第七章 工业腐蚀和预防措施 第三节 应力腐蚀裂纹
石油化工静设备的应力腐蚀开裂与防护措施
石油化工静设备的应力腐蚀开裂与防护措施摘要:石油化工行业作为我国重要的生产行业,对我国的经济建设具有重要推动作用。
腐蚀是目前石油化工企业发展中面临最多的问题,因为腐蚀会对石油化工设备的功能和使用周期造成影响,严重的还会引发安全事故,阻碍石油化工行业的发展。
而想要避免设备腐蚀,减少设备损失就必须要对石油化工设备的腐蚀原因进行分析,并找出针对性防腐措施。
本文将就笔者的实际工作经验及资料,对石油化工设备的腐蚀原因进行分析,并提出针对性的措施,以供参考。
关键词:石油化工;设备;腐蚀;防腐引言在我国石油化工行业不断发展的历程中,石油化工设备展现着十分重要的作用。
石油化工设备容易被腐蚀,会影响设备的稳定运行,对产品质量产生一定的影响,为整个工作带来许多安全隐患。
因此,有必要做好石油化工设备防腐处理,对石油化工设备常见腐蚀原因及防腐展开更深层次的探讨就凸显的愈发重要。
1石油化工设备防腐的重要性石油化工设备长期在空气、水中暴露或与腐蚀性设备接触,所产生的能让设备裸露在外的形态、尺寸发生化学反应的现象叫做腐蚀。
腐蚀会给石油化工设备的物理性质和功能造成影响,缩短设备的使用周期,甚至影响石油化工设备的正常运动,严重时引发安全事故。
在实际的生产过程中,石油化工设备腐蚀是常年困扰石油化工企业生产质量的重要难题,既影响了经济效益的提升,又阻碍了石油化工企业的长足发展,导致了资源浪费。
在石油化工企业的爆炸事故中,大部分都是由于腐蚀所致,腐蚀会导致石油泄漏,一旦遇到明火就会发生爆炸,引发严重安全事故。
此外,石油化工设备腐蚀所泄漏的腐蚀气体或者液体还会对工作人员生命健康造成影响。
所以必须要重视石油化工设备防腐,一旦出现腐蚀要及时采取解决措施,保证安全。
2石油化工设备常见腐蚀原因2.1化学反应在展开化学产品生产工作时,通常需要按照对应的生产要求加入适量的化学物质,这一系列的化学物质一般具有较强的腐蚀性。
并且,在展开生产工作时,生产材料同样具有一定腐蚀性。
应力腐蚀开裂
应力腐蚀开裂王博浩过控1201 学号:201209300319 摘要:工业上广泛应用的材料是金属,而金属无可避免的会面临腐蚀问题,而在设备的腐蚀中,应力腐蚀是在其中占有相当大比例的一种腐蚀类型。
应力腐蚀广泛存在于材料受到静应力条件下,这种腐蚀对于材料是毁灭性的腐蚀。
因此,了解应力腐蚀的机理和原因以及预防的方法是十分必要的。
一.引言腐蚀导致经济的巨大损失已是众所周知的事实。
从国内石油化工生产企业统计,1999 年泸天化年总产值8.284 亿元,而直接与间接腐蚀经济损失共计6010 万元,占年生产总值的7.25%。
仪征化纤厂大修周期从 1 年改为 2 年,创净利润(22~23)亿/ 年。
通常认为间接腐蚀损失比直接腐蚀损失大。
根据现有数据,石油工业的间接腐蚀损失是直接腐蚀损失的 3 倍。
2000 年,上海医药集团腐蚀损失是8114万元;华东电网因锅炉“四管”腐蚀爆漏导致非计划停车115 次,损失电量29亿千瓦•小时,经济损失7.7亿元。
汽车行业1999年的腐蚀损失约为242 亿元。
以重庆汽车腐蚀调查为例,重庆市系内陆盆地,夏季闷热,冬天潮湿,年平均气温较高,其环境大气中的Cl-、SO和HS等含量高,下雨频率高,酸雨、大雾天气时有发生。
车辆受大气环境的腐蚀十分严重,通常新车运行 1 年后就产生锈斑, 2 年左右就有腐蚀穿孔现象发生。
由于大面积腐蚀和腐蚀穿孔,通常车辆每年都要进行外涂装; 2 年要进行换顶; 4 年要进行面板、车顶的更换,大梁、车身骨架的维护,重庆市车辆年均总的腐蚀损失为16057.1 万元。
应力腐蚀、氢脆、孔蚀等局部腐蚀破坏的发生难以预测,极易引起生产设备的爆炸、火灾等突发性灾难事故,危及职工及生产装置的安全。
如国内某天然气管线曾因硫化氢应力腐蚀破坏多次发生爆炸,其中一次引爆起特大火灾,造成20 多人伤亡;某天然气井口设备因硫化氢酸性气体腐蚀造成井喷,大火烧了二十多天,经济损失惨重;某化肥厂废热锅炉进口管因氢腐蚀引发爆炸,造成7人死亡等。
应力腐蚀撕裂SCC产生机理影响因素及防治措施
腐蚀介质中存在特殊离子如( Cl 、 OH )等吸附,使 应变的金属原子的聚合力减弱,金属表面能降低而导 致开裂。 3、 阴极氢化反应 (裂纹的扩展)在裂纹尖端具备高速度的阴极氢化反 应,裂纹的扩展是顺着由氢脆或氢腐蚀引起的途径而 优先溶解。 4、 机械化学效应 形变屈服的金属在腐蚀介质中具有极高的腐蚀速度, 例:冷作加工的金属与退火金属相比其腐蚀要大 10— 15 倍。 一般认为:形变能增加活化点的数目,加速产生阳极 溶解。一旦形成裂纹后,由于应力集中可迅速屈服, 于是在裂纹尖端优先发生溶解腐蚀。裂纹尖端的腐蚀 速度比裂纹两侧的腐蚀速度大 104 倍。 5、 隧洞腐蚀 由于滑移在膜破裂的表面上产生管状的孔蚀,沿着管 状孔蚀的面发生延性撕裂,使其断面缩小,从而导致
应力增大,于是提高了孔蚀的进程,这就是隧洞腐蚀。 优先腐蚀的起点是从一个滑移阶梯开始的由于滑移阶 梯的快速溶解而形成溶解沟,在沟中移动的位错与不 规则的断面相交,这些交点又引起滑移阶段并进一步 溶解,这个过程反复的进行即形成隧洞。 三、应力腐蚀的预防措施 (一)、结构设计 1、合理选材母材 选材必须有足够的实验数据,不能只看材料牌号,不 能单纯考虑强度级别,因同一强度等级,合金系统不 同,抗应力腐蚀开裂的倾向很大。 2、避免高应力区 (二)、施工制造 1、 合理选择焊材 了解产品结构的的工作条件,熟悉介质的腐蚀特性, 及合金元素的特性,则确定焊缝成分从而确定焊接材 料。因此必须根据具体腐蚀介质,调整焊缝的合金系 统,以便提高耐应力腐蚀开裂的能力。
2、 合理制定装焊工艺 1)、成形及装配工艺 引起应力腐蚀裂纹的重要原因之一就是残余应力,从 部件成形加工列组装都可引起残余应,特别是强制组 装,例如用千斤组装大错口,可以形成很大的残余应 力,在组装质量不良的条件下(错口)焊接时,会造 成较大的残余应力。组装时所造成伤痕如随意打弧的 灼痕等都会成应力腐蚀裂源。 2)、焊接工艺 基本点,不产生硬化组织,不发生晶粒严重粗化现象, 接头硬度↑ 粗晶区的应力腐蚀裂纹的扩展敏感性最大,主要是由 于晶粒粗大,以致裂纹尖端集中的位错数量增大,并 可形成大的滑移阶梯,从而利于应力腐蚀裂纹的形成 和扩展。 3、 消除应力处理 焊后消除应力处理是防止产生应力腐蚀裂纹的重要环 节。
应力腐蚀开裂
分类
1、点腐蚀
是一种导致腐蚀的局部腐蚀形式。
2、晶间腐蚀
晶粒间界是结晶学取向不同的晶粒间紊乱错合的界城,因而,它们是钢中各种溶质元素偏析或金属化合物 (如碳化物和δ相)沉淀析出的有利区城。因此,在某些腐蚀介质中,晶粒间界可能先行被腐蚀乃是不足为奇的。 这种类型的腐蚀被称为晶间腐蚀,大多数的金属和合金在特定的腐蚀介质中都可能呈现晶间腐蚀。
2、减少或消除零件中的残余拉应力
残余拉应力是产生应力腐蚀的重要条件。为此,设计上应尽量减小零件上的应力集中。从工艺上说,加热和 冷却要均匀,必要时采用退火工艺以消除内应力。或者采用喷丸或表面热处理,使零件表层产生一定的残余压应 力对防止应力腐蚀也是有效的。
3、改善介质条件
这可从两个方面考虑:一方面设法减少或消除促进应力腐蚀开裂的有害化学离子,如通过水净化处理,降低 冷却水与蒸汽中的氯离子含量对预防奥氏体不锈钢的氯脆十分有效;另一方面,也可以在腐蚀介质中添加缓蚀剂, 如在高温水中加入300×10-6mol/L的磷酸盐,可使铬镍奥氏体不锈钢抗应力腐蚀性能大大提高。
2、不能得出裂纹扩展速率的变化规律
因为这种传统的方法是以名义应力作为裂纹扩展驱动力的,它不能反映裂纹顶端的应力状态。只有把断裂力 学引入应力腐蚀的研究以后,这一问题才得到解决。
3、费时,且不能用于工程设计
现在对应力腐蚀的研究,都是采用预制裂纹的试样。
防止的措施
1、合理选择材料
针对零件所受的应力和使用条件选用耐应力腐蚀的材料,这是一个基本原则。如铜对氨的应力腐蚀敏感性很 高,因此,接触氨的零件应避免使用铜合金;又如在高浓度氯化物介质中,一般可选用不含镍、铜或仅含微量镍、 铜的低碳高铬铁素体不锈钢,或含硅较高的铬镍不锈钢,也可选用镍基和铁一镍基耐蚀合金。
防止应力腐蚀开裂的措施
防止应力腐蚀开裂的措施应力腐蚀开裂是一种常见的金属材料失效形式,特别是在高温、高压、强腐蚀和高应力等环境下,更容易发生。
为了防止应力腐蚀开裂,需要采取以下措施:1.合理设计和选择材料合理的设计和选择材料可以减少应力集中和应变集中,从而降低应力水平。
同时,在选择材料时要考虑其抗应力腐蚀开裂能力,例如选用具有较高耐腐蚀性能的材料。
2.控制加工工艺加工工艺对于金属材料的性能有着重要影响。
在加工过程中要注意避免过度加工造成残余应力,同时也要避免过度冷却造成冷裂纹。
3.控制环境条件环境条件是影响金属材料耐久性的重要因素之一。
在使用过程中需要控制环境条件,避免暴露在强酸、强碱、高温、高压等恶劣环境下。
4.采用适当的防护措施采用适当的防护措施可以减少金属材料的暴露程度,从而降低应力腐蚀开裂的风险。
例如,在使用过程中可以采用防腐涂层、防腐包覆等措施。
5.加强检测和维护定期对金属材料进行检测和维护,及时发现和处理潜在的问题,可以有效地延长金属材料的使用寿命。
在检测过程中需要注意选择合适的检测方法,如超声波检测、X射线检测等。
6.加强管理和培训加强管理和培训可以提高工作人员对于应力腐蚀开裂的认识和预防意识。
同时也需要制定相应的安全规范和操作规程,确保工作人员按照规定操作。
7.加强科学研究加强科学研究可以为防止应力腐蚀开裂提供更为科学的理论支撑。
通过深入研究其机理和影响因素,探索有效的预防措施和治理方法。
以上是针对防止应力腐蚀开裂所需要采取的全面详细的措施。
通过合理设计和选择材料、控制加工工艺、控制环境条件、采用适当的防护措施、加强检测和维护、加强管理和培训以及加强科学研究等方面进行综合治理,可以有效地降低应力腐蚀开裂的风险,延长金属材料的使用寿命。
a7工业腐蚀与预防措施化工安全工程概论
2019年2月24日
第七章
工业腐蚀与预防措施
4/40
2.电化学腐蚀 金属材料与电解质溶液接触时,由于不同组分或 组成的金属材料之间形成原电池,其阴、阳两极之 间发生的氧化还原反应使某一组分或组成的金属材 料溶解,造成材料失效。这一过程称为电化学腐蚀。 两种不同金属在溶液中直接接触,因其电极电位 不同而构成腐蚀电池,使电极电位较负的金属发生 溶解腐蚀,则称之为电偶腐蚀,或接触腐蚀。工程 上不乏不同金属材料间的接触,电偶腐蚀这类电化 学腐蚀屡屡发生。
2019年2月24日
第七章
工业腐蚀与预防措施
5/40
三、腐蚀的危害与损失
伴随世界工业化进程的是环境污染的加重和人类生存条 件的恶化。污染环境的物质大多是腐蚀性物质,所以腐蚀 现象无时不在,随处可见。 腐蚀所造成的损失是巨大的。在设备损伤事故中,腐蚀 所造成的经济损失占很大比例。1964~1973年间, 日本金 属工业公司处理设备损伤事故1009起,有985起与腐蚀有关, 占97.62%。美、英、前苏联、前西德等国1969~1970年 间的调查资料表明,由于腐蚀造成的直接损失,占国民经 济总收入的2.0%~4.2%。美国每年汽车事故损失300亿 美元,火灾损失110亿美元,洪水损失4.3亿美元,风灾损 失17亿美元,地震损失4亿美元,而腐蚀造成的损失达700 亿美元,远远超出上述其余各项的总和。
2019年2月24日
第七章
工业腐蚀与预防措施
14/40
金属材料并不是在所有的腐蚀环境中都能产生应 力腐蚀裂纹。不同金属材料的应力腐蚀都需要特定 的腐蚀环境。随着各种金属材料应用范围的不断扩 大,腐蚀环境的种类也出现增多的趋势。 化学工业中的应力腐蚀,是由于原材料中所含的 杂质或在各工序中经过分解、合成等过程生成的腐 蚀性成分造成的。能造成应力腐蚀的原材料中的杂 质有硫、硫化物、氯化钠和氯化锰等无机盐、脂环 酸、氮化合物等。另外,为了防止腐蚀所加入的碱, 再生重整等过程中使用的催化剂,也是能引起应力 腐蚀裂纹的物质。
第七章 工业腐蚀和预防措施
第一节 工业腐蚀及其危害
脱碳是指钢中渗碳体在高温下与气体介质发生化学反应使金属脱碳的过程。
2、电化学腐蚀:金属材料与电解质溶液接触
时,由于不同组分或组成的金属材料之间形成原 电池,其阴、阳两极之间发生的氧化还原反应使 某一组分或组成的金属材料溶解,造成材料失效。 两种不同金属在溶液中 直接接触,因其电极电 位不同而构成腐蚀电池,使电极电位较负的金属 发生溶解腐蚀,此为电偶腐蚀,或接触腐蚀。
氢脆不同于应力腐蚀,无须腐蚀环境, 而且在常温下更容易发生氢脆。
合金钢碳化物组织状况对氢脆有直接影 响,合金钢强度级别越高,其氢脆敏感性 越大。
第三节 应力腐蚀裂纹
一、应力腐蚀概述
金属或合金在应力,特别是拉伸应力作 用下,处在特定的腐蚀环境中,材料在外 观上没有多大变化,但却产生了裂纹,此 为应力腐蚀裂纹。外观无明显变化,发展 迅速,预测困难,因而,更危险。
第二节 工业腐蚀的典型类型
三、孔腐蚀是金属表面个别小点上深度较大的
腐蚀,简称孔蚀,也称作小点腐蚀。金属表面的 露头、错位、介质不均匀等为点蚀源。
介质对孔蚀的影响:氯化物、溴化物、次氯酸 盐等溶液及含氯离子的天然水最易产生孔蚀。氯 化亚铜、氯化亚铁等与氧化剂同时存在会使孔蚀 加剧。介质中的OH-、NO3-、SO4-、ClO4-与存 在溶液中 氯离子比值达到一定值时,对孔蚀有 抑制作用,否则,作用增强。增加溶液的流速, 可降低孔蚀。
第七章 工业腐蚀与预防措施
•第一节 工业腐蚀及其危害 •第二节 工业腐蚀的典型类型 •第三节 应力腐蚀裂纹 •第四节 腐蚀监测技术 •第五节 设计和选材的防腐考虑 •第六节 材料的防腐措施
应力腐蚀失效及防护措施
应力腐蚀失效及防护措施1.应力腐蚀失效机理在压力容器的腐蚀失效中,应力腐蚀失效所占的比例高达45 %左右。
因此,研究不锈钢制压力容器的应力腐蚀失效显得尤为重要。
所谓应力腐蚀,就是在拉伸应力和腐蚀介质的联合作用下而引起的低应力脆性断裂。
应力腐蚀一般都是在特定条件下产生:①只有在拉应力的作用下。
②产生应力腐蚀的环境总存在特定的腐蚀介质,不锈钢在含有氧的氯离子的腐蚀介质及H2SO4 、H2S 溶液中才容易发生应力腐蚀。
③一般在合金、碳钢中易发生应力腐蚀。
研究表明,应力腐蚀裂纹的产生主要与氯离子的浓度和温度有关。
压力容器的应力来源:①外载荷引起的容器外表面的拉应力。
②压力容器在制造过程中产生的各种残余应力,如装配过程中产生的装配残余应力,制造过程中产生的焊接残余应力。
在化工生产中,压力容器所接触的介质是多种多样的,很多介质中含有氯离子,在这些条件下,压力容器就发生应力腐蚀失效。
铬镍不锈钢在含有氧的氯离子的水溶液中,首先在金属表面形成了一层氧化膜,它阻止了腐蚀的进行,使不锈钢钝化。
由于压力容器本身的拉应力和保护膜增厚带来的附加应力,使局部地区的保护膜破裂,破裂处的基体金属直接暴露在腐蚀介质中,该处的电极电位比保护膜完整的部分低,形成了微电池的阳极,产生阳极溶解。
因为阳极小、阴极大,所以阳极溶解速度很大,腐蚀到一定程度后,又形成新的保护膜,但在拉应力的作用下又可重新破坏,发生新的阳极溶解。
在这种保护膜反复形成和反复破裂过程中,就会使某些局部地区的腐蚀加深,最后形成孔洞,而孔洞的存在又造成应力集中,更加速了孔洞表面的塑性变形和保护膜的破裂。
这种拉应力与腐蚀介质的共同作用便形成了应力腐蚀裂纹。
2.应力腐蚀失效的防护措施控制应力腐蚀失效的方法,从内因入手,合理选材,从外因入手,控制应力、控制介质或控制电位等。
实际情况千变万化,可按实际情况具体使用。
(1)选用耐应力腐蚀材料近年来发展了多种耐应力腐蚀的不锈钢,主要有高纯奥氏体铬镍钢,高硅奥氏体铬镍钢,高铬铁素体钢和铁素体—奥氏体双相钢。
应力腐蚀开裂
应力腐蚀开裂王博浩过控1201学号:201209300319摘要:工业上广泛应用的材料是金属,而金属无可避免的会面临腐蚀问题,而在设备的腐蚀中,应力腐蚀是在其中占有相当大比例的一种腐蚀类型。
应力腐蚀广泛存在于材料受到静应力条件下,这种腐蚀对于材料是毁灭性的腐蚀。
因此,了解应力腐蚀的机理和原因以及预防的方法是十分必要的。
一.引言腐蚀导致经济的巨大损失已是众所周知的事实。
从国内石油化工生产企业统计,1999年泸天化年总产值8.284亿元,而直接与间接腐蚀经济损失共计6010万元,占年生产总值的7.25%。
仪征化纤厂大修周期从1年改为2年,创净利润(22~23)亿/年。
通常认为间接腐蚀损失比直接腐蚀损失大。
根据现有数据,石油工业的间接腐蚀损失是直接腐蚀损失的3倍。
2000年,上海医药集团腐蚀损失是8114万元;华东电网因锅炉“四管”腐蚀爆漏导致非计划停车115次,损失电量29亿千瓦·小时,经济损失7.7亿元。
汽车行业1999年的腐蚀损失约为242亿元。
以重庆汽车腐蚀调查为例,重庆市系内陆盆地,夏季闷热,冬天潮湿,年平均气温较高,其环境大气中的Cl-、SO2和H2S等含量高,下雨频率高,酸雨、大雾天气时有发生。
车辆受大气环境的腐蚀十分严重,通常新车运行1年后就产生锈斑,2年左右就有腐蚀穿孔现象发生。
由于大面积腐蚀和腐蚀穿孔,通常车辆每年都要进行外涂装;2年要进行换顶;4年要进行面板、车顶的更换,大梁、车身骨架的维护,重庆市车辆年均总的腐蚀损失为16057.1万元。
应力腐蚀、氢脆、孔蚀等局部腐蚀破坏的发生难以预测,极易引起生产设备的爆炸、火灾等突发性灾难事故,危及职工及生产装置的安全。
如国内某天然气管线曾因硫化氢应力腐蚀破坏多次发生爆炸,其中一次引爆起特大火灾,造成20多人伤亡;某天然气井口设备因硫化氢酸性气体腐蚀造成井喷,大火烧了二十多天,经济损失惨重;某化肥厂废热锅炉进口管因氢腐蚀引发爆炸,造成7人死亡等。
应力腐蚀撕裂SCC产生机理影响因素及防治措施
腐蚀开裂,一定的材料只在某一定的腐蚀环境中才产生应
力腐蚀裂纹。
材料
腐蚀介质
低碳钢 NaOH 水溶液(沸腾)、硝酸盐水溶液等
低合金钢
海水、H2S 水溶液、NH4Cl 水溶液等
奥氏体不锈钢 氯化物水溶液、海洋气氛、海水等
一般说来,介质的腐蚀性较弱,呈中性或弱酸性 PH 6-7,当表面膜不能稳定存在时,易产生应力腐蚀开裂。 介质的腐蚀性强,易产生全面的均匀性腐蚀,反而不易产
一、应力腐蚀裂纹特征 1、形貌: 外观:无明显的均匀腐蚀痕迹,呈龟裂形式断断续续。 从横断面来看:犹如枯干的树木的根须,由表面向纵深方 向往里发展,裂口深宽比大,细长而带有分支是其典型的 特点。 从断口来看:仍保持金属光泽为典型脆性断口 2、材质与介质的匹配
纯金属不产生应力腐蚀裂纹,凡是合金即使含有微量 元素的合金,在特定的腐蚀环境中都有一定的应力腐蚀开 裂倾向。但并不是说,任何合金在任何介质中都产生应力
介质处理、加缓蚀剂等
电化防蚀、阴极化或阳极化、表面技术处理
2、 定时检查及分析
定期检查、及时补修
2、 合理制定装焊工艺 1)、成形及装配工艺 引起应力腐蚀裂纹的重要原因之一就是残余应力,从 部件成形加工列组装都可引起残余应,特别是强制组 装,例如用千斤组装大错口,可以形成很大的残余应 力,在组装质量不良的条件下(错口)焊接时,会造 成较大的残余应力。组装时所造成伤痕如随意打弧的 灼痕等都会成应力腐蚀裂源。 2)、焊接工艺 基本点,不产生硬化组织,不发生晶粒严重粗化现象, 接头硬度↑ 粗晶区的应力腐蚀裂纹的扩展敏感性最大,主要是由 于晶粒粗大,以致裂纹尖端集中的位错数量增大,并 可形成大的滑移阶梯,从而利于应力腐蚀裂纹的形成 和扩展。 3、 消除应力处理 焊后消除应力处理是防止产生应力腐蚀裂纹的重要环 节。
应力腐蚀断裂
应力腐蚀断裂一.概述应力腐蚀是材料、或在静主要是拉应力和腐蚀的共同作用下产生的失效现象..它常出现于用钢、黄铜、高强度铝合金和中;凝汽器管、矿山用钢索、飞机紧急刹车用高压气瓶内壁等所产生的应力腐蚀也很显着..常见应力腐蚀的机理是:零件或构件在应力和腐蚀介质作用下;表面的氧化膜被腐蚀而受到破坏;破坏的表面和未破坏的表面分别形成阳极和阴极;阳极处的金属成为离子而被溶解;产生电流流向阴极..由于阳极面积比阴极的小得多;阳极的电流密度很大;进一步腐蚀已破坏的表面..加上拉应力的作用;破坏处逐渐形成裂纹;裂纹随时间逐渐扩展直到断裂..这种裂纹不仅可以沿着金属晶粒边界发展;而且还能穿过晶粒发展..应力腐蚀过程试验研究表明:当金属加上阳极电流时可以加剧应力腐蚀;而加上阴极电流时则能停止应力腐蚀..一般认为压应力对应力腐蚀的影响不大..应力腐蚀的机理仍处于进一步研究中..为防止零件的应力腐蚀;首先应合理选材;避免使用对应力腐蚀敏感的材料;可以采用抗应力腐蚀开裂的不锈钢系列;如高镍奥氏体钢、高纯奥氏体钢、超纯高铬铁素体钢等..其次应合理设计零件和构件;减少..改善腐蚀环境;如在腐蚀介质中添加缓蚀剂;也是防止应力腐蚀的措施..采用金属或非金属保护层;可以隔绝腐蚀介质的作用..此外;采用阴极保护法见也可减小或停止应力腐蚀..本篇文章将重点介绍应力腐蚀断裂失效机理与案例研究;并分析比较应力腐蚀断裂其他环境作用条件下发生失效的特征..;由于应力腐蚀的测试方法与本文中重点分析之处结合联系不大;故不再本文中加以介绍..二.应力腐蚀开裂特征1引起应力腐蚀开裂的往往是拉应力..这种拉应力的来源可以是:1. 工作状态下构件所承受的外加载荷形成的抗应力..2. 加工;制造;热处理引起的内应力..3. 装配;安装形成的内应力..4. 温差引起的热应力..5. 裂纹内因腐蚀产物的体积效应造成的楔入作用也能产生裂纹扩展所需要的应力..2每种合金的应力腐蚀开裂只对某些特殊介质敏感..一般认为纯金属不易发生应力腐蚀开裂;合金比纯金属更易发生应力腐蚀开裂..下表列出了各种合金风应力腐蚀开裂的环境介质体系;介质有特点:即金属或合金可形成纯化膜;弹介质中有有破坏纯化膜完整性的离子存在..而且介质中的有害物质浓度往往很低;如大气中微量的H 2S 和NH 3可分别引起钢和铜合金的应力腐蚀开裂..空气中少量NH 3是鼻子嗅不到的;却能引起黄铜的氨脆..再如奥氏体不锈钢在含有几个ppm 氯离子的高纯水中就会出现应力腐蚀开裂..再如低碳钢在硝酸盐溶液中的“硝脆”;碳钢在强碱溶液中的“碱脆”都是给定材料和特定环境介质结合后发生的破坏..氯离子能引起不锈钢的应力腐蚀开裂;而硝酸根离子对不锈钢不起作用;反之;硝酸根离子能引起低碳钢的应力腐蚀开裂;而氯离子对低碳钢不起作用..表1.常见材料应力腐蚀开裂发生的介质3应力腐蚀开裂是材料在应力和环境介质共同作用下经过一段时间后;萌达到生裂纹;裂纹扩展到临界尺寸;此时由于裂纹尖端的应力强度因子KI;发生失稳断裂..即应力腐蚀开裂过程分为三个阶段:材料的断裂韧性KIc裂纹萌生;裂纹扩展;失稳断裂..1.裂纹的萌生裂纹源多在保护膜破裂处;而膜的破裂可能与金属受力时应力集中与应变集中有关;此外;金属中存在孔蚀;缝隙腐蚀;晶间腐蚀也往往是SCC 裂纹萌生处..萌生期长短;少则几天;长达几年;几十年;主要取决于环境特征与应力大小..2.裂纹扩展应力腐蚀开裂的裂纹扩展过程有三种方式..应力腐蚀开裂裂纹的扩展速率da/dt与裂纹尖端的应力强度因子K1的关系具有图示的三个阶段特征..在第一阶段da/dt随K1降低而急剧减少..当KI降到Kiscc以下时应力腐蚀开裂裂纹不再扩展..在第二阶段;裂纹扩展与应力强度因子KI大小无关;主要受介质控制..在这阶段裂纹出现宏观和微观分枝..但在宏观上;裂纹走向与抗应力方向是垂直的..第三阶段为失稳断裂;纯粹由力学因素KI 控制;da/dt随KI增大迅速增加直至断裂..3应力腐蚀开裂属于脆性断裂..即使塑性很高的材料也是如此..其断口呈多种形貌..有沿晶断裂;准解理;韧性断裂等..图1.应力腐蚀开裂da/dt与KI关系三.应力腐蚀开裂机制应力腐蚀开裂现象很多;目前尚未有统一的见解;不同学派的观点可能从电化学;断裂力学;物理冶金进行研究而强调了它们的作用..1电化学理论1; 活性通道理论该理论认为;在金属或合金中有一条易于腐蚀的基本上是连续的通道;沿着这条活性通道优先发生阳极溶解..活性通道可以是晶界;亚晶界或由于塑性变形引起的阳极区等..电化学腐蚀就沿着这条通道进行;形成很窄的裂缝裂纹;而外加应力使裂纹尖端发生应力集中;引起表面膜破裂;裸露的金属成为新的阳极;而裂纹两侧仍有保护膜为阴极;电解质靠毛细管作用渗入到裂纹尖端;使其在高电流密度下加速裂尖阳极溶解..该理论强调了在拉应力作用下保护膜的破裂与电化学活化溶解的联合作用..2.快速溶解理论..该理论认为活性通道可能预先是不存在的;而是合金表面的点蚀坑;沟等缺陷;由于应力集中形成裂纹;裂纹一旦形成;其尖端的应力集中很大;足以使其尖端发生塑性变形到一个塑性;该塑性具有很大的溶解速度..这种理论适用于自纯化金属;由于裂纹两侧纯化膜存在;更显示裂纹尖端的快速溶解;随着裂纹向前发展;裂纹两侧的金属重新发生纯化再纯化;只有当裂纹中纯化膜的破裂和再纯化过程处于某种同步条件下才能使裂纹向前发展;如果纯化太快就不会产生裂纹进一步腐蚀;若再纯化太慢;裂纹尖端将变圆;形成活性较低的蚀孔..图2.快速溶解理论机理图3.膜破裂理论该理论认为金属表面有一层保护膜吸附膜;氧化膜;腐蚀产物膜;在应力作用下;被露头的滑移台阶撕破;使表面膜发生破裂图3b局部暴露出活性裸金属;发生阳极溶解;形成裂纹图3c..同时外部保护膜得到修补;对于自纯化金属裂纹两侧金属发生再纯化;这种再纯化一方面使裂纹扩展减慢;一方面阻止裂纹向横向发展;只有在应力作用下才能向前发展..4.闭塞电池理论该理论是在活性通道理论的基础上发展起来的..腐蚀就先沿着这些活性通道进行;应力的作用在于将裂纹拉开;以免被腐蚀产物堵塞;但是闭塞电池理论认为;由于裂纹内出现闭塞电池而使腐蚀加速这类似于缝隙腐蚀即在裂纹内由于裂纹内金属想要发生水解:FeCl2+2H2O→FeOH2+2HCl;使Ph值下降;甚至可能产生氢;外部氢扩散到金属内部引起脆化..闭塞电池作用是一个随催化腐蚀过程;在拉应力作用下使裂纹不断扩展直至断裂..2吸氢变脆理论..该理论是从一些塑性很好的合金在发生应力腐蚀开裂时具有脆性断裂的特征提出的变脆是否由氢脆引起该理论认为裂纹的形成与发展主要与裂纹尖端氢被引入晶格有关;如奥氏体不锈钢在裂纹尖端;Cr阳极氧化生成CrO3使其酸度增大..2Cr+3H2O→Cr2O3+6H++6e..当裂纹尖端的电位比氢的平衡电位负时;氢离子有可能在裂纹尖端被还原;变成吸附的氢原子;向金属内部扩展;从而形成氢脆..3应力吸附破裂理论..该理论认为由于环境中某些破坏性组分对金属表面内表面的吸附;削弱了金属原子间的结合力;在抗拉力作用下引起破裂..四.影响应力腐蚀开裂的因素影响应力腐蚀开裂的因素可以大致分为环境因素、应力因素以及冶金因素;现整理为图4框图所示..图4.影响应力腐蚀的因素五、应力腐蚀的防护措施从应力腐蚀的机理来看;从材料与环境介质、力学因素三方面因素考虑防护措施..从防护的方法来分防止应力腐蚀应从减少腐蚀和消除拉应力两方面来采取措施..1.要尽量避免使用对应力腐蚀敏感的材料;2.在设计设备结构时要力求合理;尽量减少应力集中和积存腐蚀介质;3. 是在加工制造设备时;要注意消除残余应力..六、应力腐蚀断裂的典型案例高压热交换器管的破裂案例1: CO2材质: 0Cr18Ni10尺寸及结构: 19× 1.6;共232根;每根长8.5米..管与管板采用胀焊连接..工作环境:..进口温度:180℃;管内:湿CO2出口温度40~50℃;压力:80~90kgf..管外:冷却水含氧6~10ppm;Cl-80~100ppm进口温度:32~34 ℃;出口温度:80 ℃;压力:4 kgf..损坏情况:运转2月后发现泄漏;运转3个月检修时发现70多根管子破裂..破裂多发生在高温侧管板缝隙附近..分析检验:裂纹从管外壁产生;向内壁扩展;属穿晶型应力腐蚀裂纹特征..断口扫描电镜发现;破裂是典型的脆性解理断裂;是由氯化物应力腐蚀造成的..图5. 67管与管板连接及管上应力腐蚀裂纹示意图ab c图6. 管板缝隙处破裂的管子案例二:化肥厂冷却器管的破损材质:00Cr18Ni10 尺寸: 19× 2;管外-冷却水工作环境:管内-高温CO2损坏情况:运转不到半年;发生多处破损事故..分析检验:裂纹以横裂为主..裂纹由外壁产生;向内壁扩展;属典型的穿晶型应力腐蚀裂纹..图7.冷却器管外部裂纹特征案例三:金属材料中氢致开裂断口案例材质:33CrNiMoA工艺情况:850℃保温2h后炉冷;超声波探伤发现内部有缺陷;图1:经淬火处理浸蚀方法:图8:未浸蚀;图9:50%盐酸水溶液浸蚀;图10:4%硝酸酒精溶液浸蚀组织说明:图8:20mm切片压开裂成纵向断口;其中有许多圆形、卵形白斑———即白点缺陷..白点表面呈粗晶状..图9:横向截面低倍组织形貌;有许多辐射状短裂纹;它们在纵向即为白点..图3:裂纹处横向金相试样形貌;白点为锯齿状裂纹;裂纹细小、刚挺、穿晶..白点产生的原因;一般认为与钢中氢含量较高有关..由于钢中氢原子脱溶、聚集结合成氢分子;产生极大压力;在热加工中与热应力、组织应力叠加造成裂纹..图8. 20mm切片压开裂成纵向断口图9. 横向截面低倍组织形貌图10. 4%硝酸酒精溶液浸蚀组织图材料: 20MnMo工艺情况:锻造后空冷;冲击试验组织说明:冲击断口试样;断口上有白点;透射电镜碳二次复型图像;白点区为准解理断裂;通常称之为氢致解理..图11. 冲击断口试样断口组织图材料:20钢螺钉工艺情况:冷镦成型合镀锌组织说明:螺钉断口..螺钉经酸洗后表面电镀锌;在安装时发生断裂..断口宏观形貌光滑平坦..扫描电镜观察具有准解理特征;并有发纹等;属氢脆断裂..低碳钢虽对氢脆不像高强度钢那样敏感;但如酸洗后未经除氢处理;也有可能会引起氢脆..图12.螺钉断口组织图材料:35钢螺钉工艺情况:热锻、调质后镀锌组织说明:螺钉断口..螺钉经酸洗后表面电镀锌;在安装时发生断裂..断口呈脆性特征;微观形貌为准解理断裂;并有发纹等特征;为氢脆断裂..图13.螺钉断口组织图材料:65Mn工艺情况:淬火、回火后酸洗、电镀组织说明:由65Mn钢制作的弹簧片;在安装时发生断裂..断口为典型的冰糖状沿晶断裂;在断裂的晶面上有细小的爪状纹及发纹等特征..此为高强度钢氢脆断口的特征..高强度钢在酸洗电镀后必须进行除氢处理;除氢不及时或除氢不彻底均会导致氢脆..图14.65Mn钢制作的弹簧片断口形貌材料:65Mn工艺情况:淬火、回火后酸洗、电镀组织说明:酸洗及电镀过程中的氢进入钢中后常沿晶界处聚集;导致晶界脆化;形成沿晶断裂..氢在扩散、聚集过程中留下发纹、爪状纹等特征..氢脆断裂时在微区局部晶界上因氢损伤较轻;故断裂时在局部区域能观察到韧窝;见图中上部区..图15. 65Mn钢断口形貌材料:1Cr18Ni9Ti工艺情况:冷变形后去应力退火组织说明:在奥氏体不锈钢的应力腐蚀断口上除河流花样外还有羽毛状及扇形状花样;这种花样通常在经变形而使晶粒拉长的材料中出现..图16.奥氏体不锈钢的应力腐蚀断口材料:1Cr18Ni9Ti工艺情况:固溶处理组织说明:应力腐蚀失效断口..奥氏体不锈钢在氯离子环境下使用造成的应力腐蚀的断口形貌;有河流花样特征..这是由于应力腐蚀裂纹沿一定的晶面扩展;通常发生开裂的主要晶面有{100}、{110}、{111}等..图中点状小颗粒为断口表面上的腐蚀产物;用能谱仪分析通常能检测到氯元素..图17. 奥氏体不锈钢在氯离子环境应力腐蚀的断口形貌材料:1Cr18Ni9Ti工艺情况:固溶处理组织说明:氯离子环境下的应力腐蚀断口上的泥状花样;其特征似干裂的泥块..通常在腐蚀产物堆积较厚的区域出现;是腐蚀产物开裂的特征..图18.氯离子环境下的应力腐蚀断口泥状花样材料:1Cr18Ni9Ti工艺情况:固溶处理组织说明:氯离子环境下的应力腐蚀断口..由于介质中氯离子对断口的浸蚀;在某些区域会出现腐蚀坑..这种腐蚀坑常呈现规则的形状;类似于金相位错腐蚀坑..图中所示腐蚀坑为正方形;可说明此腐蚀坑所在的开裂晶面为{100}晶面..图19. 氯离子应力腐蚀断口几何形状的腐蚀坑特征七.参考文献1.中国钢企百科;2.肖纪美;氢致材料开裂的分析方法;3.王吉会;郑俊萍;刘家臣;黄定海;材料力学性能 ..。
腐蚀学原理--第七章-应力作用下的腐蚀分析
实例:中国版本的“黑Байду номын сангаас坠落”
7.1.3 防止应力腐蚀断裂的措施
1.降低或消除应力 (1) 改进结构设计,避免或减少局部应力集中。对应力腐蚀事故分析表明,由残余应力引起的比例最大,因此在加工、制造、装配中应尽量避免产生较大的残余应力。结构设计应尽量避免缝隙和可能造成腐蚀液残留的死角,防止有害物质(如Cl-、OH-)的浓缩。 (2) 消除应力处理:减少残余应力可采取热处理退火、过变形法、喷丸处理等方法。其中消除应力退火是减少残余应力的最重要手段,特别是对焊接件,退火处理尤为重要。 (3) 按照断裂力学进行结构设计:由于构件中不可避免地存在着宏观或微观裂纹和缺陷,因此用断裂力学进行设计比用传统力学方法具有更高的可靠性。在腐蚀环境下,预先确定材料的KISCC、da/dt等参数,根据使用条件确定构件允许的临界裂纹尺寸ac,具有重要的实际意义。
氢的存在形式
氢可以H-、H、H+、H2、金属氢化物、固溶体、碳氢化合物等形式存在于金属中,也可与位错结合形成气团(⊥H)而存在。当氢与碱金属(如Li、Na、K)或碱土金属作用时,可形成氢化物(如NaH)。在这类化合物中Na+和H-以离子键方式结合在一起,氢以H-形式存在。另一种观点认为,过渡族金属的d带没有填满,当氢原子进入金属后,分解为质子和电子,即H → H++e。氢的1s电子进入金属的d带,氢以质子状态存在于金属中。当金属d带填满后,多余的氢将以原子状态存在。也有观点认为,氢原子具有很小的原子半径(0.053nm),能处于点阵的间隙位置,如α—Fe的四面体间隙和γ—Fe的八面体间隙。最近,有的研究者又提出电子屏蔽概念。认为氢以原子态“H+e”存在于金属中,或者说氢以“屏蔽的离子”即穿有“电子外衣”的离子状态存在于金属中。 氢溶解在金属中可形成固溶体,氢在金属中的溶解度与温度和压力有关。氢在金属中如果超过固溶度,可形成分子氢(H2)、金属氢化物、氢原子气团三类化合物。
第七章应力作用下的腐蚀
(4)腐蚀疲劳裂纹多起源于表面腐蚀坑或表面缺陷,往往成群出现,主要呈穿 晶型,无分枝现象,也有沿晶型或混合型。
(5)断口既有腐蚀特征,又有疲劳辉纹特征。
三:腐蚀疲劳机理 在循环应力作用下,表面钝化膜不断破坏,裸金属不断暴露,腐蚀迅速发生。
主要步骤 (1) 腐蚀介质中发生点蚀坑(疲劳源); (2) 应力作用下, 点蚀坑发生 滑移, 形成滑移台阶; (3) 滑移台阶上发生阳极溶解; (4) 反方向应力作用下, 形成初始裂纹。
晶间型裂纹
不锈钢应力腐蚀裂纹形貌
不锈钢应力腐蚀裂纹形貌
穿晶型裂纹
二、应力腐蚀破裂的机理
电化学快速溶解理论 金属表面形成不连续 的薄弱点的保护膜
薄弱点是活性点
在应力作用下被破坏,暴露出新鲜表面
阳极电流密度很大 形成电池:阳极(新鲜表
被腐蚀成沟状裂纹
面)阴极(完整表面膜)
应
力
裂纹继续发展、传播
最终金属发生破裂
Mo元素 Mo能提高不锈钢的耐孔蚀性能,但在高浓度氯化物中对不锈钢耐应力腐蚀性能 极有害。
N、P、S、Mn元素 一般认为,N、P、S、Mn对Cr-Ni不锈钢应力腐蚀破裂有不良的作用。
Si元素 在ω MgCl2为42%溶液中,Si能显著地提高Cr-Fe不锈钢的耐应力腐蚀破裂性能。
对钛合金,降低它的含氧量和含Al、Sn,同时 加入适量的Nb 、Ta、V有利于提高其抗应力腐 蚀性能。
疲劳裂纹生成示意图
四:影响腐蚀疲劳的因素
• 力学因素的影响:应力交变速度越大,则裂纹的扩展速度越慢,金属可 以经受更长的应力循环。当应力交变速度降低时,一般使裂纹扩展速度加 快。
• 材料因素的影响:耐蚀性较高的金属对腐蚀疲劳的敏感性较小,耐蚀性 较差的金属对腐蚀疲劳的敏感性较大。
工业腐蚀与预防措施
表面分析技术
利用显微镜、X射线衍射 、能谱仪等技术观察金属 表面形貌、成分和结构, 以判断腐蚀程度。
无损检测技术
通过超声波、射线、磁粉 等无损检测方法,在不损 伤材料的情况下检测内部 腐蚀情况。
腐蚀评估方法
外观检查
通过目视或使用放大镜观 察金属表面,判断腐蚀程 度和类型。
厚度测量
使用超声波测厚仪测量金 属的厚度,评估腐蚀对材 料强度的影响。
04
工业腐蚀的案例分析
石油化工行业腐蚀案例
总结词
石油化工行业中的腐蚀主要发生在储罐、管道和反应器等设备上,由于接触的介质多为酸性或碱性的油、水和气 体等,因此腐蚀问题较为严重。
详细描述
在石油化工行业中,由于涉及的原料和产品多为易腐蚀物质,如硫化氢、氯化氢和酸、碱等,因此设备经常遭受 腐蚀。例如,某石油炼化厂的储罐底部因油水混合物中的硫化氢和氯化氢等腐蚀性物质的作用而发生严重腐蚀, 导致油品泄漏和环境污染。
跨学科合作研究
加强材料科学、化学、生物学等学科与腐蚀防护的交叉融合,推动 腐蚀研究的发展。
智能化监测与预测
利用大数据、物联网等技术,实现对工业腐蚀的实时监测和预测, 提高防腐效率。
新型防腐材料的研发
加大对新型防腐材料、涂层和工艺的研发力度,提高防腐性能和寿命 。
THANKS
谢谢您的观看
工业腐蚀与预防措施
汇报人: 2024-01-02
目录
• 工业腐蚀概述 • 工业腐蚀的检测与评估 • 工业腐蚀的预防措施 • 工业腐蚀的案例分析 • 未来工业腐蚀的挑战与展望
01
工业腐蚀概述
工业腐蚀概述
• 请输入您的内容
02
工业腐蚀的检测与评估
腐蚀检测技术
金属焊接中的应力腐蚀开裂分析与预防
金属焊接中的应力腐蚀开裂分析与预防在金属焊接中,应力腐蚀开裂是一个普遍存在的问题。
这种现象指的是在受到外部应力作用下,金属焊接接头出现应力腐蚀破裂的情况。
它会严重影响金属焊接接头的性能和使用寿命,因此对于应力腐蚀开裂的分析与预防非常关键。
本文将围绕着金属焊接中的应力腐蚀开裂,从分析其原因、影响因素和预防措施等方面进行探讨。
一、应力腐蚀开裂的原因应力腐蚀开裂的形成是由于金属焊接接头同时受到应力和腐蚀介质的作用,从而引发了金属腐蚀破裂。
其原因主要有以下几个方面:1.应力源:金属焊接接头中存在各种应力源,如冷却过程中的收缩应力、加热过程中的热应力、装配过程中的焊接残余应力等。
这些应力源的存在使得金属接头产生了内应力,为应力腐蚀开裂提供了条件。
2.腐蚀介质:金属焊接接头在使用环境中遭受到腐蚀介质的侵蚀,如酸性、碱性或盐性介质等。
这些腐蚀介质与金属焊接接头之间的相互作用会导致金属发生腐蚀,从而降低其力学性能和耐蚀性。
3.材料选择:金属材料的选择也会对应力腐蚀开裂起到重要影响。
一些材料本身就具有较高的应力腐蚀敏感性,容易发生腐蚀破裂。
此外,焊接接头处于退火状态下时,晶界与晶界附近区域的化学成分和晶界能对应力腐蚀开裂也具有影响。
二、应力腐蚀开裂的影响因素除了上述原因外,还有一些其他因素会进一步影响应力腐蚀开裂的产生与发展。
这些因素包括:1.温度:温度是影响应力腐蚀开裂的重要因素之一。
在一定温度范围内,金属的活化能和扩散速率会显著增加,从而加剧金属的腐蚀破裂。
2.应力:外部应力对金属焊接接头的应力腐蚀开裂有着直接影响。
当外部应力超过金属材料的抗应力裂纹扩展能力时,应力腐蚀开裂就会产生。
3.介质浓度:腐蚀介质的浓度对应力腐蚀开裂的发生和发展也起到重要作用。
高浓度的腐蚀介质会加速腐蚀破裂的速度。
三、应力腐蚀开裂的预防措施为了有效预防金属焊接中的应力腐蚀开裂,我们可以采用以下方法:1.材料选择:选择抗应力腐蚀开裂性能良好的金属材料,如高强度合金钢、不锈钢等。
第七章应力作用下的腐蚀解析
(4)材料和环境的交互作用反映在电位上,一般认为,应力腐蚀破裂有三个易产
生破裂的区间。
活化-阴极保护过渡区(区域1)
活化-钝化电位过渡区(区域2)
钝化-过钝化电位区(区域3)
三个电位过渡区都是钝化膜不稳定的区域,在应 力与腐蚀介质中易诱发应力腐蚀。
在区域1: ➢wNi20%不锈钢在8mol/l沸腾H2SO4中; ➢18Cr-9Ni不锈钢在225℃、wNaOH20%溶液中发生 破裂;
镁合金 Mg-Al Mg-Al-Zn-Mn
钛及钛合金
HNO3,NaOH,HF溶液,蒸馏水 NaCl+ H2O2溶液,海滨大气,NaCl-K2CrO4溶液,水,SO2-CO2-湿空气 红烟硝酸,N2O4,HCl,Cl-水溶液,固体氯化物(>2900C),海水,CCl4,甲醇、甲醇蒸气,三氯乙
烯,有机酸
第一节 应力腐蚀破裂 应力腐蚀破裂是指材料在固定拉应力和腐蚀介质的共同作用下产生的破裂。 所谓固定,是指方向一定的拉应力,但是大小可以变化。腐蚀和应力是相互 促进,不是简单叠加 ,两者缺一不可 。应力腐蚀破裂简称应力腐蚀,国外 称之为SCC (Stress Corrosion Cracking 的缩写)。
残余应力,金属材料在生产过程和加工过程中,在材料内部产生的应 力如冷轧、弯曲、机械加工、焊接、热处理过程中也能产生应力。
热应力,由于淬火、周期性的加热和冷却而引起的应力。
结构应力,由于设备,部件的安装和装配而引起的应力。
产生应力腐蚀破裂的应力值一般低于材料的屈服点。在大多数产生应力腐 蚀的系统中,存在一个临界应力值。当应力值低于该临界值时,不会产生 应力腐蚀破裂。
在区域2:普碳钢在8mol/LNaOH溶液中发生应力 破裂;
应力腐蚀开裂 解决方案
应力腐蚀开裂解决方案应力腐蚀开裂这事儿啊,就像身体里有个小恶魔在搞破坏,不过咱有办法治它!一、从材料本身入手。
1. 选材讲究。
首先呢,咱得选那些抗应力腐蚀开裂能力强的材料。
就好比找个身强力壮、不容易生病的人来干活一样。
比如说,要是在那种容易有应力腐蚀的环境里,不锈钢可能比普通碳钢要好得多。
如果是在含氯离子的环境里,那就别傻愣愣地用那些不耐氯离子腐蚀的材料啦,得挑那些专门针对这种环境的特殊不锈钢,像316L不锈钢就比304不锈钢在这方面表现更好,就像挑选手套,得挑那种最适合工作环境的。
2. 材料改性。
对材料进行改性也是个好主意。
就像给材料吃点“补药”,让它变得更坚强。
可以进行热处理,通过加热和冷却的过程来改变材料的内部结构。
比如说,正火处理可以细化晶粒,让材料的内部组织更加均匀,这样它就能更好地抵抗应力腐蚀开裂啦。
还有表面处理也很有用,像喷丸处理,就像是给材料的表面做个按摩,让表面产生压应力,这就相当于给材料穿上了一层抗压的小铠甲,能有效地抵抗外界的拉应力,从而减少应力腐蚀开裂的可能性。
二、控制应力这头“怪兽”1. 应力消除。
应力要是太大,材料肯定受不了,就像人压力太大也会崩溃一样。
所以要把应力给消除掉。
一种办法是采用退火处理,把材料加热到一定温度,然后慢慢冷却,就像让材料放松一下,把那些积攒的应力都释放出去。
还有啊,如果是在制造过程中产生的残余应力,像焊接后的结构,那就得用一些特殊的方法。
比如说振动时效,就像给焊接后的结构来个小震动,把里面那些不安分的应力给抖搂出来,让结构变得更稳定,不容易出现应力腐蚀开裂。
2. 合理设计结构。
在设计结构的时候啊,可不能乱来。
要尽量避免应力集中的情况。
就好比盖房子,你不能把所有的重量都压在一个小角落里,那样肯定会出问题。
在机械结构设计里也是一样的道理。
比如说,把零件的棱角都设计成圆角,而不是尖锐的直角,这样应力就不会都挤在那个尖尖的角上啦。
还有啊,要合理安排结构的受力情况,让应力分布得更加均匀,就像大家一起分担工作,而不是把所有的活儿都压在一个人身上。
工业腐蚀与预防措施
在金属表面电镀一层耐腐蚀金属,如镀铬、镀锌等,增强金属的抗 腐蚀能力。
05
CATALOGUE
工业腐蚀的监测与控制
监测方法
电化学方法
用于监测金属腐蚀的电化学变化,如电位、电流等参数。
物理方法
通过无损检测技术,如超声波、射线、涡流等,对金属表 面进行检测,评估腐蚀程度。
化学方法
通过定期或实时取样分析,了解工业流体中腐蚀物质的浓 度和组成。
THANKS
感谢观看
3
体积损失速率
单位时间内腐蚀导致设备体积损失的程度,通常 以立方厘米/年表示。
04
CATALOGUE
工业腐蚀的预防措施
改变物质特性
物质纯化
01
通过去除原材料中的杂质,提高物质的纯度,以降低腐蚀速率
。
选择合适的合金
02
根据应用需求,选择具有更高耐腐蚀性的合金材料。
表面处理
03
对金属表面进行涂层处理,如镀铬、镀锌等,以增强其抗腐蚀
腐蚀速率
评估设备在单位时间内腐蚀的程度。
剩余寿命
根据设备的腐蚀情况,预测其剩余使用寿命。
风险评估
根据设备的腐蚀程度和可能带来的后果,评估其 安全风险。
腐蚀速率计算
1 2
线性腐蚀速率
单位时间内腐蚀的深度(或厚度),通常以毫米 /年表示。
质量损失速率
单位时间内腐蚀导致设备质量损失的程度,通常 以克/年表示。
类型
工业腐蚀包括化学腐蚀、电化学 腐蚀、物理腐蚀等。其中,电化 学腐蚀是最常见的一种。
工业腐蚀的影响
01
02
03
生产中断
工业腐蚀可能导致设备故 障,影响生产进程。
安全风险
金属设备的应力腐蚀及预防措施
金属/设备得应力腐蚀及预防措施应力腐蚀得机理与特点1. 应力腐蚀一--—金属/设备在拉应力与腐蚀介质同时作用下产生脆性破裂,叫应力腐蚀破裂。
2. 应力腐蚀破裂得裂缝形态-—--主要有二种:a沿晶界发展,称晶间破裂。
b、裂缝穿过晶粒,称穿晶破裂。
也有混合型,主逢为晶间型,支缝或尖端为穿晶型。
3 •应力腐蚀得特征 ---- —a、必须存在拉应力(外加载核、热应力、冷/热加工或焊接后得残余应力等),若存在压应力则可抑制这种腐蚀。
b、发生应力腐蚀开裂(SCC)必须同时满足材料、环境、应力三者得特定条件。
也就就是说一般只发生在一定得体系,如奥氏体不锈钢/ C 1—体系,碳钢/ N O—3体系,铜合金/ NH J体系等。
根据介质主要成分为氯化物、氢氧化物、硝酸盐、氨、含氧水及硫化物等,而分别称为氯裂(氯脆)、碱裂(碱脆)、硝裂(硝脆)、氨裂(氨脆)、氧裂(氧脆),还有硫化物应力开裂等.c、应力腐蚀开裂与单纯由机械应力造成得开裂不同,它在极低得负荷应力下也能产生开裂。
d、应力腐蚀开裂与单纯由腐蚀引起得开裂也不同,腐蚀性极弱得介质也能引起应力腐蚀开裂.其全面腐蚀常常很轻,而且没有变形预兆,即发生突然断裂,应力腐蚀就是工业生产中危害性最大得一种恶性腐蚀类型。
4.应力腐蚀得机理-—-—应力腐蚀得机理很复杂,按照左景伊提出得理论,破裂得发生与发展可区分为三个阶段:a、金属表面生成钝化膜或保护膜.b、钝化膜或保护膜局部破裂,产生孔蚀或裂缝源。
c、裂缝内发生加速腐蚀,在拉应力作用下,以垂直于应力得方向深入金属内部。
裂缝多半有分枝,裂缝端部尖锐, 端部得扩张速度很快,断口具有脆性断裂得特征。
二、应力腐蚀试验方法根据应力得加载方法不同,应力腐蚀试验方法主要可分为以下四类:1.恒变形法——--给予试样一定得变形,对其在试验环境中得开裂敏感性进行评定2. 恒载荷法(SS C C)-――-方法有拉伸试验、弯梁试验、C形环试验、双悬臂梁试验,常用拉伸试验,即把单轴拉伸型得试样进行H2S水溶液应力腐蚀试验,试验介质为0、5%HAc+5%NaC 1+饱与H 2 S水溶液,试验在恒负荷拉伸应力腐蚀试验机上进行.试验时按不同得应力级别(取材料屈服强度得百分比)分别对试样加载,经过一定时间后发生应力腐蚀开裂,记录其断裂时间.最长试验周期为720小时,把试样在72 0小时不发生断裂视为合格。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三节应力腐蚀裂纹
一、应力腐蚀概述
金属或合金在应力,特别是拉伸应力的作用下,又处在特定的腐蚀环境中,材料虽然在外观上没有多大变化,如未产生全面腐蚀或明显变形,但却产生了裂纹。
这种现象称作应力腐蚀裂纹。
因此,在全面腐蚀较严重的情形下,不易产生应力腐蚀裂纹。
应力腐蚀外观无变化,裂纹发展迅速且预测困难,因而更具危险性。
应力腐蚀裂纹是应力和腐蚀环境相结合造成的。
所以,只要消除应力和腐蚀环境两者中的任何一个因素,便可以防止裂纹的产生。
实际上既无法完全消除装置在制造时的残余应力,又无法使装置完全摆脱腐蚀性环境。
采用上述方法防止应力腐蚀几乎是不可能的。
因此,一般是通过改变材料的方法解决这个问题。
此外,焊缝部位由于热应变作用会产生很大的残余应力,而加热冷却的热循环过程,也会使材质发生变化。
所以对于焊缝部分要比对于焊接本体更加注意,认真查看是否发生了应力腐蚀裂纹。
由于金属材料和腐蚀环境结合的情况有所不同,应力腐蚀裂纹也各不相同。
根据材料的微观组织,可以鉴别裂纹的特征。
有的是沿晶粒边缘产生的裂纹,有的是伸展到晶粒内部而又有显著分枝的裂纹,有的则是与晶粒边缘、晶粒内部无关的裂纹。
广义的应力腐蚀裂纹有时又区分为狭义的应力腐蚀裂纹和氢脆裂纹。
应力腐蚀裂纹和氢脆裂纹虽然同属广义的应力腐蚀裂纹,但两者之间实质上有很大区别。
应力腐蚀裂纹指的是,金属材料在特定的腐蚀环境中,受到应力作用,沿着金属内微观径路在有限范围内发生腐蚀而出现裂纹的现象。
而氢脆裂纹指的则是,金属材料受到应力作用,由于腐蚀反应产物氢被金属吸收,产生氢蚀脆化,出现裂纹的现象。
应力腐蚀裂纹和氢脆裂纹,两者可以用腐蚀环境和应力再现的方法或电化学方法进行鉴别。
近些年来,又开发出了音响鉴别方法。
这种方法是考虑到氢脆裂纹是机械性破坏,所以产生裂纹时会发生音响。
而应力腐蚀裂纹是金属溶解造成的破坏,不会发生音响。
在实际装置中,应力腐蚀裂纹非常复杂,在大多数情况下对两者不加区别,一律看做广义的应力腐蚀裂纹。
金属材料并不是在所有的腐蚀环境中都能产生应力腐蚀裂纹。
不同金属材料的应力腐蚀都需要特定的腐蚀环境。
随着各种金属材料应用范围的不断扩大,腐蚀环境的种类也出现增多的趋势。
化学工业中的应力腐蚀,是由于原材料中所含的杂质或在各工序中经过分解、合成等过程生成的腐蚀性成分造成的。
能造成应力腐蚀的原材料中的杂质有硫、硫化物、氯化钠和氯化锰等无机盐、脂环酸、氮化合物等。
另外,为了防止腐蚀所加入的碱,再生重整等过程中使用的催化剂,也是能引起应力腐蚀裂纹的物质。
二、应力腐蚀的机理与特征
应力腐蚀机理比较成熟的有机械化学效应、闭塞电池理论、表面膜理论、氢脆理论四种学说。
下面简单介绍这四种理论。
机械化学效应理论认为,金属材料在应力作用下在应力集中处迅速变形屈服成为腐蚀电池阳极区,与金属表面腐蚀电池的阴极区构成小阳极大阴极的腐蚀电池。
使金属沿特定的狭窄区域迅速溶解开裂。
闭塞电池理论认为,某些几何因素使金属裂纹引发点处电解液流动不畅形成闭塞电池。
该处为阳极,其他处为阴极,闭塞区内的金属溶解。
之后的自催化作用使金属溶解加速,发展成裂纹。
表面膜理论认为,金属表面膜在应力作用下受到破坏露出新表面,新表面因与有保护膜部分存在电位差异而构成腐蚀电池阳极,发生溶解形成裂纹源。
应力集中,使裂纹进一步发展。
氢脆理论认为,在应力作用下,金属腐蚀生成的氢被金属吸收,产生氢应变铁素体或高活化氢化物,使金属材料脆化而出现裂纹,并沿氢脆部位向前扩展,导致破裂。
应力腐蚀与全面腐蚀、缝隙腐蚀、孔蚀不同,有自己的显著特征。
产生应力腐蚀的金属材料主要是合金,纯金属较少。
引起应力腐蚀裂纹的主要是拉应力,压应力虽能引起应力腐蚀,但并不明显。
应力腐蚀裂纹呈枯枝状、锯齿状,其走向垂直于应力方向。
应力腐蚀裂纹,根据金属材料所处的腐蚀环境,可以是晶间型、穿晶型或混合型。
三、应力腐蚀的影响因素
1.不锈钢应力腐蚀
(1)氯化物
工艺介质中的氯化物和冷却水中的氯离子是产生应力腐蚀裂纹的重要原因。
实验研究结果表明,氯化物的浓度越高,产生应力腐蚀裂纹的时间越短。
即使氯离子含量只有十万分之一,也会在短时间内产生裂纹。
腐蚀温度对应力腐蚀裂纹的影响很大。
随着温度的上升,裂纹的敏感性显著增加,产生裂纹的时间大大缩短,裂纹成长的速度明显增大。
在100~350℃的食盐水中进行的应力腐蚀裂纹实验显示,如果温度在300℃以上,不易产生裂纹,这是因为大量的点腐蚀迅速导致全面腐蚀,因而观察不到腐蚀裂纹。
水中的溶氧对氯化物形成的应力腐蚀裂纹起促进作用。
只要水中有溶氧,氯离子的含量只有百万分之一就会产生应力腐蚀裂纹。
(2)碱
从使用烧碱的纯碱工业的腐蚀实例和事故调查中知道,由碱液引起的应力腐蚀裂纹较少。
实际上,因为碱与氯离子同时存在,很难断定哪一个是应力腐蚀的主要影响因素。
但是,在高温锅炉一类的容器中,即使没有氯离子存在也会产生裂纹。
如果有氧和氧化剂的存在,则会加速裂纹的生成。
由碱引起的应力腐蚀裂纹,过去说是锅炉水质问题,其实都可以归结为氢氧化钠的原因。
在石油炼制中,氯化物分解生成氯化氢,为了抑制氯化氢的腐蚀作用,采用添加氢氧化钠的方法。
但是由于加入过量的氢氧化钠,又产生了应力腐蚀裂纹的问题。
在制氢装置中,采用钾系催化剂,可形成氢氧化钾,也会造成应力腐蚀裂纹。
(3)硫化物
加氢脱硫装置发生的应力腐蚀为晶间型裂纹,这是因硫化物,更确切地说是因连多硫酸所致。
不锈钢中夹杂的铁的硫化物,可与空气中的水分和氧反应生成连多硫酸或亚硫酸,导致产生裂纹。
在实验室中,敏化的不锈钢,即使是亚硫酸或低pH值的硫化氢溶液,也能使其产生应力腐蚀裂纹。
由硫化物引起的应力腐蚀裂纹与材质有密切关系。
不锈钢经过敏化处理,会析出碳化铬,使结晶晶间铬含量减少,材质的耐腐蚀性降低,易产生晶间裂纹。
硫化物与氯化物共存的精馏塔顶馏分与为提高精馏效果所用的蒸汽相结合,构成了产生应力腐蚀裂纹的典型恶劣环境。
对这种环境下的各种不锈钢装置的检验表明,在80℃以上,裂纹发生率急剧增加,即使是耐应力腐蚀的不锈钢也变得无效。
2.碳钢、低合金钢应力腐蚀
(1)硫化氢
石油工业中液化石油气的储存,过去多采用高强钢制球形储罐,其储存物从中间产品到半成品、成品。
这种罐使用两三个月后就出现漏气事故。
开罐检查,发现裂纹。
调查结果查明,液化石油气中所含的硫化氢在有水分存在的条件下,会引起应力腐蚀裂纹。
(2)碱
碳钢由于碱作用引起应力腐蚀裂纹早已为人所知。
早在19世纪初,人们已经注意到,蒸汽锅炉的损坏是由于碱的脆化作用所致。
对于铆接结构装置,往往在应力集中的铆钉孔处发生裂纹,铆钉孔处的氢氧化钠浓度一般在30%以上。
对于碳钢,碱液浓度在10%~75%之间容易发生裂纹,但即使浓度在1%左右也会发生裂纹。
对于低合金钢,在其焊接区容易发生应力腐蚀裂纹,材质不同,裂纹的敏感性也不尽相同。
碱引起的应力腐蚀裂纹在330℃以上的高温时,随着温度的上升,裂纹生长速度加快;但当温度降低至30℃以下时,裂纹不再生长。
碱引起的应力腐蚀裂纹需要有非常高的应力,所以在残余应力较高的焊缝部位容易产生裂纹。
(3)CO-CO2混合气
在湿性CO-CO2混合气的环境中,会产生应力腐蚀裂纹。
英国城市煤气装置(含CH4 35%、H245%、CO215%、CO 5%及微量残余O2)和美国油井管道都证实了这种裂纹。
混合气中CO、CO2单独存在时不会产生裂纹,仅在共存时才产生裂纹。
混合气中CO的分压越高,产生裂纹的极限应力就越低,裂纹生长的速度也越快。
碳钢必须在高应力条件下才会发生CO-CO2的应力腐蚀裂纹。
在湿性CO-CO2的条件下,即使是高铬钢也会产生裂纹。
如果使混合气体保持干性,即在其露点以上,就可以防止裂纹。
(4)硝酸盐
在有硝酸盐存在的碳钢建筑物或装置中,会产生应力腐蚀裂纹。
在硝酸盐中,硝酸铵最容易产生裂纹,而且随着硝酸铵的浓度增大,裂纹的敏感性增强。
腐蚀温度越高,越容易产生裂纹。
碳钢仅在屈服点附近高压力下,才会产生应力腐蚀裂纹,而在焊接区一类的微观组织中,存在着容易产生裂纹的部分。
(5)液氨
对于储存液氨的高强钢球形储罐,每次开罐检查时,都发现大量的裂纹。
美国一个装置试验委员会报告,大约有3%的储罐平均三年内就会发生裂纹。
这些裂纹主要发生在冷加工的封头或筒体的焊接部分附近。
而且,越是高强材料,冷加工或焊接条件越是恶劣,越容易发生裂纹。
由于液氨的应力腐蚀裂纹很难在实验室模拟再现,而且发生裂纹的时间很长,在这方面的研究成果报道不多。