高中物理3-3《热学》计算题专项练习题(含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理3-3《热学》计算题专项练习题(含

答案)

-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

热学计算题(二)

1.如图所示,一根长L=100cm、一端封闭的细玻璃管开口向上竖直放置,管内用h=25cm长的水银柱封闭了一段长L1=30cm的空气柱.已知大气压强为75cmHg,玻璃管周围环境温度为27℃.求:

Ⅰ.若将玻璃管缓慢倒转至开口向下,玻璃管中气柱将变成多长?

Ⅱ.若使玻璃管开口水平放置,缓慢升高管内气体温度,温度最高升高到多少摄氏度时,管内水银不能溢出.

2.如图所示,两端开口、粗细均匀的长直U形玻璃管内由两段水银柱封闭着长度为15cm的空气柱,气体温度为300K时,空气柱在U形管的左侧.

(i)若保持气体的温度不变,从左侧开口处缓慢地注入25cm长的水银柱,管内的空气柱长为多少?

(ii)为了使空气柱的长度恢复到15cm,且回到原位置,可以向U形管内再注入一些水银,并改变气体的温度,应从哪一侧注入长度为多少的水银柱气体的温度变为多少(大气压强P0=75cmHg,图中标注的长度单位均为cm)

3.如图所示,U形管两臂粗细不等,开口向上,右端封闭的粗管横截面积是开口的细管的三倍,管中装入水银,大气压为76cmHg。左端开口管中水银面到管口距离为11cm,且水银面比封闭管内高4cm,封闭管内空气柱长为11cm。现在开口端用小活塞封住,并缓慢推动活塞,使两管液面相平,推动过程中两管的气体温度始终不变,试求:

①粗管中气体的最终压强;②活塞推动的距离。

4.如图所示,内径粗细均匀的U形管竖直放置在温度为7℃的环境中,左侧管上端开口,并用轻质活塞封闭有长l1=14cm,的理想气体,右侧管上端封闭,管上部有长l2=24cm的理想气体,左右两管内水银面高度差h=6cm,若把该装置移至温度恒为27℃的房间中(依然竖直放置),大气压强恒为p0=76cmHg,不计活塞与管壁间的摩擦,分别求活塞再次平衡时左、右两侧管中气体的长度.

5.如图所示,开口向上竖直放置的内壁光滑气缸,其侧壁是绝热的,底部导热,内有两个质量均为m的密闭活塞,活塞A导热,活塞B绝热,将缸内理想气体分成Ⅰ、Ⅱ两部分.初状态整个装置静止不动且处于平衡状态,Ⅰ、Ⅱ两部分气体的高度均为l0,温度为T0.设外界大气压强为P0保持不变,活塞横截面积为S,且mg=P0S,环境温度保持不变.求:在活塞A上逐渐添加铁砂,当铁砂质量等于2m时,两活塞在某位置重新处于平衡,活塞B下降的高度.

6.如图,在固定的气缸A和B中分别用活塞封闭一定质量的理想气体,活塞面积之比为S A:S B=1:2,两活塞以穿过B的底部的刚性细杆相连,可沿水平方向无摩擦滑动.两个气缸都不漏气.初始时,A、B 中气体的体积皆为V0,温度皆为T0=300K.A中气体压强P A=1.5P0,P0是气缸外的大气压强.现对A加热,使其中气体的体积增大V0/4,,温度升到某一温度T.同时保持B中气体的温度不变.求此时A中气体压强(用P 0表示结果)和温度(用热力学温标表达)

7.如图所示为一简易火灾报警装置.其原理是:竖直放置的试管中装有水银,当温度升高时,水银柱上升,使电路导通,蜂鸣器发出报警的响声.27℃时,空气柱长度L1为20cm,水银上表面与导线下端的距离L2为10cm,管内水银柱的高度h为13cm,大气压强P0=75cmHg. (1)当温度达到多少摄氏度时,报警器会报警?

(2)如果要使该装置在87℃时报警,则应该再往玻璃管内注入多少cm高的水银柱?

8.如图所示,导热气缸A与导热气缸B均固定于地面,由刚性杆连接的导热活塞与两气缸间均无摩擦,两活塞面积S A、S B的比值4:1,两气缸都不漏气;初始状态系统处于平衡,两气缸中气体的长度皆为L,温度皆为t0=27℃,A中气体压强P A=7P0/8,P0是气缸外的大气压强;

(Ⅰ)求B中气体的压强;

(Ⅱ)若使环境温度缓慢升高,并且大气压保持不变,求在活塞移动位移为L/2时环境温度为多少摄氏度?

9.如图,两气缸AB粗细均匀,等高且内壁光滑,其下部由体积可忽略的细管连通;A的直径为B的2倍,A上端封闭,B上端与大气连通;两气缸除A顶部导热外,其余部分均绝热.两气缸中各有一厚度可忽略的绝热轻活塞a、b,活塞下方充有氮气,活塞a上方充有氧气;当大气压为P0,外界和气缸内气体温度均为7℃且平衡时,活塞a离气缸顶的距离是气缸高度的1/4,活塞b在气缸的正中央.

(ⅰ)现通过电阻丝缓慢加热氮气,当活塞b升至顶部时,求氮气的温度;

(ⅱ)继续缓慢加热,使活塞a上升,当活塞a上升的距离是气缸高度的1/16时,求氧气的压强.

10.A 、B 汽缸的水平长度均为20 cm 、截面积均为10 cm 2,C 是可在汽缸内无摩擦滑动的、体积不计的活塞,D 为阀门.整个装置均由导热材料制成.起初阀门关闭,A 内有压强A P =4.0×105 Pa 的氮气.B 内有压强=B P 2.0×105 Pa 的氧气.阀门打开后,活塞C 向右移动,最后达到平衡.求活塞C 移动的距离及平衡后B 中气体的压强.

11.如图所示,内壁光滑长度为4l 、横截面积为S 的汽缸A 、B ,A 水平、B 竖直固定,之间由一段容积可忽略的细管相连,整个装置置于温度27℃、大气压为p 0的环境中,活塞C 、D 的质量及厚度均忽略不计.原长3l 、劲度系数03p S k l

=的轻弹簧,一端连接活塞C 、另一端固定在位于汽缸A 缸口的O 点.开始活塞D 距汽缸B 的底部3l .后在D 上放一质量为0p S m g =

的物体.求: (1)稳定后活塞D 下降的距离;

(2)改变汽缸内气体的温度使活塞D 再回到初位置,则气体的温度应变为多少?

热学计算题(二)答案解析

1.解:Ⅰ.以玻璃管内封闭气体为研究对象,设玻璃管横截面积为S,

初态压强为:P1=P0+h=75+25=100cmHg,V1=L1S=30S,

倒转后压强为:P2=P0﹣h=75﹣25=50cmHg,V2=L2S,

由玻意耳定律可得:P1L1=P2L2 ,

100×30S=50×L2S,

解得:L2=60cm;

Ⅱ.T1=273+27=300K,当水银柱与管口相平时,管中气柱长为:L3=L﹣h=100﹣25cm=75cm,

体积为:V3=L3S=75S,

P3=P0﹣h=75﹣25=50cmHg,

由理想气体状态方程可得:

代入数据解得:T3=375K,t=102℃

2.解:(ⅰ)由于气柱上面的水银柱的长度是25cm,所以右侧水银柱的液面的高度比气柱的下表面高

25cm,所以右侧的水银柱的总长度是25+5=30cm,试管的下面与右侧段的水银柱的总长45cm,所以在左侧注入25cm长的水银后,设有长度为x的水银处于底部水平管中,则 50﹣x=45

解得 x=5cm

即5cm水银处于底部的水平管中,末态压强为75+(25+25)﹣5=120cmHg,由玻意耳定律

p1V1=p2V2

代入数据,解得:L2=12.5cm

(ⅱ)由水银柱的平衡条件可知需要也向右侧注入25cm长的水银柱才能使空气柱回到A、B之间.

这时空气柱的压强为:

P3=(75+50)cmHg=125cmHg

由查理定律,有: =

解得T3=375K

3.①88cmHg;②4.5cm

①设左管横截面积为S,则右管横截面积为3S,以右管封闭气体为研究对象.初状态p1=80 cmHg,V1=11×3S=33S,

两管液面相平时,Sh1=3Sh2,h1+h2=4 cm,解得h2=1 cm,

相关文档
最新文档