高中物理热学习题
高三物理热学练习题
高三物理热学练习题1. 固体物质的热传导是如何发生的?请简要解释热传导的机制。
2. 在能量转化过程中,热量如何从一个物体传递到另一个物体?请说明热传递的三种方式。
3. 一块金属棒的两端分别与两个热源接触,棒的一侧热源温度为80°C,另一侧热源温度为40°C。
已知金属棒的导热系数为0.5 J/(s·m·°C),长度为2 m,断面积为0.1 m²。
求在稳态下,金属棒的导热速率。
4. 一杯热咖啡摆放在室温的房间内。
它何时能达到热平衡?解释一下你的答案。
5. 在所有物体中,什么样的物体是最好的热绝缘体?为什么?6. 一块铝板的质量为0.5 kg,热容为900 J/kg·°C。
将其加热到100°C,需要多少热量?7. 对于流体内的传热机制,有哪些因素会影响其传导速率?请举例说明。
8. 一杯热咖啡开始时温度为60°C,在室温房间内冷却。
经过5分钟后,温度下降到50°C。
根据指数衰减定律,计算咖啡的冷却时间常数。
9. 室内温度为25°C,一个封闭的房间里有一块加热器,功率为2000 W。
该加热器加热了20分钟后自动关闭。
如果房间的热损失可以忽略不计,那么关闭后房间内的最高温度是多少?10. 在一个密闭容器中有两杯水:一杯温度为20°C,另一杯温度为80°C。
将它们放在房间中,经过一段时间后,两杯水的温度会发生怎样的变化?为什么?这些练习题旨在帮助高三学生巩固和提升物理热学知识。
请认真思考并独立完成题目,希望能对你的学习有所帮助!。
高中物理《热力学定律》练习题(附答案解析)
高中物理《热力学定律》练习题(附答案解析)学校:___________姓名:___________班级:___________一、单选题1.关于物体内能的变化,下列说法中正确的是( )A .物体吸收了热量,它的内能可以减小B .物体的机械能变化时,它的内能也一定随着变化C .外界对物体做功,它的内能一定增加D .物体既吸收热量,又对外界做功,它的内能一定不变2.一定质量的理想气体在某一过程中,外界对气体做了4810J ⨯的功,气体的内能减少了51.210J ⨯,则下列各式中正确的是( )A .454810J 1.210J 410J W U Q =⨯∆=⨯=⨯,,B . 455810J 1.210J 210J W U Q =⨯∆=-⨯=-⨯,,C . 454810J 1.210J 210J W U Q =-⨯∆=⨯=⨯,,D . 454810J 1.210J 410J W U Q =-⨯∆=-⨯=-⨯,,3.关于两类永动机和热力学的两个定律,下列说法正确的是( )A .第二类永动机不可能制成是因为违反了热力学第一定律B .第一类永动机不可能制成是因为违反了热力学第二定律C .由热力学第一定律可知做功不一定改变内能,热传递也不一定改变内能,但同时做功和热传递一定会改变内能D .由热力学第二定律可知从单一热源吸收热量,完全变成功是可能的4.关于固体、液体和气体,下列说法正确的是( )A .晶体一定有规则的几何形状,形状不规则的金属一定是非晶体B .把一枚针轻放在水面上,它会浮在水面,这是由于水表面存在表面张力的缘故C .木船浮在水面上是由于表面张力D .外界对物体做功,物体的内能一定增加5.下列说法正确的是( )A .α射线、β射线和γ射线是三种波长不同的电磁波B .根据玻尔理论可知,氢原子核外电子跃迁过程中电子的电势能和动能之和不守恒C.分子势能随着分子间距离的增大,可能先增大后减小D.只要对物体进行不断的冷却,就可以把物体的温度降为绝对零度6.关于能源,下列说法正确的是()A.根据能量守恒定律,我们不需要节约能源B.化石能源、水能和风能都是不可再生的能源C.华龙一号(核电技术电站)工作时,它能把核能转化为电能D.能量的转化、转移没有方向性7.关于热现象,下列说法正确的是()A.固体很难被压缩,是因为分子间存在斥力B.液体分子的无规则运动称为布朗运动C.气体吸热,其内能一定增加D.0°C水结成冰的过程中,其分子势能增加8.加气站储气罐中天然气的温度随气温升高的过程中,若储气罐内气体体积及质量均不变,则罐内气体(可视为理想气体)()A.压强增大,内能减小B.压强减小,分子热运动的平均动能增大C.吸收热量,内能增大D.对外做功,分子热运动的平均动能减小二、多选题9.下列关于热力学第二定律的理解正确的是()A.一切与热现象有关的宏观自然过程都是不可逆的B.空调既能制热又能制冷,说明热传递不存在方向性C.从微观的角度看,热力学第二定律表明一个孤立系统总是向无序度更大的方向发展D.没有漏气、摩擦、不必要的散热等损失,热机可以把燃料产生的内能全部转化为机械能10.一定质量的理想气体,其状态变化过程的p-V图像如图所示。
人教版高中物理热学实验典型例题
(每日一练)人教版高中物理热学实验典型例题单选题1、探究气体等温变化规律的实验装置,如图所示。
空气柱的长度由刻度尺读取、气体的压强通过柱塞与注射器内空气柱相连的压力表读取。
为得到气体的压强与体积关系,下列做法正确的是()A.柱塞上涂油是为了减小摩擦力B.改变气体体积应缓慢推拉柱塞C.推拉柱塞时可用手握住注射器D.实验前应测得柱塞受到的重力答案:B解析:A.柱塞上涂油是为了防止漏气,并不是为了减小摩擦力,A错误;B.实验中为了使气体能够做等温变化,改变气体体积应缓慢推拉柱塞,B正确;C.用手握住注射器,会使气体温度变高,C错误;D.实验前应测量柱塞的横截面积,并不是测量重力,这样才能得到空气柱的体积,D错误。
故选B。
2、关于“用油膜法估测油酸分子大小”的实验,下列实验操作正确的是()A.将纯油酸直接滴在水面上B.水面上撒的痱子粉越多越好C.待水稳定后再将痱子粉均匀撒在水面上D.用试管向水面倒酒精油酸溶液少许答案:C解析:A. 将酒精油酸溶液滴在水面上,A错误;B. 水面上撒的痱子粉要适量,B错误;C. 待水稳定后再将痱子粉均匀撒在水面上,C正确;D. 用滴管向水面滴一滴酒精油酸溶液,D错误。
故选C。
3、把V1 mL的油酸倒入适量的酒精中,稀释成V2 mL的油酸酒精溶液,测出1 mL油酸酒精溶液共有N滴.取一滴溶液滴入水中,最终在水中形成S cm2的单分子油膜.则该油酸分子的直径大约为A.V1NV2S m B.NV2V1Sm C.V2NV1Scm D.V1NV2Scm答案:D 解析:一滴油酸酒精溶液中含油酸的体积为:V=V1NV2mL;则该油酸分子的直径大约为d=VS=V1NV2Scm;A. V1NV2Sm,与结论不相符,选项A错误;B. NV2V1Sm,与结论不相符,选项B错误;C. V2cm,与结论不相符,选项C错误;NV1Scm,与结论相符,选项D正确;D. V1NV2S4、关于“用油膜法估测油酸分子的大小”实验,下列说法正确的是()A.实验时应先将油酸酒精溶液滴入水中,再将痱子粉撒在水面上B.实验时可观察到油膜的面积一直扩张直至面积稳定C.实验中待油膜面积稳定后,用刻度尺测量油膜的面积D.计算油酸分子直径时用油酸体积除以对应油膜面积答案:D解析:A.为了使油酸分子紧密排列,实验时先将痱子粉均匀洒在水面上,再把一滴油酸酒精溶液滴在水面上,A错误;B.油膜的面积不是一直扩张,B错误;C.由于油膜形状不规则,故不能用刻度尺测量油膜的面积,C错误;D.根据实验原理可知,计算油酸分子直径时用油酸体积除以对应油膜面积,D正确。
高中物理热学计算题以及答案
1. 问题:一个容积为V的容器中充满了1mol的气体,此时容器的温度为T1,请计算容器中气体的平均动能。
答案:平均动能=(3/2)nRT1,其中n为气体的物质的量,R为气体常数。
2. 一个容积为V的容器中装满了水,水的温度为t℃,水的重量为m,水的热容为c,此时将容器中的水加热,经过一段时间后,水的温度升高到T℃,请计算:
(1)水加热的总热量
Q=mc(T-t)
(2)水加热的平均热量
Qavg=Q/t
3..一元系统中,向容器中加入了$m$克汽油,汽油的温度为$T_1$,容器中的水的温度为$T_2$,汽油和水的比容为$V_1$和$V_2$,如果汽油和水的温度最终变为$T_3$,那么汽油的最终温度$T_4$为多少?
解:$T_4=\frac{mT_1V_1+T_2V_2}{mV_1+V_2}T_3$
4. 一定体积的气体在温度为273K,压强为100kPa时,改变温度到273K,压强到400kPa,求气体的体积。
解:由比容量关系可得:
V2/V1=P2/P1
V2=V1×P2/P1
V2=V1×400/100
V2=4V1
答案:V2=4V1。
46道高中物理33题热学热门大题整理大全
1\如图5所示,厚度和质量不计、横截面积为S=10 cm2的绝热汽缸倒扣在水平桌面上,汽缸内有一绝热的“T”形活塞固定在桌面上,活塞与汽缸封闭一定质量的理想气体,开始时,气体的温度为T0=300 K,压强为p=0.5×105 Pa,活塞与汽缸底的距离为h=10 cm,活塞与汽缸可无摩擦滑动且不漏气,大气压强为p0=1.0×105 Pa。
图5(1)求此时桌面对汽缸的作用力F N;(2)现通过电热丝将气体缓慢加热到T,此过程中气体吸收热量为Q=7 J,内能增加了ΔU=5 J,整个过程活塞都在汽缸内,求T的值。
解析(1)对汽缸受力分析,由平衡条件有F N+pS=p0S,解得F N=(p0-p)S=(1.0×105 Pa-0.5×105 Pa)×10×10-4 m2=50 N。
(2)设温度升高至T时活塞距离汽缸底距离为H,则气体对外界做功W=p0ΔV=p0S(H-h),由热力学第一定律得ΔU=Q-W,解得H=12 cm。
气体温度从T0升高到T的过程,由理想气体状态方程得pShT0=p0SHT,解得T=p0Hph T0=105×0.120.5×105×0.10×300 K=720 K。
答案(1)50 N(2)720 K(等压变化,W=pΔV;只要温度发生变化,其内能就发生变化。
(4)结合热力学第一定律ΔU=W+Q求解问题。
2.如图8所示,用轻质活塞在汽缸内封闭一定质量的理想气体,活塞与汽缸壁间摩擦忽略不计,开始时活塞距离汽缸底部高度h 1=0.50 m ,气体的温度t 1=27 ℃。
给汽缸缓慢加热至t 2=207 ℃,活塞缓慢上升到距离汽缸底某一高度h 2处,此过程中缸内气体增加的内能ΔU =300 J ,已知大气压强p 0=1.0×105 Pa ,活塞横截面积S =5.0×10-3 m 2。
高中物理热学试题及答案
高中物理热学试题及答案一、选择题(每题3分,共30分)1. 热量的单位是()A. 焦耳B. 牛顿C. 瓦特D. 帕斯卡2. 热力学第一定律的数学表达式是()A. ΔU = Q + WB. ΔH = Q - WC. ΔS = Q/TD. ΔG = Q + W3. 温度是物体冷热程度的度量,其单位是()A. 米B. 千克C. 开尔文D. 秒4. 热传导的微观解释是()A. 粒子的布朗运动B. 粒子的碰撞C. 粒子的扩散D. 粒子的波动5. 物体的比热容是指()A. 单位质量的物体温度升高1℃所吸收的热量B. 单位质量的物体温度升高1℃所放出的热量C. 单位质量的物体温度降低1℃所吸收的热量D. 单位质量的物体温度降低1℃所放出的热量6. 理想气体的内能只与()有关A. 体积B. 温度C. 压力D. 质量7. 热机效率是指()A. 热机输出功率与输入功率的比值B. 热机输出功率与输入功率的差值C. 热机输入功率与输出功率的比值D. 热机输入功率与输出功率的差值8. 热力学第二定律的开尔文表述是()A. 不可能从单一热源吸热使之完全变为功而不产生其他影响B. 不可能使热量从低温物体传到高温物体而不产生其他影响C. 不可能从单一热源吸热使之完全变为功并产生其他影响D. 不可能使热量从高温物体传到低温物体而不产生其他影响9. 绝对零度是()A. -273.15℃B. 0℃C. 273.15℃D. 100℃10. 热力学第三定律表明()A. 绝对零度不可能达到B. 绝对零度可以轻易达到C. 绝对零度是温度的极限D. 绝对零度是温度的起点二、填空题(每题2分,共20分)1. 热力学第一定律表明,能量在转化和转移过程中______。
2. 热力学第三定律指出,当温度趋近于绝对零度时,所有纯物质的______趋于零。
3. 热传导、热对流和热辐射是热传递的三种基本方式,其中热辐射不需要______。
4. 物体吸收或放出热量时,其温度不一定变化,例如冰在熔化过程中______。
高中物理热学--理想气体状态方程试题及答案
高中物理热学--理想气体状态方程试题及答案、单选题1•一定质量的理想气体,在某一平衡状态下的压强、体积和温度分别为压强、体积和温度分别为P2、V2、A. p i =p2, V i=2V2, T i= 1T22 C. p i =2p2, V i=2V2, T i= 2T2 T2,下列关系正确的是iB. p i =p2, V i= 2 V2 , T i= 2T2D . p i =2p2 , V i=V2, T i= 2T22.已知理想气体的内能与温度成正比。
如图所示的实线为汽缸内一定质量的理想气体由状态i到状态2的变化曲线,则在整个过程中汽缸内气体的内能A.先增大后减小C.单调变化B.先减小后增大D.保持不变3•地面附近有一正在上升的空气团,它与外界的热交热忽略不计•已知大气压强随高度增加而降低,则该气团在此上升过程中(不计气团内分子间的势能)A.体积减小,温度降低B.体积减小,温度不变C•体积增大,温度降低 D.体积增大,温度不变4.下列说法正确的是A. 气体对器壁的压强就是大量气体分子作用在器壁单位面积上的平均作用力B. 气体对器壁的压强就是大量气体分子单位时间作用在器壁上的平均冲量C. 气体分子热运动的平均动能减少,气体的压强一定减小D. 单位面积的气体分子数增加,气体的压强一定增大5 .气体内能是所有气体分子热运动动能和势能的总和,其大小与气体的状态有关,分子热运动的平均动能与分子间势能分别取决于气体的A .温度和体积B .体积和压强C.温度和压强 D .压强和温度6.带有活塞的汽缸内封闭一定量的理想气体。
气体开始处于状态a,然后经过程ab到达状态b或进过过程ac到状态c, b、c状态温度相同,如V-T所示。
设气体在状态b和状态c的压强分别为Pb、和PC ,在过程ab和ac 吸收的热量分别为Qab和Qac,贝UA. Pb >Pc, Qab>QacB. Pb >Pc, Qab<QacC. Pb <Pc, Qab>QacD. Pb <Pc, Qab<Qac中7.下列说法中正确的是A. 气体的温度升高时,分子的热运动变得剧烈,分子的平均动能增大,撞击器壁时对器壁的作用力增大,从而气体的压强一定增大B. 气体的体积变小时,单位体积的分子数增多,单位时间内打到器壁单位面积上的分子数增多,从而气体的压强一定增大C. 压缩一定量的气体,气体的内能一定增加D. 分子a从远处趋近固定不动的分子b,当a到达受b的作用力为零处时,a的动能一定最大&对一定量的气体,若用N表示单位时间内与器壁单位面积碰撞的分子数,则p i、V i、T i,在另一平衡状态下的14.一定质量的理想气体由状态A 经状态B 变为状A 当体积减小时,V 必定增加B 当温度升高时,N 必定增加C 当压强不变而体积和温度变化时,D 当压强不变而体积和温度变化时,二、双选题9•一位质量为60 kg 的同学为了表演“轻功”,他用打气筒 只相同的气球充以相等质量的空气(可视为理想气体) ,然 这4只气球以相同的方式放在水平放置的木板上, 在气球的 放置一轻质塑料板,如图所示。
高中物理经典题库-热学试题49个
五、热学试题集粹(15+5+9+20=49个)一、选择题(在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确)1.下列说法正确的是[]A.温度是物体内能大小的标志B.布朗运动反映分子无规则的运动C.分子间距离减小时,分子势能一定增大D.分子势能最小时,分子间引力与斥力大小相等2.关于分子势能,下列说法正确的是[]A.分子间表现为引力时,分子间距离越小,分子势能越大B.分子间表现为斥力时,分子间距离越小,分子势能越大C.物体在热胀冷缩时,分子势能发生变化D.物体在做自由落体运动时,分子势能越来越小3.关于分子力,下列说法中正确的是[]A.碎玻璃不能拼合在一起,说明分子间斥力起作用B.将两块铅压紧以后能连成一块,说明分子间存在引力C.水和酒精混合后的体积小于原来体积之和,说明分子间存在的引力D.固体很难拉伸,也很难被压缩,说明分子间既有引力又有斥力4.下面关于分子间的相互作用力的说法正确的是[]A.分子间的相互作用力是由组成分子的原子内部的带电粒子间的相互作用而引起的B.分子间的相互作用力是引力还是斥力跟分子间的距离有关,当分子间距离较大时分子间就只有相互吸引的作用,当分子间距离较小时就只有相互推斥的作用C.分子间的引力和斥力总是同时存在的D.温度越高,分子间的相互作用力就越大5.用r表示两个分子间的距离,Ep表示两个分子间的相互作用势能.当r=r0时两分子间的斥力等于引力.设两分子距离很远时Ep=0 []A.当r>r0时,Ep随r的增大而增加B.当r<r0时,Ep随r的减小而增加C.当r>r0时,Ep不随r而变D.当r=r0时,Ep=06.一定质量的理想气体,温度从0℃升高到t℃时,压强变化如图2-1所示,在这一过程中气体体积变化情况是[]图2-1A.不变B.增大C.减小D.无法确定7.将一定质量的理想气体压缩,一次是等温压缩,一次是等压压缩,一次是绝热压缩,那么[]A.绝热压缩,气体的内能增加B.等压压缩,气体的内能增加C.绝热压缩和等温压缩,气体内能均不变D.三个过程气体内能均有变化8.如图2-2所示,0.5mol理想气体,从状态A变化到状态B,则气体在状态B时的温度为[]图2-2A.273KB.546KC.810KD.不知TA所以无法确定9.如图2-3是一定质量理想气体的p-V图线,若其状态由a→b→c→a(ab为等容过程,bc为等压过程,ca为等温过程),则气体在a、b、c三个状态时[]图2-3A.单位体积内气体分子数相等,即na=nb=ncB.气体分子的平均速度va>vb>vcC.气体分子在单位时间内对器壁单位面积碰撞次数Na>Nb>NcD.气体分子在单位时间内对器壁单位面积作用的总冲量Ia>Ib=Ic10.一定质量的理想气体的状态变化过程如图2-4所示,MN为一条直线,则气体从状态M到状态N的过程中[]图2-4A.温度保持不变B.温度先升高,后又减小到初始温度C.整个过程中气体对外不做功,气体要吸热D.气体的密度在不断减小题号 1 2 3 4 5 6 7 8 9 10答案BD BC BD C AB C A C CD BD11.一定质量的理想气体自状态A经状态B变化到状态C,这一过程在V-T图中的表示如图2-5所示,则[]A.在过程AB中,气体压强不断变大B.在过程BC中,气体密度不断变大C.在过程AB中,气体对外界做功D.在过程BC中,气体对外界放热12.如图2-6所示,一圆柱形容器上部圆筒较细,下部的圆筒较粗且足够长.容器的底是一可沿下圆筒无摩擦移动的活塞S,用细绳通过测力计F将活塞提着,容器中盛水.开始时,水面与上圆筒的开口处在同一水平面上(如图),在提着活塞的同时使活塞缓慢地下移.在这一过程中,测力计的读数[]图2-6A.先变小,然后保持不变B.一直保持不变C.先变大,然后变小D.先变小,然后变大13.如图2-7所示,粗细均匀的U形管,左管封闭一段空气柱,两侧水银面的高度差为h,U型管两管间的宽度为d,且d<h,现将U形管以O点为轴顺时针旋转90°至两个平行管水平,并保持U形管在竖直平面内,两管内水银柱的长度分别变为h1′和h2′.设温度不变,管的直径可忽略不计,则下列说法中正确的是[]图2-7A.h1增大,h2减小B.h1减小,h2增大,静止时h1′=h2′C.h1减小,h2增大,静止时h1′>h2′D.h1减小,h2增大,静止时h1′<h2′14.如图2-8所示,一根竖直的弹簧支持着一倒立气缸的活塞,使气缸悬空而静止,设活塞与缸壁间无摩擦且可以在缸内自由移动,缸壁导热性能良好使缸内气体总能与外界大气温度相同,则下述结论中正确的是[]A.若外界大气压增大,则弹簧将压缩一些B.若外界大气压增大,则气缸上底面距地面的高度将减小C.若气温升高,则气缸上底面距地面的高度将减小D.若气温升高,则气缸上底面距地面的高度将增大15.如图2-9所示,导热气缸开口向下,内有理想气体,气缸固定不动,缸内活塞可自由滑动且不漏气.活塞下挂一个砂桶,砂桶装满砂子时,活塞恰好静止.现给砂桶底部钻一个小洞,细砂慢慢漏出,外部环境温度恒定,则[]图2-9A.气体压强增大,内能不变B.外界对气体做功,气体温度不变C.气体体积减小,压强增大,内能减小D.外界对气体做功,气体内能增加题号11 12 13 14 15答案ABD A A BD AB二、填空题1.估算一下,可知地球表面附近空气分子之间的距离约为________m(取一位有效数字);某金属的摩尔质量为M,密度为ρ,阿伏加德罗常量为N.若把金属分子视为球形,经估算该金属的分子直径约为________.2.高压锅的锅盖通过几个牙齿似的锅齿与锅镶嵌旋紧,锅盖与锅之间有橡皮制的密封圈,不会漏气.锅盖中间有一排气孔,上面套上类似砝码的限压阀,将排气孔堵住.当加热高压锅,锅内气体压强增大到一定程度时,气体就把限压阀顶起来,蒸汽即从排气孔中排出锅外.已知某高压锅限压阀的质量为0.1kg,排气孔直径为0.3cm,则锅内气体压强最大可达________Pa.3.圆筒内装有100升1atm的空气,要使圆筒内空气压强增大到10atm,应向筒内打入同温度下2atm的压缩气体________L.4.如图2-10所示为一定质量理想气体的状态变化过程的图线A→B→C→A,则B→C的变化是________过程,若已知TA=300K,TB=400K,则TC=________K.图2-105.一圆柱形的坚固容器,高为h,上底有一可以打开和关闭的密封阀门.现把此容器沉入水深为H 的湖底,并打开阀门,让水充满容器,然后关闭阀门.设大气压强为p0,湖水密度为ρ.则容器内部底面受到的向下的压强为________.然后保持容器状态不变,将容器从湖底移到湖面,这时容器内部底面受到的向下压强为________.填空题参考答案1.3×10-9 2.2.4×105 3.450 4.等压1600/3 5.p0+ρgHρgH1.如图2-14所示,有一热气球,球的下端有一小口,使球内外的空气可以流通,以保持球内外压强相等,球内有温度调节器,以便调节球内空气的温度,使气球可以上升或下降,设气球的总体积V0=500m3(不计算壳体积),除球内空气外,气球质量M=180kg.已知地球表面大气温度T0=280K,密度ρ0=1.20kg/m3,如果把大气视为理想气体,它的组成和温度几乎不随高度变化.问:为使气球从地面飘起,球内气温最低必须加热到多少开?图2-142.已知一定质量的理想气体的初始状态Ⅰ的状态参量为p1、V1、T1,终了状态Ⅱ的状态参量为p2、V2、T2,且p2>p1,V2>V1,如图2-15所示.试用玻意耳定律和查理定律推导出一定质量的理想气体状态方程.要求说明推导过程中每步的根据,最后结果的物理意义,且在p-V图上用图线表示推导中气体状态的变化过程.图2-153.在如图2-16中,质量为mA的圆柱形气缸A位于水平地面,气缸内有一面积S=5.00×10-3m2,质量mB=10.0kg的活塞B,把一定质量的气体封闭在气缸内,气体的质量比气缸的质量小得多,活塞与气缸的摩擦不计,大气压强=1.00×105Pa.活塞B经跨过定滑轮的轻绳与质量为mC=20.0kg的圆桶C相连.当活塞处于平衡时,气缸内的气柱长为L/4,L为气缸的深度,它比活塞的厚度大得多,现在徐徐向C桶内倒入细沙粒,若气缸A能离开地面,则气缸A的质量应满足什么条件?图2-164.如图2-17所示,一圆柱形气缸直立在水平地面上,内有质量不计的可上下移动的活塞,在距缸底高为2H0的缸口处有固定的卡环,使活塞不会从气缸中顶出,气缸壁和活塞都是不导热的,它们之间没有摩擦.活塞下方距缸底高为H0处还有一固定的可导热的隔板,将容器分为A、B两部分,A、B中各封闭同种的理想气体,开始时A、B中气体的温度均为27℃,压强等于外界大气压强p0,活塞距气缸底的高度为1.6H0,现通过B中的电热丝缓慢加热,试求:图2-17(1)与B中气体的压强为1.5p0时,活塞距缸底的高度是多少?(2)当A中气体的压强为1.5p0时,B中气体的温度是多少?5.如图2-18所示是一个容积计,它是测量易溶于水的粉末物质的实际体积的装置,A容器的容积V3.S是通大气的阀门,C是水银槽,通过橡皮管与容器B相通.连通A、B的管道很细,容积A=300cm可以忽略.下面是测量的操作过程:(1)打开S,移动C,使B中水银面降低到与标记M相平.(2)关闭S,缓慢提升C,使B中水银面升到与标记N相平,量出C中水银面比标记N高h1=25cm.(3)打开S,将待测粉末装入容器A中,移动C使B内水银面降到M标记处.(4)关闭S,提升C使B内水银面升到与N标记相平,量出C中水银面比标记N高h2=75cm.(5)从气压计上读得当时大气压为p0=75cmHg.设整个过程温度保持不变.试根据以上数据求出A中待测粉末的实际体积.图2-186.某种喷雾器贮液筒的总容积为7.5L,如图2-19所示,现打开密封盖,装入6L的药液,与贮液筒相连的活塞式打气筒,每次能压入300cm3、1atm的空气,若以上过程温度都保持不变,则图2-19(1)要使贮气筒中空气压强达到4atm,打气筒应该拉压几次?(2)在贮气筒内气体压强达4atm,才打开喷嘴使其喷雾,直至内外气体压强相等,这时筒内还剩多少药液?7.(1)一定质量的理想气体,初状态的压强、体积和温度分别为p1、V1、T1,经过某一变化过程,气体的末状态压强、体积和温度分别为p2、V2、T2.试用玻意耳定律及查理定律推证:p1V1/T1=p2V2/T2.(2)如图2-19,竖直放置的两端开口的U形管(内径均匀),内充有密度为ρ的水银,开始两管内的水银面到管口的距离均为L.在大气压强为p0=2ρgL时,用质量和厚度均不计的橡皮塞将U形管的左侧管口A封闭,用摩擦和厚度均不计的小活塞将U形管右侧管口B封闭,橡皮塞与管口A内壁间的最大静摩擦力fm=ρgLS(S为管的内横截面积).现将小活塞向下推,设管内空气温度保持不变,要使橡皮塞不会从管口A被推出,求小活塞下推的最大距离.图2-198.用玻马定律和查理定律推出一定质量理想气体状态方程,并在图2-20的气缸示意图中,画出活塞位置,并注明变化原因,写出状态量.图2-209.如图2-21所示装置中,A、B和C三支内径相等的玻璃管,它们都处于竖直位置,A、B两管的上端等高,管内装有水,A管上端封闭,内有气体,B管上端开口与大气相通,C管中水的下方有活塞顶住.A、B、C三管由内径很小的细管连接在一起.开始时,A管中气柱长L1=3.0m,B管中气柱长L2=2.0m,C管中水柱长L0=3m,整个装置处于平衡状态.现将活塞缓慢向上顶,直到C管中的水全部被顶到上面的管中,求此时A管中气柱的长度L1′,已知大气压强p0=1.0×105Pa,计算时取g=10m/s2.图2-2010.麦克劳真空计是一种测量极稀薄气体压强的仪器,其基本部分是一个玻璃连通器,其上端玻璃管A与盛有待测气体的容器连接,其下端D经过橡皮软管与水银容器R相通,如图2-22所示.图中K1、K2是互相平行的竖直毛细管,它们的内径皆为d,K1顶端封闭.在玻璃泡B与管C相通处刻有标记m.测量时,先降低R使水银面低于m,如图2-22(a).逐渐提升R,直到K2中水银面与K1顶端等高,这时K1中水银面比顶端低h,如图2-22(b)所示.设待测容器较大,水银面升降不影响其中压强,测量过程中温度不变.已知B(m以上)的容积为V,K1的容积远小于V,水银密度为ρ.(1)试导出上述过(2)已知V=628cm3,毛细管的直径d=0.30mm,水银密度ρ=13.6×103程中计算待测压强p的表达式.kg/m3,h=40mm,算出待测压强p(计算时取g=10m/s2,结果保留2位数字).图2-2111.如图2-23所示,容器A和气缸B都是透热的,A放置在127℃的恒温箱中,而B放置在27℃、1atm的空气中,开始时阀门S关闭,A内为真空,其容器VA=2.4L;B内轻活塞下方装有理想气体,其体积为VB=4.8L,活塞上方与大气相通.设活塞与气缸壁之间无摩擦且不漏气,连接A和B的细管容积不计.若打开S,使B内封闭气体流入A,活塞将发生移动,待活塞停止移动时,B内活塞下方剩余气体的体积是多少?不计A与B之间的热传递.图2-22 图2-2312.如图2-23有一热空气球,球的下端有一小口,使球内外的空气可以流通,以保持球内外压强相等,球内有温度调节器,以便调节球内空气温度,使气球可以上升或下降,设气球的总体积V0=500 m3(不计球壳体积),除球内空气外,气球质量M=180kg.已知地球表面大气温度T0=280K,密度ρ0=1.20kg/m3,如果把大气视为理想气体,它的组成和温度几乎不随高度变化,问:为使气球从地面飘起,球内气温最低必须加热到多少开?13.如图2-25均匀薄壁U形管,左管上端封闭,右管开口且足够长,管的横截面积为S,内装密度为ρ的液体.右管内有一质量为m的活塞搁在固定卡口上,卡口与左管上端等高,活塞与管壁间无摩擦且不漏气.温度为T0时,左、右管内液面高度相等,两管内空气柱长度均为L,压强均为大气压强p0.现使两边温度同时逐渐升高,求:(1)温度升高到多少时,右管活塞开始离开卡口上升?(2)温度升高到多少时,左管内液面下降h?图2-24 图2-2514.如图2-26所示的装置中,装有密度ρ=7.5×102kg/m3的液体的均匀U形管的右端与体积很大的密闭贮气箱相连通,左端封闭着一段气体.在气温为-23℃时,气柱长62cm,右端比左端低40cm.当气温升至27℃时,左管液面上升了2cm.求贮气箱内气体在-23℃时的压强为多少?(g取10m/s2)15.两端开口、内表面光滑的U形管处于竖直平面内,如图2-27所示,质量均为m=10kg的活塞A、B在外力作用下静止于左右管中同一高度h处,将管内空气封闭,此时管内外空气的压强均为p0=1.0×105Pa.左管和水平管横截面积S1=10cm2,右管横截面积S2=20cm2,水平管长为3h.现撤去外力让活塞在管中下降,求两活塞稳定后所处的高度.(活塞厚度略大于水平管直径,管内气体初末状态同温,g取10m/s2)图2-26 图2-27计算题参考答案1.解:设使气球刚好从地面飘起时球内空气密度为ρ,则由题意知ρ0gV0=Mg+ρgV0,设温度为T、密度为ρ、体积为V0的这部分气体在温度为T0,密度为ρ0时体积为V,即有ρV0=ρ0V.由等压变化有V0/T=V/T0,解得T=400K.2.解:设气体先由状态Ⅰ(p1、V1、T1),经等温变化至中间状态A(pA、V2、T1),由玻意耳定律,得p1V1=pAV2,①再由中间状态A(pA、V2、T1)经等容变化至终态Ⅱ(p2、V2、T2),由查理定律,得pA/T1=p2/T2,②由①×②消去pA,可得p1V1/T1=p2V2/T2,上式表明:一定质量的理想气体从初态(p1、V1、T1)变到终态(p2、V2、T2),压强和体积的乘积与热力学温度的比值是不变的.过程变化如图6所示.图63.解:取气缸内气柱长为L/4的平衡态为状态1,气缸被缓慢提离地面时的平衡态为状态2.以p1、p2表示状态1、2的压强,L2表示在状态2中气缸内气柱长度.由玻意耳定律,得p1L/4=p2L2,①在状态1,活塞B处于力学平衡状态,由力学平衡条件得到p1S+mCg=p0S+mBg,②在状态2,气缸A处于力学平衡状态,由力学平衡条件得到p2S+mAg=p0S,③由①、②、③三式解得mA=(p0S/g)-((p0S+mBg-mCg)/4g)(L/L2),以题给数据代入就得到mA=(50-10(L/L2))kg,由于L2最大等于L.故由⑤式得知,若想轻绳能把气缸A提离地面,气缸的质量应满足条件mA≤40kg.4.(1)B中气体做等容变化,由查理定律pB/p′B=TB/T′B,求得压强为1.5p0时气体的温度T′B=450K.A中气体做等压变化,由于隔板导热,A、B中气体温度相等,A中气体温度也为450K.对A中气体VA′/VA=TA′/TA,VA′=(TB′/TA)VA=0.9H0S,活塞距离缸底的高度为1.9H0.(2)当A中气体压强为1.5p0,活塞将顶在卡环处,对A中气体pAVA/TA=p″AV"A/T"A,得T"A=(p"AV"A/pAVA)TA=750K.即B中气体温度也为750K.5.解:对于步骤①②,以A、B中气体为研究对象.初态p1=p0,V1=VA+VB,末态p2=p0+h1,V2=VA,依玻意耳定律p1V1=p2V2,解得VB=100cm3.对于步骤③④,以A、B中气体为研究对象,初态p′1=p0,V′1=V,末态p′2=p0+h2,V′2=V-VB,依玻意耳定律p′1V′1=p′2V′2,解得V=200cm3,粉末体积V0=VA+VB-V=200cm3.6.解:(1)贮液筒装入液体后的气体体积V1=V总-V液①设拉力n次打气筒压入的气体体积V2=nV0,②根据分压公式:(温度T一定)pV1=p1V1+p1V2,③解①②③,可得n=(pV1-p1V1)/p1V0=15(次),④(2)对充好气的贮液筒中的气体,m,T一定喷雾后至内外压强相等,贮液筒内气体体积为V2,pV1=p2V2,⑤贮液筒内还剩有药液体积V剩=V总-V2⑥解⑤⑥得:V剩=1.5L.⑦7.(1)证明:在如图5所示的p-V图中,一定质量的气体从初状态A(p1,V1,T1)变化至末状态B(p2,V2,T2),假设气体从初状态先等温变化至C(pC,V2,T1),再等容变化至B(p2,V2,T2).第一个变化过程根据玻耳定律有,p1V1=pCV2.第二个变化过程根据查理定律有,pC/p2=T1/T2.由以上两式可解得:p1V1/T1=p2V2/T2.图5(2)解:设小活塞下推最大距离L1时,左管水银面上升的距离为x,以p0表示左右两管气体初态的压强,p1、p2表示压缩后左右两管气体的压强.根据玻意耳定律,左管内气体p0LS=p1(L-x)S,右管内气体p0LS=p2(L+x-L1)S,左、右两管气体末状态压强关系p2=p1+ρg·2x.橡皮塞刚好不被推出时,根据共点力平衡条件p1S=p0S+fm=3ρgLS,由上四式解得x=L/3,L1=26L/33.8.图略.由等温变化的玻意耳定律,得p1V2=pCV2,再由等容变化的查理定律,得pC/T1=p2/T2,两式联立,化简得:p1V1/T1=p2V2/T2.9.解:设活塞顶上后,A、B两管气柱长分别为L1′和L2′,则[p0+ρg(L1-L2)]L1=[p0+ρg(L1′-L2′)]L1′,且L1-L1′+L2-L2′=L0,解得L1′=2.5m.表明A管中进水0.5m,因C管中原有水3.0m,余下的2.5m水应顶入B管,而B管上方空间只有2.0m,可知一定有水溢出B管.按B管上方有水溢出列方程,对封闭气体p1=p0-ρg(L1-L2),p1′=p0+ρgL1′,p1L1=p1′L1′,联立解得L1′=2.62m.10.解:(1)水银面升到m时B中气体刚被封闭,压强为待测压强p.这部分气体末态体积为ah,a=πd2/4,压强为p+hρg,由玻意尔定律,得pV=(p+ρgh)πd2h/4,整理得p(V-πd2h/4)=ρghπd2h/4.根据题给条件,πd2h/4远小于V,得pV=(hρg)πd2h/4,化简得p=ρgh2πd2/4V.(2)代入数值解得p=2.4×10-2Pa.11.解:设原气缸中封闭气体初状态的体积VB分别为VB1和VB2两部分.打开S后,VB1最终仍留在B中,而VB2将全部流入容器A内.对于仍留在B中的这部分气体,因p、T不变,故VB1不变.对于流入A中的气体,由于p不变,据盖·吕萨克定律得VB2/T1=VA/T2,代入数据得VB2=1.8L,最后B内活塞下方剩余气体体积VB1=VB-VB2=3L.12.解:设使气球刚好从地面飘起时球内空气密度为ρ,则由题意知ρ0gV0=ρgV0+Mg.设温度为T、密度为ρ、体积为V0的这部分气体在温度为T0、密度为ρ0时体积为V,即有ρV0=ρ0V.由等压变化有V0/T=V/T0,联解得T=400K.13.解:(1)右管内气体为等容过程,p0/T0=p1/T1,p1=p0+mg/S,T1=T0(1+mg/p0S).(2)对左管内气体列出状态方程:p0LS/T0=p2V2/T2,p2=p0+mg/S+2ρgh,V2=(L+h)S,∴T2=T0L(p0+mg/S+2ρgh)(L+h)/p0.14.解:在下列的计算中,都以1cm液柱产生的压强作为压强单位.设贮气箱气体在-23℃时压强为p0,则U形管左侧气体在-23℃时压强p0′=p0-40.设贮气箱气体在27℃时压强为p,则U形管左侧气体在27℃时压强p′=p-44.对左侧气体据理想气体状态方程得p0′×62S/250=p′×60S/300.对贮气箱内的气体,据查理定律得p0/250=p/300.以上四式联立解出p0相当于140cm液柱的压强,故p0=7.5×102×10×1.40Pa=1.05×104Pa.15.解:撤去外力后左侧向下压强p左=p0+mg/S1=2×105Pa=2p0,右侧向下压强p右=p0+mg/S2=1.5×105Pa=1.5p0,故活塞均下降,且左侧降至水平管口.设右侧降至高为x处,此时封闭气体压强变为p′=1.5p0.对封闭气体p0(4hS1+hS2)=1.5p0(3hS1+xS2),∴x=h/2.。
高中热力学试题及答案
高中热力学试题及答案一、选择题(每题3分,共30分)1. 热力学第一定律的数学表达式是:A. ΔU = Q - WB. ΔH = Q + WC. ΔG = Q - WD. ΔS = Q/T答案:A2. 在绝热过程中,系统与外界没有热交换,以下说法正确的是:A. 系统内能增加B. 系统内能减少C. 系统内能不变D. 无法确定系统内能变化答案:D3. 根据热力学第二定律,以下说法正确的是:A. 热量可以从低温物体自发地传递到高温物体B. 热量不能自发地从低温物体传递到高温物体C. 所有自然过程都是可逆的D. 所有自然过程都是不可逆的答案:B4. 熵是热力学中描述系统无序程度的物理量,以下说法正确的是:A. 熵总是增加的B. 熵总是减少的C. 熵可以增加也可以减少D. 熵在孤立系统中总是增加的答案:D5. 理想气体状态方程是:A. PV = nRTB. PV = nTC. PV = mRTD. PV = RT答案:A6. 根据热力学第三定律,绝对零度是:A. 温度的极限B. 熵的极限C. 能量的极限D. 压力的极限答案:B7. 卡诺循环效率的数学表达式是:A. 1 - Tc/ThB. 1 - Tc/TaC. 1 - Tc/TbD. 1 - Ta/Th答案:A8. 以下哪种过程是不可逆的:A. 理想气体的等温膨胀B. 理想气体的绝热膨胀C. 理想气体的等压膨胀D. 理想气体的等熵膨胀答案:B9. 热力学温标的单位是:A. 摄氏度B. 开尔文C. 华氏度D. 兰氏度答案:B10. 以下哪种物质在标准状态下不是理想气体:A. 氦气B. 氢气C. 氧气D. 水蒸气答案:D二、填空题(每题2分,共20分)1. 热力学第一定律表明能量______,即能量守恒。
答案:守恒2. 热力学第二定律指出,不可能从单一热源取热使之完全转换为功而不产生其他影响。
答案:不可能3. 熵变ΔS等于系统吸收的热量Q除以绝对温度T,即ΔS = ______。
高中物理热学试题 及答案
热学试题一选择题:1.只知道下列那一组物理量,就可以估算出气体中分子间的平均距离A.阿伏加徳罗常数,该气体的摩尔质量和质量B.阿伏加徳罗常数,该气体的摩尔质量和密度C.阿伏加徳罗常数,该气体的质量和体积D.该气体的质量、体积、和摩尔质量2.关于布朗运动下列说法正确的是A.布朗运动是液体分子的运动B.布朗运动是悬浮微粒分子的运动C.布朗微粒做无规则运动的原因是由于它受到水分子有时吸引、有时排斥的结果D.温度越高,布朗运动越显著3.铜的摩尔质量为μ(kg/ mol),密度为ρ(kg/m3),若阿伏加徳罗常数为N A,则下列说法中哪个是错误..的A.1m3铜所含的原子数目是ρN A/μ B.1kg铜所含的原子数目是ρN AC.一个铜原子的质量是(μ / N A)kg D.一个铜原子占有的体积是(μ / ρN A)m3 4.分子间同时存在引力和斥力,下列说法正确的是A.固体分子间的引力总是大于斥力B.气体能充满任何仪器是因为分子间的斥力大于引力C.分子间的引力和斥力都随着分子间的距离增大而减小D.分子间的引力随着分子间距离增大而增大,而斥力随着距离增大而减小5.关于物体内能,下列说法正确的是A.相同质量的两种物体,升高相同温度,内能增量相同B.一定量0℃的水结成0℃的冰,内能一定减少C.一定质量的气体体积增大,既不吸热也不放热,内能减少D.一定质量的气体吸热,而保持体积不变,内能一定减少6.质量是18g的水,18g的水蒸气,32g的氧气,在它们的温度都是100℃时A.它们的分子数目相同,分子的平均动能相同B.它们的分子数目相同,分子的平均动能不相同,氧气的分子平均动能大C.它们的分子数目相同,它们的内能不相同,水蒸气的内能比水大D.它们的分子数目不相同,分子的平均动能相同7.有一桶水温度是均匀的,在桶底部水中有一个小气泡缓缓浮至水面,气泡上升过程中逐渐变大,若不计气泡中空气分子的势能变化,则A.气泡中的空气对外做功,吸收热量 B.气泡中的空气对外做功,放出热量C.气泡中的空气内能增加,吸收热量 D.气泡中的空气内能不变,放出热量8.关于气体压强,以下理解不正确的是A.从宏观上讲,气体的压强就是单位面积的器壁所受压力的大小B.从微观上讲,气体的压强是大量的气体分子无规则运动不断撞击器壁产生的C.容器内气体的压强是由气体的重力所产生的D.压强的国际单位是帕,1Pa=1N/m29.一定质量的理想气体处于平衡状态Ⅰ,现设法使其温度降低而压强升高,达到平衡状态Ⅱ,则( )A .状态Ⅰ时气体的密度比状态Ⅱ时的大B .状态Ⅰ时分子的平均动能比状态Ⅱ时的大C .状态Ⅰ时分子的平均距离比状态Ⅱ时的大D .状态Ⅰ时每个分子的动能都比状态Ⅱ时分子平均动能大10.如图所示,气缸内装有一定质量的气体,气缸的截面积为S ,其活塞为梯形,它的一个面与气缸成θ角,活塞与器壁间的摩擦忽略不计,现用一水平力F 推活塞,汽缸不动,此时大气压强为P 0,则气缸内气体的压强P 为A .P=P 0+θcos S F B .P=P 0+S FC .P=P 0+S F θcosD .P=P 0+SF θsin11.如图所示,活塞质量为m ,缸套质量为M ,通过弹簧吊在天花板上,气缸内封住一定质量的空气 ,缸套与活塞无摩擦,活塞截面积为S ,大气压强为p 0,则 A. 气缸内空气的压强为p 0-Mg /S B .气缸内空气的压强为p 0+mg /SC .内外空气对缸套的作用力为(M +m )gD .内外空气对活塞的作用力为Mg12.关于热力学温度的下列说法中, 不正确的是( ) A. B.热力学温度的零度等于-273.15 C. D.气体温度趋近于绝对零度时,13.若在水银气压计上端混入少量空气, 气压计的示数与实际大气压就不一致, 在这种情况下( )A.气压计的读数可能大于外界大B.C.只要外界大气压不变,D.14、根据分子动理论,下列关于气体的说法中正确的是 A .气体的温度越高,气体分子无规则运动越剧烈 B .气体的压强越大,气体分子的平均动能越大 C .气体分子的平均动能越大,气体的温度越高D .气体的体积越大,气体分子之间的相互作用力越大15. .如图所示,绝热隔板K 把绝热的气缸分隔成体积相等的两部分,K 与气缸壁的接触是光滑的。
高中物理《热学实验》练习题(附答案解析)
高中物理《热学实验》练习题(附答案解析)学校:___________姓名:___________班级:___________一、单选题1.把n 滴石油滴在水面上,石油在水面上形成一层单分子油膜,测得油膜的面积为S ,设每滴石油的体积为V ,则可以估算出该石油分子的直径为 ( ) A ./nS VB ./nV SC ./S VD ./V S2.某同学在做油膜法估测分子直径的实验,滴下油酸酒精溶液后,发现痱子粉迅速散开形成如图所示的“锯齿”边沿图案,可能是由于( )A .盆中水太多B .痱子粉撒得太多,且厚度不均匀C .盆太小,导致油酸无法形成单分子层D .油酸酒精溶液浓度过大3.在“用油膜法估测分子大小”的实验中,配制好适当比例的油酸酒精溶液,用注射器和量筒测得1mL 含上述溶液50滴,把1滴该溶液滴入盛水的浅盘内,让油膜在水面上尽可能散开,测出油膜的面积,便可算出油酸分子的直径。
某同学计算出的油酸分子的直径结果明显偏大,可能的原因是( ) A .油酸未完全散开 B .油酸中含有大量酒精C .计算油膜面积时将所有不足一格的方格均记为了一格D .求每滴溶液中纯油酸的体积时,1mL 溶液的滴数多记了几滴4.在“油膜法估测分子的直径”实验中将油酸分子看成是球形的,所采用的方法是( ) A .等效替代法B .控制变量法C .理想模型法D .比值定义法5.在“用油膜法估测油酸分子的大小”实验中,用到了“数格子”的方法,是为了估算( ) A .一滴油酸的体积B .一滴油酸酒精溶液中纯油酸形成的油膜的面积C .一个油酸分子的体积D .一个油酸分子的面积6.分子动理论较好地解释了物质的宏观热学性质。
根据分子动理论,判断下列说法中正确的是()A.显微镜下观察到墨水中的小炭粒在不停地做无规则运动,这反映了炭粒分子运动的无规则性B.磁铁可以吸引铁屑,这一事实说明分子间存在引力C.压缩气体比压缩液体容易得多,这是因为气体分子间距离远大于液体分子间距离D.将体积为V的油酸酒精溶液滴在平静的水面上,扩展成面积为S的单分子油膜,则该油酸分子直径为V S7.在做“用油膜法估测分子的大小”实验时,配制好浓度为0.06%的油酸酒精溶液(单位体积溶液中含有纯油酸的体积),1 mL上述溶液用注射器刚好滴75滴;在撒有均匀痱子粉的水面上用注射器滴1滴油酸酒精溶液,水面上形成油酸薄膜,下图为油膜稳定后的形状,每个正方形小方格的边长为10 mm。
高中热力学试题及答案大全
高中热力学试题及答案大全一、选择题1. 热力学第一定律的数学表达式是:A. ΔU = Q - WB. ΔH = Q + WC. ΔS = Q/TD. ΔG = ΔH - TΔS答案:A2. 以下哪个过程是不可逆过程?A. 理想气体的等温膨胀B. 理想气体的绝热膨胀C. 理想气体的等压膨胀D. 理想气体的等熵膨胀答案:B3. 熵增加原理表明,在孤立系统中,自发过程的熵:A. 保持不变B. 减少C. 增加D. 先减少后增加答案:C二、填空题1. 热力学第二定律表明,不可能从单一热源_______而产生其他影响。
答案:吸热2. 在热力学中,一个系统与外界交换能量的两种基本方式是_______和_______。
答案:做功;热传递三、简答题1. 简述热力学第二定律的克劳修斯表述和开尔文-普朗克表述。
答案:热力学第二定律的克劳修斯表述是:不可能实现一个循环过程,其唯一结果就是从一个热源吸热并将这热量完全转化为功。
开尔文-普朗克表述是:不可能从单一热源吸热使之完全转化为功而不产生其他影响。
2. 什么是熵?熵在热力学中的意义是什么?答案:熵是热力学中描述系统无序程度的物理量,通常用符号S表示。
熵在热力学中的意义是衡量系统状态的无序程度,是热力学第二定律的数学表达形式之一,反映了能量分散的程度。
四、计算题1. 一个理想气体在等压过程中从体积V1 = 1m³膨胀到V2 = 2m³,气体的摩尔质量为M = 0.029kg/mol,气体常数R = 8.314J/(mol·K),初始温度T1 = 300K。
求气体的最终温度T2。
答案:首先计算气体的摩尔数n = (M/V1)。
然后利用等压过程中温度与体积的关系T1V1/n = T2V2/n,解得T2 = (T1V1/V2) = (300K *1m³ / 2m³) = 150K。
结束语:通过本试题及答案的练习,同学们可以加深对热力学基本概念、原理和计算方法的理解。
高三物理热学全部题型练习题
高三物理热学全部题型练习题1. 题目:热量和功的关系题目描述:做功时,系统释放了20 J的热量,求该系统的净功。
解答:根据热力学第一定律可知,系统净功等于系统所做的功减去释放的热量。
所以,净功 = 做的功 - 释放的热量。
净功 = 0 J - 20 J = -20 J。
因此,该系统的净功为-20 J。
2. 题目:温度和热量的转移题目描述:一杯水的温度为20℃,将放在室温为25℃的房间内,经过一段时间,杯中水的温度变为22℃。
求该过程中水释放了多少热量。
解答:根据热力学第一定律可知,传热时系统释放的热量等于所吸收的热量。
所以,所释放的热量 = 所吸收的热量。
根据温度的变化可知,水从20℃降到22℃,吸收了25℃的热量。
所释放的热量 = 25 J。
因此,该过程中水释放了25 J的热量。
3. 题目:理想气体的升压等温过程题目描述:一摩尔理想气体初时体积为1 L,压强为1 atm,最后体积变为2 L,求该过程中系统吸收的热量。
解答:根据理想气体的状态方程 PV = nRT,其中P为压强,V为体积,n为物质的摩尔数,R为气体常数,T为温度。
由于该过程为等温过程,所以温度保持不变。
即T1 = T2。
根据理想气体的状态方程可得,P1V1 = P2V2。
代入已知数据可得,1 atm × 1 L = P2 × 2 L。
解得P2 = 0.5 atm。
由于等温过程中吸收的热量等于外界对系统所做的功,而理想气体的等温过程的功为:W = nRT × ln(V2/V1)。
代入已知数据可得,W = (1 mol × 0.0821 atm L/mol K × T) × ln(2/1)。
由于T1 = T2,所以T取任意值均可。
假设T = 300 K,代入可得W ≈ 0.08 J/mol。
因此,该过程中系统吸收的热量约为0.08 J/mol。
4. 题目:热机的效率题目描述:一台热机从高温热源吸收300 J的热量,向低温热源释放150 J的热量。
高中物理热学物态和物态变化经典大题例题
(每日一练)高中物理热学物态和物态变化经典大题例题单选题1、关于晶体和非晶体,下列说法正确的是()A.可以根据各向同性或各向异性来鉴别晶体和非晶体B.一块均匀薄片,沿各个方向对它施加拉力,发现其强度一样,则此薄片一定是非晶体C.一个固体球,如果沿其各条直径方向的导电性能不同,则该球一定是单晶体D.一块晶体,若其各个方向的导热性能相同,则一定是单晶体答案:C解析:A.物理性质表现为各向同性的可以是多晶体,也可以是非晶体,故不能根据各向异性或各向同性来鉴别晶体和非晶体,故A错误;B.沿各个方向对一块均匀薄片施加拉力,发现其强度一样,表现出各向同性,可能是非晶体,也可能是多晶体,故B错误;C.一个固体球,如果沿其各条直径方向的导电性能不同,即具有各向异性,则该球一定是单晶体,故C正确;D.一块晶体,若其各个方向的导热性能相同,表现出各向同性,可能是多晶体,故D错误。
故选C。
2、下列说法正确的是()A.两个邻近的分子之间的作用力变大时,分子间距一定减小B.水蒸气的实际压强越大,空气的相对湿度就越大C.制作晶体管、集成电路只能用单晶体,不能用多晶体D.由于可以从单一热源吸收热量全部用来做功,所以热机效率可以达到100%答案:C解析:A.两个邻近的分子之间的作用力变大时,分子间距不一定减小,例如从分子力平衡位置向右的过程中引力随距离变大先变大后变小,A错误;B.水蒸气的实际压强与同温度水的饱和汽压的比值越大,空气的相对湿度就越大,B错误;C.制作晶体管、集成电路只能用单晶体,不能用多晶体,C正确;D.从单一热源吸收热量全部用来做功,必然产生影响,热机效率不可以达到100%,D错误。
故选C。
3、下列说法中不正确的是()A.空气的相对湿度越大,水蒸发越慢,人就感觉越潮湿B.由于水的表面张力作用,即使伞面上有很多细小的孔,伞也能达到遮雨的效果C.用热针尖接触涂有石蜡薄层的金属片背面,熔化的石蜡呈圆形,说明石蜡具有各向同性D.脱脂棉脱脂的目的在于使它从不被水浸润变为可以被水浸润,以便吸取药液答案:C解析:A.空气相对湿度越大,人体水分越不容易蒸发,人们感觉越潮湿,故A正确。
高中物理热学实验试题及答案
高中物理热学实验试题及答案一、选择题1. 温度是描述物体冷热程度的物理量,它与物体的哪个属性有关?A. 压力B. 体积C. 分子热运动的快慢D. 质量答案:C2. 热力学第一定律表明能量守恒,其数学表达式为:A. ΔU = Q + WB. ΔU = Q - WC. ΔU = W - QD. ΔU = Q / W答案:B3. 以下哪种情况下,物体的内能会增加?A. 吸收热量同时对外做功B. 放出热量同时对外做功C. 吸收热量同时不做功D. 放出热量同时不做功答案:C二、填空题4. 热力学第二定律表明了热的传导具有________方向性,即热量只能自发地从高温物体传递到低温物体。
答案:单向5. 理想气体状态方程为 PV = nRT,其中P代表压强,V代表体积,n代表物质的量,R是________常数,T代表温度。
答案:气体三、简答题6. 简述热力学温度与摄氏温度的关系,并给出转换公式。
答案:热力学温度与摄氏温度的关系是T = t + 273.15 K,其中T是热力学温度,单位是开尔文(K),t是摄氏温度,单位是摄氏度(°C)。
四、计算题7. 一个理想气体在等压过程中,体积从V1 = 2m³变化到V2 = 3m³,压强P = 1 atm。
求气体在这个过程中所做的功W。
答案:根据理想气体做功的公式W = PΔV,首先计算体积变化ΔV = V2 - V1 = 3m³ - 2m³ = 1m³。
由于是等压过程,压强P = 1 atm = 101325 Pa。
带入公式得W = 101325 Pa × 1m³ = 101325 J。
五、实验题8. 实验目的:探究气体的等容变化过程中温度与压强的关系。
实验器材:定容容器、温度计、压强计、加热器。
实验步骤:a. 将一定量的气体充入定容容器中,并记录初始压强和温度。
b. 使用加热器对容器内的气体进行加热,观察并记录压强的变化。
高一物理热学基础练习题及答案
高一物理热学基础练习题及答案1.选择题:1) 以下哪个物理量与热平衡无关?A. 热容B. 热温度C. 热量D. 内能答案:A. 热容2) 单位质量物质升高1摄氏度所需的热量称为:A. 热容B. 热比热容C. 内能D. 热传导答案:B. 热比热容3) 热平衡是指两个物体:A. 温度相等B. 热量相等C. 热容相等D. 内能相等答案:A. 温度相等4) 以下哪个选项是正确的?A. 温度是物体的固有属性B. 温度是热量的度量C. 温度只能用温度计来测量D. 温度是物体内能的度量答案:D. 温度是物体内能的度量5) 热量是一个:A. 宏观物理量B. 微观物理量C. 化学物理量D. 学院物理量答案:A. 宏观物理量2.填空题:1) 定容状态下若物体的体积变小,则温度___。
答案:升高2) 0摄氏度与摄氏度的冷热程度相同。
答案:相同3) 理想气体在等压过程中热容与()相等。
答案:等压热容4) 热量可以用___来度量。
答案:焦耳5) 热平衡是指两个物体之间没有___流动。
答案:热量3.计算题:1) 质量为0.5kg的物体热容为400J/kg·°C,现有一物体温度由20°C 升高到40°C,需要吸收多少热量?答案:ΔQ = mcΔθΔQ = 0.5kg × 400J/kg·°C × (40°C - 20°C)ΔQ = 400J2) 一瓶装满水的热水袋的质量为0.8kg,其初始温度为80°C,现要将其温度升高到100°C,需要吸收多少热量?(水的比热容为4200J/kg·°C)答案:ΔQ = mcΔθΔQ = 0.8kg × 4200J/kg·°C × (100°C - 80°C)ΔQ = 6720J3) 一个物体的质量为2kg,它的比热容为1000J/kg·°C,将其温度由20°C升高到60°C,需要吸收多少热量?(不考虑相变)答案:ΔQ = mcΔθΔQ = 2kg × 1000J/kg·°C × (60°C - 20°C)ΔQ = 80000J总结:本篇文章涵盖了高一物理热学基础练习题及答案,分为选择题、填空题和计算题三个部分。
高中物理热学试题及答案
高中物理热学试题及答案一、选择题1. 热力学第一定律的数学表达式是:A. ΔU = Q + WB. ΔU = Q - WC. ΔU = W - QD. ΔU = Q / W答案:B2. 理想气体的内能只与温度有关,这是因为:A. 气体分子的平动动能B. 气体分子的转动动能C. 气体分子的振动动能D. 气体分子的平动和转动动能答案:D3. 根据热力学第二定律,下列哪种情况是不可能发生的?A. 在没有外界影响的情况下,热量从低温物体自发地传递到高温物体B. 热量从高温物体传递到低温物体C. 气体自发地从高压区扩散到低压区D. 气体自发地从低压区扩散到高压区答案:A二、填空题4. 热力学温度T与气体的压强P、体积V和物质的量n之间的关系可以用_________定律来描述。
答案:理想气体状态5. 当气体发生绝热膨胀时,气体的内能_________,温度_________。
答案:减小;降低三、简答题6. 什么是熵?熵在热力学第二定律中扮演着什么角色?答案:熵是热力学中表示系统无序程度的物理量,通常用符号S表示。
熵在热力学第二定律中扮演着核心角色,第二定律可以表述为在孤立系统中,熵总是倾向于增加,这意味着自发过程总是朝着熵增的方向进行。
四、计算题7. 一个理想气体在等压过程中,从体积V1=2m³增加到V2=4m³,压强P=1atm,气体常数R=8.31J/(mol·K),求气体的温度变化。
答案:首先,根据盖-吕萨克定律,PV/T = 常数。
由于是等压过程,我们有V1/T1 = V2/T2。
将已知数值代入,得到2/T1 = 4/T2,解得T1 = 0.5T2。
又因为T1 = P1V1/(nR),T2 = P2V2/(nR),由于是等压过程,P1 = P2 = P,所以T1 = T2。
将T1 = 0.5T2代入T1 = P1V1/(nR),解得T1 = 283K,T2 = 566K。
高中物理3-3《热学》计算题专项练习题(含答案)
热学计算题(二)1.如图所示,一根长L=100cm、一端封闭的细玻璃管开口向上竖直放置,管内用h=25cm长的水银柱封闭了一段长L1=30cm的空气柱.已知大气压强为75cmHg,玻璃管周围环境温度为27℃.求:Ⅰ.若将玻璃管缓慢倒转至开口向下,玻璃管中气柱将变成多长?Ⅱ.若使玻璃管开口水平放置,缓慢升高管内气体温度,温度最高升高到多少摄氏度时,管内水银不能溢出.2.如图所示,两端开口、粗细均匀的长直U形玻璃管内由两段水银柱封闭着长度为15cm的空气柱,气体温度为300K时,空气柱在U形管的左侧.(i)若保持气体的温度不变,从左侧开口处缓慢地注入25cm长的水银柱,管内的空气柱长为多少?(ii)为了使空气柱的长度恢复到15cm,且回到原位置,可以向U形管内再注入一些水银,并改变气体的温度,应从哪一侧注入长度为多少的水银柱?气体的温度变为多少?(大气压强P0=75cmHg,图中标注的长度单位均为cm)3.如图所示,U形管两臂粗细不等,开口向上,右端封闭的粗管横截面积是开口的细管的三倍,管中装入水银,大气压为76cmHg。
左端开口管中水银面到管口距离为11cm,且水银面比封闭管内高4cm,封闭管内空气柱长为11cm。
现在开口端用小活塞封住,并缓慢推动活塞,使两管液面相平,推动过程中两管的气体温度始终不变,试求:①粗管中气体的最终压强;②活塞推动的距离。
4.如图所示,内径粗细均匀的U形管竖直放置在温度为7℃的环境中,左侧管上端开口,并用轻质活塞封闭有长l1=14cm,的理想气体,右侧管上端封闭,管上部有长l2=24cm的理想气体,左右两管内水银面高度差h=6cm,若把该装置移至温度恒为27℃的房间中(依然竖直放置),大气压强恒为p0=76cmHg,不计活塞与管壁间的摩擦,分别求活塞再次平衡时左、右两侧管中气体的长度.5.如图所示,开口向上竖直放置的内壁光滑气缸,其侧壁是绝热的,底部导热,内有两个质量均为m的密闭活塞,活塞A导热,活塞B绝热,将缸内理想气体分成Ⅰ、Ⅱ两部分.初状态整个装置静止不动且处于平衡状态,Ⅰ、Ⅱ两部分气体的高度均为l0,温度为T0.设外界大气压强为P0保持不变,活塞横截面积为S,且mg=P0S,环境温度保持不变.求:在活塞A上逐渐添加铁砂,当铁砂质量等于2m时,两活塞在某位置重新处于平衡,活塞B下降的高度.6.如图,在固定的气缸A和B中分别用活塞封闭一定质量的理想气体,活塞面积之比为S A:S B=1:2,两活塞以穿过B的底部的刚性细杆相连,可沿水平方向无摩擦滑动.两个气缸都不漏气.初始时,A、B 中气体的体积皆为V0,温度皆为T0=300K.A中气体压强P A=1.5P0,P0是气缸外的大气压强.现对A加热,使其中气体的体积增大V0/4,,温度升到某一温度T.同时保持B中气体的温度不变.求此时A中气体压强(用P0表示结果)和温度(用热力学温标表达)7.如图所示为一简易火灾报警装置.其原理是:竖直放置的试管中装有水银,当温度升高时,水银柱上升,使电路导通,蜂鸣器发出报警的响声.27℃时,空气柱长度L1为20cm,水银上表面与导线下端的距离L2为10cm,管内水银柱的高度h为13cm,大气压强P0=75cmHg. (1)当温度达到多少摄氏度时,报警器会报警?(2)如果要使该装置在87℃时报警,则应该再往玻璃管内注入多少cm高的水银柱?8.如图所示,导热气缸A与导热气缸B均固定于地面,由刚性杆连接的导热活塞与两气缸间均无摩擦,两活塞面积S A、S B的比值4:1,两气缸都不漏气;初始状态系统处于平衡,两气缸中气体的长度皆为L,温度皆为t0=27℃,A中气体压强P A=7P0/8,P0是气缸外的大气压强;(Ⅰ)求B中气体的压强;(Ⅱ)若使环境温度缓慢升高,并且大气压保持不变,求在活塞移动位移为L/2时环境温度为多少摄氏度?9.如图,两气缸AB粗细均匀,等高且内壁光滑,其下部由体积可忽略的细管连通;A的直径为B的2倍,A上端封闭,B上端与大气连通;两气缸除A顶部导热外,其余部分均绝热.两气缸中各有一厚度可忽略的绝热轻活塞a、b,活塞下方充有氮气,活塞a上方充有氧气;当大气压为P0,外界和气缸内气体温度均为7℃且平衡时,活塞a离气缸顶的距离是气缸高度的1/4,活塞b在气缸的正中央.(ⅰ)现通过电阻丝缓慢加热氮气,当活塞b升至顶部时,求氮气的温度;(ⅱ)继续缓慢加热,使活塞a上升,当活塞a上升的距离是气缸高度的1/16时,求氧气的压强.10.A 、B 汽缸的水平长度均为20 cm 、截面积均为10 cm 2,C 是可在汽缸内无摩擦滑动的、体积不计的活塞,D 为阀门.整个装置均由导热材料制成.起初阀门关闭,A 内有压强A P =4.0×105 Pa 的氮气.B 内有压强=B P 2.0×105 Pa 的氧气.阀门打开后,活塞C 向右移动,最后达到平衡.求活塞C 移动的距离及平衡后B 中气体的压强.11.如图所示,内壁光滑长度为4l 、横截面积为S 的汽缸A 、B ,A 水平、B 竖直固定,之间由一段容积可忽略的细管相连,整个装置置于温度27℃、大气压为p 0的环境中,活塞C 、D 的质量及厚度均忽略不计.原长3l 、劲度系数03p S k l=的轻弹簧,一端连接活塞C 、另一端固定在位于汽缸A 缸口的O 点.开始活塞D 距汽缸B 的底部3l .后在D 上放一质量为0p S m g =的物体.求: (1)稳定后活塞D 下降的距离;(2)改变汽缸内气体的温度使活塞D 再回到初位置,则气体的温度应变为多少?热学计算题(二)答案解析1.解:Ⅰ.以玻璃管内封闭气体为研究对象,设玻璃管横截面积为S,初态压强为:P1=P0+h=75+25=100cmHg,V1=L1S=30S,倒转后压强为:P2=P0﹣h=75﹣25=50cmHg,V2=L2S,由玻意耳定律可得:P1L1=P2L2 ,100×30S=50×L2S,解得:L2=60cm;Ⅱ.T1=273+27=300K,当水银柱与管口相平时,管中气柱长为:L3=L﹣h=100﹣25cm=75cm,体积为:V3=L3S=75S,P3=P0﹣h=75﹣25=50cmHg,由理想气体状态方程可得:代入数据解得:T3=375K,t=102℃2.解:(ⅰ)由于气柱上面的水银柱的长度是25cm,所以右侧水银柱的液面的高度比气柱的下表面高25cm,所以右侧的水银柱的总长度是25+5=30cm,试管的下面与右侧段的水银柱的总长45cm,所以在左侧注入25cm长的水银后,设有长度为x的水银处于底部水平管中,则 50﹣x=45解得 x=5cm即5cm水银处于底部的水平管中,末态压强为75+(25+25)﹣5=120cmHg,由玻意耳定律p1V1=p2V2代入数据,解得:L2=12.5cm(ⅱ)由水银柱的平衡条件可知需要也向右侧注入25cm长的水银柱才能使空气柱回到A、B之间.这时空气柱的压强为:P3=(75+50)cmHg=125cmHg由查理定律,有: =解得T3=375K3.①88cmHg;②4.5cm①设左管横截面积为S,则右管横截面积为3S,以右管封闭气体为研究对象.初状态p1=80 cmHg,V1=11×3S=33S,两管液面相平时,Sh1=3Sh2,h1+h2=4 cm,解得h2=1 cm,此时右端封闭管内空气柱长l=10 cm,V2=10×3S=30S气体做等温变化有p1V1=p2V2即80×33S=p2×30S 解得p2=88cmHg②以左管被活塞封闭气体为研究对象p1′=76 cmHg,V1′=11S,p2=p2′=88 cmHg气体做等温变化有p1′V1′=p2′V2′解得V2′=9.5S活塞推动的距离为L=11 cm+3 cm-9.5 cm=4.5cm4.解:设管的横截面积为S,活塞再次平衡时左侧管中气体的长度为l′,左侧管做等压变化,则有:其中,T=280K,T′=300K,解得:设平衡时右侧管气体长度增加x,则由理想气体状态方程可知:其中,h=6cmHg解得:x=1cm所以活塞平衡时右侧管中气体的长度为25cm.5.解:对I气体,初状态,末状态由玻意耳定律得:所以,对 II气体,初状态,末状态由玻意耳定律得:所以,l2=l0B活塞下降的高度为: =l0;6.解:活塞平衡时,由平衡条件得:P A S A+P B S B=P0(S A+S B)①,P A′S A+P B′S B=P0(S A+S B)②,已知S B =2S A ③,B 中气体初、末态温度相等,设末态体积为V B ,由玻意耳定律得:P B ′V B =P B V 0 ④,设A 中气体末态的体积为V A ,因为两活塞移动的距离相等, 故有=⑤,对A 中气体,由理想气体状态方程得:⑥, 代入数据解得:P B =,P B ′=,P A ′=2P 0,V A =,V B =,T A ==500K ,7.①177℃②8 cm ①封闭气体做等压变化,设试管横截面积为S ,则初态:V 1=20S ,T 1=300K ,末态:V 2=30S ,由盖吕萨克定律可得:1v T =22v T ,解得T 2=450K ,所以t 2=177℃. ②设当有xcm 水银柱注入时会在87℃报警,由理想气体状态方程可得:111p v T =222p v T , 代入数据解得x=8 cm .8.解:(1)设初态汽缸B 内的压强为p B ,对两活塞及刚性杆组成的系统由平衡条件有:p A S A +p 0S B =p B S B +p 0S A …①据已知条件有:S A :S B =4:1…②联立①②有:p B =;(2)设末态汽缸A 内的压强为p A ',汽缸B 内的压强为p B ',环境温度由上升至的过程中活塞向右移动位移为x ,则对汽缸A 中的气体由理想气体状态方程得:…③对汽缸B 中的气体,由理想气体状态方程得:…④对末态两活塞及刚性杆组成的系统由平衡条件有:p A 'S A +p 0S B =p B 'S B +p 0S A …⑤联立③④⑤得:t=402℃.9.解:(ⅰ)活塞b 升至顶部的过程中,活塞a 不动,活塞a 、b 下方的氮气经历等压过程.设气缸A 的容积为V 0,氮气初态体积为V 1,温度为T 1,末态体积为V 2,温度为T 2,按题意,气缸B 的容积为V 0,则得:V 1=V 0+•V 0=V 0,①V 2=V 0+V 0=V 0,②根据盖•吕萨克定律得: =,③由①②③式和题给数据得:T 2=320K ; ④(ⅱ)活塞b 升至顶部后,由于继续缓慢加热,活塞a 开始向上移动,直至活塞上升的距离是气缸高度的时,活塞a 上方的氧气经历等温过程,设氧气初态体积为V 1′,压强为P 1′,末态体积为V 2′,压强为P 2′,由题给数据有,V 1′=V 0,P 1′=P 0,V 2′=V 0,⑤由玻意耳定律得:P 1′V 1′=P 2′V 2′,⑥由⑤⑥式得:P 2′=P 0.⑦ 10.7.6cm 3×105Pa 解析:由玻意耳定律,对A 部分气体有 S x L P LS P A )(+= ① 对B 部分气体有S x L P LS P B )(-= ②代入相关数据解得x =320=7.6cm ,P =3×105 Pa11.解:(1)开始时被封闭气体的压强为,活塞C 距气缸A 的底部为l ,被封气体的体积为4lS ,重物放在活塞D 上稳定后,被封气体的压强为:活塞C 将弹簧向左压缩了距离,则活塞C 受力平衡,有:根据玻意耳定律,得:解得:x=2l活塞D 下降的距离为:(2)升高温度过程中,气体做等压变化,活塞C 的位置不动,最终被封气体的体积为,对最初和最终状态,根据理想气体状态方程得解得:。
高中物理热学综合试题及答案
高中物理热学综合试题及答案一、选择题(每题2分,共10分)1. 温度是表示物体冷热程度的物理量,其单位是____。
A. 米B. 千克C. 开尔文D. 牛顿2. 热力学第一定律可以表示为△U = Q + W,其中Q代表____。
A. 功B. 热量C. 温度D. 压强3. 热机的效率是指____。
A. 热机输出的功与输入的热量之比B. 热机输入的热量与输出的功之比C. 热机输入的热量与消耗的燃料量之比D. 热机消耗的燃料量与输入的热量之比4. 根据热力学第二定律,下列说法正确的是____。
A. 热量可以自发地从低温物体传向高温物体B. 热量不能自发地从低温物体传向高温物体C. 热量可以自发地从高温物体传向低温物体D. 热量不能自发地从高温物体传向低温物体5. 理想气体的内能仅仅与温度有关,而与体积和压强无关。
这是因为理想气体分子之间的____。
A. 距离很小B. 距离很大C. 作用力很强D. 作用力很弱二、填空题(每题2分,共10分)6. 绝对零度是温度的下限,其数值为________开尔文。
7. 根据理想气体状态方程 PV = nRT,当压强不变,温度升高时,气体的体积将________。
8. 热传导、热对流和热辐射是热传递的三种基本方式,其中热辐射不需要________介质。
9. 热机的效率不可能达到100%,这是由于热力学第二定律的限制。
10. 根据热力学第三定律,当温度趋近于绝对零度时,系统的熵趋近于________。
三、简答题(每题10分,共20分)11. 简述热力学第一定律和第二定律的基本内容。
12. 解释什么是熵,并简述熵增原理。
四、计算题(每题15分,共30分)13. 一个理想气体从初始状态(P1, V1, T1)开始等压膨胀到最终状态(P2, V2, T2)。
如果P1 = 1 atm,V1 = 2 m³,T1 = 300 K,P2 = 1.5 atm,求气体的最终体积V2。
高中物理《热学》练习题(附答案解析)
高中物理《热学》练习题(附答案解析)学校:___________姓名:___________班级:___________一、单选题1.关于两类永动机和热力学的两个定律,下列说法正确的是( )A .第二类永动机不可能制成是因为违反了热力学第一定律B .第一类永动机不可能制成是因为违反了热力学第二定律C .由热力学第一定律可知做功不一定改变内能,热传递也不一定改变内能,但同时做功和热传递一定会改变内能D .由热力学第二定律可知从单一热源吸收热量,完全变成功是可能的2.下列关于系统是否处于平衡态的说法,正确的是( )A .将一根铁丝的一端插入100℃的水中,另一端插入0℃的冰水混合物中,经过足够长的时间,铁丝处于平衡态B .两个温度不同的物体相互接触时,这两个物体组成的系统处于非平衡态C .0℃的冰水混合物放入1℃的环境中,冰水混合物处于平衡态D .压缩密闭容器中的空气,空气处于平衡态3.分子直径和分子的质量都很小,它们的数量级分别为( )A .102610m,10kg d m --==B .102910cm,10kg d m --==C .102910m,10kg d m --==D .82610m,10kg d m --==4.下列现象中,通过传热的方法来改变物体内能的是( )A .打开电灯开关,灯丝的温度升高,内能增加B .太阳能热水器在阳光照射下,水的温度逐渐升高C .用磨刀石磨刀时,刀片的温度升高,内能增加D .打击铁钉,铁钉的温度升高,内能增加5.图甲是一种导热材料做成的“强力吸盘挂钩”,图乙是它的工作原理图。
使用时,按住锁扣把吸盘紧压在墙上(图乙1),吸盘中的空气(可视为理想气体)被挤出一部分。
然后把锁扣缓慢扳下(图乙2),让锁扣以盘盖为依托把吸盘向外拉出。
在拉起吸盘的同时,锁扣对盘盖施加压力,致使盘盖以很大的压力压住吸盘,保持锁扣内气体密闭,环境温度保持不变。
下列说法正确的是( )A .锁扣扳下后,吸盘与墙壁间的摩擦力增大B .锁扣扳下后,吸盘内气体分子平均动能增大C .锁扣扳下过程中,锁扣对吸盘中的气体做正功,气体内能增加D .锁扣扳下后吸盘内气体分子数密度减小,气体压强减小6.以下说法正确的是( )A .气体对外做功,其内能一定减小B .分子势能一定随分子间距离的增加而增加C .烧热的针尖接触涂有蜂蜡薄层的云母片背面,熔化的蜂蜡呈椭圆形,说明蜂蜡是晶体D .在合适的条件下,某些晶体可以转变为非晶体,某些非晶体也可以转变为晶体7.在汽缸右侧封闭一定质量的理想气体,压强与大气压强相同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理热学习题
1、如图所示,封在空气的圆柱形气缸挂在测力计上,测力计的示数为F ,已知气缸的质量为M ,横截面积为S ,活塞的质量为m ,大气压为p 0,缸壁与活塞间的摩擦不计,则缸内气体的压强为
A.0Mg p S -
B.0mg p S -
C.0F Mg p S --
D.0F mg p S
-- 2.只要知道下列哪一组物理量,就可以估算出气体中分子间的平均距离
A.阿伏加德罗常数、该气体的摩尔质量和密度
B.阿伏加德罗常数、该气体的摩尔质量和质量
C.阿伏加德罗常数、该气体的质量和体积
D.该气体的密度、体积和摩尔质量
3、一定量的理想气体可经过不同的过程从状态(p 1、V 1、T 1)变化到状态(p 2、V 2、T 2),已知T 2>T 1,则在这些过程中
A.
气体一定都从外界吸收热量 B.
气体和外界交换的热量是相等的 C.
外界对气体所做的功都是相等的 D.
气体内能的变化量都是相等的
4.如图所示为电冰箱的工作原理,压缩机工作时,强迫
制冷剂在冰箱内外管道中不断循环,那么,下列说法中
正确的是 ( ) A. 在冰箱外的管道中,制冷剂迅速膨胀并放出热量
B. 在冰箱内的管道中,制冷剂迅速膨胀并吸收热量
C. 在冰箱外的管道中,制冷剂被剧烈压缩并放出热量
D. 在冰箱内的管道中,制冷剂被剧烈压缩并吸收热量
5、一定质量的理想气体,如果保持温度不变而吸收了热量,那么气体的
A 体积一定增大,内能一定改变
B 体积一定减小,内能一定保持不变
C 压强一定增大,内能一定改变
D 压强一定减小,内能一定不变
6.在使两个分子间的距离由很远(r>10-9m)变到很难再靠近的过程中,关于分子间作用力的大小和分子势能的变化,正确说法是
A. 分子间作用力先减小后增大;分子势能不断增大
B. 分子间作用力先增大后减小;分子势能不断减小
C.分子间作用力先增大后减小再增大;分子势能先减小后增大
D. 分子间作用力先减小后增大再减小;分子势能先增大后减小
7.如图所示,一根竖直的弹簧支持着一倒立气缸的活塞,使气缸悬空而静止。
设活塞与缸壁间无摩擦,可以在缸内自由移动,缸壁导热性良好使缸内气体的温度保持与外界大气温度相同,则下列结论中正确的是
A.若外界大气压增大,则弹簧将压缩一些
B.若外界大气压增大,则气缸的上底面距地面的高度将增大
C.若气温升高,则活塞距地面的高度将减小
D.若气温升高,则气缸的上底面距地面的高度将增大
8.用两种不同的金属丝组成一个回路,接触点1插在热水中,接触2点插在冷水中,如图所示,电流计指针会发生偏转,这就是温差发电现象。
关于这一现象,正确说法是A.这一实验过程不违反热力学第二定律;
B.在实验过程中,热水一定降温、冷水一定升温;
C.在实验过程中,热水内能全部转化成电能,电能则部分转
化成冷水的内能。
D.在实验过程中,热水的内能只有部分转化成电能,电能则
全部转化成冷水的内能。
9.对于如下几种现象的分析,下列说法中正确的是
A.物体的体积减小温度不变时,物体内能一定减小
B. 用显微镜观察液体中悬浮微粒的布朗运动,观察到的是液体中分子的无规则运动
C.利用浅层和深层海水的温度差可以制造一种热机,将海水的一部分内能转化为机械能D.打开香水瓶后,在较远的地方也能闻到香味,这表明香水分子在不停地运动
10、油酸酒精溶液的浓度为每1000ml油酸酒精溶液中有油酸0.6ml,用滴管向量筒内滴50滴
上述溶液,量筒中的溶液体积增加1ml,若把一滴这样的溶液滴入
盛水的浅盘中,由于酒精溶于水,油酸在水面展开,稳定后形成单分子油膜的形状如图所示。
(1)若每一小方格的边长为25mm,则油酸薄膜的面积约为m2;
(2)第一滴油酸酒精溶液含有纯油酸的体积为m3;
(3)由以上数据,估算出油酸分子的直径m。
11.“奋进号”航天飞机进行过一次太空飞行,其主要任务是给国际空间站安装太阳能电池板.该太阳能电池板长L=73m,宽d=12m,将太阳能转化为电能的转化率为η=20%,已知太阳的辐射总功率为P0=3.83×1026W,地日距离为R0=1.5×1011m,国际空间站离地面的高度为
h=370km,它绕地球做匀速圆周运动约有一半时间在地球的阴影内,所以在它能发电的时间内将把所发电的一部分储存在蓄电池内.由以上数据,估算这个太阳能电池板能对国际空间站提供的平均功率是多少?
参考答案
1.BC;2,A;3,D;4,BC;5,D;6,C;7,D;8,AB;9,CD;10.4.4×10-2m2,1.2×10-11m3 2.7×10-10m 油膜面积约占70小格
11.解:由于国际空间站离地面的高度仅为地球半径的约二十分之一,可认为是近地卫星,h远小于R0,因此它离太阳的距离可认为基本不变,就是地日距离R0.太阳的辐射功率应视为均匀分布在以太阳为圆心,地日距离为半径的球面上,由此可以算出每平方米接收到的太阳能功率I0=P0/4πR02=1.35kW/m2(该数据被称为太阳常数),再由电池板的面积和转化率,可求出其发电时的电功率为P=I0Ldη=2.37×105 W,由于每天只有一半时间可以发电,所以平均功率只是发电时电功率的一半即118.5 Kw.。