ,点D 即为所求. 【详解】(1)如图所示; (2)如图所示:【点睛】本题考查了作图—轴对称变换,最短问题,解决本题的关键是熟练掌握基本知识.46.(1)20°;(2)60°【分析】(1)先求出∠AOF =140°,然后根据角平分线的定义求出∠AOC =70°,再由垂线的定义得到∠AOB =90°,则∠BOD =180°-∠AOB -∠AOC =20°;(2)先求出∠AOE =60°,从而得到∠AOF =120°,根据角平分线的性质得到∠AOC =60°,则∠COE =∠AOE +∠AOC =120°,∠DOE =180°-∠COE =60°. 【详解】解:(1)∠∠AOE =40°, ∠∠AOF =180°-∠AOE =140°, ∠OC 平分∠AOF , ∠∠AOC =12∠AOF =70°, ∠OA ∠OB , ∠∠AOB =90°,∠∠BOD =180°-∠AOB -∠AOC =20°;(2)∠∠BOE=30°,OA∠OB,∠∠AOE=60°,∠∠AOF=180°-∠AOE=120°,∠OC平分∠AOF,∠∠AOC=12∠AOF=60°,∠∠COE=∠AOE+∠AOC=60°+60°=120°,∠∠DOE=180°-∠COE=60°.【点睛】本题主要考查了几何中角度的计算,角平分线的定义,垂线的定义,解题的关键在于能够熟练掌握角平分线的定义.47.(1)2 cm;(2)18cm【分析】(1)先求出AB的长,再结合线段中点的定义求出AC的长,进而即可求解;(2)设AB=x cm,则13AD x=cm,根据线段的中点的定义,列出方程,进而即可求解.【详解】(1)∠13AD AB=,AD=4 cm,∠AB=3×4=12 cm,∠点C是线段AB的中点,∠AC=12AB=11262⨯=cm,∠CD=AC-AD=6-4=2 cm;(2)设AB=x cm,则13AD x=cm,∠点C是线段AB的中点,∠AB=2(AD+CD),即x=2(13x+3),解得:x=18,∠AB=18cm.【点睛】本题主要考查线段的和差倍分以及一元一次方程的应用,利用一元一次方程解决问题,是解题的关键.48.(1)140;(2)20°;(3)OE平分∠AOC,见解析【分析】(1)根据正方形各角等于90°,得出∠COD+∠AOB=180°,再根据∠AOD=40°,∠COB=∠COD+∠AOB-∠AOD,即可得出答案;(2)根据已知得出∠1+∠2,∠1+∠3的度数,再根据∠1+∠2+∠3=90°,最后用∠1+∠2+∠1+∠3-(∠1+∠2+∠3),即可求出∠1的度数;(3)根据∠COD=∠AOB和等角的余角相等得出∠COA=∠DOB,∠EOA=∠FOB,再根据角平分线的性质得出∠DOF=∠FOB=12∠DOB和∠EOA=12∠DOB=12∠COA,从而得出答案.【详解】解:(1)∠两个图形是正方形,∠∠COD=90°,∠AOB=90°,∠∠COD+∠AOB=180°,∠∠AOD=40°,∠∠COB=∠COD+∠AOB-∠AOD=140°故答案为:140;(2)如图,由题意知,∠1+∠2=50°∠,∠1+∠3=60°∠,又∠1+∠2+∠3=90°∠,所以:∠+∠-∠得:∠1=20°;(3)OE平分∠AOC,理由如下:∠∠COD=∠AOB,∠∠COA=∠DOB(等角的余角相等),同理:∠EOA=∠FOB,∠OF平分∠DOB,∠12DOF FOB DOB∠=∠=∠,∠1122EOA DOB COA ∠=∠=∠,∠OE平分∠AOC.【点睛】本题考查了角的和差运算,与余角和补角的有关的计算,根据所给出的图形,找到角与角的关系是本题的关键.49.(1)307t =;(2)见解析;(3)247t =或367t = 【分析】(1)根据题意10,25150DON t AOM t AOD ∠=∠=∠=︒, ,当OM ON 、重合时,+DON AOM AOD ∠∠=∠,计算即可;(2)根据题意可得=60BOD AOC ∠∠=︒,由ON 平分BOD ∠可计算出3t =,故25375AOM ∠=⨯=︒,即可说明OM 平分AOD ∠;(3)根据题意可得30MON ∠=︒分两种情况说明,当OM ON 、重合之前和OM ON 、重合之后分别计算即可.【详解】由题意:10,25DON t AOM t ∠=∠=()190,60COD AOC ∠=∠=150AOD COD AOC ∴∠=∠+∠=当,ON OM 重合时,DON AOM AOD ∠+∠=∠1025150t t ∴+= 解得:307t = ()290AOB COD ∠=∠=90AOC BOC BOD BOC ∴∠+∠=∠+∠=60BOD AOC ∴∠=∠= ON 平分BOD ∠1302DON BOD ∴∠=∠= ∠30103t =÷= ∠1253752AOM AOD ∠=⨯==∠ OM ∴平分AOD ∠()3150,180AOD AOD MON ∠=∠+∠=30MON ∴∠=当OM 与ON 重合前150DON MON AOM ∠+∠+∠=103025150 t t++=解得:247 t=当OM与ON重合后150 DON AOM MON∠+∠-∠= 102530150t t+-=解得:367 t=∴当247t=或367t=时,MON∠与AOD∠互补【点睛】本题考查的是角的综合题,一元一次方程的解法,旋转的性质,有一定的难度,分情况讨论是难点.。

中考数学几何基础、三角形与四边形复习专题训练精选试题及答案

中考数学几何基础、三角形与四边形复习专题训练精选试题及答案

立体图形的认识及角、相交线与平行线专题训练一、填空题:(每题 3 分,共 36 分)1、32.43°=___度___分___秒。

2、若∠1=30°,则∠A 的补角是____度。

3、如图,∠1和∠2是直线AB 、AC 被BC 所截而成的____角。

4、如图,射线OA 表示的方向是_______。

5、锯木头时,一般先在木板上画出两个点,然后过这两点弹出一条墨线,这种做法的理由是______________。

6、如图,AC ⊥l 1,AB ⊥l 2,则点A 到直线 l 2 的距离是指线段________的长度。

7、如图,已知:AB ∥CD ,∠1=∠2,若∠1=50°,则∠3=____度。

8、如图,将两块直角三角板的直角顶点重合为如图所示的形状,若∠AOD =127°, 则∠BOC =____。

9、下面是一些相同的小正方体构成的几何体的三视图。

则至少要___个正方体搭成。

主视图 左视图 俯视图10、如图,要得到AB ∥CD 的结论,则需要角相等的条件是______(写出一个即可)11、直线 a ∥b ,则∠ACB =____。

12、平面内有若干条直线,当下列情形时,可将平面最多分成几部分。

① 有一条直线时,最多分成两部分。

② 有两条直线时,最多分成 2+2=4 部分。

③ 有三条直线时,最多分成____部分。

二、选择题。

(每题 4 分,共 24 分)A B CG D E F (第10题)A O DB C(第8题) A D E C ) ) ) 1 2 3 (第7题) ┘ ┘A B C l 1 l 2 (第6题) ) ) 1 2 A B C (第3题) 东 南西 A北 ) 30° O (第4题)(第11题) a b A B 28° 50°C1、在下列立体图形中,不属于多面体的是( )A 、正方体B 、三棱柱C 、长方体D 、圆锥 2、两条直线被第三条直线所截,则( ) A 、同位角相等 B 、同错角相等 C 、同旁内角互补 D 、无法确定 3、在修建泉厦高速公路时,有时需将弯曲的道路改直,根据( )A 、直线公理B 、直线公理或线段最短公理C 、线段最短公理D 、平行公理4、如图是一个台球桌面的示意图,如果一个球按图中所示的方向被击中(球可以经过多次反射),那么该球最后将落入的球袋是( )A 、1号袋B 、2号袋C 、3号袋D 、4号袋5、下面图形中,不能折成正方体的是( )AB D 6、如果两个角的一边在同一直线上,另一边互相平行,那么这两个角的关系是( )A 、相等B 、互补C 、相等或互补D 、相等且互补三、解答题:(每题 8 分,共 40 分)1、已知C 为线段AB 的中点,D 在线段CB 上,且DA =6,DB =4,求CD 的长度。

初三数学立体图形试题答案及解析

初三数学立体图形试题答案及解析

初三数学立体图形试题答案及解析1.正方形网格中的图形(1)~(4)如图所示,其中图(1)、图(2)中的阴影三角形都是有一个角是60°的直角三角形,图(3)、图(4)中的阴影三角形都是有一个角是60°的锐角三角形.以上图形能围成正三棱柱的图形是()A.(1)和(2)B.(3)和(4)C.(1)和(4)D.(2)、(3)、(4)【答案】C.【解析】根据正三棱柱的特性,图形(1)和图(4)能围成正三棱柱;图(2)和图(3)不能围成正三棱柱.故选C.【考点】平面图形的折叠.2.如图为一个表面分别标有:“A”、“B”、“C”、“D”、“E”、“F”六个字母的正方体的平面展开图如图,则与字母“B”所在的面字相对的面上标有字母“_________”.【答案】D.【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.试题解析:正方体的表面展开图,相对的面之间一定相隔一个正方形,“A”与“F”是相对面,“B”与“D”是相对面,“C”与“E”是相对面.故答案为:D.考点:几何体的展开图.3.将一边长为2的正方形纸片折成四部分,再沿折痕折起来,恰好能不重叠地搭建成一个三棱锥,则三棱锥四个面中最小的面积是A.1B.C.D.【答案】C【解析】三棱锥四个面中最小的一个面是等腰直角三角形,它的两条直角边都是2÷2=1,它的面积=。

故选C。

4.如图,是一个正方体的表面展开图,则原正方体中“梦”字所在的面相对的面上标的字是A.大B.伟C.国D.的【答案】D。

【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点,所以,面“伟”与面“国”相对,面“大”与面“中”相对,“的”与面“梦”相对。

故选D。

5.如图是某一立方体的侧面展开图,则该立方体是()A B C D【答案】D【解析】从立方体的侧面展开图来看,两个有圆的面是隔开的,不相邻,所以排除A、B;观察立方体的侧面展开图,立方体中小正方形中含有三角形的两个面是相邻的,且其两面都与含有深色的一个圆的那个面相邻,所以选D【考点】正方体点评:本题考查正方体,解答本题需要掌握正方体的图形结构,本题考查考生的观察能力和空间想象能力6.如图所示为一个无盖长方体盒子的展开图(重叠部分不计),根据图中数据,可知该无盖长方体的容积为.【答案】6【解析】作图分析无盖长方体可根据阴影部分位置不同来展开,所以一直底面宽为3-1=2cm;长为5-2=3cm。

中考数学真题《几何图形初步与三视图、相交线与平行线》专项测试卷(附答案)

中考数学真题《几何图形初步与三视图、相交线与平行线》专项测试卷(附答案)

中考数学真题《几何图形初步与三视图相交线与平行线》专项测试卷(附答案)学校:___________班级:___________姓名:___________考号:___________(84题)一、单选题1.(2023·湖北鄂州·统考中考真题)下列立体图形中主视图是圆的是()A.B.C.D.2.(2023·湖北鄂州·统考中考真题)如图,直线AB CD GE EF∠的BGE⊥于点E.若60∠=︒,则EFD度数是()A.60︒B.30︒C.40︒D.70︒3.(2023·吉林长春·统考中考真题)下图是一个多面体的表面展开图每个面都标注了数字.若多面体的底面是面③,则多面体的上面是()A.面③B.面③C.面③D.面③∠的角平分线根据作图痕迹下列结论4.(2023·吉林长春·统考中考真题)如图,用直尺和圆规作MAN不一定正确的是()A .AD AE =B .AD DF =C .DF EF =D .AF DE ⊥5.(2023·甘肃兰州·统考中考真题)如图,直线AB 与CD 相交于点O ,则BOD ∠=( )A .40︒B .50︒C .55︒D .60︒6.(2023·山东东营·统考中考真题)如图,AB CD ∥ 点E 在线段BC 上(不与点B C 重合)连接DE 若40D ∠=︒ 60BED ∠=︒,则B ∠=( )A .10︒B .20︒C .40︒D .60︒7.(2023·内蒙古·统考中考真题)几个大小相同的小正方体搭成几何体的俯视图如图所示 图中小正方形中数字表示对应位置小正方体的个数 该几何体的主视图是( )A .B .C .D .8.(2023·内蒙古·统考中考真题)如图,直线a b 直线l 与直线,a b 分别相交于点,A B 点C 在直线b 上且CA CB =.若132∠=︒,则2∠的度数为( )A .32︒B .58︒C .74︒D .75︒9.(2023·全国·统考中考真题)图③是2023年6月11日吉林市全程马拉松男子组颁奖现场.图③是领奖台的示意图,则此领奖台的主视图是()A.B.C.D.10.(2023·黑龙江绥化·统考中考真题)将一副三角板按下图所示摆放在一组平行线内125∠=︒230∠=︒,∠的度数为()则3A.55︒B.65︒C.70︒D.75︒11.(2023·黑龙江绥化·统考中考真题)如图是一个正方体被切去一角,则其左视图是()A.B.C.D.12.(2023·黑龙江齐齐哈尔·统考中考真题)如图,若几何体是由六个棱长为1的正方体组合而成的,则该几何体左视图的面积是()A .2B .3C .4D .513.(2023·黑龙江齐齐哈尔·统考中考真题)如图,直线12l l ∥ 分别与直线l 交于点A B 把一块含30︒角的三角尺按如图所示的位置摆放 若145∠=︒,则2∠的度数是( )A .135︒B .105︒C .95︒D .75︒14.(2023·河南·统考中考真题)如图,直线AB CD 相交于点O 若180∠=︒ 230∠=︒,则AOE ∠的度数为( )A .30︒B .50︒C .60︒D .80︒15.(2023·河南·统考中考真题)北宋时期的汝官窑天蓝釉刻花鹅颈瓶是河南博物院九大镇院之宝之一 具有极高的历史价值 文化价值.如图所示 关于它的三视图 下列说法正确的是( )A .主视图与左视图相同B .主视图与俯视图相同C .左视图与俯视图相同D .三种视图都相同16.(2023·黑龙江·统考中考真题)一个几何体由若干大小相同的小正方体组成 它的俯视图和左视图如图所示 那么组成该几何体所需小正方体的个数最少为( )A .4B .5C .6D .717.(2023·湖北·统考中考真题)如图是一个立体图形的三视图 该立体图形是( )A .三棱柱B .圆柱C .三棱锥D .圆锥18.(2023·湖南张家界·统考中考真题)如图是由5个完全相同的小正方体组成的立体图形 其主视图是( )A .B .C .D .19.(2023·辽宁大连·统考中考真题)如图,直线,45,20AB CD ABE D ∠=∠=︒︒∥,则E ∠的度数为( )A .20︒B .25︒C .30︒D .35︒20.(2023·辽宁大连·统考中考真题)如图所示的几何体中 主视图是( )A.B.C.D.21.(2023·广东·统考中考真题)如图,街道AB与CD平行拐角137ABC∠=︒,则拐角BCD∠=()A.43︒B.53︒C.107︒D.137︒∠=︒,则22.(2023·山东·统考中考真题)一把直尺和一个含30︒角的直角三角板按如图方式放置若120∠=()2A.30︒B.40︒C.50︒D.60︒23.(2023·山东·统考中考真题)如图所示的几何体是由5个大小相同的小正方体组成的它的主视图是()A.B.C.D.24.(2023·山东·统考中考真题)如图,,a b 是直尺的两边 a b 把三角板的直角顶点放在直尺的b 边上 若135∠=︒,则2∠的度数是( )A .65︒B .55︒C .45︒D .35︒25.(2023·山东·统考中考真题)一个几何体的三视图如下,则这个几何体的表面积是( )A .39πB .45πC .48πD .54π26.(2023·福建·统考中考真题)下图是由一个长方体和一个圆柱组成的几何体 它的俯视图是()A .B .C .D .27.(2023·湖北荆州·统考中考真题)观察如图所示的几何体 下列关于其三视图的说法正确的是()A .主视图既是中心对称图形 又是轴对称图形B .左视图既是中心对称图形 又是轴对称图形C .俯视图既是中心对称图形 又是轴对称图形D .主视图 左视图 俯视图都是中心对称图形28.(2023·湖北荆州·统考中考真题)如图所示的“箭头”图形中 AB CD ∥ 80B D ∠=∠= 47E F ∠=∠=,则图中G ∠的度数是( )A .80B .76C .66D .5629.(2023·山东聊城·统考中考真题)如图,分别过ABC 的顶点A B 作AD BE .若25CAD ∠=︒ 80EBC ∠=︒,则ACB ∠的度数为( )A .65︒B .75︒C .85︒D .95︒30.(2023·山东聊城·统考中考真题)如图所示几何体的主视图是( )A .B .C .D .31.(2023·四川·统考中考真题)某几何体是由四个大小相同的小立方块拼成 其俯视图如图所示 图中数字表示该位置上的小立方块个数,则这个几何体的左视图是( )A .B .C .D .32.(2023·广西·统考中考真题)如图,一条公路两次转弯后又回到与原来相同的方向 如果130A ∠=︒ 那么B ∠的度数是( )A .160︒B .150︒C .140︒D .130︒33.(2023·湖南·统考中考真题)如图,直线,a b 被直线c 所截 已知,150a b ︒∠=∥,则2∠的大小为( )A .40︒B .50︒C .70︒D .130︒34.(2023·湖北黄冈·统考中考真题)如图,Rt ABC △的直角顶点A 在直线a 上 斜边BC 在直线b 上 若155a b ∠=︒,,则2∠=( )A.55︒B.45︒C.35︒D.25︒35.(2023·湖北黄冈·统考中考真题)下列几何体中三视图都是圆的是()A.长方体B.图柱C.圆锥D.球36.(2023·湖南郴州·统考中考真题)下列几何体中各自的三视图完全一样的是()A.B.C.D.37.(2023·湖北宜昌·统考中考真题)“争创全国文明典范城市让文明成为宜昌人民的内在气质和城市的亮丽名片”.如图,是一个正方体的平面展开图把展开图折叠成正方体后“城”字对面的字是().A.文B.明C.典D.范38.(2023·湖北宜昌·统考中考真题)如图,小颖按如下方式操作直尺和含30︒角的三角尺依次画出了直线a b c.如果170∠,则2=︒∠的度数为().A.110︒B.70︒C.40︒D.30︒39.(2023·湖北武汉·统考中考真题)如图是由4个相同的小正方体组成的几何体它的左视图是()A.B.C.D.40.(2023·湖北十堰·统考中考真题)下列几何体中三视图的三个视图完全相同的几何体是()A.B.C.D.41.(2023·四川内江·统考中考真题)如图是由5个完全相同的小正方体堆成的物体其主视图是()A.B.C.D.42.(2023·山东滨州·统考中考真题)如图所示摆放的水杯其俯视图为()A .B .C .D .43.(2023·湖北随州·统考中考真题)如图是一个放在水平桌面上的圆柱体 该几何体的三视图中完全相同的是( )A .主视图和俯视图B .左视图和俯视图C .主视图和左视图D .三个视图均相同44.(2023·湖北随州·统考中考真题)如图,直线12l l ∥ 直线l 与1l 2l 相交 若图中160∠=︒,则2∠为( )A .30︒B .60︒C .120︒D .150︒45.(2023·天津·统考中考真题)如图是一个由6个相同的正方体组成的立体图形 它的主视图是( )A.B.C.D.46.(2023·山东枣庄·统考中考真题)榫卯是古代中国建筑家具及其它器械的主要结构方式是我国工艺文化精神的传奇凸出部分叫榫凹进部分叫卯下图是某个部件“卯”的实物图它的主视图是()A.B.C.D.47.(2023·山东临沂·统考中考真题)下图是我国某一古建筑的主视图最符合视图特点的建筑物的图片是()A.B.C.D.∠的度数是()48.(2023·山东临沂·统考中考真题)下图中用量角器测得ABCA.50︒B.80︒C.130︒D.150︒49.(2023·湖南永州·统考中考真题)下列几何体中其三视图的主视图和左视图都为三角形的是()A.B.C.D.50.(2023·江苏苏州·统考中考真题)今天是父亲节小东同学准备送给父亲一个小礼物.已知礼物外包装的主视图如图所示,则该礼物的外包装不可能...是()A.长方体B.正方体C.圆柱D.三棱锥51.(2023·湖南·统考中考真题)作为中国非物质文化遗产之一的紫砂壶成型工艺特别造型式样丰富陶器色泽古朴典雅从一个方面鲜明地反映了中华民族造型审美意识.如图是一把做工精湛的紫砂壶“景舟石瓢” 下面四幅图是从左面看到的图形的是()A.B.C.D.52.(2023·山东烟台·统考中考真题)如图,对正方体进行两次切割得到如图③所示的几何体,则图③几何体的俯视图为()A .B .C .D .53.(2023·湖南岳阳·统考中考真题)已知AB CD 点E 在直线AB 上 点,F G 在直线CD 上 EG EF ⊥于点,40E AEF ∠=︒,则EGF ∠的度数是( )A .40︒B .45︒C .50︒D .60︒54.(2023·湖南岳阳·统考中考真题)下列几何体的主视图是圆的是( )A .B .C .D .55.(2023·江苏扬州·统考中考真题)下列图形中是棱锥的侧面展开图的是( )A .B .C .D . 56.(2023·四川乐山·统考中考真题)下面几何体中 是圆柱的是( )A .B .C .D .57.(2023·浙江绍兴·统考中考真题)由8个相同的立方体搭成的几何体如图所示,则它的主视图是()A .B .C .D .58.(2023·浙江台州·统考中考真题)如图是由5个相同的正方体搭成的立体图形 其主视图是( ).A .B .C .D .59.(2023·浙江温州·统考中考真题)截面为扇环的几何体与长方体组成的摆件如图所示 它的主视图是( )A .B .C .D .60.(2023·湖南怀化·统考中考真题)如图,平移直线AB 至CD 直线AB CD 被直线EF 所截 160∠=︒,则2∠的度数为( )A .30︒B .60︒C .100︒D .120︒61.(2023·江西·统考中考真题)如图,平面镜MN 放置在水平地面CD 上 墙面PD CD ⊥于点D 一束光线AO 照射到镜面MN 上 反射光线为OB 点B 在PD 上 若35AOC ∠=︒,则OBD ∠的度数为( )A.35︒B.45︒C.55︒D.65︒62.(2023·云南·统考中考真题)某班同学用几个几何体组合成一个装饰品美化校园.其中一个几何体的三视图(其中主视图也称正视图左视图也称侧视图)如图所示这个几何体是()A.球B.圆柱C.长方体D.圆锥63.(2023·浙江宁波·统考中考真题)如图所示的几何体是由一个圆柱和一个长方体组成的它的主视图是()A.B.C.D.64.(2023·四川眉山·统考中考真题)由相同的小正方体搭成的立体图形的部分视图如图所示,则搭成该立体图形的小正方体的最少个数为()A.6B.9C.10D.1465.(2023·四川眉山·统考中考真题)如图,ABC 中 ,40=∠=︒AB AC A ,则ACD ∠的度数为( )A .70︒B .100︒C .110︒D .140︒66.(2023·江苏连云港·统考中考真题)下列水平放置的几何体中 主视图是圆形的是( )A .B .C .D .67.(2023·四川遂宁·统考中考真题)生活中一些常见的物体可以抽象成立体图形 以下立体图形中三视图形状相同的可能是( )A .正方体B .圆锥C .圆柱D .四棱锥68.(2023·四川广安·统考中考真题)如图,由5个大小相同的小正方体搭成的几何体 它的俯视图是( )A .B .C.D.69.(2023·浙江金华·统考中考真题)某物体如图所示其俯视图是()A.B.C.D.70.(2023·浙江嘉兴·统考中考真题)如图的几何体由3个同样大小的正方体搭成它的俯视图是()A.B.C.D.71.(2023·安徽·统考中考真题)某几何体的三视图如图所示,则该几何体为()A.B.C.D.72.(2023·浙江·统考中考真题)如图,箭头所指的是某陶艺工作室用于垫放陶器的5块相同的耐火砖搭成的几何体它的主视图是()A.B.C.D.73.(2023·四川凉山·统考中考真题)光线在不同介质中的传播速度是不同的因此光线从水中射向空气时∠=︒∠=︒,要发生折射.由于折射率相同所以在水中平行的光线在空气中也是平行的.如图,145,2120∠+∠=()则34A.165︒B.155︒C.105︒D.90︒74.(2023·四川凉山·统考中考真题)如图是由4个相同的小立方体堆成的几何体的俯视图小正方形中的数字表示该位置小立方体的个数,则这个几何体的主视图是()A.B.C.D.75.(2023·重庆·统考中考真题)如图,直线a b被直线c所截若a b163∠=︒,则2∠的度数为( ).A .27︒B .53︒C .63︒D .117︒76.(2023·重庆·统考中考真题)四个大小相同的正方体搭成的几何体如图所示 从正面看到的视图是( )A .B .C .D .77.(2023·四川泸州·统考中考真题)一个立体图形的三视图如图所示,则该立体图形是( )A .圆柱B .圆锥C .长方体D .三棱柱78.(2023·四川泸州·统考中考真题)如图,AB CD ∥ 若55D ∠=︒,则1∠的度数为( )A .125︒B .135︒C .145︒D .155︒79.(2023·四川自贡·统考中考真题)如图,某人沿路线A B C D →→→行走 AB 与CD 方向相同 1128∠=︒,则2∠=( )A .52︒B .118︒C .128︒D .138︒80.(2023·四川自贡·统考中考真题)如图中六棱柱的左视图是( )A .B .C .D .二 填空题81.(2023·全国·统考中考真题)如图,在ABC 中 AB AC = 分别以点B 和点C 为圆心 大于12BC 的长为半径作弧 两孤交于点D 作直线AD 交BC 于点E .若=110BAC ∠︒,则BAE ∠的大小为__________度.82.(2023·内蒙古通辽·统考中考真题)将一副三角尺如图所示放置 其中AB DE ∥,则CDF ∠=___________度.83.(2023·山东烟台·统考中考真题)一杆古秤在称物时的状态如图所示 已知1102∠=︒,则2∠的度数为_____.∠=︒,则③2的度数为84.(2023·浙江台州·统考中考真题)用一张等宽的纸条折成如图所示的图案若120________.参考答案一单选题1.(2023·湖北鄂州·统考中考真题)下列立体图形中主视图是圆的是()A.B.C.D.【答案】D【分析】分别得出棱柱圆柱圆锥球体的主视图得出结论.【详解】解:棱柱的主视图是矩形(中间只有一条线段)不符合题意圆柱的主视图是矩形不符合题意圆锥的主视图是等腰三角形不符合题意球体的主视图是圆符合题意故选:D.【点睛】本题考查了三视图的知识主视图是从物体的正面看得到的视图.2.(2023·湖北鄂州·统考中考真题)如图,直线AB CD GE EF∠的⊥于点E.若60∠=︒,则EFDBGE度数是()A .60︒B .30︒C .40︒D .70︒【答案】B 【分析】延长GE 与DC 交于点M 根据平行线的性质 求出FME ∠的度数 再直角三角形的两锐角互余即可求出EFD ∠.【详解】解:延长GE 与DC 交于点M③AB CD 60BGE ∠=︒③60FME BGE ∠∠==︒③GE EF ⊥③906030EFD ∠=︒-︒=︒故选:B .【点睛】本题考查平行线的性质和直角三角形的性质 正确作出辅助线和正确利用平行线的性质是解题的关键.3.(2023·吉林长春·统考中考真题)下图是一个多面体的表面展开图 每个面都标注了数字.若多面体的底面是面③,则多面体的上面是( )A .面③B .面③C .面③D .面③【答案】C 【分析】根据底面与多面体的上面是相对面,则形状相等 间隔1个长方形 且没有公共顶点 即可求解.【详解】解:依题意 多面体的底面是面③,则多面体的上面是面③故选:C .【点睛】本题考查了长方体的表面展开图 熟练掌握基本几何体的展开图是解题的关键.4.(2023·吉林长春·统考中考真题)如图,用直尺和圆规作MAN ∠的角平分线 根据作图痕迹 下列结论不一定正确的是( )A .AD AE =B .AD DF =C .DF EF =D .AF DE ⊥【答案】B【分析】根据作图可得,AD AE DF EF == 进而逐项分析判断即可求解.【详解】解:根据作图可得,AD AE DF EF == 故A C 正确③,A F 在DE 的垂直平分线上③AF DE ⊥ 故D 选项正确而DF EF =不一定成立 故C 选项错误故选:B .【点睛】本题考查了作角平分线 垂直平分线的判定 熟练掌握基本作图是解题的关键.5.(2023·甘肃兰州·统考中考真题)如图,直线AB 与CD 相交于点O ,则BOD ∠=( )A .40︒B .50︒C .55︒D .60︒【答案】B【分析】利用对顶角相等得到BOD AOC ∠=∠ 即可求解.【详解】解:读取量角器可知:50AOC ∠=︒③50BOD AOC ∠=∠=︒故选:B .【点睛】本题考查了对顶角相等 量角器读数 是基础题.6.(2023·山东东营·统考中考真题)如图,AB CD ∥ 点E 在线段BC 上(不与点B C 重合)连接DE 若40D ∠=︒ 60BED ∠=︒,则B ∠=( )A .10︒B .20︒C .40︒D .60︒【答案】B 【分析】根据三角形的外角的性质求得20C ∠=︒ 根据平行线的性质即可求解.【详解】解:③40D ∠=︒ 60BED ∠=︒③20C BED D ∠=∠-∠=︒③AB CD ∥③B ∠=20C ∠=︒故选:B .【点睛】本题考查了三角形的外角的性质 平行线的性质 熟练掌握以上知识是解题的关键. 7.(2023·内蒙古·统考中考真题)几个大小相同的小正方体搭成几何体的俯视图如图所示 图中小正方形中数字表示对应位置小正方体的个数 该几何体的主视图是( )A .B .C .D .【答案】D【分析】根据各层小正方体的个数 然后得出三视图中主视图的形状 即可得出答案.【详解】解:根据俯视图可知 这个几何体中:主视图有三列:左边一列1个 中间一列2个 右边一列2个所以该几何体的主视图是故选:D .【点睛】此题主要考查了学生对三视图掌握程度和灵活运用能力 同时也体现了对空间想象能力方面的考查 熟练掌握三视图的判断方法是解题关键.8.(2023·内蒙古·统考中考真题)如图,直线a b 直线l 与直线,a b 分别相交于点,A B 点C 在直线b 上且CA CB =.若132∠=︒,则2∠的度数为( )A .32︒B .58︒C .74︒D .75︒【答案】C 【分析】由CA CB = 132∠=︒ 可得1801742CBA CAB ︒-∠∠=∠==︒ 由a b 可得2CBA ∠=∠ 进而可得2∠的度数.【详解】解:③CA CB = 132∠=︒ ③1801742CBA CAB ︒-∠∠=∠==︒ ③a b ③274CBA ∠=∠=︒故选:C .【点睛】本题考查了等边对等角 三角形的内角和定理 平行线的性质.解题的关键在于明确角度之间的数量关系.9.(2023·全国·统考中考真题)图③是2023年6月11日吉林市全程马拉松男子组颁奖现场.图③是领奖台的示意图,则此领奖台的主视图是( )A .B .C .D .【答案】A 【分析】主视图是从几何体正面观察到的视图.【详解】解:领奖台从正面看是由三个矩形组成的.三个矩形右边最低中间最高故选:A.【点睛】本题考查主视图掌握三视图的特征是解题关键.10.(2023·黑龙江绥化·统考中考真题)将一副三角板按下图所示摆放在一组平行线内125∠=︒230∠=︒,∠的度数为()则3A.55︒B.65︒C.70︒D.75︒【答案】C【分析】根据两直线平行内错角相等即可求解.∠+︒=∠+︒【详解】解:依题意190345③125∠=︒∠=︒③370故选:C.【点睛】本题考查了平行线的性质熟练掌握两直线平行内错角相等是解题的关键.11.(2023·黑龙江绥化·统考中考真题)如图是一个正方体被切去一角,则其左视图是()A.B.C.D.【答案】B【分析】根据左视图的意义判断即可.【详解】根据题意该几何体的左视图为:故选:B .【点睛】本题考查了三视图的画法 熟练掌握三视图的空间意义是解题的关键.12.(2023·黑龙江齐齐哈尔·统考中考真题)如图,若几何体是由六个棱长为1的正方体组合而成的,则该几何体左视图的面积是( )A .2B .3C .4D .5【答案】C 【分析】首先确定该几何体左视图的小正方形数量 然后求解面积即可.【详解】解:该几何体左视图分上下两层 其中下层有3个小正方形 上层中间有1个正方形 共计4个小正方形③小正方体的棱长为1③该几何体左视图的面积为4故选:C .【点睛】本题考查简单组合体的三视图 理解左视图即为从左边看到的图形是解题关键.13.(2023·黑龙江齐齐哈尔·统考中考真题)如图,直线12l l ∥ 分别与直线l 交于点A B 把一块含30︒角的三角尺按如图所示的位置摆放 若145∠=︒,则2∠的度数是( )A .135︒B .105︒C .95︒D .75︒【答案】B 【分析】依据12l l ∥ 即可得到1345∠=∠=︒ 再根据430∠=︒ 即可得出荅案.【详解】解:如图,12l l ∥1345∴∠=∠=︒又430∠=︒2180341804530105∴∠=︒-∠-∠=︒-︒-︒=︒故选:B .【点睛】此题主要考查了平行线的性质 解本题的关键是熟记平行线的性质:两直线平行 同位角相等. 14.(2023·河南·统考中考真题)如图,直线AB CD 相交于点O 若180∠=︒ 230∠=︒,则AOE ∠的度数为( )A .30︒B .50︒C .60︒D .80︒【答案】B 【分析】根据对顶角相等可得180AOD ∠=∠=︒ 再根据角的和差关系可得答案.【详解】解:③180∠=︒③180AOD ∠=∠=︒③230∠=︒③2803050AOE AOD ∠=∠-∠=︒-︒=︒故选:B.【点睛】本题主要考查了对顶角的性质 解题的关键是掌握对顶角相等.15.(2023·河南·统考中考真题)北宋时期的汝官窑天蓝釉刻花鹅颈瓶是河南博物院九大镇院之宝之一具有极高的历史价值文化价值.如图所示关于它的三视图下列说法正确的是()A.主视图与左视图相同B.主视图与俯视图相同C.左视图与俯视图相同D.三种视图都相同【答案】A【分析】直接利用已知几何体分别得出三视图进而分析得出答案.【详解】解:这个花鹅颈瓶的主视图与左视图相同俯视图与主视图和左视图不相同.故选:A.【点睛】此题主要考查了简单几何体的三视图掌握三视图的概念是解题关键.16.(2023·黑龙江·统考中考真题)一个几何体由若干大小相同的小正方体组成它的俯视图和左视图如图所示那么组成该几何体所需小正方体的个数最少为()A.4B.5C.6D.7【答案】B【分析】在“俯视打地基”的前提下结合左视图知俯视图上一行三个小正方体的上方(第2层)至少还有1个正方体据此可得答案.【详解】解:由俯视图与左视图知该几何体所需小正方体个数最少分布情况如下图所示:所以组成该几何体所需小正方体的个数最少为5故选:B.【点睛】本题主要考查由三视图判断几何体解题的关键是掌握口诀“俯视打地基主视疯狂盖左视拆违章”.17.(2023·湖北·统考中考真题)如图是一个立体图形的三视图该立体图形是()A.三棱柱B.圆柱C.三棱锥D.圆锥【答案】D【分析】根据主视图和左视图确定是柱体锥体球体再由俯视图确定具体形状.【详解】解:由主视图和左视图为三角形判断出是锥体根据俯视图是圆可判断出这个几何体应该是圆锥.故选:D.【点睛】本题考查了由物体的三种视图确定几何体的形状考查了学生的思考能力和对几何体三种视图的空间想象能力和综合能力.18.(2023·湖南张家界·统考中考真题)如图是由5个完全相同的小正方体组成的立体图形其主视图是()A.B.C.D.【答案】D【分析】根据从正面看得到的图形是主视图可得答案.【详解】解:其主视图有2列从左到右依次有3 1个正方形图形如下:故选:D .【点睛】本题考查了简单组合体的三视图 掌握从正面看到的图形是主视图是解题关键.19.(2023·辽宁大连·统考中考真题)如图,直线,45,20AB CD ABE D ∠=∠=︒︒∥,则E ∠的度数为( )A .20︒B .25︒C .30︒D .35︒【答案】B【分析】先根据平行线的性质可得45ABE BCD ∠∠==︒ 再根据三角形的外角性质即可得.【详解】解:,45AB CD ABE ∠=︒∥45ABE BCD ∴=∠=∠︒20D ∠=︒25BCD D E ∠-∠==∴∠︒故选:B .【点睛】本题考查了平行线的性质 三角形的外角性质 熟练掌握平行线的性质是解题关键.20.(2023·辽宁大连·统考中考真题)如图所示的几何体中 主视图是( )A .B .C .D .【答案】B【分析】根据主视图是从正面看得到的图形解答即可.【详解】解:从正面看看到的是故选:B .【点睛】本题考查了三视图的知识 属于简单题 熟知主视图是从物体的正面看得到的视图是解题的关键.21.(2023·广东·统考中考真题)如图,街道AB 与CD 平行 拐角137ABC ∠=︒,则拐角BCD ∠=( )A .43︒B .53︒C .107︒D .137︒【答案】D 【分析】根据平行线的性质可进行求解.【详解】解:③AB CD 137ABC ∠=︒③137BCD ABC ∠=∠=︒故选:D .【点睛】本题主要考查平行线的性质 熟练掌握平行线的性质是解题的关键.22.(2023·山东·统考中考真题)一把直尺和一个含30︒角的直角三角板按如图方式放置 若120∠=︒,则2∠=( )A .30︒B .40︒C .50︒D .60︒【答案】B 【分析】根据平行线的性质 得出3120∠=∠=︒ 进而260340.【详解】由图知 3120∠=∠=︒③2603602040 故选:B.【点睛】本题考查平行线的性质 特殊角直角三角形 由图形的位置关系推出角之间的数量关系是解题的关键.23.(2023·山东·统考中考真题)如图所示的几何体是由5个大小相同的小正方体组成的 它的主视图是( )A .B .C .D .【答案】A 【分析】根据主视图是从正面看到的图形进行求解即可.【详解】解:从正面看该几何体 有三列 第一列有2层 第二和第三列都只有一层 如图所示:故选:A .【点睛】本题主要考查了简单几何组合体的三视图 熟知三视图的定义是解题的关键.24.(2023·山东·统考中考真题)如图,,a b 是直尺的两边 a b 把三角板的直角顶点放在直尺的b 边上若135∠=︒,则2∠的度数是( )A .65︒B .55︒C .45︒D .35︒【答案】B【分析】根据平行线的性质及平角可进行求解.【详解】解:如图:③a b 135∠=︒③135,2ACD BCE ∠=∠=︒∠=∠③180BCE ACB ACD ∠+∠+∠=︒ 90ACB ∠=︒③1809035552BCE ∠=︒-︒-︒=︒=∠故选:B .【点睛】本题主要考查平行线的性质 熟练掌握平行线的性质是解题的关键.25.(2023·山东·统考中考真题)一个几何体的三视图如下,则这个几何体的表面积是()A .39πB .45πC .48πD .54π【答案】B【分析】先根据三视图还原出几何体 再利用圆锥的侧面积公式和圆柱的侧面积公式计算即可.【详解】根据三视图可知 该几何体上面是底面直径为6 母线为4的圆锥 下面是底面直径为6 高为4的圆柱 该几何体的表面积为:211π646π4π612π24π9π45π22S ⎛⎫=⨯⨯⨯+⨯+⨯⨯=++= ⎪⎝⎭. 故选:B .【点睛】本题主要考查了简单几何体的三视图以及圆锥的侧面积公式和圆柱的侧面积公式 根据三视图还原出几何体是解决问题的关键.26.(2023·福建·统考中考真题)下图是由一个长方体和一个圆柱组成的几何体 它的俯视图是( )A .B .C .D .【答案】D【分析】根据从上面看得到的图形是俯视图即可解答.【详解】解:从上面看下边是一个矩形 矩形的上边是一个圆故选:D .【点睛】本题考查了简单组合体的三视图 掌握从上面看得到的图形是俯视图是解答本题的关键. 27.(2023·湖北荆州·统考中考真题)观察如图所示的几何体 下列关于其三视图的说法正确的是( )A .主视图既是中心对称图形 又是轴对称图形B .左视图既是中心对称图形 又是轴对称图形C .俯视图既是中心对称图形 又是轴对称图形D .主视图 左视图 俯视图都是中心对称图形【答案】C【分析】先判断该几何体的三视图 再根据轴对称和中心对称图形定义逐项判断三视图 即可求出答案.【详解】解:A 选项:主视图是上下两个等腰三角形 不是中心对称图形 是轴对称图形 故不符合题意 B 选项:左视图是上下两个等腰三角形 不是中心对称图形 是轴对称图形 故不符合题意 C 选项:俯视图是圆(带圆心) 既是中心对称图形 又是轴对称图形 故符合题意D 选项:由A 和B 选项可知 主视图和左视图都不是中心对称图形 故不符合题意.故选:C.【点睛】本题考查了简单几何体的三视图 轴对称图形和中心对称图形 解题的关键在于掌握轴对称和中心对称的定义. 如果一个平面图形沿着一条直线折叠后 直线两旁的部分能够互相重合 那么这个图形叫做轴对称图形 中心对称是指把一个图形绕着某一点旋转180︒ 如果它能够与另一个图形重合 那么就说这两个图形关于这个点对称或中心对称.28.(2023·湖北荆州·统考中考真题)如图所示的“箭头”图形中 AB CD ∥ 80B D ∠=∠= 47E F ∠=∠=,则图中G ∠的度数是( )A .80B .76C .66D .56【答案】C 【分析】延长AB 交EG 于点M 延长CD 交GF 于点N 过点G 作AB 的平行线GH 根据平行线的性质。

中考数学几何图形专题训练50题-含答案

中考数学几何图形专题训练50题-含答案

中考数学几何图形专题训练50题含答案(单选、填空、解答题)一、单选题1.如图,是某个几何体的展开图,该几何体是( )A .三棱柱B .三棱锥C .球D .圆锥 2.如图,把一块三角板ABC 的直角顶点B 放在直线EF 上,30C ∠=︒,AC ∥EF ,则1∠=( )A .30°B .45°C .60°D .75°3.如图是每个面上都标有一个汉字的正方体的表面展开图,在此正方体上与“爱”字相对的面上的汉字是( )A .保B .定C .古D .城 4.如图,已知AC BC ⊥,190A ∠+∠=︒,则2∠与A ∠的关系是( )A.2∠大C.相等D.无法确定∠大B.A5.若一个锐角的余角比这个角大30°,则这个锐角的度数是()A.30︒B.150︒C.60︒D.155︒6.图中的立方体展开后,应是下图中的()A.B.C.D.7.如图,直线与相交于点,,则与()A.是对顶角B.相等C.互余D.互补8.如图由四个相同的小立方体组成的立体图像,它的主视图是().A .B .C .D . 9.如图,钟表上10点整时,时针与分针所成的角是( )A .30︒B .60︒C .90︒D .120︒ 10.如图,将直角三角形绕其一条直角边所在直线l 旋转一周,得到的几何体是( )A .B .C .D . 11.如图,在长方形ABCD 中,点E ,点F 分别为BC 和AB 上任意一点,点B 和点M 关于EF 对称,EN 是MEC ∠的平分线,若60BFE ∠=︒,则MEN ∠的度数是( )A .30︒B .60︒C .45︒D .50︒12.如图是正方形纸盒展开图,那么在原正方体中,与“沉”字所在面相对面的汉字是()A.冷B.静C.应D.考13.如图是一块带有圆形空洞和矩形空洞的小木板,则下列物体中最有可能既可以堵住圆形空洞,又可以堵住矩形空洞的是()A.正方体B.球C.圆锥D.圆柱体14.如图,用平面去截一个正方体,所得截面的形状应是()A.A B.B C.C D.D15.如图,点O在直线AB上,∠COE=90°,OD平分∠AOE,∠COD=25°,则∠BOD=()A.110°B.115°C.120°D.135°16.下列说法正确的是()A.射线PA和射线AP是同一条射线B.射线OA的长度是3cmC.直线,AB CD相交于点P D.两点确定一条直线17.如图,一个底面直径为30cm,高为20cm的糖罐子,一只蚂蚁从A处沿着糖罐的表面爬行到B处,则蚂蚁爬行的最短距离是()A .24cmB .C .25cmD .30cm 18.如图,等边ABC 的边长为1,过点B 的直线l AB ⊥,且ABC 与A BC ''△关于直线l 对称,D 为线段BC '上的一个动点,则AD CD +的最小值为( )A .1B .2C .3D .419.如图,在ABC 中,90C ∠=︒,30B ∠=︒,如图:(1)以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ;(2)分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ;(3)连结AP 并延长交BC 于点D .根据以上作图过程,下列结论中错误的是( )A .AD 是BAC ∠的平分线B .60ADC ∠=︒ C .点D 在AB 的中垂线上 D .:1:3DAC ABD S S =△△20.如图,在Rt 直角△ABC 中,45B ∠=︒,AB =AC ,点D 为BC 中点,直角MDN ∠绕点D 旋转,DM ,DN 分别与边AB ,AC 交于E ,F 两点,下列结论:△△DEF 是等腰直角三角形;△ AE =CF ;△△BDE △△ADF ;△ BE +CF =EF ,其中正确结论是( )A .△△△B .△△△C .△△△D .△△△△二、填空题21.在_______内填上适当的分数:135等于________平角.22.如图,AB △CD ,CB 平分△ABD ,若△ABC =40°,则△D 的度数为_______.23.如果△α=26°,那么△α的余角等于__________.24.如图,点A在点O北偏东32︒方向上,点B在点O南偏东43︒方向上,则AOB∠= ______.25.如图,是一副三角板拼成的图案,则AED=∠____.26.如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是___________.27.如图是一个长方体的表面展开图,每个面上都标注了字母和数据,请根据要求回答(1)如果A面在长方体的底部,那么_________面会在上面;(2)这个长方体的体积为_________米3.28.若α∠的补角是它的3倍,则α∠的度数为________________.29.两根长度分别为8cm 和10cm 的直木条,将它们一端重合且放在同一条直线上,此时两根木条中点之间的距离为________.30.已知,如图4090COD AOC BOD ∠∠∠=︒==︒,,则AOB ∠=_______度.31.若一个直棱柱共有10个面,所有侧棱长的和等于64,则每条侧棱的长为______.32.小红从O 点出发向北偏西32°17'方向走到A 点,小明从O 点出发向南偏西54°28'方向走到B 点,则∠AOB 的度数是_____.33.如图是一个正方体的展开图,它的六个面上分别写有“构建和谐社会”六个字,将其围成正方体后,与“社”在相对面上的字是_____.34.5400秒化成度数是____________度35.如图,OA 的方向是北偏东20°,OC 的方向是北偏西40°,若AOC AOB ∠=∠,则OB 的方向是______.36.已知,如图,A 、O 、B 在同一直线上,OF 平分AOB ∠,12∠=∠,3=4∠∠.(1)射线OD 是_______的角平分线;(2)AOC ∠的补角是_______;(3)AOC ∠的余角是_______;(4)_______是2∠的余角;(5)DOB ∠的补角是_______;(6)_______是COF ∠的补角.37.线段AB =12cm ,点C 在线段AB 上,且AC =13BC ,M 为BC 的中点,则AM 的长为_______cm.38.如图,在△O 中,AB 是△O 的直径,10,AB AC CD DB ===,点E 是点D 关于AB 的对称点,M 是AB 上的一动点,下列结论:△60BOE ︒∠=;△12CED DOB ∠=∠;△DM CE ⊥;△CM DM +的最小值是10.上述结论中正确的个数是_________.39.如图,在Rt ABC △中,90ABC ∠=︒,以AC 为边,作ACD ,满足AD AC =,点E 为BC 上一点,连接AE ,12BAE CAD ∠=∠,连接DE .下列结论中正确的是__________.(填序号)△AC DE ⊥;△ADE ACB ∠=∠;△若//CD AB ,则AE AD ⊥;△2DE CE BE =+.40.如图,在△ABC 中,AB = AC = 8,S △ABC = 16,点P 为角平分线AD 上任意一点,PE △AB ,连接PB ,则PB+PE 的最小值为_____.三、解答题41.线段4AB =cm ,延长线段AB 到C ,使BC =14AB ,再反向延长AB 到D ,使AD=3cm ,E 是AD 中点,F 是CD 的中点,求EF 的长度.42.已知图为一几何体从不同方向看的图形.(1)写出这个几何体的名称;(2)任意画出这个几何体的一种表面展开图;(3)若长方形的高为10厘米,三角形的边长为4厘米,求这个几何体的侧面积. 43.如图△,点O 为直线MN 上一点,过点O 作直线OC ,使60NOC ︒∠=.将一把直角三角尺的直角顶点放在点O 处,一边 OA 在射线OM 上,另一边OB 在直线AB 的下方,其中30OBA ︒∠=()1将图△中的三角尺沿直线OC 翻折至''A B O ∆, 求'A ON ∠的度数;()2将图△中的三角尺绕点O 按每秒10︒的速度沿顺时针方向旋转,旋转角为()0360αα︒︒<<, 在旋转的过程中,在第几秒时,直线OA 恰好平分锐角NOC ∠. ()3将图△中的三角尺绕点O 顺时针旋转;当点A 点B 均在直线MN 上方时(如图△所示),请探究MOB ∠与AOC ∠之间的数量关系,请直接写出结论,不必写出理由.44.如图,在直线AB 上,线段20AB =,动点P 从A 出发,以每秒2个单位长度的速度在直线AB 上运动,M 为AP 的中点,N 为BP 的中点,设点P 的运动吋间为t 秒.(1)若点P 在线段AB 上运动,当7MP =时,NP = ;(2)若点P 在射线AB 上运动,当2MP NP =时,求点P 的运动时间t 的值;(3)当点P 在线段AB 的反向延长线上运动时,线段AB 、MP 、NP 有怎样的数量关系?请写出你的结论,并说明你的理由.45.已知:点M ,N ,P 在同一条直线上,线段MN a =,线段()PN b a b =>,点A 是MP 的中点.求线段MP 与线段AN 的长.(用含a ,b 的代数式表示) 46.如图所示,l 为河岸,B 处为草地,牧马人要将A 处的马牵到河边喝水,再牵到B 地吃草,问怎样走路程最短?47.如图,在ABC 中,CD 、CE 分别是ABC 的高和角平分线,,()BAC B ∠α∠βαβ==>.(1)若70,40αβ=︒=︒,求DCE ∠的度数;(2)试用α、β的代数式表示DCE ∠的度数_________.48.某产品的形状是长方体,长为8cm ,它的展开图如图所示,求长方体的体积.49.如图,已知线段AB 上有两点C ,D ,且AC△CD△DB =2△3△4,E ,F 分别为AC ,DB 的中点,EF =2.4 cm ,求线段AB 的长.50.综合与探究已知△AOB 、△BOC ,△AOB =90°,(1)若△BOC 为锐角,OE 、OD 分别平分△AOB 和△BOC ,△如图1,当射线OC 在△AOB 外部,△BOC =40°时,求△EOD 的度数;△当△BOC =α(090α︒<<︒)时,则△EOD 的度数是_____;(2)若△AOC 和△BOC 均为小于平角的角,OE 、OD 分别平分△AOC 和△BOC ,△当△BOC =40°,OC 位置如图2所示时,求△EOD 的度数.△当△BOC =α时(0°<α<180°),则△EOD 的度数是_____.参考答案:1.A【分析】侧面为三个长方形,底面为三角形,故原几何体为三棱柱.【详解】解:观察图形可知,这个几何体是三棱柱,故A 正确.故选:A .【点睛】本题考查的是三棱柱的展开图,熟练掌握三棱柱的展开图,是解题的关键. 2.C【分析】根据三角板的角度,可得60A ∠=︒,根据平行线的性质即可求解. 【详解】解:30C ∠=︒,9060A C ∴∠=︒-∠=︒AC ∥EF ,160A ∴∠=∠=︒故选C【点睛】本题考查了平行线的性质,掌握平行线的性质是解题的关键.3.A【分析】本题考查了正方体的平面展开图,对于正方体的平面展开图中相对的面一定相隔一个小正方形,据此作答.【详解】正方体的表面展开图中,相对的面之间一定相隔一个正方形,所以在此正方体上与“爱”字相对的面上的汉字是“保”,故选A .【点睛】本题考查正方体的展开图,解题的关键是掌握正方体相对两个面上的文字的知识.4.C【分析】由190A ∠+∠=︒,1290∠+∠=︒,可知2A ∠=∠,进而可得答案.【详解】解:△190A ∠+∠=︒,1290∠+∠=︒△2A ∠=∠故选C .【点睛】本题考查了余角.解题的关键在于明确同角的余角相等.5.A【分析】根据余角的定义解决此题.【详解】解:设这个角的度数为x .由题意得,9030x x -=+︒︒.△30x =︒.△这个角的度数为30︒.故选:A .【点睛】本题主要考查余角,熟练掌握余角的定义是解决本题的关键.6.D【详解】由正方体的展开图可知,D 项符合题意,故选D .7.C【详解】试题分析:因为CD 是一条直线,又,所以△AOE=90°所以△1+△2=180°-90°=90°,所以他们的关系是互余考点:角的互余关系点评:难度小,理解角与角的各种的关系是关键.8.A【分析】从正面看作出相应图象即可得.【详解】解:从正面看,共2列,左边是1个正方形,右边是2个正方形,且下齐.故选A.【点睛】题目主要考查小正方体的主视图的作法,理解题意,掌握视图的作法是解题关键. 9.B【分析】根据钟面分成12个大格,每格的度数为30°即可解答.【详解】解:△钟面分成12个大格,每格的度数为30°,△钟表上10点整时,时针与分针所成的角是60°故选B .【点睛】考核知识点:钟面角.了解钟面特点是关键.10.B【分析】根据直角三角形绕直角边旋转是圆锥,即可解得.【详解】将直角三角形绕其一条直角边所在直线l 旋转一周,得到的几何体是圆锥;故答案为:B.【点睛】本题考查了点、线、面、体,熟记各种平面图形旋转得到的立体图形是解题的关键.11.B∠的平分线,可算出△MEN 【分析】根据对称的性质可得△MEF的度数,再由EN是MEC的度数.【详解】解:由题意可得:△B=90°,△△BFE=60°,△△BEF=30°,△点B和点M关于EF对称,△△BEF=△MEF=30°,△△MEC=180-30°×2=120°,∠的平分线,又△EN是MEC△△MEN=120÷2=60°.故选B.【点睛】本题考查了轴对称的性质和角平分线的性质,根据已知角利用三角形内角和、角平分线的性质计算相关角度即可,难度不大.12.B【分析】根据正方体的展开图的特点,确定出相对的面即可.【详解】解:根据正方体表面展开图可知,与“沉”字所在面相对面的汉字是“静”.故答案为B.【点睛】本题考查正方体的表面展开图的特征,掌握正方体展开图的对面的判定方法是解答本题的关键.13.D【分析】本题中,圆柱的俯视图是个圆,可以堵住圆形空洞,它的正视图和左视图是个矩形,可以堵住方形空洞.【详解】根据三视图的知识来解答.圆柱的俯视图是一个圆,可以堵住圆形空洞,而它的正视图以及侧视图都为一个矩形,可以堵住方形的空洞,故圆柱是最佳选项.故选D.【点睛】此题考查立体图形,本题将立体图形的三视图运用到了实际中,只要弄清楚了立体图形的三视图,解决这类问题其实并不难.14.B【详解】试题解析:正方体的截面,经过正方体的四个侧面,正方体中,对边平行,故可确定为平行四边形,交点垂直于底边,故为矩形.故选B.点睛:截面的形状既与被截的几何体有关,还与截面的角度和方向有关.15.B【分析】先根据△COE=90°,△COD=25°,由角的和差关系求得△DOE=90°﹣25°=65°,再根据OD平分△AOE,由角平分线的定义得出△AOD=△DOE=65°,最后根据邻补角的定义得出△BOD=180°﹣△AOD=115°.【详解】△△COE=90°,△COD=25°,△△DOE=90°﹣25°=65°.△OD平分△AOE,△△AOD=△DOE=65°,△△BOD=180°﹣△AOD=115°.故选B.【点睛】本题考查了角的计算以及角平分线的定义的综合应用,解决问题的关键是运用角平分线以及直角的定义,求得△AOD的度数,再根据邻补角进行计算.16.D【分析】根据直线、射线、线段的性质对各选项分析判断后利用排除法.【详解】解:A、射线PA和射线AP不是同一条射线,故本选项错误;B、射线是无限长的,故本选项错误;C、直线AB、CD可能平行,没有交点,故本选项错误;D、两点确定一条直线是正确的.故选:D.【点睛】本题主要考查了直线、射线、线段的特性,是基础题,需熟练掌握.17.C【分析】根据题意首先将此圆柱展成平面图,根据两点间线段最短,可得AB最短,由勾股定理即可求得需要爬行的最短路程.【详解】解:将此圆柱展成平面图得:△有一圆柱,它的高等于20cm ,底面直径等于30πcm , △底面周长=3030ππ⋅=cm ,△BC =20cm ,AC =12×30=15(cm ),△AB 25=(cm ).答:它需要爬行的最短路程为25cm .故选:C .【点睛】本题主要考查平面展开图求最短路径问题,将圆柱体展开,根据两点之间线段最短,运用勾股定理解答是解题关键.18.B【分析】连接CA '交BC '于点E ,C ,A '关于直线BC '对称,推出当点D 与B 重合时,AD CD +的值最小,最小值为线段AA '的长2=.【详解】解:连接CA '交BC '于点E ,直线l AB ⊥,且ABC ∆与△A BC ''关于直线l 对称,A ∴,B ,A '共线,60ABC A BC ∠=∠''=︒,60CBC ∴∠'=︒,C BA C BC ∴∠''=∠',BA BC '=,'BE CA ∴⊥,CD DA =',C ∴,A '关于直线BC '对称,∴当点D与B重合时,AD CD+的值最小,最小值为线段AA'的长2=,故选B.【点睛】本题考查轴对称-最短问题,等边三角形的性质等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.19.D【分析】根据作图的过程可以判定AD是△BAC的角平分线;利用角平分线的定义可以推知△CAD=30°,则由直角三角形的性质来求△ADC的度数;利用等角对等边可以证得△ADB的等腰三角形,由等腰三角形的“三线合一”的性质可以证明点D在AB的中垂线上;利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.【详解】解:A、根据作图方法可得AD是△BAC的平分线,正确;B、△△C=90°,△B=30°,△△CAB=60°,△AD是△BAC的平分线,△△DAC=△DAB=30°,△△ADC=60°,正确;C、△△B=30°,△DAB=30°,△AD=DB,△点D在AB的中垂线上,正确;D、△△CAD=30°,△CD=12AD,△AD=DB,△CD=12DB,△CD=13 CB,S△ACD=12CD•AC,S△ACB=12CB•AC,△S△ACD:S△ACB=1:3,△S△DAC:S△ABD≠1:3,错误,故选:D.【点睛】本题考查了角平分线的性质、线段垂直平分线的性质以及作图—基本作图.解题时,需要熟悉等腰三角形的判定与性质.20.C【分析】根据等腰直角三角形的性质可得△CAD=△B=45°,根据同角的余角相等求出△ADF=△BDE,然后利用“角边角”证明△BDE和△ADF全等,判断出△正确;根据全等三角形对应边相等可得DE=DF、BE=AF,从而得到△DEF是等腰直角三角形,判断出△正确;再求出AE=CF,判断出△正确;根据BE+CF=AF+AE,利用三角形的任意两边之和大于第三边可得BE+CF>EF,判断出△错误.【详解】△△B=45°,AB=AC,△△ABC是等腰直角三角形,△点D为BC中点,△AD=CD=BD,AD△BC,△CAD=45°,△△CAD=△B,△△MDN是直角,△△ADF+△ADE=90°,△△BDE+△ADE=△ADB=90°,△△ADF=△BDE,在△BDE和△ADF中,CAD BAD BDADF BDE∠=∠⎧⎪=⎨⎪∠=∠⎩,△△BDE△△ADF(ASA),故△正确;△DE=DF、BE=AF,又△△MDN是直角,△△DEF是等腰直角三角形,故△正确;△AE=AB-BE,CF=AC-AF,△AE=CF,故△正确;△BE+CF=AF+AE>EF,△BE+CF>EF,故△错误;综上所述,正确的结论有△△△;故选:C.【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的性质、同角的余角相等的性质、三角形三边的关系;熟练掌握等腰直角三角形的性质,并能进行推理论证是解决问题的关键.21.3 4【分析】根据一平角等于180°解答即可.【详解】△135÷180=34,△135等于34平角.故答案为3 4 .【点睛】本题考查了平角的定义,熟练掌握一平角等于180°是解答本题的关键. 22.100°【分析】根据角平分线定义和平行线的性质即可求出△D的度数.【详解】解:△CB平分△ABD,△ABC=40°,△△ABD=2△ABC=80°,△AB△CD,△△ABD+△D=180°,△△D=180°﹣80°=100°,则△D的度数为100°.故答案为:100°.【点睛】本题主要考查了角平分线的定义,平行线的性质,熟练掌握角平分线的定义,平行线的性质是解题的关键.23.64°【详解】△△α=26°,△△α的余角=90°-26°=64°.故答案为:64°【点睛】本题考查了余角的定义,是基础题,熟记互为余角的两个角的和等于90°是解题的关键.24.105°【分析】直接利用方向角结合互补的性质得出答案.【详解】解:如图所示:由题意可得,△1=32°,△2=43°,则△AOB=180°-△1-△2=105°.故答案为:105°.【点睛】此题主要考查了方向角,正确把握方向角的定义是解题关键.25.135°【详解】本题主要考查了三角板的知识及平角的定义根据三角板的知识可知△DEC的度数,再根据平角的定义即可求得结果.由题意得△DEC=45°,则△AED=180°-△DEC=135°.思路拓展:解答本题的关键是掌握好三角板的知识及平角的定义.26.明【分析】这种展开图是属于“1,4,1”的类型,其中,上面的1和下面的1是相对的2个面.【详解】由正方体的展开图特点可得:“建”和“明”相对;“设”和“丽”相对;“美”和“三”相对;故答案为:明.【点睛】此题考查正方体相对两个面上的文字的知识;掌握常见类型展开图相对面上的两个字的特点是解决本题的关键.27.F6【分析】(1)根据展开图,可得几何体,、、A B C 是邻面,D F E 、、是邻面,根据A 面在底面,F 会在上面,可得答案;(2)由体积计算公式解答.【详解】解:(1)如图所示,A 与F 是对面,所以如果A 面在长方体的底部,那么 F 面会在上面;故答案是:F ;(2)这个长方体的体积是:1236⨯⨯=(米3).故答案是:6【点睛】本题考查了几何体的展开图,利用了几何体展开图组成几何体时面与面之间的关系.28.45︒##45度【分析】设α∠为x ,根据互为补角的两个角的和等于180︒表示出这个角的补角,然后列出方程求解即可.【详解】解:设α∠为x ,则α∠的补角为180x ︒-,根据题意得1803x x ︒-=,解得45x =︒,故答案为:45︒.【点睛】本题考查了互为补角的定义,根据题意表示出这个角的补角,然后列出方程是解题的关键.29.1cm 或9cm##9cm 或1cm【分析】设较长的木条为AB ,较短的木条为BC ,根据中点定义求出BM 、BN 的长度,然后分两种情况:BC 不在AB 上和BC 在AB 上时,分别代入数据进行计算即可得解.【详解】解:设较长的木条为AB =10cm ,较短的木条为BC =8cm ,△M 、N 分别为AB 、BC 的中点,△BM =5cm ,BN =4cm ,△如图1,BC 不在AB 上时,MN =BM +BN =5+4=9(cm),△如图2,BC 在AB 上时,MN =BM −BN =5−4=1(cm),综上所述,两根木条的中点间的距离是1cm 或9cm ,故答案为:1cm 或9cm .如图,【点睛】本题考查了两点间的距离,主要利用了线段的中点定义,难点在于要分情况讨论,作出图形更形象直观.30.140【分析】利用角的和差关系先求出50COB ∠=︒,,再利用角的和差关系求出AOB ∠的度数.【详解】解:△4090COD AOC BOD ∠∠∠=︒==︒,,△ 50COB BOD COD ∠∠∠=-=︒,△ 140AOB AOC COB ∠∠∠=+=︒.故答案为:140.【点睛】本题主要考查了角的和差,关键是熟练掌握角的运算中的和差关系.31.8【分析】先根据这个棱柱有10个面,求出这个棱柱是8棱柱,有8条侧棱,再根据所有侧棱的和为64cm ,即可得出答案.【详解】解:△这个棱柱有10个面,△这个棱柱是8棱柱,有8条侧棱,△所有侧棱的和为64cm ,△每条侧棱长为64÷8=8(cm );故答案为:8【点睛】本题主要利用了棱柱面的个数比侧棱的条数多2的关系求解,是一道基础题. 32.93°15'【分析】利用平角的定义计算即可.【详解】△从O 点出发向北偏西32°17'方向走到A 点,小明从O 点出发向南偏西54°28'方向走到B 点,△∠AOB =180°-54°28'-32°17'=93°15'.【点睛】本题考查了方位角,平角,角的和与差,熟练掌握方位角和平角的定义是解题的关键.33.和.【分析】本题考查了正方体的展开图,一般从相对面入手进行分析与解答;【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,所以“建”与“谐”是相对面,“社”与“和”是相对面,“会”与“构”是相对面,由此可知与“社”相对的面上的字是“和”.【点睛】本题主要考查学生对正方体展开图形的理解和掌握,解答本题的关键是根据相对的面相隔一个面得到相对的两个面.34.1.5【详解】试题解析:△5400÷60=90,90÷60=1.5,△5400″=1.5°.35.北偏东80°【分析】先根据角的和差得到△AOC 的度数,根据△AOC =△AOB 得到△AOB 的度数,再根据角的和差得到OB 的方向.【详解】解:△OA 的方向是北偏东20°,OC 的方向是北偏西40°,△△AOC =20°+40°=60°,△△AOC =△AOB ,△△AOB =60°,20°+60°=80°,故OB 的方向是北偏东80°.故答案为:北偏东80°.【点睛】考查了方位角,方位角是表示方向的角;以正北,正南方向为基准,来描述物体所处的方向.利用角的和差得出OB 与正北方的夹角是解题关键.36. AOC ∠ COB ∠ 3∠和4∠ DOF ∠ 1∠和2∠ EOA ∠【分析】由角平分线的定义,补角、余角的定义,分别进行计算,即可得到答案.【详解】解:根据题意,(1)△12∠=∠△射线OD 是AOC ∠的角平分线;(2)△180AOC BOC ∠+∠=︒,△AOC ∠的补角是COB ∠;(3)△OF 平分AOB ∠,180AOB ∠=︒,△90AOF BOF ∠=∠=︒,△390AOC ∠+∠=︒,△3=4∠∠,△490AOC ∠+∠=︒;△AOC ∠的余角是3∠和4∠;(4)△12∠=∠,190DOF ∠+∠=︒,△290DOF ∠+∠=︒,△DOF ∠是2∠的余角;(5)△1180DOB ∠+∠=︒,12∠=∠△2180DOB ∠+∠=︒,△DOB ∠的补角是1∠和2∠;(6)△4180AOE ∠+∠=︒,4COF ∠=∠,△180COF EOA ∠+∠=︒,△EOA ∠是COF ∠的补角.故答案为:AOC ∠;COB ∠;3∠和4∠;DOF ∠;1∠和2∠;EOA ∠.【点睛】本题考查了角平分线的定义,补角、余角的定义,解题的关键是熟练掌握几何图形中角的运算.37.7.5【分析】可先作出简单的图形,进而依据图形分析求解.【详解】解:如图,△点C 在AB 上,且AC=13BC , △AC=14AB=3cm ,△BC=9cm ,又M 为BC 的中点, △CM=12BC=4.5cm ,△AM=AC+CM=7.5cm .故答案为7.5.【点睛】本题考查的是两点间的距离的计算,掌握线段中点的定义、灵活运用数形结合思想是解题的关键.38.3【分析】△根据点E 是点D 关于AB 的对称点可知BD BE ,进而可得1180603DOB BOE COD ︒︒∠=∠=∠=⨯=; △根据一条弧所对的圆周角等于圆心角的一半即可得结论;△根据等弧对等角,可知只有当M 和A 重合时,60,30MDE CED ︒︒∠=∠=,DM CE ⊥; △作点C 关于AB 的对称点F ,连接CF ,DF ,此时CM DM +的值最短,等于DF 的长,然后证明DF 是O 的直径即可得到结论.【详解】解:AC CD DB ==,点E 是点D 关于AB 的对称点,BD BE ∴=, 1180603DOB BOE COD ︒︒∴∠=∠=∠=⨯=,△正确;1116030222CED COD DOB ︒︒∠=∠=⨯==∠,△△正确; BE 的度数是60°,AE ∴的度数是120°,△只有当M 和A 重合时,60,︒∠=MDE ,30︒∠=CED△只有M 和A 重合时,DM CE ⊥,△错误;作C 关于AB 的对称点F ,连接CF ,交AB 于点N ,连接DF 交AB 于点M ,此时CM DM +的值最短,等于DF 的长.连接,CD AC CD DB AF ===,并且弧的度数都是60°,1112060,6030,22︒︒︒︒∴∠=⨯=∠=⨯=D CFD 180603090,︒︒︒︒∴∠=--=FCDDF ∴是O 的直径,即10DF AB ==,△当点M 与点O 重合时,CM DM +的值最小,最小值是10,△△正确.故答案为:3.【点睛】本题考查了圆的综合知识,涉及圆周角、圆心角、弧、弦的关系、最短距离的确定等,掌握圆的基本性质并灵活运用是解题关键.39.△△△【分析】因为12BAE DAC ∠=∠,且90ABC ∠=︒,所以需要构造2倍的BAC ∠,故延长EB 至G ,使BE BG =,从而得到GAE CAD ∠=∠,进一步证明GAC EAD ∠=∠,且AE AG =,接着证明GAC EAD ≌,则ADE ACG ∠=∠,DE CG =,所以△是正确的,也可以通过线段的等量代换运算推导出△是正确的,设BAE x ∠=,则2DAC x ∠=,因为//CD AB ,所以90BAC ACD x ∠=∠=︒-,接着用x 表示出EAC ∠,再计算出=90DAE ∠︒,故△是正确的,当CAE BAE ∠=∠时,可以推导出AC DE ⊥,否则AC 不垂直于DE ,故△是错误的.【详解】解:如图,延长EB 至G ,使BE BG =,设AC 与DE 交于点M ,90ABC ∠=︒,AB GE ∴⊥,AB ∴垂直平分GE ,AG AE ∴=,12GAB BAE DAC ∠=∠=∠, 12BAE GAE ∠=∠, GAE CAD ∴∠=∠,GAE EAC CAD EAC ∴∠+∠=∠+∠,GAC EAD ∴∠=∠,在GAC 与EAD 中,AG AE GAC EAD AC AD =⎧⎪∠=∠⎨⎪=⎩,GAC EAD ∴≌(SAS ),G AED ∴∠=∠,ACB ADE ∠=∠,故△是正确的;AG AE =,G AEG AED ∴∠=∠=∠,AE ∴平分BED ∠,当BAE EAC ∠=∠时,90AME ABE ∠=∠=︒,则AC DE ⊥,当BAE EAC ∠≠∠时,AME ABE ∠≠∠,则无法说明AC DE ⊥,故△是不正确的; 设BAE x ∠=,则2CAD x ∠=,1802902x ACD ADC x ︒-∴∠=∠==︒-, //AB CD ,90BAC ACD x ∴∠=∠=︒-,90902CAE BAC EAB x x x ∴∠=∠-∠=︒--=︒-,902290DAE CAE DAC x x ∴∠=∠+∠=︒-+=︒,AE AD ∴⊥,故△是正确的;GAC EAD ≌,CG DE ∴=,2CG CE GE CE BE =+=+,2DE CE BE ∴=+,DE BE BE CE ∴-=+,2DE CE BE ∴=+,故△是正确的.故答案为:△△△.【点睛】本题考查了全等三角形的判定与性质,角平分线的定义,角度的计算,构造两倍的BAE ∠,是本题解题的关键.40.4【分析】利用角平分线定理确定当BF△AC 时,PB+PE 的值最小,再利用三角形面积公式,即可求得.【详解】如图,△AB = AC = 8,AD 平分CAB ∠△'''P E P F =△当BF△AC 时,PB+PE 的值最小=BF1162ABC S AC BF ∆== △BF=4 △PB+PE 的最小值为4.【点睛】本题考查了轴对称-最短路径问题,也可以用角平分线定理考虑,找到PE+PB 最小值的情况并画出图形,是解题的关键.41.2.5cm .【分析】结合图形和题意,利用线段的和差知CD =AD +AB +BC ,即可求CD 的长度;再利用中点的定义,求得DF 和DE 的长度,又EF =DF−DE ,即可求得EF 的长度.【详解】△4AB =cm ,BC =14AB , △BC=1cm ,△CD =AD +AB +BC =3+4+1=8cm ;△E 是AD 中点,F 是CD 的中点,△DF =12CD =8×12=4cm ,DE =12AD =12×3=1.5cm .△EF =DF−DE =4−1.5=2.5cm .【点睛】本题主要考查了两点间的距离和中点的定义,解题的关键是运用数形结合思想. 42.(1)直三棱柱(2)见解析(3)这个几何体的侧面积为120cm 2【分析】(1)只有棱柱的主视图和左视图才能出现长方形,根据俯视图是三角形,可得到此几何体为直三棱柱;(2)画出三个长方形,两个三角形;(3)侧面积为长方形,计算出3个长方形的面积求和即可.【详解】(1)解:由主视图和左视图都是长方形,且俯视图是三角形,故该立体图形是直三棱柱;(2)解:展开图如图所示:;(3)解:这个几何体的侧面积23104120cm ⨯⨯=.【点睛】本题主要考查了由三视图判断几何体、几何体的展开图、棱柱的侧面积等知识点,根据题意得到该几何体是直三棱柱是解答本题的关键.43.(1) '60A ON ︒∠=;(2)15秒或33秒;(3)30MOB AOC ︒∠-∠=或30MOB AOC ︒∠+∠=【分析】(1)如图△中,延长CO 到C′.利用翻折不变性求出△A′O′C′即可解决问题; (2)设t 秒时,直线OA 恰好平分锐角△NOC .构建方程即可解决问题;(3)分两种情形分别求解即可解决问题,△当OB ,OA 在OC 的两旁时,△当OB ,OA 在OC 的同侧时,求出MOB ∠与AOC ∠之间的数量关系即可.【详解】解:(1)如图△中,延长CO 到C′,△三角尺沿直线OC 翻折至△A′B′O ,△△A′OC′=△AOC′=△CON=60°,△△A′ON=180°-60°-60°=60°;(2)设t 秒时,直线OA 恰好平分锐角△NOC ,由题意10t=150或10t=330,解得t=15或33s ,则第15或33秒时,直线OA 恰好平分锐角△NOC ;(3)△当OB ,OA 在OC 的两旁时,△△AOB=90°,△120°-△MOB+△AOC=90°,△△MOB-△AOC=30°;△当OB ,OA 在OC 的同侧时,△MOB+△AOC=120°-90°=30°.综上,30MOB AOC ︒∠-∠=或30MOB AOC ︒∠+∠=.【点睛】本题考查翻折变换,旋转变换,三角形的内角和定理等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题.44.(1)3; (2)203或20; (3)12NP MP AB -=,理由见解析. 【分析】(1)由中点的含义先求解7AM MP ==,证明12PN BN BP ==,再求解6PB AB AB =-=,从而可得答案;(2)△当点P 在线段AB 上,2MP NP =, △当点P 在线段AB 的延长线上,2MP NP =,再建立方程求解即可;(3)先证明12MP AP t ==,()1102NP AB AP t =+=+,可得()1010NP MP t t -=+-=,从而可得结论.【详解】(1)解:△M 为AP 的中点,N 为BP 的中点,7MP =,△7AM MP ==,12PN BN BP ==, △14AP =,。

初三数学立体图形试题

初三数学立体图形试题

初三数学立体图形试题1.一个正方体的表面展开图如图所示,六个面上各有一字,连起来的意思是“预祝中考成功”,把它折成正方体后,与“成”相对的字是()A.中B.功C.考D.祝【答案】B.【解析】这是一个正方体的平面展开图,共有六个面,相对两个面之间隔一个正方形.因此,其中面“成”与面“功”相对,“中”与面“考”相对,面“预”与面“祝”相对.故选B.【考点】正方体及其表面展开图.2.如图,将一张边长为6的正方形纸片按虚线裁掉四个梯形后,剩下部分恰好围成一个底面是正三角形的棱柱,这个棱柱的侧面积为________。

【答案】.【解析】这个棱柱的侧面展开正好是一个长方形,长为6,宽为6减去两个等边三角形的高,再用长方形的面积公式计算即可求得答案.∵将一张边长为6的正方形纸片按虚线裁剪后,恰好围成一个底面是正三角形的棱柱,∴这个正三角形的底面边长为2,高为,∴侧面积为长为6,宽为的长方形,∴面积为:6×()=.考点: 1.解直角三角形;2.展开图折叠成几何体.3.下面给出的正多边形的边长都是20cm,请分别按下列要求设计一种剪拼方法(用虚线表示你的设计方案,把剪拼线段用粗黑实线,在图中标注出必要的符号和数据,并作简要说明.(1)将图1中的正方形纸片剪拼成一个底面是正方形的直四棱柱模型,使它的表面积与原正方形面积相等;(2)将图2中的正三角形纸片剪拼成一个底面是正三角形的直三棱柱模型,使它的表面积与原正三角形的面积相等;(3)将图3中的正五边形纸片剪拼成一个底面是正五边形的直五棱柱模型,使它的表面积与原正五边形的面积相等.【答案】(1)作图见解析(2)作图见解析(3)作图见解析【解析】思路分析:(1)在正方形四个角上分别剪下一个边长为5的小正方形,拼成一个正方形作为直四棱柱的底面即可;(2)在正三角形的每一角上找出到顶点距离是5的点,然后作边的垂线,剪下后拼成一个正三角形,作为直三棱柱的一个底面即可;(3)在正五边形的每一角上找出到顶点距离是5的点,然后作边的垂线,剪下后拼成一个正五边形,作为直五棱柱的一个底面即可.解:(1)如图1,沿黑线剪开,把剪下的四个小正方形拼成一个正方形,再沿虚线折叠即可;(2)如图,2,沿黑线剪开,把剪下的三部分拼成一个正三角形,再沿虚线折叠即可;(3)如图3,沿黑线剪开,把剪下的五部分拼成一个正五边形,再沿虚线折叠即可.点评:本题考查了图形的剪拼,解题的关键在于根据拼成棱柱的表面积与原图形的面积相等,从而判断出剪下的部分拼成的图形应该是棱柱的一个底面.4.下列图形中,是圆锥侧面展开图的是【】A.B.C.D.【答案】B。

2023中考数学立体图形的认识历年真题及答案

2023中考数学立体图形的认识历年真题及答案

2023中考数学立体图形的认识历年真题及答案近年来,中考数学考试中的立体图形题目逐渐增多,对于考生来说,掌握立体图形的相关知识和解题方法是非常重要的。

本文将通过分析历年的真题,并给出对应的解答,来帮助同学们更好地认识和理解立体图形。

一、圆柱体与圆锥体圆柱体和圆锥体是中考数学常见的立体图形。

以下是一道典型的圆柱体与圆锥体的应用题:【题目】一个圆柱体的体积为380cm³,高10cm,底圆的半径为5cm。

问这个圆柱体的底面周长是多少?【解答】首先,我们知道圆柱体的体积公式为:V = πr²h,其中V为体积,r为底圆的半径,h为高。

将已知条件代入公式,得到380 = π × 5² × 10,化简后可得圆柱体的底面积为50π。

圆的周长公式为:C = 2πr,将底圆的半径代入公式,可得圆柱体的底面周长为2π × 5 = 10π。

综上所述,这个圆柱体的底面周长是10π。

二、正方体与长方体正方体和长方体是中考数学中另一类常见的立体图形。

以下是一道典型的正方体与长方体的应用题:【题目】一个长方体的底面积为40cm²,体积为120cm³,高为3cm。

求长方体的长、宽和高分别是多少?【解答】我们已知长方体的底面积为40cm²,可以根据长方体的体积公式 V = lwh,将已知条件代入公式得到 120 = 40h,解得长方体的高为3cm。

接下来,我们可以将长方体的体积公式变形为 l = 120/(40 × 3),计算得到长方体的长为1cm。

最后,根据长方体的底面积和长,可以计算得到长方体的宽为40/1 = 40cm。

综上所述,这个长方体的长、宽和高分别是1cm、40cm和3cm。

三、球体与棱锥除了圆柱体、圆锥体、正方体和长方体外,球体和棱锥也是中考数学中的常见立体图形。

以下是一道典型的球体与棱锥的应用题:【题目】一个球的体积为600cm³,求这个球的半径。

中考数学立体图形专题卷(附答案)

中考数学立体图形专题卷(附答案)

中考数学立体图形专题卷(附答案)学校:___________姓名:___________班级:___________考号:___________评卷人得分一、选择题2)所示的位置依次翻到第1格、第2格、第3格、第4格,这时小正方体朝上一面的字是A.家 B.乡 C.是 D.临2.今欲在运动会颁奖台上面及两侧铺上地毯(如图斜线部分),试问需要多少面积的地毯?()A.19600cm2 B.19200cm2 C.22400cm2 D.14400cm23.如下图,不是正方体展开图的是()4.下列图形中,经过折叠不能围成一个正方体的是()A. B.C. D.5.把下列图形折成一个正方体的盒子,折好后与“中”相对的字是()A.祝 B.你 C.顺 D.利6.如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是()A.的 B.中 C.国 D.梦7.如图,有一块边长为6cm的正三角形纸板,在它的三个角处分别截去三个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是( )A.3cm2 B.323cm2 C.923cm2 D.2723cm28.(3分)下列四个几何体中,主视图为圆的是()A. B. C. D.评卷人得分二、填空题9.如图是正方体的展开图,原正方体相对两个面上的数字互为倒数,则a+c= _______10.长方形绕着它的一条边旋转一周后形成的几何体是.11.立方体木块的六个面分别标有数字1、2、3、4、5、6,如图,是从不同方向观察这个立方体木块看到的数字情况,数字1和5对面的数字的和是.12.用一个平面去截一个圆柱体,截面的形状是_________ (填两个即可)。

13.已知一不透明的正方体的六个面上分别写着1至6六个数字,如图是我们能看到的三种情况,那么1和5的对面数字分别是_______和___________;14.若要使图中的展开图按虚线折叠成正方体后,相对面上两个数之和为10,则x+ x=________;评卷人得分三、解答题看去总觉得所拼图形似乎存在问题.(1)请你帮小华分析一下拼图是否存在问题:若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全.(2)若图中的正方形边长为2cm,长方形的长为3cm,宽为2cm,请直接写出修正后所折叠而成的长方体的容积: _________ cm3.16.如图是一个正方体的展开图,标注了字母“a”的面是正方体的正面,如果正方体相对两个面上的代数式的值相等,求x、y的值.17.如图是一个正方体盒子的展开图,要把﹣6、2、﹣1、6、﹣2、1这些数字分别填入六个小正方形中(已填2个),使得按虚线折成的正方体相对面上的两个数互为相反数.18.一个几何体由大小相同的小立方块所搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考二轮复习专题卷-概率学校:___________姓名:___________班级:___________考号:___________1、一个正方体的平面展开图如图所示,将它折成正方体后,与汉字“岳”相对的面上的汉字是【】A.建B.设C.和D.谐2、下列图形中,是圆锥侧面展开图的是【】A.B.C.D.3、(2013年四川绵阳3分)把如图中的三棱柱展开,所得到的展开图是【】A.B.C.D.4、如图所示,将平面图形绕轴旋转一周,得到的几何体是A.B.C.D.5、如图所示,下列四个选项中,不是正方体表面展开图的是A.B.C.D.6、如图是一个长方体包装盒,则它的平面展开图是A.B.C.D.7、下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方形包装盒的是【】A.B.C.D.8、小明为了鼓励芦山地震灾区的学生早日走出阴影,好好学习,制作了一个正方体礼盒(如图).礼盒每个面上各有一个字,连起来组成“芦山学子加油”,其中“芦”的对面是“学”,“加”的对面是“油”,则它的平面展开图可能是A.B. C. D.9、将一边长为2的正方形纸片折成四部分,再沿折痕折起来,恰好能不重叠地搭建成一个三棱锥,则三棱锥四个面中最小的面积是A.1 B.C.D.10、(2013年四川自贡4分)如图,将一张边长为3的正方形纸片按虚线裁剪后,恰好围成一个底面是正三角形的棱柱,这个棱柱的侧面积为【】A.B.9 C.D.11、如图是一个几何体的三视图,根据图中提供的数据(单位:cm)可求得这个几何体的体积为A.2cm3B.3cm3C.6cm3D.8cm312、下列四个图形中,是三棱柱的平面展开图的是A.B.C.D.13、如图是一个长方体形状包装盒的表面展开图.折叠制作完成后得到长方体的容积是(包装材料厚度不计)A.40×40×70B.70×70×80C.80×80×80D.40×70×8014、下列图形中,能通过折叠围成一个三棱柱的是A.B.C.D.15、右下图(1)是一个水平摆放的小正方体木块,图(2)、(3)是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,至第七个叠放的图形,此时第七个图形中小正方体木块总数应是()A.25 B.66 C.91 D.12016、一个圆锥的底面半径为6㎝,圆锥侧面展开扇形的圆心角为240°,则圆锥的母线长为()A.9㎝B.12㎝C.15㎝D.18㎝17、如图是某一立方体的侧面展开图,则该立方体是()A B CD18、下面四个几何体中,俯视图为四边形的是()19、一个长8厘米,宽7厘米,高6厘米的长方体容器平放在桌面,里面盛有高2厘米的水(如图一); 将这个长方体沿着一条宽旋转90°,平放在桌面(如图二). 在旋转的过程中,水面的高度最高可以达到 ( )A.厘米B.4厘米C.3厘米D.厘米20、如图,圆锥的底面半径高则这个圆锥的侧面积是()A.B.C.D.二、填空题()21、如图,从一个三棱柱形状的萝卜块上切下一个三棱柱,剩下的部分仍然是一个棱柱,则剩下部分可能是____________________(填几何体的名称).22、将圆柱形纸筒的侧面沿虚线剪开,得到的平面图形是.23、如图,每个面上都有一个汉字的正方体的一种展开图,那么在原正方体“着”相对的面上的汉字是.24、一个直六棱柱的侧面个数是,顶点个数是,棱的条数是。

25、能展开成如图所示的几何体是____________。

26、从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积为.27、要把一个正方体分割成8个小正方体,至少需要切3刀,因为这8个小正方体都只有三个面现成的,其它三个面必须用刀切3次才能切出来,那么,要把一个正方体分割成27个小正方体,至少需要要刀切次,分割成64个小正方体,至少需要用刀切次。

28、以下三组图形都是由四个等边三角形组成.能折成多面体的选项序号是.29、如图所示为一个无盖长方体盒子的展开图(重叠部分不计),根据图中数据,可知该无盖长方体的容积为.30、圆柱的侧面展开图是________;圆锥的侧面展开图是________.31、一个底面为正方形的直棱柱的侧面展开图是一个边长为8的正方形,则它的表面积为,体积为。

32、若圆锥的底面半径为3,母线长为6,则圆锥的侧面积等于.33、薄薄的硬币在桌面上转动时,看上去象球,这说明了____ _____________.34、如果长方体从一点出发的三条棱长分别为2、3、4,则该长方体的表面积为__ __35、如图,扇形彩色纸的半径为45cm,圆心角为,用它制作一个圆锥形火炬模型的侧面(接头忽略不计),则这个圆锥的高约为cm.(结果精确到0.1cm.参考数据:,,,)三、计算题()36、将棱长为10cm的正方体铝块熔化,重新铸成4个大小相等的小正方体。

通过计算,求每个小正方体的棱长(不计损耗,结果保留2个有效数字)提示:参考数值:、、、四、解答题()37、如图,四种图形各是哪种立体图形的表面展开所形成的?画出相应的四种立体图形.38、如图,是由小立方块堆成的几何体,请分别从前面看、左面看和上面看,试将你所看到的平面图形画出来。

39、回答下列问题:(1)如图所示的甲、乙两个平面图形能折什么几何体?(2)由多个平面围成的几何体叫做多面体.若一个多面体的面数为,顶点个数为,棱数为,分别计算第(1)题中两个多面体的的值?你发现什么规律?(3)应用上述规律解决问题:一个多面体的顶点数比面数大8,且有50条棱,求这个几何体的面数.40、如图,小华用若干个正方形和长方形准备拼成一个长方体的展开图.拼完后,小华看来看去总觉得所拼图形似乎存在问题.(1)请你帮小华分析一下拼图是否存在问题:若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全;(2)若图中的正方形边长为2cm,长方形的长为3cm,宽为2cm,请直接写出修正后所折叠而成的长方体的体积:cm3.41、在平整的地面上,有若干个完全相同的小正方体堆成一个几何体,如图所示。

请你画出它的主视图、左视图和俯视图。

42、长方体的长为15 cm,宽为7 cm,高为16 cm,点B离点C 5 cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是多少?43、用若干个相同的小立方块搭建一个几何体,使从它的正面和上面看到的图形如图所示,动手搭一搭,你的搭法唯一吗?(1)最多需要多少个小立方块?画出从左面看该几何体得到的图形;(2)最少需要多少个小立方块?画出从左面看该几何体得到的图形。

44、用一个边长为10cm的正方形围成一个圆柱的侧面(接缝略去不计),求该圆柱的体积.45、如下图,是边长为1 m的正方体,有一蜘蛛潜伏在A处,B处有一小虫被蜘蛛网粘住,请利用平面图形,画出蜘蛛爬行的最短路线.46、如图(1)所示为一上面无盖的正方体纸盒,现将其剪开展成平面图,如图(2)所示.已知展开图中每个正方形的边长为1.(1)求在该展开图中可画出最长线段的长度?这样的线段可画几条?(2)试比较立体图中与平面展开图中的大小关系?47、一个长方体材料的长、宽、高分别为9cm, 6cm, 5cm如图1,先从这个长方体左前部切下一个棱长为5的正方体得图2,再从剩余部分的右上角的前部切下一个棱长为4的正方体得图3,最后从第二次剩余部分的右上角的后部切下一个棱长为2正方体得图4的工件,现在请你在图1、图2、图3或图4中任意选择一个几何体(只能选一个,多算得零分),在答题框中列式并计算它的表面积。

48、正方体的每一面不同的颜色,对应着不同的数字,将四个这样的正方体如图拼成一个水平放置的长方体,那么长方体的下底面数字和为多少?49、设计平面图形,把它叠成立体图形⑴把平面图形叠成三棱柱(有底)⑵把平面图形叠成四棱柱(无底)⑶把平面图形叠成五棱柱(无底)⑷由上面设计你能找出把平面图折成六棱柱、七棱柱的设计规律吗?(无底)50、已知圆锥的底面积和它的侧面积之比为,求侧面展开后所得扇形的圆心角的度数。

试卷答案1.【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,因此,“和”与“岳”是相对面,“建”与“阳”是相对面,“谐”与“设”是相对面。

故选C。

2.【解析】圆锥的侧面展开图是光滑的曲面,没有棱,只是扇形。

故选B。

3.【解析】根据两个全等的三角形,在侧面三个长方形的两侧,这样的图形围成的是三棱柱。

把图中的三棱柱展开,所得到的展开图是B。

故选B。

考点:几何体的展开图。

4.【解析】试题分析:半圆绕它的直径旋转一周形成球体。

故选A。

5.【解析】分析:由平面图形的折叠及正方体的展开图知,选项A,B,D折叠后都可以围成正方体;而C折叠后折叠后第一行两个面无法折起来,而且下边没有面,不能折成正方体。

故选C。

6.【解析】试题分析:长方体的四个侧面中,有两个相对面的小长方形,另两个是相对面的大长方形,B、C中两个小的与两个大的相邻,错误,D中底面不符合,只有A符合。

故选A。

7.【解析】根据长方体的组成,通过结合立体图形与平面图形的相互转化,分别解析得出即可:A、剪去阴影部分后,组成无盖的正方体,故此选项不合题意;B、剪去阴影部分后,无法组成长方体,故此选项不合题意;C、剪去阴影部分后,能组成长方体,故此选项正确;D、剪去阴影部分后,组成无盖的正方体,故此选项不合题意。

故选C。

8.【解析】试题分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,因此,A、“加”与“子”是相对面,故本选项错误;B、“芦”与“子”是相对面,故本选项错误;C、“芦”与“子”是相对面,故本选项错误;D、“芦”与“学”是相对面,“山”与“子”想相对面,“加”与“油”是相对面,故本选项正确。

故选D。

9.【解析】试题分析:三棱锥四个面中最小的一个面是等腰直角三角形,它的两条直角边都是2÷2=1,它的面积=。

故选C。

10.【解析】∵将一张边长为3的正方形纸片按虚线裁剪后,恰好围成一个底面是正三角形的棱柱,∴这个正三角形的底面边长为1,高为。

∴侧面积为长为3,宽为的长方形,面积为。

故选A。

考点:剪纸问题,展开图折叠成几何体,等边三角形的性质,勾股定理。

11.【解析】试题分析:该几何体的主视图以及左视图都是相同的矩形,俯视图也为一个矩形,可确定这个几何体是一个长方体,此长方体的长与宽都是1,高为3,所以该几何体的体积为1×1×3=3cm3。

故选B。

12.【解析】试题分析:根据三棱柱的展开图的特点进行解答即可:A、是三棱锥的展开图,故选项错误;B、是三棱柱的平面展开图,故选项正确;C、两底有4个三角形,不是三棱锥的展开图,故选项错误;D、是四棱锥的展开图,故选项错误。

相关文档
最新文档