陈纪修《数学分析》配套题库【章节题库】(集合与映射)
陈纪修《数学分析》配套题库【课后习题】(数列极限)
第2章数列极限§1 实数系的连续性1.(1)证明不是有理数;(2)是不是有理数?证明:(1)可用反证法若是有理数,则可写成既约分数.由可知m是偶数,设,于是有,从而得到n是偶数,这与是既约分数矛盾.(2)不是有理数.若是有理数,则可写成既约分数,于是,即是有理数,这与(1)的结论矛盾.2.求下列数集的最大数、最小数,或证明它们不存在:解:min A=0;因为,有,所以max A不存在.;因为,使得,于是有,所以min B不存在.max C与min C都不存在,因为,所以max C与min C都不存在.3.A,B是两个有界集,证明:(1)A∪B是有界集;(2)也是有界集.证明:(1)设,有,有,则,有.(2)设,有,有,则,有.4.设数集S有上界,则数集有下界.且.证明:设数集S的上确界为sup S,则对,有-x≤sup S,即;同时对,存在,使得,于是.所以-sup S为集合T的下确界,即.5.证明有界数集的上、下确界惟一.证明:设sup S既等于A,又等于B,且A<B.取,因为B为集合S的上确界,所以,使得,这与A为集合S的上确界矛盾,所以A=B,即有界数集的上确界惟一.同理可证有界数集的下确界惟一.6.对任何非空数集S,必有.当时,数集S有什么特点?解:对于,有,所以.当时,数集S 是由一个实数构成的集合.7.证明非空有下界的数集必有下确界.证:参考定理2.1.1的证明.具体过程略.8.设并且,证明:(1)S没有最大数与最小数;(2)S在Q内没有上确界与下确界.证:(1).取有理数r>0充分小,使得,于是.即,所以S没有最大数.同理可证S没有最小数.(2)反证法.设S在Q内有上确界,记(m,n∈N+且m,n互质),则显然有.由于有理数平方不能等于3,所以只有两种可能:(i),由(1)可知存在充分小的有理数r>0,使得,这说明,与矛盾;(ii),取有理数r>0充分小,使得,于是,这说明也是S的上界,与矛盾.所以S没有上确界.同理可证S没有下确界.§2 数列极限1.按定义证明下列数列是无穷小量:(1);(2);(3);(4);(5);(6);(7)(8).证明:(1),取,当n>N时,成立.(2),取,当时,成立.(3),取,当时,成立;取,当时,成立,则当时,成立.(4),取,当n>N时,成立.(5)当n>11时,有.于是,取,当n>N时,成立.(6)当n>5,有.于是,取,当n>N时,成立.(7),取,当n>N时,成立(8)首先有不等式,取,当n>N时,成立.2.按定义证明下述极限:证明:(1),取,当时,成立(2),取,当时,成立(3),取,当n>N时,成立(4)令,则.当n>3时,有所以,取,当时,成立.(5),取,当n>N时,若n是偶数,则成立;若z是奇数,则成立.3.举例说明下列关于无穷小量的定义是不正确的:(1)对任意给定的,存在正整数N,使当n>N时,成立;(2)对任意给定的,存在无穷多个,使.解:(1)例如,则满足条件,但不是无穷小量.(2)例如则满足条件,但不是无穷小量.4.设k是一正整数,证明:的充分必要条件是.证明:设,则,成立,于是也成立,所以;设,则,成立,取,则,成立,所以.5.设,证明:.证明:由可知,成立,成立.于是,成立.6.设.且,证明:.证明:首先有不等式.由,可知,成立,于是.7.是无穷小量,是有界数列,证明也是无穷小量.证明:设对一切.因为是无穷小量,所以,,成立.于是,成立,所以也是无穷小量.。
复旦大学数学系陈纪修《数学分析》 第二版 习题答案ex
− x ≤ sup S ,即 x ≥ − sup S ;同时对任意 ε > 0,存在 y ∈ S ,使得 y > sup S − ε ,
于是 − y ∈ T ,且 − y < − sup S + ε 。所以 − sup S 为集合 T 的下确界,即
inf T = − sup S 。
5. 证明有界数集的上、下确界唯一。 证 设 sup S 既等于 A ,又等于 B ,且 A < B 。取 ε = B − A > 0 ,因为 B 为
m
可能:
(i)⎜⎛ n ⎟⎞2 < 3 ,由(1)可知存在充分小的有理数 r > 0 ,使得 ⎜⎛ n + r ⎟⎞2 < 3 ,
⎝m⎠
⎝m ⎠
这说明 n + r ∈ S ,与 sup S = n 矛盾;
m
m
(ii) ⎜⎛ n ⎟⎞2 > 3 ,取有理数 r > 0 充分小,使得 4r − r 2 < ⎜⎛ n ⎟⎞2 − 3 ,于是
m +1
n < n < n + 1 ,所以 maxC 与 minC 都不存在。
m+1 m m+1
3. A, B 是两个有界集,证明:
(1) A ∪ B 是有界集;
(2) S = { x + y | x ∈ A, y ∈ B} 也是有界集。 证 (1)设 ∀x ∈ A ,有 x ≤ M1 , ∀x ∈ B ,有 x ≤ M 2 ,则 ∀x ∈ A ∪ B ,有
xn+k
= a。
证
设 lim n→∞
xn
=
a
,则 ∀ε
>
数学类考研上海交大陈纪修《数学分析》配套考研真题
数学类考研上海交大陈纪修《数学分析》配套考研真题第一部分名校考研真题第1章集合与映射本章暂未编选名校考研真题,若有最新真题会及时更新。
第2章数列极限一、判断题1.对任意的p为正整数,如果,则存在。
()[重庆大学研]【答案】错查看答案【解析】根据数列收敛的Cauchy收敛准则,可举出反例:,虽然对任意的但(也可说明)。
2.对数列和若是有界数列,则是有界数列。
()[北京大学研]【答案】对查看答案【解析】设|S n|<M,则3.数列存在极限的充分必要条件是:对任一自然数p,都有()[北京大学研]【答案】错查看答案【解析】反例:,但不存在.二、解答题1.[暨南大学2013研]解:利用定积分的定义求解.2.设数列满足条件:,且,证明数列无界.[华东师范大学2009研]证明:用反证法.假若数列有界,即存在,使得,则由条件知.由得,对,存在正整数,当时,有,,令,则,且,,(1)对(1)式两边取上确界,有,所以,这与矛盾,所以数列无界.3.求极限.[华中科技大学2008研]解:一方面显然,另一方面,且由迫敛性可知.注:可用如下两种方式证明.(1)令,则,所以,从而.(2)由,得.4.证明不存在.[兰州大学2009研]证明:取,则由于,所以不存在.5.(1)设数列为正的单调递减数列,且收敛,证明:.(2)设数列为正的单调递减数列,且收敛,证明:.[南开大学2011研]证明:(1)因为为正的单调递减数列,由单调有界定理得存在,由收敛,可知必有(p为任意正整数),对任意存在正整数,使得对任意正整数,成立在上式中,令,取极限,则得由的任意性,则得显然故有.(2)因为为正的单调递减数列,由单调有界定理知存在,由收敛,可知必有;对任意存在正整数,使得对任意正整数,成立在上式中,令,取极限,则得由的任意性,则得显然故有.6.设证明收敛,并求极限。
[华中科技大学2007研]证明:很明显,假设则又因为所以单调递增有上界,故极限存在。
数学分析课后习题答案--高教第二版(陈纪修)--5章
.k
hd
π π
4
(3) 令 f ( x) = 2 arctan x + arcsin
2x ,注意到 x 2 − 1 > 0, ∀x > 1 ,所以 2 1+ x
由于 f ( x) 在 [1, +∞ ) 连续,所以 f ( x) ≡ f (1) = 2 +
案 网
至多有限个点有 f ′( x ) = 0 之外,都有 f ′( x ) > 0 ,则 f ( x ) 在 [ a , b ] 上严格 单调增加;同时举例说明,其逆命题不成立。 证 设 a = x0 < x1 < " < xn −1 < xn = b ,其中 x1 , x2 ," , xn −1 是 f '( x) 全部的零点。 则 f ( x) 在 [ xi , xi +1 ] (i = 0,1," , n − 1) 上严格单调增加。 从而,f ( x) 在 [a, b] 上 严格单调增加。 构造函数
(ξ , f (ξ )) 不在 ( a, f ( a )), (b, f (b)) 的连线上。
假设 (ξ , f (ξ )) 在 (a, f (a )), (b, f (b)) 的连线的上方,则
f (ξ ) − f (a ) f (b) − f (a ) f (b) − f (ξ ) > > , ξ −a b−a b −ξ
的两倍。
5. 设函数 f ( x ) 和 g ( x ) 在 [ a , b ] 上连续, 在 ( a , b ) 上可导, 证明 ( a , b ) 内存
课
在一点 ξ ,使得
后 答
案 网
针排列,则ψ ( x) 就是三角形面积的两倍,否则-ψ ( x) 就是三角形面积
数学分析课后习题答案--高教第二版(陈纪修)--5章
hd
aw .c om
8. 用 Lagrange 公式证明不等式: ⑴ ⑵ ⑶ ⑷ 证 ⑴ ⑵
|sin x − sin y | ≤ | x − y | ;
ny n −1 ( x − y ) < x n − y n < nx n −1 ( x − y ) (n > 1, x > y > 0) ;
b−a b b−a < ln < b a a (b >− f (−1) = 0 ,但 ∀ξ ∈ ( −1,1), ξ ≠ 0, f '(ξ ) = ±1 ≠ 0 。 1 − (−1)
设函数 f ( x ) 在 [ a , b ] 上连续,在 ( a , b ) 上可微。利用辅助函数
x ψ( x ) = a b f (x) 1 f (a ) 1 f ( b) 1
案 网
几何意义:在 [ a , b ] 上连续、在 ( a , b ) 上可导的非线性函数,必定在
课
解
由 Lagrange 中值定理,
a
1
arctan
与 n 之间。当 n → ∞ 时, 1 + ξ 2 趋于 1,所以
a a ⎞ ⎛ arctan − arctan ⎜ ⎟ a a ⎞ na ⎝ n n +1⎠ ⎛ = ⋅ lim n 2 ⎜ arctan − arctan lim ⎟ n →∞ a a n n + 1 ⎠ n→∞ n + 1 ⎝ − n n +1
的两倍。
5. 设函数 f ( x ) 和 g ( x ) 在 [ a , b ] 上连续, 在 ( a , b ) 上可导, 证明 ( a , b ) 内存
课
在一点 ξ ,使得
2021数学类考研陈纪修《数学分析》考研真题库
2021数学类考研陈纪修《数学分析》考研真题库第1部分名校考研真题第9章数项级数一、判断题1.若对任意的自然数p都有,则收敛.()[东南大学研]【答案】错查看答案【解析】根据级数收敛的Cauchy收敛准则,举出反例:例如,对任意的自然数p,有,但是发散.正确的说法应该是,关于p一致有.2.若,且对任意的n,有,则收敛.()[重庆大学研]【答案】错查看答案【解析】举反例:例如,虽然对任意的n,有,但是发散.n 必须足够大,才可以成立.二、解答题1.设收敛,证明:[华东师范大学研]证明:记级数的前n项和S n.则对上式两边取极限,从而即2.证明下列级数收敛.[东北师范大学研]证明:(1)方法一所以所以收敛。
方法二由于所以而收敛,从而收敛.(2)由比值判别法知收敛,再由比较判别法知收敛,即收敛。
3.证明:[浙江大学研]证明:因为且单调减,所以反复利用分部积分法,又所以将②代入①得4.讨论级数的敛散性.[复旦大学研]解:(1)若p、q>1,则绝对收敛。
(因为,例如p>q,则为优级数);(2)若0<p=q≤1,应用莱布尼兹定理知级数收敛,且是条件收敛;(3)当p、q>0,原级数与级数同时敛散,若p>1,0<q ≤1或q>1,0<p≤1时级数一敛一散,故原级数发散.若0<p<q<1,则,且与同阶(当);故级数发散,从而原级数发散.同理可证,若0<q<p<1,原级数发散.5.若一般项级数与都收敛且下列不等式成立证明:级数也收敛.又若与都发散,试问一定发散吗?[汕头大学研、北京工业大学研]证明:由于级数与都收敛,所以由Cauchy收敛准则知对任意的ε>0,存在N∈N,使得当n>N及对任意的正整数p,都有又,所以,从而由Cauchy收敛准则知级数也收敛.若与都发散,不一定发散.反例:.6.设,证明:收敛.[浙江大学2006研]证明:因为令,则易知,所以因为,而收敛,所以收敛.7.设,举例说明存在(从而级数收敛),但,从而级数收敛的D’Alember判别法失效.[天津工业大学2006研]解:级数.由于故,所以用D’Alember判别法无法判别其敛散性.又,所以由根式判别法知收敛.8.判断级数的敛散性.[青岛科技大学研]解:令,则故由Raabe判别法知收敛.9.设f(x)在[1,+∞)上单调,证明:若广义积分收敛,则级数也收敛.[北京化工大学研]证明:不妨设f(x)在[1,+∞)上单调递减.先证明f(x)在[1,+∞)上非负,若存在,使得.由于当时,,又发散,故由比较判别法知发散,矛盾,所以f(x)在[1,+∞)上非负.因为f(x)在[1,+∞)上非负且单调递减,对任意的正数A,f(x)在[1,A]上可积,从而有依次相加可得由于收敛,于是对任意正整数m,有即非负级数部分和有界,故收敛.10.设是严格递减的正数列,且,证明:级数收敛.[南京农业大学研、上海理工大学研]证明:因为是严格递减的正数列,所以即是严格递减的数列.又由极限的性质知故由Leibniz判别法知收敛.11.讨论级数的收敛性.[厦门大学研]解:利用带Peano余项的Taylor公式(当x→0时),有于是.所以当x>1-p时收敛,当x≤1-p时发散.12.,证明:存在,并求之.[上海大学研]证明:令,则从而因为,所以故有14.判断级数的绝对收敛性和相对收敛性.[武汉大学2005研]解:(1)绝对收敛性(主要使用放缩法)(2)相对收敛性:(A-D判别法)①;②。
陈纪修数学分析答案
陈纪修数学分析答案【篇一:陈纪修教授《数学分析》九讲学习笔记与心得】class=txt>云南分中心 ? 昆明学院 ? 周兴伟此次听陈教授的课,收益颇多。
陈教授的这些讲座,不仅是在教我们如何处理《数学分析》中一些教学重点和教学难点,更是几堂非常出色的示范课。
我们不妨来温习一下。
第一讲、微积分思想产生与发展的历史法国著名的数学家h.庞加莱说过:“如果我们想要预见数学的将来,适当的途径是研究这门科学的历史和现状。
” 那么,如果你要学好并用好《数学分析》,那么,掌故微积分思想产生与发展的历史是非常必要的。
陈教授就是以这一专题开讲的。
在学校中,我不仅讲授《数学分析》,也讲授《数学史》,所以我非常赞同陈教授在教学中渗透数学史的想法,这应该也是提高学生数学素养的有效途径。
在这一讲中,陈教授脉络清晰,分析精当,这是我自叹不如的。
讲《数学史》也有些年头,但仅满足于史料的堆砌,没有对一些精彩例子加以剖析。
如陈教授对祖暅是如何用“祖暅原理”求出球的体积的分析,这不仅对提高学生的学习兴趣是有益的(以疑激趣、以奇激趣),而且有利于提高学生的民族自豪感(陈教授也提到了这一点)。
第二讲、实数系的基本定理在这一讲中,陈教授从《实变函数》中对集合基数的讨论展开,对实数系的连续性作了有趣的讨论。
首先是从绅士开party的礼帽问题,带我们走进了“无穷的世界”。
我在开《数学赏析》时有一个专题就是“无穷的世界”,我给学生讲礼帽问题、也讲希尔伯特无穷旅馆问题,但遗憾的是,当我剖析“若无穷旅馆住满了人,再来两个时,可将住1号房间的移往3号房间,住2号房间的移往4号房间,从而空出两个房间”时,学生对我“能移”表示怀疑。
这一点我往往只能遗憾的说“跳不出有限的圈子,用有限的眼光来看无限,只能是‘只在此山中,云深不知处’”。
当然,我还是会进一步考虑如何来讲好这一讲。
若陈教授或其他老师有好的建议,能指点一下,则不胜感激。
对于集合[0,1]与(0,1)的对等关系,包括q与R的对等关系,或者说他们之间双射的构造。
数学分析原理答案
数学分析原理答案数学分析原理答案【篇一:数学分析教材和参考书】:《数学分析》(第二版),陈纪修,於崇华,金路编高等教育出版社, 上册:2004年6月,下册:2004年10月参考书:(1)《数学分析习题全解指南》,陈纪修,徐惠平,周渊,金路,邱维元高等教育出版社, 上册:2005年7月,下册:2005年11月(2)《高等数学引论》(第一卷),华罗庚著科学出版社(1964)(3)《微积分学教程》,菲赫金哥尔兹编,北京大学高等数学教研室译,人民教育出版社(1954)(4)《数学分析习题集》,吉米多维奇编,李荣译高等教育出版社(1958)(5)《数学分析原理》,卢丁著,赵慈庚,蒋铎译高等教育出版社(1979)(6)《数学分析》,陈传璋等编高等教育出版社(1978)(7)《数学分析》(上、下册),欧阳光中,朱学炎,秦曾复编,上海科学技术出版社(1983)(8)《数学分析》(第一、二、三卷),秦曾复,朱学炎编,高等教育出版社(1991)(9)《数学分析新讲》(第一、二、三册),张竹生编,北京大学出版社(1990)(10)《数学分析简明教程》(上、下册),邓东皋等编高等教育出版社(1999)(11)《数学分析》(第三版,上、下册),华东师范大学数学系,高等教育出版社(2002)(12)《数学分析教程》常庚哲,史济怀编,江苏教育出版社(1998)(13)《数学分析解题指南》林源渠,方企勤编,北京大学出版社(2003)(14)《数学分析中的典型问题与方法》裴礼文编,高等教育出版社(1993)复旦大学数学分析全套视频教程全程录像,asf播放格式,国家级精品课程,三学期视频全程教师简介:陈纪修-基本信息博士生导师教授姓名:陈纪修任教专业:理学-数学类在职情况:在性别:男所在院系:数学科学学院陈纪修-本人简介姓名:陈纪修性别:男学位:博士职称:教授(博士生导师)高校教龄22年,曾获2001年上海市教学成果一等奖、获2001年国家级教学成果二等奖、获2002年全国普通高等学校优秀教材一等奖、2002年获政府特殊津贴;获宝钢教育奖(优秀教师奖);被评为“九五”国家基础科学人才培养基金实施和基地建设先进工作者。
数学分析课后习题答案--高教第二版(陈纪修)--7章
21 1 2 3源自1 nε, f ( x) 在区间 [
1 ,1] 上只有有限个不连续点, m
所以 f ( x) 在 [
1 1 ,1] 上可积,即存在 [ ,1] 的一个划分 P ,使得 m m
∑ ω ∆x
i =1 i
n
i
<
ε
2
,将 P 的分点和 0 合在一起,作为[0,1]的划分 P ' ,则
7. 有界函数 f ( x ) 在 [a, b] 上的不连续点为 {x n }∞ n =1 ,且 lim x n 存在,证明
f ( x) ≤ M 。 ∀ε > 0 , 取
ε
3
。将 P (1) 、
课
P ( 2) 的分点合并在一起组成 [a , b] 的一个划分 P ,则
∑ ω ∆x ≤ ∑ ω
i =1 i i
1 n
课
4
ε
,则 f ( x) 在 [
1 ,1] 上只有有限个不连续点, m
所以 f ( x) 在 [
n 1 1 ε ,1] 上可积,即存在 [ ,1] 的划分 P ,使得 ∑ ω i ∆xi < 。 2 m m i =1
将 P 的分点与 0 合在一起作为[0,1]的划分 P ' ,则
∑ ωi′∆xi′ = ∑ ωi ∆xi + ω1′∆x1′ <
1≤ i ≤ n
取定了划分后, n 与 ∆xi (i = 1, 2," n) 也就确定,如果 f ( x ) 在 [a, b] 上无 界,则必定存在小区间 [ xi −1 , xi ] , f ( x ) 在 [ xi −1 , xi ] 上无界。取定
陈纪修《数学分析》(第2版)(下册)章节题库-曲线积分、曲面积分与场论(圣才出品)
第14章曲线积分、曲面积分与场论1.计算曲线积分,其中L是绕原点的简单闭曲线.解:方法一当时,可以验证,所以可将曲线L换成以原点为中心,适当小的>0为半径的小圆周:易见构造辅助函数:仍有.若定义A(0,0)=0,B(0,0)=1,则A,B在原点连续.事实上,由泰勒展开式,有.所以有即补充定义后A在原点连续,同理可证B也在原点连续.于是I=J=2π.方法二在L′上,有故积分值与无关.注意到被积函数关于连续,令,在积分号下取极限即得2.设封闭曲线的正向与z轴正向符合右手法则,求曲线积分解:由可得因此可设曲线L的参数方程为:,t从-3π/4到3π/4.于是3.设函数f(x)在(-∞,+∞)上具有一阶连续导数,L是上半平面y>0内的有向分段光滑曲线,其起点为(a,b),终点为(c,d).记(1)证明:曲线积分I与积分路径无关;(2)当ab=cd时,求I的值.证明:(1)因为所以在上半平面内曲线积分I与积分路径无关.(2)由(1)知,是某个函数u(x,y)的全微分,而设F(x)是f(x)的一个原函数,则,因此4.计算积分其中(n,x),(n,y)分别是由x轴、y轴正向与L的外法向n之间的夹角,L为逐段光滑的简单闭曲线.解:表示L的正向,即沿逆时针方向,切线方向τ与一致,如图14-1所示.从n逆时针旋转π/2即到τ,于是有(n,x)=(τ,y),(n,y)=π-(τ,x),故cos(n,x)ds=cos(τ,y)ds=dy,cos(n,y)ds=-cos(τ,x)ds=-dx.从而其中S表示L所围的面积.图14-15.计算曲面积分,其中S是球面解:将球面S分成三部分S1,S2,S3,其中此时曲面S1在xOy平面的投影区域为,S1的方程为z=,故有从而6.计算曲面积分,其中S为下半球面的上侧,a>0为常数.解:采用补面法.按常规应补平面S1:x2+y2≤a2,z=0.仔细观察发现被积函数在原点处有奇性,不能直接应用高斯公式,但注意到在下半球面上的点(x,y,z)满足x2+y2+z2=a2,则可将原曲面积分改写成这样,取S1的法向方向与z轴正向相反,就可对上式使用高斯公式了.于是有其中V是S1,S所围的空间区域.故7.计算曲线积分L是x2+y2+z2=2r1x与x2+y2=2r2x的交线(0<r2<r1,z>0),L的方向是使L所围的球面上较小部分区域保持在左边.解:由于球面的外法向的方向余弦为所以由斯托克斯公式,有其中S是球面x2+y2+z2=2r1x由L所围的部分.由于曲面S关于xOz平面对称,所以.又由可知,。
数学分析课后习题答案--高教第二版(陈纪修)--16章
f ( x ) sin nxdx = π ∫π
−
1
π
2(1 − cos(nπ )) ,( n = 1, 2,3, nπ sin( 2k − 1) x 。 π k =1 2k − 1 4
)。
f ( x) ∼
∑
∞
(2) f ( x) 为偶函数,所以 bn = 0 , ( n = 1, 2,3, ) ,
(a)
−
an =
f ( x ) cos nxdx = − π ∫π π (n
− 1
1
π
2A ( n = 2, 4, 6, 2 − 1)
w. kh d
解 (1) a0 =
f ( x) dx = π ∫π
1
1
π
2A
π ,
π
1
−
1
−
1
bn =
后 答
f ( x ) sin nxdx = 0 ,( n = 2,3, 4, π ∫π
(a − b)(1 − (−1) n ) ,( n = 1, 2,3, π n2
(a + b) cos(nπ ) ,( n = 1, 2,3, n
), )。
f ( x) sin nxdx = − π ∫π
−
π
∞ ( −1) n +1 (a − b)π 2(a − b) ∞ cos(2k + 1) x + + ( a + b) ∑ sin nx 。 f ( x) ∼ − ∑ 2 n π 4 n =1 k =0 (2k + 1)
案
网
n 1 − (−1) n e −2π sin nx 。 ∑ π n=1 n2 + 4 2
数学分析课后习题答案--高教第二版(陈纪修)--10章
第十章 函数项级数习 题 10. 1 函数项级数的一致收敛性1. 讨论下列函数序列在指定区间上的一致收敛性。
⑴ S n (x ) = , (i) x nx −e ∈)1,0(, (ii) x ∈; ),1(+∞ ⑵ S n (x ) = x , x nx −e ∈),0(+∞;⑶ S n (x ) = sin nx , (i)x ∈),(+∞−∞, (ii) x ∈],[A A −(); 0>A ⑷ S n (x ) = arctan nx , (i)x ∈)1,0(, (ii) x ∈; ),1(+∞ ⑸ S n (x ) =221nx +, x ∈),(+∞−∞; ⑹ S n (x ) = nx (1 - x )n , x ∈]1,0[;⑺ S n (x ) =n x ln n x, (i) x ∈)1,0(, (ii) x ∈);),1(+∞ ⑻ S n (x ) = nnx x +1, (i) x ∈)1,0(, (ii) x ∈;),1(+∞ ⑼ S n (x ) = (sin x )n , x ∈],0[π;⑽ S n (x ) = (sin x )n1, (i) x ∈[0,]π, (ii) x ∈],[(0>δ);δπδ− ⑾ S n (x ) = nn x ⎟⎠⎞⎜⎝⎛+1, (i) x ∈),0(+∞, (ii)x ∈],0(A (); 0>A ⑿ S n (x ) = ⎟⎟⎠⎞⎜⎜⎝⎛−+x n x n 1, (i) x ∈),0(+∞, (ii)[)0,,>+∞∈δδx 。
解 (1)(i) ,0)(=x S )()(sup ),()1,0(x S x S S S d n x n −=∈1= ─/→ 0(∞→n ), 所以{}()n S x 在上非一致收敛。
(0,1) (ii) ,0)(=x S )()(sup ),(),1(x S x S S S d n x n −=+∞∈n e −=)(0∞→→n ,所以{}()n S x 在上一致收敛。
陈纪修《数学分析》(第2版)(下册)章节题库-数项级数(圣才出品)
由数学归纳法即可看出式子成立. 12.求下列级数的和:
同理
解:(1)由公式
8 / 11
圣才电子书
十万种考研考证电子书、题库视频学习平台
,
所以
其部分和
故 (2)设
,两边同乘以
得
解得
故
(3)此级数通项趋于 0,因此只需求 的极限即可.利用公式
(其中 c 为尤拉常数
)有
9 / 11
(1)先证:
用 sn 表示级数的前 n 项部分和,注意到 an>0,则有
5 / 11
圣才电子书 十万种考研考证电子书、题库视频学习平台
由于级数
收敛,所以
,因此
,并且容
易看出
(2)再证:
事实上,对任意的正整数 n,存在唯一的正整数 m,使得 m2≤n<(m+1)2.由 单调递减,可得
由
可得
于是有
2 / 11
圣才电子书 十万种考研考证电子书、题库视频学习平台
由此可见,当 p>0 时,级数收敛;当 p≤0 时,级数发散.
4.设{pn}为正数列,证明:若级数
收敛,则级数
也
收敛. 证明:用收敛原理.引进记号 q0=0,
下面估计部分和数列的上界.令
则
由柯西不等式,有 代入上式可得
14.若级数
与 都收敛,且不等式
10 / 11
成立,证明级数
圣才电子书 十万种考研考证电子书、题库视频学习平台
也收敛.又若 与
都发散,试问
一定发散吗?
证明:(1)方法一:
,由
与
都收敛知,存在正整数 N,当 n>N 及
对任意正整数 p 都有
陈纪修《数学分析》配套题库【课后习题】(集合与映射)
第 1 章 集合与映射
§1 集 合
1.证明由 n 个元素组成的集合 证明:由 k 个元素组成的子集的个数可列式为
有 个子集.
2.证明:
(1)任意无限集必包含一个可列子集;
(2)设 A 不 B 都是可列集,证明 A U B 也是可列集.
6.举例说明集合运算丌满足消去律: (1) (2) 其中符号 表示左边的命题丌能推出右边的命题. 解:(1)设 A={a,b,c},B={b,c,d},C={c,d},则 (2)设 A={a,b,c},B={c,d,e},C={c,d},则
,但 B≠C. ,但 B≠C.
7.下述命题是否正确?丌正确的话,请改正.
(4){a,b,{a,b}}={a,b}.
解:(1){0}是由元素 0 构成的集合,丌是空集.
(2)a 是集合{a,b,c}的元素,应表述为 a∈{a,b,c}.
(3){a,b}是集合{a,b,c}的子集,应表述为
.
(4){a,b,{a,b}}是由 a,b 和{a,b}为元素构成的集合,故
,
或{a,b}∈{a,b,{a,b}},但{a,b,{a,b}}≠{a,b}.
4.用集合符号表示下列数集:
(1)满足
的实数全体;
(2)平面上第一象限的点的全体;
(3)大于 0 并且小于 1 的有理数全体;
(4)方程 sinxcot x=0 的实数解全体.
解:(1){x|-2<x≤3}.
(2){(x,y)|x>0 且 y>0}.
(3){x|0<x<1 且 x∈Q}|.
(4)
.
5.证明下列集合等式: (1) (2)
故
.
陈纪修《数学分析》(第2版)(上册)课后习题(第1~4章)【圣才出品】
13.试求定义在[0,1]上的函数,它是[0,1]与[0,1]之间的一一对应,但在[0,1]的 任一子区间上都不是单调函数.
解:
8 / 96
圣才电子书
十万种考研考证电子书、题库视频学习平台
第 2 章 数列极限
§1 实数系的连续性
(2)
;
十万种考研考证电子书、题库视频学习平台
(3){a,b}∈{a,b,c};
(4){a,b,{a,b}}={a,b}.
解:(1){0}是由元素 0 构成的集合,不是空集.
(2)a 是集合{a,b,c}的元素,应表述为 a∈{a,b,c}.
(3){a,b}是集合{a,b,c}的子集,应表述为
.
(4){a,b,{a,b}}是由 a,b 和{a,b}为元素构成的集合,故
=(1,-1),C=(3,2),D=(4,0).
解:
11.设 f(x)表示图 1-1 中阴影部分面积,写出函数 y=f(x),x∈[0,2]的表达式.
解:
图 1-1
7 / 96
圣才电子书 十万种考研考证电子书、题库视频学习平台
12.一玻璃杯装有汞、水、煤油三种液体,密度分别为 13.6g/cm3,1g/cm3,0.8g /cm3,如图 1-2,上层煤油液体高度为 5cm,中层水液体高度为 4cm,下层汞液体高度 为 2cm,试求压强 P 与液体深度 x 之间的函数关系.
,但 B≠C. ,但 B≠C.
7.下述命题是否正确?不正确的话,请改正.
3 / 96
圣才电子书 十万种考研考证电子书、题库视频学习平台
(1)
并且 x∈B;
(2)
数学分析课后习题答案--高教第二版(陈纪修)--11章
S 必是开集。
9. 证明 S ⊂ R n 的闭包 S = S ∪ S′ 必是闭集。 则 x∉ S , 且 x 不是 S 的聚点, 于是在 x 的某邻域 O ( x , δ ) 证 假设 x ∈ S c , 中至多只有 S 的有限项,故存在 x 的邻域 O( x , δ1 ) 不含 S 的点,即
第十一章 Euclid 空间上的极限和连续
习题 11.1 Euclid 空间上的基本定理
1. 证明定理 11.1.1: 距离满足正定性、对称性和三角不等式。 证 (a)显然有 | x − y |≥ 0 ,而且 | x − y |= 0 ⇔ xi = yi (i = 1, 2, … , n) ⇔ x = y 。 (b) 由距离定义直接可得 | x − y |=| y − x | 。 (c) 由于
5.
求下列点集的全部聚点:
⎫ k k = 1,2, ⎬ ; k +1 ⎩ ⎭ ⎫ ⎧ 2kπ 2kπ ⎞ , sin (2)S = ⎨⎛ ⎜ cos ⎟ k = 1,2, ⎬ ; 5 5 ⎠ ⎭ ⎩⎝ 2 2 2 2 (3)S = {( x, y ) | ( x + y )( y − x + 1) ≤ 0} 。
Heine-Borel 定理知 S 为 R n 上的紧集。
∀x ∈ S , 由于 x 不是 S 的聚点, 存在 O( x,δ x ) 只含有 S 中有限个点。
但由于其中有限个 O( x,δ x ) 显然 {O( x,δ x ) | x ∈ S} 构成为 S 的一个开覆盖,
必有聚点。
课