2012年数学建模A题一等奖论文
2012年数学建模A题优秀论文
基于数理分析的葡萄评价体系摘要葡萄酒质量的好坏主要依赖于评酒员的感观评价,由于人为主观因素的影响,对于酒质量的评价总会存在随机差异,为此找到一种简单有效的客观方法来评酒,就显得尤为重要了。
本文通过研究酿酒葡萄的好坏与所酿葡萄酒的质量的关系,以及葡萄酒和酿酒葡萄检测的理化指标的关系,以及葡萄酒理化指标与葡萄酒质量的关系,旨在通过客观数据建立数学模型,用客观有效的方法来评价葡萄酒质量。
对于问题一,我们首先用配对样品t 检验方法研究两组评酒员评价差异的显著性,将红葡萄酒与白葡萄酒进行分类处理,用SPSS 软件对两组评酒员的评分的各个指标以及总评分进行了配对样本t 检验。
得到的部分结果显示:红葡萄酒外观色调、香气质量的评价存在显著性差异,其他单指标的评价不存在显著差异,白葡萄、红葡萄以及整体的评价存在显著性差异。
接着我们建立了数据可信度评价模型比较两组数据的可信性,将数据的可信度评价转化成对两组评酒员评分的稳定性评价。
首先我们对单个评酒员评分与该组所有评酒员评分的均值的偏差进行了分析,偏差不稳定的点就成为噪声点,表明此次评分不稳定。
然后我们用两组评酒员评分的偏差的方差衡量评酒员的稳定性。
得到第 2 组的方差明显小于第1 组的,从而得出了第2 组评价数据的可信度更高的结论。
对于问题二,我们根据酿酒葡萄的理化指标和葡萄酒质量对葡萄进行了分级。
一方面,我们对酿酒葡萄的一级理化指标的数据进行标准化,基于主成分分析法对其进行了因子分析,并且得到了27 种葡萄理化指标的综合得分及其排序。
另一方面,我们又对附录给出的各单指标百分制评分的权重进行评价,并用信息熵法重新确定了权重,用新的权重计算出27 种葡萄酒质量的综合得分并排序。
最后我们对两个排名次序用基于模糊数学评价方法将葡萄的等级划分为1-5 级。
对于问题三,首先我们将众多的葡萄理化指标用主成分分析法综合成 6 个主因子,并将葡萄等级也列为主因子之一。
对葡萄的 6 个主因子,以及葡萄酒的10 个指标用SPSS 软件进行偏相关分析,得到酒黄酮与葡萄的等级正相关性较强等结论。
2012年数学建模A题优秀论文
11.
2 T
:为全酒样总得分的方差。
13.Xki:葡萄的理化指标变量
10.
2 i
:为第
i
种酒样品得分的方差
12: :为随机误差项。
14.Βk: 未知参数
15. :解释变量估计值
16. : 实际观测值
17. :变量
18. :残差
五、模型的建立与求解
5.1 问题一模型的建立和求解 5.1.1.评价结果的显著性差异分析
4
行结果:
对1
一红 - 二红
对2
一白 - 二白
t 2.390 -2.127
n
Sig.(双侧)
26
.024
26
.043
结论分析:本题中的自由度 n=27-1=26, t (26) 2.0555,即知拒绝域为 2
t 2.0555,由上表可知两组评酒师对红、白葡萄酒的评价结果的检验值
t1 2.390 2.0555, t2 2.127 2.0555,因为两个检验值均在拒绝域,所以两组评酒师
66.3
68.4
75.5
样品 7
71.5
65.3
77.5
74.2
样品 8
72.3
66
71.4
72.3
样品 9
81.5
2012高教社杯全国大学生数学建模竞赛全国一等奖A题
2011高教社杯全国大学生数学建模竞赛城市表层土壤重金属污染分析摘要本文主要研究重金属对城市表层土壤污染的问题,我们根据题目所给定的一些数据和信息分析并建立了扩散传播模型、权重分配模型、对比模型和转换模型解决问题。
首先,我们利用Matlab 软件拟出该城区地势图(图1),根据所给数据绘出该地区的三维地势及采样点在其上的综合空间分布图。
之后将8种重金属的浓度等高线投影到该地区三维地形图曲面上,接着分别计算8种重金属在五个区域的平均值,立体图和平面图(图1附件)相结合便可得出8种重金属元素在该城区的空间分布。
其次,在确定该城区内不同区域重金属的污染程度时,我们运用两种方法进行解答。
先假设各重金属毒性及其它性质相同,运用公式ijij P C P ='求出各区域各金属相对于背景平均值的比值作为金属污染程度,再运用1ji ij j C C ==∑求出各区域重金属污染程度,并将各区进行比较。
之后,我们加上各重金属的毒性,对各重金属求出权数,再结合国标重金属污染等级和已知的各组数据来确定金属的污染程度。
由上述两种方法的对比,更准确地得出重金属对各区的影响程度。
即: 工业区>交通区>生活区>公园绿地区>山区 并根据第一个模型的数据来说明重金属污染的主要原因。
再次,对重金属污染物的传播特征进行了分析,判断出重金属污染物主要是通过大气、土壤和水流进行传播。
在分析之中,我们得出这三种状态的传播并不是孤立存在的,而是可以相互影响和叠加的,因此,我们分别建立三个传播模型,再对这三个传播模型进行了时间和空间上的拟合,得出重金属浓度最高的区域图,并结合各重金属的分布图(图6)来确定各污染源的位置。
最后,本题中只给出了重金属对土壤的污染,对于研究城市地质环境的演变模式,还需要搜集一些信息(图7)。
根据每种因素对地质环境的影响程度进行由定性到定量的转化。
建立同一地质时期地质环境中各因素的正影响和负影响的权重分配模型,再对这些权重进行验算和修正。
2012年全国大学生数学建模大赛一等奖论文
葡萄酒的评价摘要随着人民生活水平的提高,葡萄酒开始走进千家万户,而葡萄酒的优劣评定也成了人们热议的话题。
葡萄酒的优劣评价一般通过聘请有经验的评酒员进行品评并做出评分。
本文围绕葡萄酒的评价问题进行研究分析。
针对问题一,首先我们对附录1数据进行整理分析。
先利用matlab编程对数据进行正态性检验,得出样本均满足正态分布这一条件之后进一步运用SPSS对数据进行配对样本T检验,检验得出的两组p值都小于标准0.05,判定两组品酒员的评价结果存在显著性差异。
接着,对所给评分数据进行方差分析,并进一步运用组间离均平方和方法比较第一、二组P值和F值的波动性,并最终得出结论:第二组评酒员所给的评分更为可信。
针对问题二,我们结合原问题附件中的数据,先采用因子分析方法提炼出对葡萄总体理化指标有显著影响的因子,分红葡萄和白葡萄两类之后采用聚类分析方法将葡萄分为五类。
在问题一的基础上,利用可信度高的品酒员所评分数作为葡萄酒质量的衡量标准,为五类葡萄划分好坏。
最终我们将红白葡萄都分为五个级别,分别是A级(极好),B级(较好),C级(普通),D级(较差),E级(最差)。
图-红葡萄的分类针对问题三,由于葡萄的理化指标众多,首先利用sas软件分析葡萄与葡萄酒的理化指标之间的相关系数,选取与葡萄酒理化指标相关性较显著的葡萄理化指标,做典型相关分析。
并对典型相关分析的结果进行分析。
红葡萄和红葡萄酒间的典型相关分析结果说明:两组变量间,花色苷、苹果酸、褐变度、色泽L*相关密切,特别是葡萄与葡萄酒间的花色苷指标可见显著相关;白葡萄与白葡萄酒的结果说明:白葡萄指标的黄酮醇、褐变度、单宁指标与白葡萄酒的总黄酮、单宁、总酚可见显著相关。
针对问题四,针对问题四,利用酿酒葡萄和葡萄酒的理化指标与葡萄酒的质量构建多元线性回归模型,从而分析出哪些理化指标对葡萄酒的质量有显著影响。
在最后,我们将酿酒葡萄和葡萄酒的感官指标当作变量引入回归方程,得到回归方程的拟合度为98.62%,而没加上感官指标时的拟合度为78.89%,所以加上感官指标后回归方程的拟合度明显变高,而且各个参数都通过了显著性检验,论证了不能用葡萄和葡萄酒的理化指标来评价葡萄酒的质量。
2012年全国大学生数学建模竞赛A题一等奖论文
关键词:配对样本 t 检验 数据可信度评价 主成分分析 模糊数学评价 综合评分 信息熵 偏相关分析 多元线性回归
1
1 问题重述
确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。 每个评酒 员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡 萄酒的质量。 酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒 葡萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量。 附件中给出了某 一年份一些葡萄酒的评价结果, 并分别给出了该年份这些葡萄酒的和酿酒葡萄的 成分数据。我们需要建立数学模型并且讨论下列问题: 1. 分析附件 1 中两组评酒员的评价结果有无显著性差异,并确定哪一组的 评价结果更可信。 2. 根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。 3. 分析酿酒葡萄与葡萄酒的理化指标之间的联系。 4.分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,并论证能否用 葡萄和葡萄酒的理化指标来评价葡萄酒的质量。
2012 高教社杯全国大学生数学建模竞赛
承
诺
书
我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮 件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问 题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他 公开的资料(包括网上查到的资料) ,必须按照规定的参考文献的表述方式在正 文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反 竞赛规则的行为,我们将受到严肃处理。 我们授权全国大学生数学建模竞赛组委会, 可将我们的论文以任何形式进 行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发 表等) 。
2012全国数学建模论文a题(葡萄酒)省一等奖范文
承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):指导组日期:2012 年 9 月 10 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):2葡萄酒的评价摘要本文主要根据评酒员对葡萄酒的一系列指标的打分,从而对葡萄酒的质量作出判别。
考虑到酿酒葡萄的好坏、所酿葡萄酒的质量和酿酒工艺、陈酿技术等约束条件,为此我们建立模型来确定影响葡萄酒评价的各种因素。
在这模型中利用excel,spss,matlab等一系列的数学工具对模型进行求解,综合统计分析的应用对所给的结果进行比较,从而得出最终的结果。
首先,对于问题1,分析两组评酒员的评价结果,每个评酒员对外观、口感、香气、平衡/整体四个方面指标得分进行求和,得到其总分,确定葡萄酒的质量。
由于葡萄酒的质量满足正态分布,为了能分辨出两组的差异,所以利用spss进行配对T检验,从而得出两组评酒员有显著的差异。
其次,用excel对两组进行方差分析,根据所得到的P值大小,得出第一组的评价结果更为可信。
对于问题2,在问题1的基础下,根据所给的理化指标和葡萄酒的质量利用spss统计分析软件进行分析,相关性分析对数据进行预备分析,剔除与葡萄酒质量无显著性相关的指标,再利用系统聚类的方法对酿酒葡萄进行分级。
2012年数学建模A题优秀论文
基于数理分析的葡萄评价体系摘要葡萄酒质量的好坏主要依赖于评酒员的感观评价,由于人为主观因素的影响,对于酒质量的评价总会存在随机差异,为此找到一种简单有效的客观方法来评酒,就显得尤为重要了。
本文通过研究酿酒葡萄的好坏与所酿葡萄酒的质量的关系,以及葡萄酒和酿酒葡萄检测的理化指标的关系,以及葡萄酒理化指标与葡萄酒质量的关系,旨在通过客观数据建立数学模型,用客观有效的方法来评价葡萄酒质量。
对于问题一,我们首先用配对样品t 检验方法研究两组评酒员评价差异的显著性,将红葡萄酒与白葡萄酒进行分类处理,用SPSS 软件对两组评酒员的评分的各个指标以及总评分进行了配对样本t 检验。
得到的部分结果显示:红葡萄酒外观色调、香气质量的评价存在显著性差异,其他单指标的评价不存在显著差异,白葡萄、红葡萄以及整体的评价存在显著性差异。
接着我们建立了数据可信度评价模型比较两组数据的可信性,将数据的可信度评价转化成对两组评酒员评分的稳定性评价。
首先我们对单个评酒员评分与该组所有评酒员评分的均值的偏差进行了分析,偏差不稳定的点就成为噪声点,表明此次评分不稳定。
然后我们用两组评酒员评分的偏差的方差衡量评酒员的稳定性。
得到第 2 组的方差明显小于第1 组的,从而得出了第2 组评价数据的可信度更高的结论。
对于问题二,我们根据酿酒葡萄的理化指标和葡萄酒质量对葡萄进行了分级。
一方面,我们对酿酒葡萄的一级理化指标的数据进行标准化,基于主成分分析法对其进行了因子分析,并且得到了27 种葡萄理化指标的综合得分及其排序。
另一方面,我们又对附录给出的各单指标百分制评分的权重进行评价,并用信息熵法重新确定了权重,用新的权重计算出27 种葡萄酒质量的综合得分并排序。
最后我们对两个排名次序用基于模糊数学评价方法将葡萄的等级划分为1-5 级。
对于问题三,首先我们将众多的葡萄理化指标用主成分分析法综合成 6 个主因子,并将葡萄等级也列为主因子之一。
对葡萄的 6 个主因子,以及葡萄酒的10 个指标用SPSS 软件进行偏相关分析,得到酒黄酮与葡萄的等级正相关性较强等结论。
2012年数学建模A题一等奖获奖论文
秩和得到一个新的排序。由于此排序综合了 20 个评酒员的结果,因此,更能反 应酒样的排序真实性,即认为该综合排序为理想排序。记样品 j 在第一组、第二 组排序内的秩次为 X j (1) , X j (2) ,综合之后排序秩次为 X j 。红葡萄酒三种排序的 比较图如下:
关键词:葡萄酒评价
排序检验法
符号秩检验
TOPSIS 法
多重比较
1
一、问题重述
对于葡萄酒质量的确定,现如今通常采用感官评价的方法,即聘请一批有资 质的品酒员对葡萄酒进行品评,然后对其外观、口感等分类指标进行打分。最后 通过求和得到每种葡萄酒的总分,从而确定葡萄酒的质量。附件 1 中给出了某一 年份一些葡萄酒的打分结果。 同时,酿酒葡萄的好坏又直接影响着所酿葡萄酒的质量。除了感官评价的方 法之外,在某种程度上,葡萄酒和酿酒葡萄检测的理化指标也能反映葡萄酒和葡 萄的质量。附件 2 和附件 3 即给出了同一年份中,这些葡萄酒的和酿酒葡萄的成 分数据。 请分析题目,试建立合适的数学模型解决以下问题: 1. 对于附件 1 中的红葡萄酒与白葡萄酒, 每种葡萄酒均由两组评酒员对其进 行打分。试分析这两组品酒员的评价结果有无显著性差异,并判断哪一组的结果 更为可信。 2. 综合感官评价所得到的葡萄酒质量与酿酒葡萄的理化指标,对酿酒葡萄 进行分级。 3. 试分析酿酒葡萄、葡萄酒的两组理化指标之间有何关系。 4. 分析酿酒葡萄的理化指标、葡萄酒的理化指标对葡萄酒质量的影响,论 证能否只用葡萄和葡萄酒的理化指标来评价葡萄酒的质量。
3
分的差异是否在一定的置信区间内,若不在,则认为评分差异性显著。 考虑到本题的背景,两组评分的差异可体现在对样本酒的排名差异上。由于 该问属于食品评价中的感官评价问题,因此,可结合感官评价中的排序检验与非 参数检验中的符号秩检验,对两组评分的显著性进行评价。 1.1.1 样品秩次和秩和的求解 评酒员对每一个酒样均从四大方面进行了评分。根据题意,葡萄酒的质量由 总分所确定。 因此, 我们将每一个方面的评分加和, 得到 i 品酒员对葡萄酒样品 j 的总评分。 以红葡萄酒的评价为例,对于品酒员 i ,将其对 27 种样品的评分进行排序, 评分最高的酒样秩次为 1,当多个样品有相同秩次时,则取平均秩次。记在 i 品 酒员的评价排序中, j 酒样的秩次为 xij ,可得到秩次矩阵为:
2012年全国大学生数学建模优秀论文(A题) 2
地下储油罐的变位分析与罐容表标定摘要加油站地下储油罐在使用一段时间后,由于地基变形等原因会发生纵向倾斜及横向偏转,导致与之配套的“油位计量管理系统”受到影响,必须重新标定罐容表。
本文即针对储油罐的变位时罐容表标定的问题建立了相应的数学模型。
首先从简单的小椭圆型储油罐入手,研究变位对罐容表的影响。
在无变位、纵向变位的情况下分别建立空间直角坐标系,在忽略罐壁厚度等细微影响下,运用积分的方法求出储油量和测量油位高度的关系。
将计算结果与实际测量数据在同一个坐标系中作图,经计算得误差均保持在3.5%以内。
纵向变位中,要分三种情况来进行求解,然后将三段的结果综合在一起与变位前作比较,可以得到变位对罐容表的影响。
通过计算,具体列表给出了罐体变位后油位高度间隔为1cm 的罐容表标定值。
进一步考虑实际储油罐,两端为球冠体顶。
把储油罐分成中间的圆柱体和两边的球冠体分别求解。
中间的圆柱体求解类似于第一问,要分为三种情况。
在计算球冠内储油量时为简化计算,将其内油面看做垂直于圆柱底面。
根据几何关系,可以得到如下几个变量之间的关系:测量的油位高度0h 实际的油位高度h 计算体积所需的高度H于是得到罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β )之间的一般关系。
再利用附表2中的数据列方程组寻找α与β最准确的取值。
αβ一、问题重述通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。
许多储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生纵向倾斜和横向偏转等变化(以下称为变位),从而导致罐容表发生改变。
按照有关规定,需要定期对罐容表进行重新标定。
题目给出了一种典型的储油罐尺寸及形状示意图,其主体为圆柱体,两端为球冠体。
2012数学建模论文A题-------阜阳师范学院数学与计算科学学院 (2)
承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):阜阳师范学院参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):基于统计分析的葡萄酒评价模型摘要葡萄拥有很高的营养价值,含有多种氨基酸、蛋白质和维生素,而以葡萄为原料的葡萄酒也蕴藏了多种营养物质,而且这些物质都是人体必须补充和吸收的营养品。
目前,已知的葡萄酒中含有的对人体有益的成分大约就有600种。
葡萄酒的营养价值由此也得到了广泛的认可,可以说葡萄酒是一个良好的滋补品。
本文通过对葡萄酒的评价,以及酿酒葡萄和葡萄酒的理化指标之间的关系进行讨论分析。
对不同的酿酒葡萄进行了分类,并更深入讨论两者的理化指标是否影响葡萄酒质量。
对于本题,我们主要采用SPSS软件对模型进行求解。
问题一:首先,我们对附录1中数据进行处理,利用excel分别求出两组评酒员分别对红葡萄酒和白葡萄酒的评价结果的平均值。
其次,我们在excel中,求出两组葡萄酒评价结果的平均值的标准差,通过对比两组相应葡萄酒评价结果的平均值的标准差,分别分析出两组评酒品红、白葡萄酒的评价结果有无差异性。
2012年数学建模A题优秀论文
基于数理分析的葡萄评价体系摘要葡萄酒质量的好坏主要依赖于评酒员的感观评价,由于人为主观因素的影响,对于酒质量的评价总会存在随机差异,为此找到一种简单有效的客观方法来评酒,就显得尤为重要了。
本文通过研究酿酒葡萄的好坏与所酿葡萄酒的质量的关系,以及葡萄酒和酿酒葡萄检测的理化指标的关系,以及葡萄酒理化指标与葡萄酒质量的关系,旨在通过客观数据建立数学模型,用客观有效的方法来评价葡萄酒质量。
对于问题一,我们首先用配对样品t 检验方法研究两组评酒员评价差异的显著性,将红葡萄酒与白葡萄酒进行分类处理,用SPSS 软件对两组评酒员的评分的各个指标以及总评分进行了配对样本t 检验。
得到的部分结果显示:红葡萄酒外观色调、香气质量的评价存在显著性差异,其他单指标的评价不存在显著差异,白葡萄、红葡萄以及整体的评价存在显著性差异。
接着我们建立了数据可信度评价模型比较两组数据的可信性,将数据的可信度评价转化成对两组评酒员评分的稳定性评价。
首先我们对单个评酒员评分与该组所有评酒员评分的均值的偏差进行了分析,偏差不稳定的点就成为噪声点,表明此次评分不稳定。
然后我们用两组评酒员评分的偏差的方差衡量评酒员的稳定性。
得到第2 组的方差明显小于第1 组的,从而得出了第2 组评价数据的可信度更高的结论。
对于问题二,我们根据酿酒葡萄的理化指标和葡萄酒质量对葡萄进行了分级。
一方面,我们对酿酒葡萄的一级理化指标的数据进行标准化,基于主成分分析法对其进行了因子分析,并且得到了27 种葡萄理化指标的综合得分及其排序。
另一方面,我们又对附录给出的各单指标百分制评分的权重进行评价,并用信息熵法重新确定了权重,用新的权重计算出27 种葡萄酒质量的综合得分并排序。
最后我们对两个排名次序用基于模糊数学评价方法将葡萄的等级划分为1-5 级。
对于问题三,首先我们将众多的葡萄理化指标用主成分分析法综合成6 个主因子,并将葡萄等级也列为主因子之一。
对葡萄的6 个主因子,以及葡萄酒的10 个指标用SPSS 软件进行偏相关分析,得到酒黄酮与葡萄的等级正相关性较强等结论。
2012数学建模优秀论文A题(借鉴着去写摘要).
基于系统综合评价的城市表层土壤重金属污染分析摘要本文针对城市表层土壤重金属污染问题,首先对各重金属元素进行分析,然后对各种重金属元素的基本数据进行统计分析及无量纲化处理,再对各金属元素进行相关性分析,最后针对各个问题建立模型并求解。
针对问题一,我们首先利用EXCEL 和 SPSS 统计软件对各金属元素的数据进行处理,再利用Matlab 软件绘制出该城区内8种重金属元素的空间分布图最后通过内梅罗污染模型:2/12max22⎪⎪⎭⎫ ⎝⎛+=P P P 平均综,其中平均P 为所有单项污染指数的平均值,m ax P 为土壤环境中针对问题二,我们首先利用EXCELL 软件画出8种元素在各个区内相对含量的柱状图,由图可以明显地看出各个区内各种元素的污染情况,然后再根据重金属元素污染来源及传播特征进行分析,可以得出工业区及生活区重金属的堆积和迁移是造成污染的主要原因,Cu 、Hg 、Zn 主要在工业区和交通区如公路、铁路等交通设施的两侧富集,随时间的推移,工业区、交通区的土壤重金属具有很强的叠加性,受人类活动的影响较大。
同时城市人口密度,土地利用率,机动车密度也是造成重金属污染的原因。
针对问题三,我们从两个方面考虑建模即以点为传染源和以线为传染源。
针对以点为传染源我们建立了两个模型:无约束优化模型()[]()[]()22y i y x i x m D -+-=,得到污染源的位置坐标()6782,5567;有衰减的扩散过程模型得位置坐标(8500,5500),模型为:u k zu c y u b x u a h u 2222222222-∂∂+∂∂+∂∂=∂∂, 针对以线为传染源我们建立了l c be u Y ∆-+=0模型,并通过线性拟合分析线性污染源的位置。
针对问题四,我们在已有信息的基础上,还应收集不同时间内的样点对应的浓度以及各污染源重金属的产生率。
根据高斯浓度模型建立高斯修正模型,得到浓度关于时间和空间的表达式ut e C C -⋅=0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘 要 本文运用多种相关分析、 综合评价和线性回归等方法解决了葡萄酒质量的评价问题。 对于问题一, 首先通过单样本 K-S 检验等方法确定了各葡萄酒样本评分数据的概率 分布,从而确定了显著性差异模型的建立,接着考虑两组评分数据的配对关系约束,引 入 Wilcoxon 符号秩检验法来进行显著性差异的假设检验。 结果显示对于红、 白葡萄酒, 两个品酒组的评价结果均存在显著性差异。最后利用秩相关分析,引入肯德尔和谐系数 法评定评酒组的评分信度,评价结果显示对于红葡萄酒,第一组品酒员的品尝得分更为 可信,而对于白葡萄酒则是第二组品酒员在可信度方面占优。 问题二, 运用主成分分析法进行指标遴选, 构建酿酒葡萄质量的综合评价指标体系, 并利用该指标体系建立基于综合评价的酿酒葡萄分级模型,对酿酒葡萄进行分级。结果 发现样本葡萄大多集中在二、三级,红葡萄样本中样本 23 质量最优,为特级葡萄;样 本 12 质量相对欠缺,属六级葡萄。 问题三中,采用研究两组变量之间相关关系的多元统计方法——典型相关分析,识 别并量化两组变量——酿酒葡萄与葡萄酒的理化指标——之间的关系。分析结果如下: 第一,增大酿酒葡萄果皮的含量对葡萄酒中 DPPH 半抑制体积含量的增加有重要影响; 第二,酿酒葡萄中的苹果酸不仅能促发酵,还能给对红葡萄酒起主要呈色作用的花色苷 和对花色苷起中等辅色作用的单宁物质起保护作用,使得红葡萄酒呈色亮丽;第三,在 葡萄总黄酮消除自由基的抗氧化作用和总酚保护清除自由基的共同作用下, 酿酒葡萄中 的 DPPH 自由基转化为葡萄酒中的 DPPH 半抑制体积。 对于问题四,首先在问题三分析酿酒葡萄与葡萄酒的理化指标间联系的基础上,在 保留葡萄酒指标的前提下, 剔除酿酒葡萄指标中某些认为可以被用于表示对应葡萄酒指 标的部分。接着,利用筛选后的指标建立多元线性回归模型,探究酿酒葡萄和葡萄酒的 理化指标对葡萄酒质量的影响。经检验样本组的线性回归模型评价值与评分值的显著性 差异检验,用葡萄和葡萄酒的理化指标来评价葡萄酒的质量是可行的。 本文综合秩相关分析评价、基于层次分析法的综合评价、典型相关分析、多元线性 回归等模型,结合 MATLAB 、SPSS、 SAS 和 EXCEL 等软件,对葡萄酒质量的评价问 题进行了多角度的分析,并给出了利用理化指标评价葡萄酒质量的模型。在文章的最后 对模型的适用范围做出了推广,在实际应用中有较大的参考价值。
符号
符号说明
品酒员个数 样本数 样本序数 指标序数 第 i 个指标与第 i 个指标的相关系数 一级评价指标中的指标序数 二级评价指标中的指标序数 酿酒葡萄质量综合评价值 每一酿酒葡萄样本所在级别 酿酒葡萄理化指标 葡萄酒的理化指标 线性回归系数 典型变量 解释变量
3
m n j
i
rii
p q
y
B X Y
关键词:秩相关 主成分分析 层次分析综合评价 典型相关分析 多元线性回归
1
一、问题重述
确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。 每个评酒员在对 葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒的质量。 酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系, 葡萄酒和酿酒葡萄检测的理化指标 会在一定程度上反映葡萄酒和葡萄的质量。附件 1 给出了某一年份一些葡萄酒的评价结 果,附件 2 和附件 3 分别给出了该年份这些葡萄酒的和酿酒葡萄的成分数据。请尝试建 立数学模型讨论下列问题: 1. 分析附件 1 中两组评酒员的评价结果有无显著性差异,哪一组结果更可信? 2. 根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。 3. 分析酿酒葡萄与葡萄酒的理化指标之间的联系。 4.分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,并论证能否用葡萄和 葡萄酒的理化指标来评价葡萄酒的质量?
表 2 第一组白葡萄酒品尝评分样本 3 持久性数值异常
品酒员 持久性 1号 7 2号 5 3号 7 4号 5 5号 6 6号 7 7号 77 8号 5 9号 6 10 号 7
对于类似的异常数据采取“先剔除,后替换”的策略,对异常数据进行修正。 5.1.2 各葡萄酒样本评分数据概率分布的确定 对两组品酒员差异性评价的假设检验一般要求数据符合正态分布。统计规律表明, 正态分布有极其广泛的实际背景,生产与科学实验中很多随机变量的概率分布都可以近 似地用正态分布来描述[2]。因此,对葡萄酒质量的评分进行正态性检验有助于我们分析 得出该评分是否科学、合理。
V W
五、模型建立与求解
5.1 问题一的模型建立与求解 问题一要求分析两组评酒员的评价结果有无显著性差异,并判断两组结果在可信程 度方面的优劣。我们认为由以下三个步骤组成: 步骤一:葡萄酒样本评分概率分布的确定,其目的是确定显著性差异模型的类型; 步骤二:两组评酒员评价结果的显著性差异模型的建立,主要通过 Wilcoxon 符号 秩检验法进行显著性差异的假设检验; 步骤三:建立秩相关分析评价模型,并通过该模型判断两组品酒员评价结果在可信 度方面的优劣。 5.1.1 数据的预处理 经过对数据的查找, 我们发现部分原始数据存在异常, 另外有些类型数据存在缺失, 在此我们将其正常化处理。 ( 1)缺失数据的处理 对于数据中存在的缺失现象,本文采用均值替换法对这种缺失数据进行处理。 均值替换法就是将该项目剔除异常数据后取整剩余数据的平均值来替换异常或缺 失数据的方法,即: 1 10 xm* xk m 1, 2, ,10 9 k 1,k m 其中, xm 为缺失值。 由于不同品酒师对同一样本相同项目的打分值差别不大,所以认为采用均值替换法 来处理缺失数据是可行的。以“酒样品 20”色调数据为例进行修补,得到修正后的数据 如下表所示。
2
萄酒的化学过程,使得两组变量间有许多简单相关系数,使问题显得复杂,难以从整体 描述。因此,考虑采用研究两组变量之间相关关系的多元统计方法——典型相关分析, 识别并量化酿酒葡萄与葡萄酒的理化指标两组变量之间的关系,考虑两组变量的线性组 合,并研究它们之间的相关系数 p u, v 。 2.4 问题四的分析 问题四中,需要我们通过酿酒葡萄和葡萄酒的理化指标,得到对葡萄酒的质量的评 价,并论证是否可行。因此,首先考虑在问题三的基础上,针对酿酒葡萄与葡萄酒理化 指标之间的联系和它们与葡萄酒质量之间的相关性进行指标的筛选。随后,期望建立一 个线性回归模型,通过该模型来得到对葡萄酒质量的评价。 由于要论证能否用葡萄和葡萄酒的理化指标来评价葡萄酒的质量, 初步认为在建立 线性回归模型时对样本进行随机遴选,选中的样本作为示例样本组建立线性回归方程, 未选中的样本作为检验样本组对模型的可行性进行验证。
三、模型假设
1. 假设各样本能真实客观地反映酿酒葡萄与葡萄酒的情况; 2. 葡萄酒的质量只与酿酒葡萄的好坏有关,忽略酿造过程中的温度、湿度、人为干扰 等其他因素的影响; 3. 不考虑理化性质的二级指标; 4. 每组评酒员的打分不受上个酒样品的影响,即各评分数据间独立;
四、符号说明
序号
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.
二、问题分析
2.1 问题一的分析 问题一要求比较两组评价结果的是否存在差异, 并建立合理的评价模型以判断两组 结果在可信程度方面的优劣。首先,我们从问题分析可以得出品酒员对葡萄酒样本的品 尝评分是属于感官评价,具有较大的主观性。因此,我们先从问题所给的数据入手,分 析四组品酒结果中对不同样本打分分布。依靠葡萄酒样本评分的概率分布,建立显著性 差异模型。由于品酒员间存在评价尺度、评价位置和评价方向等方面的差异,不同组别 的品酒员对同一酒样的评价结果存在着差异。此时不适用参数检验的方法,而只能用非 参数统计方法来处理。 对主观评分结果合理性的评价,仅仅局限于评分之间表面的数值关系是不够的。因 此,考虑采取秩相关分析法建立评价模型,将评分结果的具体数值部分予以丢弃,只保 留各评分秩大小关系的信息,以给出数据中最稳固、最一般的关系,度量整体评分结果 在可信度方面的优劣。 2.2 问题二的分析 酿酒葡萄,是指以酿造葡萄酒为主要生产目的的葡萄品种[1]。问题二要求分析确定 合理的评价指标体系,并运用该评价指标体系对酿酒葡萄进行分级。显而易见,该问题 要求我们建立一个评价模型。 评价体系主要包含两方面指标: 第一个方面是葡萄酒的质量。这包括外观、香气、口感、整体四方面的评分。外观 包括澄清度和色调,香气包括纯正度、浓度和质量,口感则通过纯正度、浓度、持久性 和质量体现。 第二个方面酿酒葡萄自身的理化指标。如附加二中的葡萄总黄酮、总酚、单宁、果 皮质量等 27 个指标。对于这 27 个酿酒葡萄自身的理化指标,根据多个样本得到的数据 分析出其内在的关系,将相关性显著的指标合并,则可以使得计算简单。 那么由以上的分析可以构建综合评价指标体系,建立模型进行多指标综合评价. 基 于综合评价的结果,即可对酿酒葡萄进行分级。 2.3 问题三的分析 问题三中,题目要求分析酿酒葡萄与葡萄酒的理化指标之间的联系。酿酒葡萄和葡 萄酒分别存在多个理化指标, 若采用简单相关分析的方法, 只是孤立考虑了单个 X 与单 个 Y 间的相关,而没有考虑 X 、Y 变量组内部各变量间的相关。酿酒葡萄经发酵酿成葡
表 1 红葡萄酒样品 20 色调数据修补
品酒员 修补前 修补后 1号 6 6 2号 6 6 3号 4 4 4号 --6 5号 6 6 6号 6 6 7号 8 8 8号 6 6 9号 6 6 10 号 8 8
*
注:表中“ ---”代表数据缺失
( 2)异常数据的修正 原始数据中,有的数据明显比两侧的数据过大或过小,显然是不合理数据。 例如,第一组白葡萄酒品尝评分的数据中,可能由于手工输入的误差,品酒员 7 对 样品 3 持久性评分的数据相对于相邻各品酒员的评分发生了明显的突变现象。这种数据 异常有可能对数据挖掘的结果产生不利影响。
4
首先,计算针对每一个样本 10 个品酒员的评分均值,即
m 1, 2, ,10n 1, 2, ,10 10 其次,利用 SPSS 统计软件中的 P-P 图和单样本 K-S 检验,对数据集两组品酒员分 别对红、白葡萄酒品尝得到的四组评价结果(见附录 8.1.2)进行了正态分布检验,若样 点在正态分布 P-P 图上呈直线散布,则被检验数据基本上成一条直线[3]。 x