高频电子线路课程设计实验报告
高频电子线路实验报告
实验一 高频小信号放大器1.1 实验目的1、 掌握高频小信号谐振电压放大器的电路组成与基本工作原理。
2、 熟悉谐振回路的调谐方法及测试方法。
3、 掌握高频谐振放大器处于谐振时各项主要技术指标意义及测试技能。
1.2、实验容1.2.1 单调谐高频小信号放大器仿真1、根据电路中选频网络参数值,计算该电路的谐振频率ωp 。
MHz CLw p 936.2105801020011612=⨯⨯⨯==--2、通过仿真,观察示波器中的输入输出波形,计算电压增益A v0。
,708.356uV V I = ,544.1mV V O = 电压增益===357.0544.10I O v V V A 4.3253、利用软件中的波特图仪观察通频带,并计算矩形系数。
波特图如下:4、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出电压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~A v 相应的图,f(KHz)65 75 165 265 365 465 1065 1665 2265 2865 3465 4065U0 (mv) 0.9771.0641.3921.4831.5281.5481.4571.2821.0950.4790.840.747A V 2.7362.9743.8994.1544.284.3364.0813.5913.0671.3412.3522.092BW0.7=6.372MHz-33.401kHz5、在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形,体会该电路的选频作用。
1.2.2 双调谐高频小信号放大器1、通过示波器观察输入输出波形,并计算出电压增益A v0。
,285.28mV V I =,160.5V V O =33.1820283.0160.50===I O v V V A 输入端波形:输出端波形1、利用软件中的波特图仪观察通频带,并计算矩形系数。
BW0.7=11.411MHz-6.695MHz BW0.1=9.578MHz-7.544MHz 矩形系数K=0.431实验二高频功率放大器2.1 实验目的1、掌握高频功率放大器的电路组成与基本工作原理。
Get清风高频电子线路课程设计实验报告2FSK调制解调电路的设计
高频电子线路课程设计实验报告--2FSK调制解调电路的设计2FSK调制解调电路的设计摘要数字频率调制是数据通信中使用较早的一种通信方式。
由于这种调制解调方式容易实现,抗噪声和抗衰减性能较强,因此在中低速数据传输通信系统中得到了较为广泛的应用。
数字调频又可称作移频键控FSK,它是利用载频频率变化来传递数字信息。
本次高频电子线路课程设计以2FSK信号的调制解调为题目,以?高频电子线路?及?通信原理?课程所学知识作为铺垫,借助Multisim仿真软件来完成。
该设计模块包括信源调制、发送滤波器模块及解调,并对各个模块进行相应的参数设置。
在此根底上熟悉Multisim的根本功能及操作,最后,通过观察仿真图形进行波形分析及系统的性能评价。
关键词:2FSK 调制解调Multisim目录前言3一、设计任务介绍4二、Multisim软件的介绍52.1 软件的开展与简介 (5)2.2 Multisim10的特点 (5)三、方案论证83.1 调制电路论证8解调电路论证9四、单元电路设计124.1 调制局部124.2 解调局部14五、Multisim的仿真 (17)5.1 调制电路波形的仿真 (18)5.2 解调电路波形的仿真 (18)5.3结果分析 (19)六、考前须知 (20)七、总结21参考文献22附:元器件引脚图23前言在实际通信系统中,大局部信道不能直接传输基带信号,必须用基带信号对载波波形的参量进行控制,使载波的这些参量随基带信号的变化而变化,即以正弦波作为载波的数字调制系统。
和模拟调制一样,数字调制也有调幅、调频和调相三种根本形式。
调频信号即2FSK信号是数字通信系统使用较早的一种通信方式,由于这种通信方式容易实现,抗噪声和抗衰减性能较强,因此在低速数据传输通信系统中得到了较为广泛的应用。
2FSK信号的产生可利用一个矩形脉冲序列对一个载波进行调频而获得。
这正是频率键控通信方式早期采用的实现方法,也是利用模拟调频法实现数字调频的方法。
高频电子线路实验报告高频小信号调谐放大器
太原理工大学现代科技学院高频电子线路课程实验报告专业班级测控1001班学号姓名指导教师实验一高频小信号调谐放大器一、实验目的小信号调谐放大器是高频电子线路中的基本单元电路,主要用于高频小信号微弱信号的线性放大。
在本实验中,通过对谐振回路的调试,对放大器处于谐振时各项技术指标的测试(电压放大倍数、通频带、矩形系数),进一步掌握高频小信号调谐放大器的工作原理。
学会小信号调谐放大器的设计方法。
二、实验仪器1.BT-3(G)型频率特性测试仪(选项)一台2.20MHz模拟示波器一台3.数字万用表一块4.调试工具一套三、实验原理图1-1所示电路为共发射极接法的晶体管高频小信号调谐放大器。
它不仅要放大高频信号,而且还要有一定的选频作用,因此晶体管的集电极负载为LC并联谐振回路。
在高频情况下,晶体管本身的极间电容及连接导线的分布参数等会影响放大器输出信号的频率和相位。
晶体管的静态工作点由电阻RB1,RB2及RE决定,其计算方法与低频单管放大器相同。
图1 小信号调谐放大器该放大电路在高频情况下的等效为如图1-2所示,晶体管的4个y参数y ie,y oe,y fe 及y re分别为:输入导纳(1-1)输出导纳(1-2)正向传输导纳(1-3)反向传输导纳(1-4)图1-2 放大器的高频等效回路式中,gm——晶体管的跨导,与发射极电流的关系为(1-5) gb’e——发射结电导,与晶体管的电流放大系数β及IE有关其关系为(1-6)rb’b——基极体电阻,一般为几十欧姆; Cb’c——集电极电容,一般为几皮法;Cb’e——发射结电容,一般为几十皮法至几百皮法。
由此可见,晶体管在高频情况下的分布参数除了与静态工作电流IE,电流放大系数β关外,还与工作频率ω有关。
晶体管手册中给出的分布参数一般是在测试条件一定的情况下测得的。
如在f0=30MHz,I E=2mA,U CE=8V条件下测得3DG6C的y参数为:如果工作条件发生变化,上述参数则有所变动。
高频电子线路实验课程设计报告
物理与电子信息工程学院高频电子线路实验课程设计报告题目:晶体三极管混频电路实验专业班级:13级电子科学与技术班姓名(学号):王彦明201305330134马军201305330142邹绩凯201305330131指导教师:黄小青完成日期:2015年12月20日XXXXXX设计任务书目录(四号宋体,加粗居中)(空一行)1 引言 ...................................................................................................... 错误!未定义书签。
2 XXX实验设计要求 (1)2.1 实验内容与要求 (1)2.2 XXX电路基本原理 (5)3 XXX电路的软件仿真设计 (5)3.1 XXX的仿真设计方案 (5)3.2 仿真结果及分析 (6)4 XXX电路的硬件设计 ........................................................................... 错误!未定义书签。
4.1 PCB板的绘制 (11)4.2 PCB板的制作与焊接 ................................................................ 错误!未定义书签。
4.3结果测试与分析 .......................................................................... 错误!未定义书签。
5 实验总结 .............................................................................................. 错误!未定义书签。
参考文献 .. (4)附录1 PCB原理图 (17)附录II实物图 (17)附录III元器件清单 (17)(目录小四黑体,行间距固定值20磅,一级标题顶格书写,二级标题空两个字符,三级标题空两格,页码从正文开始)1、引言(一级标题四号宋体加粗)此处写出该设计实验的目的与意义所在。
高频电子线路实验报告
南京信息工程大学高频电子线路实验报告实验一高频小信号放大器 (3)一、实验原理 (3)二、实验内容 (4)实验二振幅调制实验 (6)一、实验原理 (6)二:实验结果: (7)实验三调幅信号的解调 (9)一、实验原理 (9)二.实验内容 (12)实验四混频器 (14)一、实验原理 (14)二、实验内容 (15)实验一 高频小信号放大器一、实验原理高频小信号放大器的作用就是放大无线电设备中的高频小信号, 以便作进一步变换或处理。
所谓“小信号”,主要是强调放大器应工作在线性范围。
高频与低频小信号放大器的基 本构成相同,都包括有源器件(晶体管、集成放大器等)和负载电路,但有源器件的性能及负载电路的形式有很大差异。
高频小信号放大器的基本类型是以各种选频网络作负载的频带 放大器,在某些场合,也采用无选频作用的负载电路,构成宽带放大器。
频带放大器最典型的单元电路如图 1-1 所示, 由单调谐回路做法在构成晶体管调谐放大器。
图 1-1 电路中,晶体管直流偏置电路与低频放大器电路相同,由于工作频率高,旁路电 容C b.、C e 可远小于低频放大器中旁路电容值。
调谐回路的作用主要有两个:图 1-1 晶体管单调谐回路调谐放大器第一、选频作用,选择放大0f f =的信号频率,抑制其它频率信号。
第二、提供晶体管集电极所需的负载电阻,同时进行阻抗匹配变换。
高频小信号频带放大器的主要性能指标有:(1)中心频率 0f :指放大器的工作频率。
它是设计放大电路时,选择有源器件、计算谐振回路元件参数的依据。
(2)增益:指放大器对有用信号的放大能力。
通常表示为在中心频率上的电压增益和 功率增益。
电压增益 /VO O i A V V = (1—1)功率增益 /PO O i A P P = (1—2)式中 O V 、i V 分别为放大器中心频率上的输出、输入电压幅度, O P 、i P 分别为放大器中心频率上的输出、输入功率。
增益通常用分贝表示。
《高频电子线路》频率调制与解调实验报告
《高频电子线路》频率调制与解调实验报告课程名称:高频电子线路实验类型:验证型实验项目名称:频率调制与解调一、实验目的和要求通过实验,学习频率调制与解调的工作原理、电路组成和调试方法,学习用锁相环电路实现频率调制、斜率鉴频实现调频信号的解调的设计方法,利用Multisim仿真软件进行仿真分析实验。
二、实验内容和原理1、实验原理所谓调制,就是用一个信号(原信号也称调制信号)去控制另一个信号(载波信号)的某个参量,从而产生已调制信号,解调则是相反的过程,即从已调制信号中恢复出原信号。
根据所控制的信号参量的不同,调制可分为:调幅,使载波的幅度随着调制信号的大小变化而变化的调制方式。
调频,使载波的瞬时频率随着调制信号的大小而变,而幅度保持不变的调制方式。
调相,利用原始信号控制载波信号的相位。
这三种调制方式的实质都是对原始信号进行频谱搬移,将信号的频谱搬移到所需要的较高频带上,从而满足信号传输的需要。
2、实验内容(1)设计实现中心频率为100kHz的调频信号发生器。
绘出电路原理图,采用锁相调频的方式,给出仿真结果图。
(2)对产生的调频信号,采用斜率鉴器进行鉴频,设计失谐网络和包络检波器,绘出电路图,给出仿真结果图。
三、主要仪器设备计算机、Multisim仿真软件、双踪示波器、函数发生器、直流电源。
四、操作方法与实验步骤及实验数据记录和处理1、采用锁相环路实现调频信号,调频信号的中心频率为100kHz。
2、对调频信号进行解调,采用斜率鉴器,对调频信号进行解调。
将AD741输出的100kHz 的调频信号加到电容C7与地之间,设计失谐网络和包络检波器。
C21nFR65kΩR550ΩC71µF L11.2mHU2AD741CH3247651U3AD741CH3247651R131kΩR141kΩR152kΩR164kΩD21N4150D31N4150V712VV812VC81µFXSC1A BExt Trig++__+_C3160nFR810kΩR71kΩR111kΩR121kΩC4160nFC510µF C9160nF4、分析说明U2、U3、D2、D3的作用。
高频电子线路课程设计实验报告
高频电子线路课程设计报告班级姓名指导教师日期前言:课程设计是电子技术课程的实践性教学环节,是对学生学习电子技术的综合性训练,该训练通过学生独立进行某一课题的设计、安装和调试来完成。
学生通过动脑、动手解决若干个实际问题,巩固和运用在高频电子线路课程中所学的理论知识和实验技能,基本掌握常用电子电路的一般设计方法,提高设计能力和实验技能,为以后从事电子电路设计、研制电子产品打下基础。
本文设计了包括选频网络的设计、超外差技术的应用和三点式振荡器在内的基础设计以及振幅调制与解调电路的设计。
选频网络应用非常广泛,可以用作放大器的负载,具有阻抗变换、频率选择和滤波的功能;超外差技术是指利用本地产生的振荡波与输入信号混频,将输入信号频率变换为某个预定的频率的电路,主要指混频电路;三点式振荡器用于产生稳定的高频振荡波,在通信领域应用广泛;振幅调制解调都属于频谱的线性搬移电路,是通信系统及其它电子线路的重要部件。
在设计过程中查阅了大量相关资料,对所要设计的内容进行了初步系统的了解,并与老师和同学进行了充分的讨论与交流,最终通过独立思考,完成了对题目的设计。
实验过程及报告的完成中存在的不足,希望老师给予纠正。
目录摘要 4设计内容...................................................................... (5)设计要求...................................................................... (5)1、基础设计...................................................................... . (6)1、选频网络的设计...................................................................... (6)2、超外差技术的设计...................................................................... ..93、三点式振荡器的设计 (11)二、综合设计:调幅解调电路的设计 151、调幅电路的设计: 152、解调电路的设计 20结束语 26参考文献: 26心得体会...................................................................... . (27)高频电子线路课程设计摘要本次课程设计主要任务是完成选频网络的设计、超外差技术的应用、三点式振荡器的设计这三个基础设计以及调幅解调电路的综合设计。
高频电子的实验报告
一、实验名称:高频电子线路实验二、实验目的:1. 掌握高频电子线路的基本原理和实验方法。
2. 熟悉高频电子线路中常用元件的性能和特点。
3. 培养实验操作技能,提高分析问题和解决问题的能力。
三、实验原理:高频电子线路是指频率在1MHz以上的电子线路,其设计原理与低频电子线路有所不同。
本实验主要研究高频放大器、振荡器和调制解调器等基本电路。
四、实验器材:1. 高频信号发生器2. 双踪示波器3. 万用表4. 高频电路实验板5. 高频电子元件(如晶体管、电容、电感等)五、实验步骤:1. 高频放大器实验:(1)搭建高频放大器电路,包括输入、输出匹配网络和晶体管放大电路。
(2)调节输入信号幅度和频率,观察输出信号的变化,分析放大器的频率响应和增益。
(3)测量放大器的输入输出阻抗,分析匹配网络的设计。
2. 振荡器实验:(1)搭建LC振荡器电路,包括LC谐振回路和晶体管振荡电路。
(2)调节LC回路参数,观察振荡频率的变化,分析振荡器的工作原理。
(3)测量振荡器的输出波形,分析振荡器的频率稳定性和幅度稳定性。
3. 调制解调器实验:(1)搭建AM调制器和解调器电路,包括调制信号源、调制电路、解调电路和滤波器。
(2)调节调制信号幅度和频率,观察调制信号的波形,分析调制和解调过程。
(3)测量调制信号的频率、幅度和相位,分析调制和解调效果。
六、实验结果及分析:1. 高频放大器实验:(1)通过调节输入信号幅度和频率,观察到输出信号随输入信号的变化而变化,说明放大器具有放大作用。
(2)测量放大器的输入输出阻抗,发现匹配网络对放大器的性能有重要影响。
(3)分析放大器的频率响应和增益,发现放大器的增益随着频率的升高而降低。
2. 振荡器实验:(1)通过调节LC回路参数,观察到振荡频率随LC回路参数的变化而变化,说明振荡器的工作原理。
(2)测量振荡器的输出波形,发现振荡器的频率稳定性和幅度稳定性较好。
(3)分析振荡器的频率稳定性和幅度稳定性,发现晶体管的静态工作点对振荡器的性能有重要影响。
高频电子线路实验报告 - 3
实验报告课程:高频电子线路学院:电子与信息工程学院专业:电子与信息工程班级:电信17-1 班姓名:XXX XXX XXX学号:XX XX指导教师:李海军实验项目名称: LC 正弦波振荡电路实验 实验日期: 11月12日实验概述:【实验目的及实验设备】 1、实验目的:(1)进一步学习掌握正弦波振荡电路的相关理论;(2)掌握电容三点式LC 振荡电路的基本原理,熟悉其各元件功能,熟悉静态工作点、耦合电容、反馈系数等对振荡幅度和频率的影响。
2、实验设备及仪器名称:(1)LC 、晶体正弦波振荡电路实验板 (2)20MH 双踪示波器 (3)万用表3、实验原理LC振荡器实质上是满足振荡条件的正反馈放大器。
LC振荡器是指振荡回路是由LC元件组成的。
从交流等效电路可知:由LC振荡回路引出三个端子,分别接振荡管的三个电极,而构成反馈式自激振荡器,因而又称为三点式振荡器。
如果反馈电压取自分压电感,则称为电感反馈LC振荡器或电感三点式振荡器;如果反馈电压取自分压电容,则称为电容反馈LC振荡器或电容三点式振荡器。
在几种基本高频振荡回路中,电容反馈LC振荡器具有较好的振荡波形和稳定度,电路形式简单,适于在较高的频段工作,尤其是以晶体管极间分布电容构成反馈支路时其振荡频率可高达几百MHZ~GHZ。
普通电容三点式振荡器的振荡频率不仅与谐振回路的LC 元件的值有关,而且还与晶体管的输入电容i C 以及输出电容o C 有关。
当工作环境改变或更换管子时,振荡频率及其稳定性就要受到影响。
为减小i C 、o C 的影响,提高振荡器的频率稳定度,提出了改进型电容三点式振荡电路——串联改进型克拉泼电路、并联改进型西勒电路,分别如图4-1和4-2所示。
串联改进型电容三点式振荡电路——克拉泼电路振荡频率为:∑=LC 10ω其中∑C 由下式决定io C C C C C C ++++=∑211111 选C C >>1,C C >>2时,C C -∑~,振荡频率0ω可近似写成 LC10≈ω这就使0ω几乎与o C 和i C 值无关,提高了频率稳定度。
高频电子线路实验报告
调频接收机设计与调试一设计目的通过本课程设计与调试,提高动手能力,巩固已学的理论知识,能建立无线电调频接收机的整机概念,了解调频接收机整机各单元电路之间的关系及相互影响,从而能正确设计、计算调频接收机的单各元电路:输入回路、高频放大、混频、中频放大、鉴频及低频功放级。
初步掌握调频接收机的调整及测试方法。
二调频接收机的主要技术指标1.工作频率范围接收机可以接受到的无线电波的频率范围称为接收机的工作频率范围或波段覆盖。
接收机的工作频率必须与发射机的工作频率相对应。
如调频广播收音机的频率范围为88~108MH,是因为调频广播收音机的工作范围也为88~108MHz2.灵敏度接收机接收微弱信号的能力称为灵敏度,通常用输入信号电压的大小来表示,接收的输入信号越小,灵敏度越高。
调频广播收音机的灵敏度一般为5~30uV。
3.选择性接收机从各种信号和干扰中选出所需信号(或衰减不需要的信号)的能力称为选择性,单位用dB(分贝)表示dB数越高,选择性越好。
调频收音机的中频干扰应大于50dB。
4.频率特性接收机的频率响应范围称为频率特性或通频带。
调频机的通频带一般为200KHz。
5.输出功率接收机的负载输出的最大不失真(或非线性失真系数为给定值时)功率称为输出功率。
三基本设计原理调频接收机的组成一般调频接收机的组成框图如图所示。
其工作原理是:天线接受到的高频信号,经输入调谐回路选频为f1,再经高频放大级放大进入混频级。
本机振荡器输出的另一高频 f2亦进入混频级,则混频级的输出为含有f1、f2、(f1+f2)、(f2-f1)等频率分量的信号。
混频级的输出接调频回路选出中频信号(f2-f1),再经中频放大器放大,获得足够高增益,然后鉴频器解调出低频调制信号,由低频功放级放大。
由于天线接收到的高频信号经过混频成为固定的中频,再加以放大,因此接收机的灵敏度较高,选择性较好,性能也比较稳定。
中放的任务,是把变频器输出的中频信号放大后,输入到检波器。
高频电子线路实验报告2——高频丙类功率放大器
高频电子线路实验报告2——高频丙类功率放大器实验目的:1. 学习高频丙类功率放大器的基本原理。
2. 掌握高频丙类功率放大器的设计方法。
3. 验证高频丙类功率放大器的工作性能。
实验原理:丙类功放器是一种在放大器的输出段设有截止偏压的放大器。
其主要特点是效率高、失真小、输出功率大,因此,在广播、通信、雷达等领域被广泛应用。
实验步骤:1. 按照图1所示连接电路。
2. 调整可变电容器C1的值,使电路在工作频率上谐振。
3. 将信号源接入电路的输入端,调整可变电阻R3的值,使输出端的电压最大。
4. 在三极管的发热体上放置热敏电阻,测量其电阻值,计算其温度。
5. 调整信号源输出频率,测量输出端的电压值,记录数据。
6. 计算电路的功率增益、效率、输出功率等参数。
1. 电源电压:12V2. 工作频率:1MHz3. 可变电容器C1的值:10pF4. 可变电阻R3的值:10kΩ5. 发热体上的热敏电阻电阻值:100Ω6. 发热体温度:25℃7. 输出功率:2.5W8. 功率增益:6dB9. 效率:65%实验分析:1. 在C1的值确定的情况下,可通过变频电源调整工作频率,使电路在工作频率上谐振,从而提高电路的效率。
2. 随着输出功率的增加,三极管发热体的温度也会相应升高,从而导致热敏电阻的电阻值发生变化。
可以通过测量热敏电阻的电阻值,计算发热体的温度。
3. 在理论分析的基础上,通过实验数据对电路性能进行评估,验证了丙类功率放大器的工作性能良好,可以满足实际应用需求。
通过本次实验,我学习了丙类功率放大器的基本原理和设计方法,并通过实验数据验证了其工作性能。
这对我今后从事电子工程相关的工作具有很大的参考价值。
同时,我也意识到在实验过程中需要仔细操作、认真记录数据,以确保实验结果的准确性。
高频电子线路实验报告 实验四
L1
470uH
J4
C2
W1
0. 33 u
4. 7k
L4
C5
2. 2u H
68p
CC1
C9 100p
Q1
C8
R5
200p
1k
R6 15k
R7
C11
8. 2k
0. 01 u
Q1
R5 1k
(IN1)
R8 8. 2k
C10
Q2
C13
100p
R9
R10
0. 1u
10k
680
W3 5. 1k
TT2
图3 变容二极管调频实验电路
1 2
f
c
Cc
Cc C jQ
2
Cm CQ
c os t
(5)
2
fc fm cos t
(6)
式中,fc 是未加调制信号时的载波频率,计算公式为: f c 2
1 LC Q
(7)
调频波的最大频偏: f m
1 2
f
c
Cc
Cc C jQ
2
UD
1
C jQ
m cos t
C jQ Cm cos t
(4)
式中,C jQ C j0
1
VQ UD
为未加调制信号时的结电容,C m
C jQ
m ,其中,m
U m VQ U D
为电容调制
度。 C j 随调制电压的变化情况如图 2 所示。
为未加调制信号时的总电容,所以,调频波的瞬时频率为
高频电子线路实验报告
高频电子线路实验报告实验一、调谐放大器一、实验目的1.熟悉电子元器件和高频电路实验箱。
2.练习使用示波器、信号发生器和万用表。
3.熟悉谐振电路的幅频特性分析——通频带与选择性。
4.熟悉信号源内阻及负载对谐振电路的影响,从而了解频带扩展。
5.熟悉和了解放大器的动态范围及其测试方法。
二、实验仪器1.双踪示波器2.高频信号发生器3.万用表4.实验板G1三、实验电路图 1-1 单调谐回路谐振放大器原理图四、实验内容及步骤1、(1)按图1-1所示连接电路,使用接线要尽可能短(注意接线前先测量+12V电源电压,无误后,关断电源再接线,注意接地)(2)接线后仔细检查,确认无误后接通电源。
2.静态测量实验电路中选Re=1K,测量各静态工作点,并计算完成表1-1表1-1*Vb,Ve是三极管的基极和发射极对地电压。
3.动态研究(1)测量放大器的动态范围Vi ~ Vo(在谐振点上)a.选R=10K ,Re=1K 。
把高频信号发生器接到电路输入端,电路输出端接示波器。
选择正常放大区的输入电压Vi,调节频率f使其为,调节Ct,使回路“谐振”,此时调节Vi由变到,逐点记录Vo电压,完成表1-2的第二行。
(Vi的各点测量值也可根据情况自己选定)b.当Re分别为500Ω,2KΩ时,重复上述过程,完成表1-2的第三、四行。
在同一坐标纸上画出Ic不同时的动态范围曲线Vo—Vi,并进行比较与分析。
表1-2*Vi , Vo可视为峰峰值(2)测量放大器的频率特性a.当回路电阻R=10k时,选择正常放大区的输入电压V i,将高频信号发生器的输出端接至电路的输入端,调节频率f,使其为,调节Ct使回路谐振,使输出电压幅度为最大,此时的回路谐振频率f0=为中心频率,然后保持输入电压 V i不变,改变频率f由中心频率向两边逐点偏离(在谐振频率附近注意测量Vo变化快的点),测得在不同频率f时对应的输出电压Vo,完成表1-3的第一行(频率偏离范围自定,可以参照3dB带宽来确定,即信号的幅值为信号最大幅值的倍的两个频率之差为放大器的3dB带宽)。
高频电子线路课程设计报告
高频电子线路课程设计报告高频电子线路课程设计报告设计题目超外差式收音机的装配与调试学生专业班级学生姓名(学号)指导教师完成时间实习(设计)地点年月日一、课程设计目的与任务(一)、目的:1、熟悉超外差式调幅收音机的工作原理。
2、学会阅读印刷电路板。
3、通过对一台调幅收音机的安装、焊接及调试,熟悉电子产品的装配过程。
4、掌握电子元器件的识别及质量检验。
5、学习整机的装配工艺及基本的手工焊接技巧。
6、培养自己的动手能力及严谨的工作作风。
(二)、任务:1、分析并读懂收音机电路图。
2、参照电原理图看懂接线电路图。
3、认识电路图上的符号,并与实物相参照,认识个电子元器件。
4、根据技术指标测试各元器件的要紧参数。
5、熟练焊接的具体操作,认真细心地安装焊接。
6、按照技术要求进行调试。
7、初步掌握电子线路故障的排除方法。
(三、实习器材:1、电烙铁2、螺丝刀、镊子、剪刀等必备工具3、松香与锡4、DS05-6电路板5、各元器件6、两节5号电池二、分析与设计1、设计任务分析①方案选择目前调频式或者调幅式收音机,通常都使用超外差式,它具有灵敏度高、工作稳固、选择性好及失真度小等优点。
我们要求选用的是超外差式调幅收音机。
收音机接收天线将广播电台播发的高频的调幅波接收下来,通过变频级把外来的各调幅波信号变换成一个低频与高频之间的固定频率—465KHz(中频),然后进行放大,再由检波级检出音频信号,送入低频放大级放大,推动喇叭发声。
不是把接收天线接收下来的高频调幅波直接放大去检出音频信号(直放式)。
在设计中,是根据所要求的内容、指标进行各单元的设计,拟定单元电路,初步确定电路元件参数;再根据组合起来的系统电路进行核算,确定整机电路。
最后通过安装调试达到要求的电气性能指标,确定最终的电路元件参数,固定、封装,成为完整的收音机产品。
②要紧性能指标频率范围:535~1065kHz中频频率:465kHz灵敏度:<1mV/m(能收到本省、本市以外较远的电台及信号较弱的电台)选择性:20lg21(1)(110)E MHzE MHz MHz>14dB输出功率:最大不失真功率≥100mW电源消耗:静态时,≤12mA,额定时约80Ma1.设计方案论证择中波晶体管超外差调幅收音机,其方框图如图1所示。
高频电子线路实验报告
《高频电子线路》课程实验报告学院: 信息学院专业: 电子信息科学与技术班级:姓名学号:指导教师:实验一高频(单级、两级)小信号(单、双)调谐放大器一、实验目的1.掌握高频小信号调谐放大器的工作原理;2.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算方法。
二、实验内容1.测量各放大器的电压增益;2.测量放大器的通频带与矩形系数(选做);3.测试放大器的频率特性曲线(选做)。
放大器:V i1p-p(V)0.4 2.54 4 32.5 16 18单级双调谐放大器高频小信号放大器的主要技术指标有那些?主要有谐振频率, 谐振增益, 通频带, 增益带宽积, 矩形系数.实验二场效应管谐振放大器一、实验目的1.了解双栅场效应管放大器的工作原理;2.了解场效应管调谐放大器与三极管放大器的优缺点。
二、实验内容1.观察场效应管调谐放大器的输出波形;2.测量场效应管放大器的电压增益。
三、实验结果数据和截图V ip-p(V)V op-p(V)电压增益(dB)0.5 5.92 21讨论场效应管调谐放大器与晶体管放大器的优缺点。
场效应晶体管放大器是电压控制器件, 具有输入阻抗高、噪声低、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽、热稳定性好等优点,的优点, 被广泛应用在电子电路中。
场效应管可应用于放大, 由于场效应管放大器的输入阻抗很高,因此耦合电容可以容量较小,不必使用电解电容器。
场效应管可以用作电子开关, 场效应管很高的输入阻抗非常适合作阻抗变换, 常用于多级放大器的输入级作阻抗变换。
场效应管可以用作可变电阻,场效应管可以方便地用作恒流源.调谐放大器以电容器和电感器组成的回路为负载, 增益和负载阻抗随频率而变的放大电路。
这种回路通常被调谐到待放大信号的中心频率上。
由于调谐回路的并联谐振阻抗在谐振频率附近的数值很大, 放大器可得到很大的电压增益。
而在偏离谐振点较远的频率上, 回路阻抗下降很快, 使放大器增益迅速减小;因而调谐放大器通常是一种增益高和频率选择性好的窄带放大器。
高频电子线路实验报告(总10页)
高频电子线路实验报告(总10页)摘要高频电子线路是指在高频范围内运作的电子设备和电路,具有良好的信号传输和处理能力。
本实验以微带衰减器为例,研究了高频电路的设计和制作方法,并测试了衰减器的性能指标。
实验结果表明,在合理的设计和制作条件下,微带衰减器能够实现准确的信号衰减和频率响应。
关键词:高频电子线路;微带衰减器;设计;制作;测试AbstractHigh frequency electronic circuit refers to electronic devices and circuits that operate in the high frequency range and have good signal transmission and processing capabilities. In this experiment, a microstrip attenuator was taken as an example to study the design and manufacturing methods of high frequency circuits, and the performance indicators of the attenuator were tested. The experimental results show that under reasonable design and manufacturing conditions, microstrip attenuators can achieve accurate signal attenuation and frequency response.Keywords: high frequency electronic circuit; microstrip attenuator; design; manufacturing; testing1.实验目的通过设计和制作微带衰减器,学习高频电子线路的设计原理和制作方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高频电子线路课程设计报告班级姓名指导教师日期前言:课程设计是电子技术课程的实践性教学环节,是对学生学习电子技术的综合性训练,该训练通过学生独立进行某一课题的设计、安装和调试来完成。
学生通过动脑、动手解决若干个实际问题,巩固和运用在高频电子线路课程中所学的理论知识和实验技能,基本掌握常用电子电路的一般设计方法,提高设计能力和实验技能,为以后从事电子电路设计、研制电子产品打下基础。
本文设计了包括选频网络的设计、超外差技术的应用和三点式振荡器在内的基础设计以及振幅调制与解调电路的设计。
选频网络应用非常广泛,可以用作放大器的负载,具有阻抗变换、频率选择和滤波的功能;超外差技术是指利用本地产生的振荡波与输入信号混频,将输入信号频率变换为某个预定的频率的电路,主要指混频电路;三点式振荡器用于产生稳定的高频振荡波,在通信领域应用广泛;振幅调制解调都属于频谱的线性搬移电路,是通信系统及其它电子线路的重要部件。
在设计过程中查阅了大量相关资料,对所要设计的内容进行了初步系统的了解,并与老师和同学进行了充分的讨论与交流,最终通过独立思考,完成了对题目的设计。
实验过程及报告的完成中存在的不足,希望老师给予纠正。
目录摘要 (4)设计内容 (5)设计要求 (5)一、基础设计 (6)1、选频网络的设计 (6)2、超外差技术的设计 (9)3、三点式振荡器的设计 (11)二、综合设计:调幅解调电路的设计 (15)1、调幅电路的设计: (15)2、解调电路的设计 (20)结束语 (26)参考文献: (26)心得体会 (27)高频电子线路课程设计摘要本次课程设计主要任务是完成选频网络的设计、超外差技术的应用、三点式振荡器的设计这三个基础设计以及调幅解调电路的综合设计。
其中采用LC并联谐振回路实现谐振频率为8.2MHz,通频带为600KHZ的选频网络;对超外差技术原理进行了学习并针对其主要应用收音机进行详细的说明;对三点式振荡器的构造原则和主要类型进行简明扼要地介绍,采用电容串联改进型电容三点式振荡电路完成一定振荡频率的振荡器的设计;充分了解了调幅解调的原理并进行详细说明,在此基础上设计幅度调制和解调电路。
应用的主要软件为Protel99SE、Multisim10等。
关键字:选频、超外差、三点式振荡器、调幅解调设计内容:1.基础设计:(1) 设计一个选频网络(谐振频率=o f 3MHz+N*0.4MHz,其中N 为 学号。
通频带=∆=7.02f BW 600KHz);(2)超外差技术的应用;(3)设计一个三点式振荡器(=o f )。
2.综合设计:调幅解调电路的设计设计要求:1.明确系统的设计任务要求,合理选择设计方案及参数计算;2.利用multisim10进行仿真设计;3.画出电路图、波形图、频率特性图。
一、基础设计:1、选频网络设计:(1)设计要求:设计一个选频网络(谐振频率=o f 3MHz+N*0.4MHz,其中N 为学号为13。
通频带=∆=7.02f BW 600KHz);(2)设计方案:高频振荡回路时高频电路中应用最为广泛的无源网 络,也是构成高频放大器、振荡器以及各种滤波器 的主要部件,在电路中完成阻抗变换、信号选择与 滤波,相频转换和移相等功能,并可直接作为负载 使用。
从电路的角度看,它总是有电感L 和电容C 以串联和并联的形式过程回路。
A )串联谐振回路:它是由电感与电容的简单串联形成的回路, 它适合于电源内阻为低电阻的情况或者低阻抗的电路,电路 如图1.1所示图1.1 串联谐振回路B )并联谐振回路:有电感与电容简单并联而成,当频率不是非 常高时,并联谐振回路的应用最广。
所以本实验采用并联谐振 回路设计谐振频率为8.2MHz 的选频回路,具体设计如下:a.参数计算:谐振频率:LC 1=Ω ;假定电容C =100 pF 由已知参数得,品质因数Q L =8.2MHz ÷600KHz=13.67;电感 C L 2^1Ω= = 3.7uH电路图如图1.2所示图1.2 并联谐振回路b.回路的频率响应回路的阻抗频率特性如图1.3所示,在谐振频率f 0处, 电路为纯阻性在f <f 0处,电路呈电感性;在f >f 0处,电路呈电容性。
Q 越大,谐振时Z 0越大,振幅特性曲线越尖锐, 在f=f 0附近相频特性变化越快,选频性能越好,频率的稳定性越好。
由此得阻抗特性和辐角特性如图1.4所示:图1,4 阻抗特性和辐角特性频率为8.2MHz时的multisim10仿真频谱图如图1.5所示:图1.5频率为8.2MHz时的multisim10仿真频谱图输入为15MHz与原8.2MHz的信号进行混频,混频后频谱图如图1.6所示图1.6 混频的频谱图2、超外差技术的应用所谓超外差是指利用本地产生的振荡波与输入信号混频,将输入信号频率变换为某个预定的频率的电路。
其主要特点是对接收信号的选择放大作用主要由频率固定的中频放大器来完成,当信号频率改变时,只要相应地改变本地振荡信号即可。
超外差原理如图2.1所示。
本地振荡器产生频率为f1的等幅正弦信号,输入信号是一中心频率为f c的已调制频带有限信号,通常f1>f c。
这两个信号在混频器中变频,输出为差频分量,称为中频信号,f i=f1-f c为中频频率。
图2.2表示输入为调幅信号的频谱和波形图。
输出的中频信号除中心频率由fc变换到fi外,其频谱结构与输入信号相同。
因此,中频信号保留了输入信号的全部有用信息。
图2.2 超外差原理的频谱与波形超外差原理的典型应用是超外差式接收机(如图2.3所示)。
从天线接收的信号经高频放大器放大,与本地振荡器产生的信号一起加入混频器变频,得到中频信号,再经中频放大、检波和低频放大,然后混频器 本地振荡器中频放大与滤波高频放大信号 输出至解调器图2.1超外差式接收机的组成送给用户。
接收机的工作频率范围往往很宽,在接收不同频率的输入信号时,可以用改变本地振荡频率f1的方法使混频后的中频fi保持为固定的数值。
图2.3超外差接收机原理框图3、三点式振荡器的设计(1)要求:设计一个的三点式振荡器A)、三点式振荡器构成原则:(射同余异)与发射极相连的电抗元件必须是是同性质的(即同是电容或电感),不与射极相连的另一个电抗与它们的性质相反(即若同性抗为电容,则异性抗为电感;或同性抗为电感,异性抗为电容),简称为“射同余异”。
对于场效应管则为“源同余异”。
B)、三点式振荡器类型电容反馈振荡器:与射极相连同为电容,不与射极相连是电感(又称考必兹振荡器)。
原理图如图3.1所示:图3.1电容反馈振荡器电感反馈振荡器:与射极相连同为电感,不与射极相连是电容(又称哈特莱振荡器)。
原理图如图3.2所示:图3.2 电感反馈振荡器(2)电路分析:在实验中为了减小晶体管极间的影响可采用改进型电容三点式振荡电路,即在振荡回路电感支路中增加一个电容C6,其值比较小,要求C6<<C4;C4<<C5,则谐振回路总电容为:1/C总=1/C4+1/C5+1/C6=1/C6,即C总=C6因此振荡频率为经过这样的改变后,C4,C5对振荡频率的影响显著减小,与其并联相连的晶体管极间电容影响也减小了。
但由于振荡回路介入C6,晶体管最小负载会减小、放大器放大倍数减小、振荡器输入幅度减小,若C6过小,振荡器会因不满足起振条件而停止振荡。
因此,在添加C6的时候一定要选择合适的值,不能为了减小极间电容的影响而使振荡器不能振动!(3)原理图及Multisim10软件仿真A)交流电路仿真如下:图3.3 交流电路B)按照上述原理,总电路图如下3.4所示:图3.4 电容反馈振荡器总电路图C)仿真结果如下图3.5所示:图3.5 总电路仿真结果由图可知,正弦波的周期350243.24ns,振幅约为4.2V,则振荡频率约为28.6KHz。
二、综合设计:调幅解调电路的设计所谓调制,就是用调制信号去控制载波某个参数的过程。
解调则是调制的逆过程,是将载于高频振荡信号上的调制信号恢复出来的过程。
1、调幅电路的设计:调制原理:振幅调制是由调制信号去控制载波的振幅,使之按调制信号的规律变化,严格地说,是使高频振荡的振幅与调制信号成线性关系,其他参数(频率、相位)不变。
这是使高频振荡的振幅再有消息的调制方法。
调幅电路是把调制信号和载波信号同时加在一个非线性元件上(例如晶体二极管或三极管)经非线性变换成新的频率分量,再利用谐振回路选出所需的频率成分。
它保持着高频载波的频率特性,调幅波振幅的包络变化规律与调制信号的变化规律一致。
当输入的调制信号有直流分量时,称为AM调制;没有直流分量时,称为双边带调制(DSB调制)。
(1)AM调制AM调幅指的是用需要传送的信息(低频调制信号)去控制高频载波的振幅,使其随调制信号线性变化。
其原理如图4.1所示,若设载波为u C (t)=U C cos ωC t ,调制信号为单频信号,即u Ω(t)=U Ωcos Ωt,,则普通调幅信号为:u AM (t) = Uc(1+m cos Ωt)cos ωc t ,其中m=kaU Ω/Uc 为调幅指数(调幅度),ka 为比例系数,一般由调制电路确定,故又称为调制灵敏度。
普通调幅波的波形和频谱图如图4.2所示:由图可知,频率的中心分量就是载波分量,他与调制信号无关,图4.2 AM 调幅波形与频谱 + *常数 u c图4.1 AM 信号产生原理图不含消息,而两边分量则以载频为中心对称分布,两个边频幅度相等并与调制信号幅度成正比,边频相对于载频的位置取决于调制信号的频率,这说明调制信号的幅度及频率消息只包含于边频分量中,所以为了减小不必要的功率浪费,可以只发射上下边频,而不发射载波。
(2)双边带调制设载波为u C(t)=Ucosωc t,单频调制信号为uΩ(t)=UΩcosΩt (Ω〈〈ωc),则双边带调幅信号为:u DSB(t)=kuΩ(t)u c(t)=kUΩU cosΩtcosωc tC=2KUm [cos (ωc+Ω)t+cos (ωc-Ω)t],Uc其中k为比例系数。
可见双边带调幅信号中仅包含两个边频, 无载频分量, 其频带宽度仍为调制信带宽的两倍。
图4.3显示了单频调制双边带调幅信号的有关波形与频谱图。
需要注意的是, 双边带调幅信号不仅其包络已不再反映调制信号波形的变化, 而且在调制信号波形过零点处的高频相位有180°的突变。
可以看出, 在调制信号正半周, cosΩt为正值, 双边带调幅信号u DSB(t)与载波信号u c(t)同相;在调制信号负半周, cosΩt为负值, u DSB(t)与uc(t)反相。
所以, 在正负半周交界处, u DSB(t)有180°相位突变。
另外,双边带调幅波和普通调幅波所占有的频谱宽度是相同的,为2Fmax。