2014年美国“数学大联盟杯赛”(中国赛区)初赛五、六年级试卷

合集下载

美国“数学大联盟杯赛” 中国赛区 初赛五年级试卷

美国“数学大联盟杯赛” 中国赛区 初赛五年级试卷

2017-2018年度美国“数学大联盟杯赛”(中国赛区)初赛(五年级)(初赛时间:2017年11月26日,考试时间90分钟,总分200分)学生诚信协议:考试期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论, 我确定我所填写的答案均为我个人独立完成的成果,否则愿接受本次成绩无效的处罚。

请在装订线内签名表示你同意遵守以上规定。

考前注意事项:1. 本试卷是五年级试卷,请确保和你的参赛年级一致;2. 本试卷共4页(正反面都有试题),请检查是否有空白页,页数是否齐全;3. 请确保你已经拿到以下材料:本试卷(共4页,正反面都有试题)、答题卡、答题卡使用说明、英文词汇手册、 草稿纸。

考试完毕,请务必将英文词汇手册带回家,上面有如何查询初赛成绩、 及如何参加复赛的说明。

其他材料均不能带走,请留在原地。

选择题:每小题5分,答对加5分,答错不扣分,共200分,答案请填涂在答题卡上。

1. The smallest possible sum of two different prime numbers isA) 3B) 4C) 5D) 62. The greatest common factor of two numbers is3. The product of these two numbers mustbe divisible byA) 6 B) 9 C) 12 D) 18 3. The sum of 5 consecutive one-digit integers is at most A) 15 B) 25 C) 35 D) 45 4. How many two-digit multiples of 10 are also multiples of 12?A) 4B) 3C) 2D) 15. I have read exactly13of the total number of chapters in my 120-page book. If each chapter has the same whole number of pages, then the total number of chapters I have left could beA) 16 B) 24 C) 32 D) 50 6. What is the greatest odd factor of 44 × 55 × 66?A) 36 B) 55 C) 35 × 55 D) 36 × 55 7. What is the sum of the factors of the prime number 2017? A) 2016B) 2017C) 2018D) 20198. Lynn ran in 6 times as many races as the number of racesshe won. How many of her 126 races did Lynn not win?A) 21B) 90C) 96D) 1059. The least common multiple of 8 and 12 is the greatest common factor of 120 andA) 80B) 124C) 144D) 18010. January has the greatest possible number of Saturdays when January 1 occurs on any ofthe following days of the week exceptA) Thursday B) Friday C) Saturday D) Sunday 11. The number that is 10% of 1000 is 10 more than 10% ofA) 90B) 100C) 900D) 99012. The sum of 16 fours has the same value as the product of ? fours.A) 2 B) 3 C) 4 D) 16 13. Of the following, which is the sum of two consecutive integers?A) 111 111B) 222 222C) 444 444D) 888 88814. Abe drove for 2 hours at 30 km/hr. and for 3 hours at 50 km/hr. What was Abe’s averagespeed over the 5 hours?A) 35 km/hr.B) 40 km/hr.C) 42 km/hr.D) 45 km/hr.15. My broken watch runs twice as fast as it should. If my watch first broke at 6:15 P.M.,what time was displayed on my watch 65 minutes later?A) 7:20 P.M. B) 7:25 P.M.C) 8:20 P.M. D) 8:25 P.M.16. (2018 × 2017) + (2018 × 1) =A) 20172 B) 20182 C) 20183D) (2018 + 2017)217. A prized bird lays 2, 3, or 4 eggs each day. If the bird laid 17 eggs in 1 week,on at most how many days that week did the bird lay exactly 2 eggs?A) 2B) 3C) 4D) 518. Of the following, which could be the perimeter of a rectangle whoseside-lengths, in cm, are prime numbers?A) 10 cmB) 22 cmC) 34 cmD) 58 cm19. The average of all possible total values of a 4-coin stack of nickels and dimes (containingat least one of each coin) isA) 20¢B) 30¢C) 40¢D) 60¢20. The diameter of Ann’s drum i s 40 cm more than the radius. What is half the circumference of the drum?A) 120π cmB) 80π cmC) 60π cmD) 40π cm21. Of the following, which expression has the greatest number offactors that are multiples of 2018?A) 2018 × 12B) 20182C) 20192D) 20192019第1页,共4页 第2页,共4页22. When the sum of the factors of a prime number is divided by that prime number, theremainder isA) 0 B) 1 C) 2 D) 3 23. What is the sum of the digits of the greatest integer that has a square root less than 100? A) 18B) 36C) 99D) 10024. My favorite number has 6 different factors. If the product of all 6 factors is 123, what isthe sum of the factors of my favorite number?A) 24B) 28C) 32D) 3625. For how many different pairs of unequal positive integers less than 10 is the least commonmultiple of the numbers less than their product?A) 6B) 7C) 8D) 926. Exactly 12 of the students in my class have at least one brother, and 12 have at least onesister. If 13have no siblings, what fraction of the students in my class have at least onebrother and at least one sister?A) 16 B) 15 C) 14 D) 1327. Each day, Sal swims a lap 1 second faster than on the daybefore. If Sal swims a lap in 60 minutes on the 1st day, on what day does he swim a lap in 10% less time than the 1st day?A) 359th B) 360th C) 361st D) 362nd 28. 20172018 × 20172019 = 2017 ? × 20171009A) 1010B) 2010C) 3028D) 403829. Both arcs AB and AD are quarter circles of radius 5, figure on the right.Arc BCD is a semi-circle of radius 5. What is the area of the region ABCD ?A) 25 B) 10 + 5π C) 50D) 50 + 5π30. For every $5 I earn from my job, I save $2. For every $4 I save from my job, I am givenan additional $1 from my parents to add to my savings. How much must I earn in order to have $40 in savings?A) $160B) $120C) $100D) $8031. In the figure on the right, the side-length of the smaller squareis 4. The four arcs are four semi-circles. Each side of square ABCD is tangent to one of the semi-circles. The area of ABCD isA) 32B) 36C) 48D) 6432. A million is a large number, a “1” follo wed by 6 zeros. A googol is a large number, a “1”followed by one hundred zeros. A googolplex is a large number, a “1” followed by a googol of zeros. A googolplexian is a large number, a “1” fo llowed by a googolplex of zeros. A googolplexian isA) 10100 B) 1001010C) 100101010D) None of the above33. An integral triangle is a triangle with positive integral side-lengths and a positive area.Such a triangle can have a perimeter as small as 3. What is the next smallest possible perimeter of an integral triangle?A) 4B) 5C) 6D) 734. 2 liter of 2% fat milk + 3 liter of 3% fat milk = 5 liter of ? fat milkA) 2.5%B) 2.6%C) 5%D) 6%35. One day, a motorist came to a hill that was ten-mile drive up one side and a ten-mile drivedown the other. He drove up the hill at an average speed of 30 miles per hour. How fast will he have to drive down the other side to average 60 miles per hour for the entire 20-mile distance?A) 30 miles per hour B) 60 miles per hour C) 90 miles per hour D) None of the above 36. What is the weight of a fish if it weighs ten pounds plus half its weight?A) 10B) 15C) 20D) 2537. Without using pennies, how many different combinations of coins (nickels, dimes,quarters) will make 30 cents?A) 3B) 4C) 5D) 638. A man once bought a fine suit for which he paid $30 more than14of its price. How much did he pay for the suit? A) $30B) $35C) $40D) $4539. A father is five times as old as his son. In fifteen years he will be only twice as old. Howold is the father at present?A) 40B) 35C) 30D) 2540. It takes 30 minutes to completely fill a tank. If, however, a hole allows13of the water that is entering the tank to escape, how long will it then take to fill the tank?A) 40 B) 45 C) 60 D) 90第3页,共4页第4页,共4页。

2014六年级数学竟赛初赛试卷

2014六年级数学竟赛初赛试卷

方体,正方体的体积是( )立方厘米。
7、甲、乙数的商是2,如果甲数增加20,那么甲数是乙数的4倍,原来
甲数是( )。
8、小明要看一本故事书,第一星期看了全书的,第二星期看了全书的
25%,还剩50页没有看,第三星期应从第( )页看起。
9、找规律填数:1,4,19,94,( ),2344。
10、下图是著名的汉诺塔,有三个圆盘,按半径从小到大,由上而下地套在
2、如下图,正方形的面积是12平方分米,四分之一圆的面积是多少平 方分米?
(∏取3.14) (12分)
五、解决问题。(要求有基本的解答过程,本题40分。) 1、某学校134名学生到公园租船,租一条大船需60元可乘坐6人;租一条
小船需45元可乘坐4人,请设计一种租船方案,使租金最省。( 8分 )
2、有两根同样长的绳子,从第一根上剪下18米,从第二根上剪下25米 后,则第一根所剩长度是第二根所剩长度的2倍,求绳子原来多少 长?( 10分 )
四、图形的认识与理解。(要求有必要的解答过程,本题20分) 1、把长2厘米,宽1厘米的长方形如下图那样拼摆:第一层放一个,第二
层放二个,第三层放三个……如果照这样摆下去,第六层的周长是 多少厘米?第n层的周长是多少厘米?(8分) (1)第一层: (2)第二层: (3)第三层: (6)第六层: (n)第n层:
2、如下图,正方形的面积是12平方分米,四分之一圆的面积是多少平 方分米?
(∏取3.14) (12分)
正方形的面积是12平方分米,也就是半径的平方是12。(4分) 四分之一圆的面积就是:12×3.14÷4=9.42平方分米。(8分)
五、解决问题。(要求有基本的解答过程,本题40分。) 1、某学校134名学生到公园租船,租一条大船需60元可乘坐6人;租一条

2014年第10届IMC国际数学竞赛(中国赛区初赛)

2014年第10届IMC国际数学竞赛(中国赛区初赛)

2014年第10届“IMC 国际数学竞赛”(中国赛区初赛) The 10th IMC International Mathematics Contest (China),2014 六年级初赛试题 姓名_____________ 学校_____________ 得分____________ 一、填空题I (每小题6分,共60分) 1. 计算:45671111111123233434+++-+-+=_________;答案: 114解答: 原式=4⨯6+6+6⨯12+12=114;2. 大家知道“斐波那契数列”的规律是从第三项起,每一项等于前两项之和,a 1=1,a 2=1,a 3=2,a 4=3,a 5=5,a 6=8,⋯,那么68102413355779911a a a a a a a a a a a a a a a ++++⨯⨯⨯⨯⨯=_________; 答案: 8889解答: 原式=3153759711913355779911a a a a a a a a a a a a a a a a a a a a -----++++⨯⨯⨯⨯⨯ =133********1111111111a a a a a a a a a a -+-+-+-+- =11111a a -=11189-=88893. 将2014个棱长为1cm 的小正方体,搭建成由一个正方体和一个长方体组成的实心模型(如图),已知正方体棱长为10cm ,长方体的底面为正方形,那么这个立体模型的表面积为_________cm 2;答案: 1050解答: 1)长方体体积=2014-1000=1014=2⨯3⨯132=6⨯13⨯13;2)模型表面积为2⨯132+4⨯(102+6⨯13)=1050cm 2;4. 图中给出了4个半径为10cm 的圆紧靠在一起,4个圆的圆心恰好是正方形的四个顶点,那么如果在中心空缺处再画一个圆,则面积为_________cm 2;(已知正方形的对角线约为边长的1.4倍,π=3.14)答案: 50.24解答: 小圆半径为1.4⨯10-10=4cm ;小圆面积为42π=50.24cm ;5. 用数字1~9各一次组成若干个整数,如果要求这些整数都是合数(例如:1345、27、96、8),这些合数之和的最小值为_________;答案: 99解答: 尽量多组,4、6、8、9之外,1、2、3、5、7最多再组两个,即共组成6个;除一位数外尽量都是两位数,即3个一位数、3个两位数;最小1、2、3作十位,其余作个位,例如15+27+34+6+8+9=99,即为最小总和;IMC6. 若六位数ababab 既不能被a 整除,也不能被b 整除,那么ab 最小为__________;答案: 29解答: 1)371337ababab ab =⨯⨯⨯⨯;2)最小a =2,b ≠1、3、7且a 、b 不能整除ab ,即b 不能整除20,2不能整除b ,只剩下b =9,故最小ab =29;7. 如图,把边长为3cm 的正方形四条边分别三等分,连结一些分点得到一个正方形和一个长方形,那么这两个图形重叠部分的面积为_________cm 2;答案: 103解答: 连接对边三等分点,将图形分为边长为1cm 的9个小正方形;面积为中间小方格面积为1cm 2;左右两块三角形面积和为0.5+0.5=1 cm 2;上下两块三角形面积和为22+33=43cm 2; 总面积一共1+1+43=103cm 28. 一项工程,甲工作20天后,若乙来帮忙,可提前6天,若是丙来帮忙,可提前8天,丙工效是乙工效的1.5倍。

2015年美国“数学大联盟杯赛”(中国赛区)初赛六年级试卷

2015年美国“数学大联盟杯赛”(中国赛区)初赛六年级试卷

37. In this problem as shown on the right, each square represents a digit from 0 to 9. What is the final product? Answer: ___________. 38. For some integer n, the sum of all of the digits of n is a multiple of 8 and the sum of all of the digits of n + 1 is also a multiple of 8. If n <= 2015, what is the greatest possible value of n? Answer: ___________. 39. In triangle ABC on the right, BD:DC = 1:2. If the area of triangle ABP is 7 and the area of triangle ACP is 5, what is the area of triangle ADP? 2 0 1 5 A P
性别
年级
1. 2 × 0 + 1 × 4 – 2 × 0 + 1 × 5 = ( ) A) 0 B) 5 C) 9 D) 15 2. There are 84 beavers in a colony. Yesterday they all went out in teams of 6 to collect logs. Today they are all going out in teams of 4. There will be ? more teams today than there were yesterday. ( ) A) 2 B) 7 C) 14 D) 21 3. 12 345 + 54 321 = 11 111 × ? A) 66 666 B) 666 ( ) C) 66 D) 6 ? years mmon multiple of 22, 42, 62, 82, and 102 is ( ) A) 3840 B) 14 400 C) 57 600 D) 230 400 28. A snail crawls 2400 mm per hour. It takes ? seconds to crawl 1 mm. ( ) 1 2 A) B) C) 1.5 D) 3 3 3 29. A circle can intersect a quadrilateral at ? points. ( ) A) 0, 2 or 8 only B) 0, 2, 4, 6 or 8 only C) 1, 2, 3, 4, 6, or 8 only D) 0, 1, 2, 3, 4, 5, 6, 7, or 8 30. Carla loves shells! She collects them, labelling each with a 1-, 2-, or 3-letter code. If the same letters are used in a different order, it is a different code. She has used every such code, so she has ? shells. ( ) A) 156 B) 17 576 C) 18 278 D) 20 888 31. If the sum of 50 consecutive integers is 1525, what is the sum of the next 50 consecutive integers? ( ) A) 1575 B) 2775 C) 4025 D) 76 250 32. Of 4 pairs of twins, 3 students are chosen to do a report together. There are ? possible groups of 3 that don’t include both twins from a pair. ( ) A) 16 B) 24 C) 28 D) 32 33. 八年后我的年龄是两年前我的年龄的两倍。请问两年后我是几岁? ( ) A) 14 B) 16 C) 18 D) 20 34. 将 0.75 转换为分数,这些分数的分子和分母都是小于 100 的正整数。这样的分数共有 多少个? ( ) A) 3 B) 24 C) 25 D) 33 35. 船长们划船 5 个小时。从第二个小时开始,每个小时行驶的距离比 前一个小时少了 2 千米。如果 5 个小时的平均行驶速度是 6 千米/小时,那么前 2 个小时行驶了多少千米? ( ) A) 6 B) 12 C) 16 D) 18 二、填空题(每小题 5 分,答对加 5 分,答错不扣分,共 25 分) 36. Calculate the number of digits which are equal to 0 in the product of 826446281, 11 and 11. Answer: ___________.

2014年全国初中数学联合竞赛试题参考答案和评分标准

2014年全国初中数学联合竞赛试题参考答案和评分标准

初三数学竞赛试题 2014年全国初中数学联合竞赛试题参考答案及评分标准A.B. C. D.2014年全国初中数学联合竞赛试题参考答案及评分标准2.【答】 A.,易知:当,时,取得最大值.4.【答】 B.若取出的3张卡片上的数字互不相同,有2×2×2=8种取法;若取出的3张卡片上的数字有相同的,有3×4=12种取法.所以,从6张不同的卡片中取出3张,共有8+12=20种取法.6.【答】 A.过作于,易知△≌△,△∽△.设,则,,,,故,即.又,故可得.故.1.【答】 0.由题意知,所以2.【答】144.由条件得,由的唯一性,得且,所以,所以.当时,由可得,可取唯一整数值127.故满足条件的正整数的最大值为144.4.【答】36.设的最大公约数为,,,均为正整数且,,则,所以,从而,设(为正整数),则有,而,所以均为完全平方数,设,则,均为正整数,且,.又,故,即.注意到,所以或.若,则,验算可知只有满足等式,此时,不符合题意,故舍去.解由已知条件可得,.设,,则有,,……………………5分若,即,,则是一元二次方程的两根,但这个方程的判别式,没有实数根;……………………15分若,即,,则是一元二次方程的两根,这个方程的判别式,它有实数根.所以. ……………………20分解取,,可得,所以1具有性质.取,,可得,所以5具有性质.…………………5分为了一般地判断哪些数具有性质,记,则=.即……………………10分如果,即,则有;如果,即,则有;如果,即,则有;由此可知,形如或或(为整数)的数都具有性质.因此,1,5和2014都具有性质. ……………………20分若2013具有性质,则存在整数使得.注意到,从而可得,故,于是有,即,但2013=9×223+6,矛盾,所以2013不具有性质. ……………………25分2014年全国初中数学联合竞赛试题参考答案及评分标准,易知:当,时,取得最大值.【答】 B.若取出的3张卡片上的数字互不相同,有2×2×2=8种取法;若取出的3张卡片上的数字有相同的,有3×4=12种取法.所以,从6张不同的卡片中取出3张,共有8+12=20种取法.要使得三个数字可以构成三角形的三边长,只可能是:(2,4,4),(4,4,6),(2,6,6),(4,6,6),由于不同的卡片上所写数字有重复,所以,取出的3张卡片上所写的数字可以作为三角形的三边长的情况共有4×2=8种.A.B. C. D.【答】 A.设,则,,,,故,即.又,故可得.故.。

2014年美国“数学大联盟杯赛”(中国赛区)初赛七年级(初一)详解

2014年美国“数学大联盟杯赛”(中国赛区)初赛七年级(初一)详解
2013-2014 年度美国“数学大联盟杯赛”(中国赛区)初赛答案
(七年级) 一、 选择题 1. B. No even number can be written as the product of two odd integers. Since 11 is the product of 1 and 11, Skip may have run 11 kilometers. A) 10 B) 11 C) 12 D) 14
27. D. As shown, only choice D is not a product of a divisor of 24 and a divisor of 35.
A) 1 × 1 B) 6 × 7 C) 8 × 7 D) 6 × 11 28. B. The sum of the dimensions is 40 ÷2 = 20. Its dimensions are 16 × 4, and its area is 64. A) 100 B) 64 C) 40 D) 24 29. A. Her average score for 6 tests was 82. So her total was 6 × 82 = 492. Adding 2 × 98, her total for 8 tests was 688. Her average score was 86. A) 86 B) 88 C) 90 D) 94 30. D. From 1 to 99 there are 9; in every 100 #s after there are 19. Include 1000. A) 162 B) 171 C) 180 D) 181 二、填空题 31. 8. 32. 2257. 33. 21. 34. 37. 35. 120. 36. 7410. 37. 2. 38. 81. 39. 32451. 40. 671.

第6-10届走美杯6年级初赛试题解析

第6-10届走美杯6年级初赛试题解析

第六届“走进每秒的数学花园”中国青少年数学论坛趣味数学解题技能展示大赛初赛小学六年级试卷一、填空题I(每题8分,共40分)1. 11111111 612203042567290+++++++=解:原式=11111111223349102105-+-++-=-=L L2.一个表面积为56emz的长方体如图切成27个小长方体,这27个小长方体表面积的和是______cm2.解:每一刀增加两个切面,增加的表面积等于与切面平行的两个表面积,所以每个方向切两刀后,表面积增加到原来的3倍,即表面积的和为168cm2.3.将2、4、6、8、12、18、24、36、72填人右边的九宫格,使每行每列及两条对角线上三数的积都相等.每行的三个数的积是______.解:每行三个数的积相等,所以这个积的3次方等于9个数的积,这就个数是:2130、2230、2131、2330、2231、2132、2331、2232、2332,它们的积21839,所以每行上的3个数的积为2633=1728. 4.0.2.0080.A BCC A B••••=,三位数ABC的最大值是多少?解析:2.008化为分数是251125,可以约分为251125的分数有502250、753375,所以ABC的最大值为753.5. 如图所示,长方形ABCD 内的阴影部分的面积之和为70,AB=8,AD=15四边形EFGO 的面积为______.分析:根据容斥关系:四边形EFGO 的面积=三角形AFC+三角形DBF-白色部分的面积 三角形AFC+三角形DBF=长方形面积的一半即60,白色部分的面积等于长方形面积减去阴影部分的面积,即120-70=50 所以四边形的面积=60-50=10二、填空题Ⅱ(每题l0分,共50分)6. 如图,ABCD 是正方形.阴影部分的面积为_______.(π取3.14)分析:正方形和它的内切圆的面积比是固定的,即4:π.小正方形的面积等于(3+5)2-4×3×5÷2==34,所以其内切圆的面积等于34÷4×(4-π)=7.317. 用数字l ~8各一个组成8位数,使得任意相邻三个数字组成的三位数都是3的倍数.共有种组成方法.分析:l ~8中被三除余1和余2的数各有3个,被3整除的数有两个,根据题目条件可以推导,符合条件的排列,一定符合“被三除所得余数以3位周期”,所以8个数字,第1、4、7位上的数被3除同余,第2、5、8位上的数被3除同余,第3、6位上的数被3除同余,显然第3、6位上的数被3整除,第1、4、7位上的数被3除可以余1也可以余2,第2、5、8位上的数被3除可以余2可以余1,余数的安排上共有2种方法,余数安排定后,还有同余数之间的排列,一共有3!×3!×2!=144种方法.8.N 为自然数,且1+N ,2+N 、……、9+N 与690都有大于l 的公约数.N 的最小值为_______.解析:690=2×3×5×23,连续9个数中,最多有5个是2的倍数,也有可能有4个是2的倍数,如果有5个连续奇数,这5个连续奇数中最多有2个3的倍数,1个5的倍数,1个23的倍数,所以必然有一个数不是2、3、5、23的倍数,即与690没有大于l 的公约数.所以9个数中只有4个奇数,剩下的5个数,有3个3的倍数,1个5的倍数,1个23的倍数,则1+N 、3N +、5N +、7N +、9N +是偶数,剩下的4个数中2+N 、8N +是3的倍数(5各偶数当中只有5N +是3的倍数),还有4N +、6N +一个是5的倍数,一个是23的倍数.剩下的可以用中国剩余定理求解,5N +是2和3的倍数,且相邻两个数中一个是23的倍数,另一个是5的倍数,显然524N +=是最小解,所以N 的最小值为19.9. 50位同学围成一圈,从某同学开始顺时针报数.第一位同学报l ,跳过一人第 三位同学报2,跳过两人第六位同学报3,……这样下去,报到2008为止.报2008的同学第一次报的是_______.分析:将这些学生按报数方向依次编号;1、2、3、……49、50、51……2008,每一个人的编号不唯一,例如编号为2001、1951……101、51的和编号为1的为同一个人,这样第n 次报数的人的编号为()12n n +, 报2008的同学的编号为2017036,他的最小编号为36,我们知道36=1+2+3+4+5+6+7+8,所以报2008的同学第一次报8.10.用l —9填满三角形空格,一个格子只能填人一个数字,使每个数字在每一行,每一列(包括不相连的行,列)及每个粗黑线围成的区域中至多出现一次.分析:解题顺序如第二附图,依照A 、B 、C 、D ……的顺序.三、填空题Ⅲ(每题l2分,共60分)11.A 、B 两杯食盐水各有40克,浓度比是 3:2.在B 中加入60克水,然后倒人A 中________克.再在A 、B 中加人水,使它们均为100克,这时浓度比为7:3.分析:在B中加入60克水后,B盐水浓度减少为原来的25,但溶质质量不变,此时两杯盐水的盐质量比仍然为3:2,B中的盐占所有盐的质量的22325=+,但最终状态B中的盐占所有盐的质量的337310=+,也就是说B中的盐减少了32111054-÷=,也就是说从A中倒出了14的盐水,即25克.12.中午l2时,校准A、B、C三钟.当天下午A钟6点时,B钟5点50分;B钟7点时,C钟7点20分.晚上C钟11点时,A钟_____点_____分,B钟_______点_____分.分析:下午A钟6点,B钟5点50分,两钟的运行比为360:350=36:35B钟7点时,C钟7点20分,时钟运行比为420:440=21:22,A:B:C=108:105:110所以C钟11点的时候,A钟10:48,B钟10:30.13.一次,齐王与大将田忌赛马.每人有四匹马,分为四等.田忌知道齐王这次比赛马的出场顺序依次为一等,二等,三等,四等,而且还知道这八匹马跑的最快的是齐王的一等马,接着依次为自己的一等,齐王的二等,自己的二等,齐王的三等,自己的三等,齐王的四等,自己的四等.田忌有______种方法安排自己的马的出场顺序,保证自己至少能赢两场比赛.分析:枚举法,枚举出所有方法:1423、2143、2413、3124、3142、3412、3421、4123、4132、4231、4312、4321.14.机器人A、B从P出发到Q,将Q处的球搬到P点.A每次搬3个,往返一次需l5秒.8每次搬5个,往返一次需25秒.竞赛开始8立即出发,A在B后10秒出发.在竞赛开始后的420秒内,A领先的时间是_______秒,B领先的时间是______秒.(领先指搬到P的球多).分析:对俩机器人的工作情况分别ABA-B:时间0- 25- 40- 50- 55- 70- 75- 85- 100- 115 ……个数差0 -2 1 -4 -1 2 -3 0 -2 1 ……所以从25秒开始,每隔75秒就会出现一个循环,即周期为75秒.前25秒,A、B都没有完成搬运。

2014-2015美国大联盟五年级

2014-2015美国大联盟五年级

2014-2015年度美国“数学大联盟杯赛”(中国赛区)初赛(五年级)中文版一、选择题(每小题5分,答对加5分,答错不扣分,175分,请将正确答案A/B/C或者D 写在每题后面的圆括号内)8. 80+(160+240) ÷4=40+80+(120÷____ ) ()A. 4B. 2C. 1D. 09. 下列式子中哪个式子的余数最大? ()A. 1111 ÷8B. 2222 ÷7C. 3333 ÷6D. 4444 ÷510. 下列各数中,哪个是20×14×20×15的因数? ()A. 13B. 11C. 9D. 711. Thok有一个简单的计划。

他准备花费一天中50%的时间在洞穴中,剩下的时间中的25%用来打猎,剩余的时间在外面看电影。

那么他将花费多少时间看电影呢? ()A. 3B. 6C. 9D. 2512. 2×3×6×36×2×3×6×36=()?A. 65B. 66C. 67D. 6813. 我有5个1美分的便士,4个5美分的硬币,3个0.25的硬币,2个0.5美元的硬币和1美元。

那这些硬币的平均值是多少()?A. 0.02美元B.0.06美元C. 1.5美元D. 3美元14. Wyatt O’Vine的羊的体重是Wyatt的两倍,Wyatt的体重是他帽子的两倍,如果Wyatt,羊,他的帽子体重在一起时210kg,那Wyatt重多少? ()A. 30kgB. 35kgC. 60kgD. 70kg15. (12+34)×(56+78)=12×(56+78)+_____×(56+78) ? ()A. 12B. 34C. 56D. 7816. 如果2个群等于5个斑点,那么500个群等于______个斑点。

()A. 200B. 250C. 1000D. 125017.(64+64)2 =()A. 16B. 64C. 128D. 25618. 如果7个连续的偶数和是182,那么7个数中最小的数字是()A. 20B. 23C. 26D. 3219. 当他倒立时,Flip决定从777开始每8个数字一倒数,那以下的哪个数字他会数到? ()A. 123B. 125C. 127D. 12920. 买5个苹果和买6个梨的价格是一样的,如果一个苹果比一个梨多花15美分,那么5个苹果和6个梨在一起一共多少钱? ()A. 3美元B. 6美元C. 9美元D. 18美元21. 27和27所有因数的乘积之间相差多少? ()A. 2B. 27C. 2×27D. 26×2722. 一个小于100的最大素数分解数最多是_____个素数的乘积(不一定是不同的)? ()A. 3B. 4C. 5D. 623. 一个四边都是整数边的长方形被分成了一个正方形和一块阴影的长方形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

37. 将 1 ~ 9 九个数不重不漏地组成一个两位数、一个三位数、一个四位数。 这三个数均能被 9 整除,并且 7、8、9 分别在这三个数中,三个数十位 数字为三个连续的偶数,个位数字为三个连续的奇数。如果将四位数的 千位移到两位数的百位,组成新的三个三位数,新的三位数也均能被 9 整除。那么题中最初的三位数是 。 38. 如图为一个正方体有盖纸盒的示意图,在 1 ~ 30 的数中 选出 7 个,在纸盒的每个面填一个数。将盒盖的两个数 字相加后,三组相对面填的数均满足两两乘积相等。那 么 x 处的数字有 种可能。
姓名(签名)
A) 413 B) 1626 C) 21155 D) 161155 16. Which of the following figures has an odd number of sides? A) rhombus B) trapezoid C) pentagon D) hexagon 17. For how many integers from 55 to 66 is the ones digit greater than the tens digit? A) 4 B) 5 C) 10 D) 11 18. Lex buys 6 same-priced books and pays with a $50 bill. The change Lex receives is twice the price of a book. Each book costs A) $6.25 B) $7.14 C) $8.33 D) $12.50
14. If two consecutive whole numbers have a different number of digits, then their 一、选择题(每小题 5 分,答对加 5 分,答错不扣分,共 150 分,答案请填涂在答题卡上) 1. The band’s trombone plays 2013 notes, the trumpet plays 2014 notes, and the tuba plays 218 notes. That’s a total of ? notes. A) 6245 B) 6045 C) 4245 D) 645 2. The remainder when (999 999 999 + 666 666 + 333 + 1) is divided by 3 is A) 0 B) 1 C) 2 D) 3 3. 20 − 5 × 2 = 2 × ? A) 5 B) 15 C) 25 D) 30 C) 15 D) 100
„„„„„„„„„„„„„„„„„„装„„„„„„„„„„„„„„„„„订„„„„„„„„„„„„„„„„„线„„„„„„„„„„„„„„„„„„„„„„„ „„„„„„„„„„„„„„装„„„„„„„订„„„„„„„线„„„„„„„内„„„„„„„不„„„„„„„答„„„„„„„题„„„„„„„„„„„„„„„
12. If the sum of 7 consecutive integers is 63, the sum of the largest and the smallest of the 7 integers is A) 18 B) 24 C) 42 D) 64 13. Of the first 100 positive whole numbers, the ratio of the number of multiples of 8 to the number of multiples of 4 is A) 2:1 B) 12:25 product must be a multiple of A) 4 B) 11 3 5 7 11 15. 2 × 2 × 2 × 2 = C) 13:25 D) 1:2
准考证号
-2-
„„„„„„„„„„„„„„„„„„装„„„„„„„„„„„„„„„„„订„„„„„„„„„„„„„„„„„线„„„„„„„„„„„„„„„„„„„„„„„ „„„„„„„„„„„„„„装„„„„„„„订„„„„„„„线„„„„„„„内„„„„„„„不„„„„„„„答„„„„„„„题„„„
1 2 of the 200 stripes on Frank’s giant shell are blue, of the remaining 5 5
36. 将 1 到 100 写在黑板上,那么至少擦去 乘积末位数是 2。
个数,才能使剩下的数的
stripes are brown, and the rest are white, there are ? more white stripes than blue. A) 0 B) 40 C) 42 D) 56 27. The sum of the squares of 2 integers each greater than 0 is 172 = 289. The sum of these 2 integers is A) 23 B) 25 C) 27 D) 29 28. Bei’s and Fay’s ages average 12, and Ray’s and Clyde’s ages average 16. If Bei’s, Fay’s, and Ray’s ages average 11, how old is Clyde? A) 28 B) 23 C) 20 D) 17
24. If 5 and 9 are the lengths of two sides of a triangle, ? cannot be the length of the 3rd side. A) 3 B) 6 C) 9 D) 12 25. When I divide the number of pencils in my backpack by 6, the remainder is 4. If I had twice as many pencils and divided that number of pencils by 6, the remainder would be A) 0 B) 2 C) 4 D) 8
2013-2014 年度美国“数学大联盟杯赛”(中国赛区)初赛
(五、六年级) (初赛时间:2014 年 2 月 22 日,考试时间 60 分钟,总分 200 分)
学生诚信协议:考试期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论, 我确定以下的答案均为我个人独立完成的成果,否则愿接受本次成绩无效的处罚。 如果您同意遵守以上协议请在装订线内签名
7. 150% of 20 = 200% of A) 15 B) 25 C) 30 D) 40 8. Four 2 × 8 rectangles have a total area equal to that of a square of perimeter A) 8 B) 16 C) 32 D) 64 9. I see a km marker at the end of each km I drive. The markers are numbered consecutively from 1 through 100. How many markers are more than 30 km from the marker numbered 50? A) 38 B) 39 C) 40 D) 41 10. Of 60 people at a school board meeting, 24 are men. The ratio of women to men at the meeting is A) 3:2 B) 2:3 C) 11:6 D) 6:11 11. I rode my bicycle a total of 450 km in 15 hours. At this rate I would travel ? km in 30 minutes. A) 15 B) 30 C) 60 D) 900 -1-
年级
所在学校
19. In what month is the 222nd day of the year? A) May B) June C) July D) August 20. The number of heart balloons that Cora has is divisible by three different primes. What is the least number of heart balloons that Cora can have? A) 6 B) 10 C) 15 D) 30 21. 10 quarters + 30 dimes = ? nickelss A) 50 B) 60 C) 100 D) 110 22. The average of 2014 sixes is equal to the average of 4028 ? . A) threes C) nines 23. What is 0.625% of 8% of 500? A) 0.25 B) 2.5 B) sixes D) twelves C) 25 D) 250
姓名(签名)
595 594 29. 22
A) 1.25 B) 591 – 590 C) 593 – 592 D) 594 30. Each vertex of square S is on a different side of a square of side-length 20. The least possible area of S is A) 100 B) 160 C) 200 D) 250 二、填空题(每小题 5 分,答对加 5 分,答错不扣分,共 50 分,答案请填涂在答题卡上) 31. The sum of the digits of 2014 is 2 + 0 + 1 + 4 = 7. Let n be a natural number. m = n + 2014. The sum of the digits of m is half the sum of the digits of n. What is the minimum value of n? Answer: ______. 32. The sum of 5 different prime numbers is 200. Each of the 5 prime numbers is less than 100. Four of the 5 prime numbers have the same units digit. What is the median of the 5 prime numbers? Answer: ______. 33. 把三支飞镖掷向如图所示的镖盘上,然后把三支飞镖的得分 相加,镖盘上的数字代表这个区域的得分,未中镖 盘记 0 分。那么最小的不可能得到的总分是 。 34. 如图,将 1 ~ 6 填入到图中的 6 个括号里,每个数恰好 用一次,使得两个耳朵里填的数和为 2 的倍数,两个 眼睛里的数和为 3 的倍数,鼻子和嘴巴里的数和为 5 的倍数,则两只眼睛里较小的数是 。 35. 将数 14,27,36,57,178,467,590,2345 排在八边形的八个顶点上,使得任意 两个相邻顶点上的数有相同数字,那么与 57 相邻的两个顶点上的数之和是 。
相关文档
最新文档