小学行程问题汇总

合集下载

小学数学典型应用题行程问题

小学数学典型应用题行程问题

行程问题经典题型(一)1、甲、乙两地相距6千米,某人从甲地步行去乙地,前一半时间平均每分钟行80米,后一半时间平均每分钟行70米。

问他走后一半路程用了多少分钟?2、小明从家到学校有两条一样长的路,一条是平路,另一条是一半上坡路、一半下坡路。

小明上学走两条路所用的时间一样多。

已知下坡的速度是平路的1.5倍,那么上坡的速度是平路的多少倍?3、一只小船从甲地到乙地往返一次共用2小时,回来时顺水,比去时的速度每小时多行驶8千米,因此第二小时比第一小时多行驶6千米。

那么甲、乙两地之间的距离是多少千米?4、一条电车线路的起点站和终点站分别是甲站和乙站,每隔5分钟有一辆电车从甲站发出开往乙站,全程要走15分钟。

有一个人从乙站出发沿电车线路骑车前往甲站。

他出发的时候,恰好有一辆电车到达乙站。

在路上他又遇到了10辆迎面开来的电车。

到达甲站时,恰好又有一辆电车从甲站开出。

问他从乙站到甲站用了多少分钟?5、甲、乙两人在河中游泳,先后从某处出发,以同一速度向同一方向游进。

现在甲位于乙的前方,乙距起点20米,当乙游到甲现在的位置时,甲将游离起点98米。

问:甲现在离起点多少米?6、甲、乙两辆汽车同时从东西两地相向开出,甲每小时行56千米,乙每小时行48千米,两车在离两地中点32千米处相遇。

问:东西两地的距离是多少千米?7、李华步行以每小时4千米的速度从学校出发到20.4千米外的冬令营报到。

0.5小时后,营地老师闻讯前往迎接,每小时比李华多走1.2千米。

又过了1.5小时,张明从学校骑车去营地报到。

结果3人同时在途中某地相遇。

问:骑车人每小时行驶多少千米?8、快车和慢车分别从甲、乙两地同时开出,相向而行,经过5小时相遇。

已知慢车从乙地到甲地用12.5小时,慢车到甲地停留0.5小时后返回,快车到乙地停留1小时后返回,那么两车从第一次相遇到第二次相遇需要多少时间?9、某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来校作报告,往返需用1小时。

小学行程问题总结

小学行程问题总结

第一讲行程问题一平均速度问题1、小明从 A 去 B 的速度是40 千米每小时,从 A 到 B 然后返回整个过程平均速度是48 千米每小时。

求小明返回时的速度?2、某司机从 A 到 B 按原速前进可以准时到,当走了一半路程的时候实际速度只有计划的13 要准时到后一半路程速度与前一半路程的速度比应为多少?二、相遇后问题1、甲乙两车同时从AB 出发相向而行。

甲的时速是32 千米,乙的时速是24 千米,两车相遇 3 小时后甲到 B ,求AB 两地的距离?2、甲乙两人分别从AB 同时出发相向而行。

甲的速度是60 米/分,乙的速度是50 米/分。

两人相遇后,甲到终点和乙到终点的时间比是多少?三、过中点和回头相遇问题3、甲乙两人分别从AB 同时出发相向而行,甲的时速是 6 千米,乙的是 4 千米。

两人距离AB 中点3 千米处相遇,求AB 的距离?4、汽车以每小时108km 的速度行使,开向寂静的山谷,驾驶员按一声了喇叭.4S 后听到回响,这时汽车离山谷有多远?(声音的速度按340m/s 计算)5、甲乙两车同时从 A 出发往返于AB ,甲车每小时比乙车快12 千米。

甲车 4.5小时到达了 B.甲车在距离 B 31.5 千米处与乙车相遇,求AB 的距离。

四、多人行程问题6、甲乙丙三人每分分别行60米,50米,40米,甲从B,乙丙从 A 同时出发相向而行,甲遇到乙15 分钟后又遇到丙,求AB 的距离?7、甲乙丙三人同时从 A 出发,甲乙顺时间丙逆时针绕湖而行。

甲丙30 分钟后相遇,又过了 5 分钟乙丙相遇。

甲的速度为 5.4 千米每小时,乙为 4.2 千米每小时。

求绕湖一周的路程?8、快,中,慢三车从甲到乙,有一骑摩托车的人从乙到甲,该人分别用6,10,15 分钟与三车相遇。

快车80 千米每小时,中车40 千米每小时,求慢车速度?9、甲乙丙三人同时从 A 出发往返于AB ,甲的时速10 千米,比乙快 2.5千米,丙的时速 4 千米,甲和乙在距离B15 千米处第一次相遇,求甲丙在距离 A 多远处第一次相遇?第二讲 行程问题五、不同时相遇问题10、AB 相距 2800米,小明从 A 出发步行 5分钟后,小军从 B 骑车出发,又经过 10分钟,两人 相遇。

小学奥数行程问题50道详解

小学奥数行程问题50道详解

行程问题50道详解一1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9- (3+4)二2千米.2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67. 5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?解:那2分钟是甲和丙相遇,所以距离是(60+75) X2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=2704- (67. 5-60)=36分钟,所以路程二36X (60+75)=4860 米.3、A, B两地相距540千米.甲、乙两车往返行驶于A, B两地之间,都是到达一地之后立即返回,乙车较甲车快.设两辆车同时从A地出发后第一次和第二次相遇都在途中P地.那么两车第三次相遇为止,乙车共走了多少千米?解:根据总结:第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在P点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个P点到第二个P点,路程正好是第一次的路程. 所以假设一个全程为3份,第一次相遇甲走了2份乙走了4份.第二次相遇,乙正好走了1份到B地,又返回走了1份.这样根据总结:2个全程里乙走了(540一3)X 4=180X4二720 千米,乙总共走了720X3二2160 千米.4、小明每天早晨6: 50从家岀发,7: 20到校,老师要求他明天提早6分钟到校.如果小明明天早晨还是6: 50从家出发,那么,每分钟必须比往常多走25米才能按老师的要求准时到校.问:小明家到学校多远?(第六届《小数报》数学竞赛初赛题第1题)解:原来花时间是30分钟,后来提前6分钟,就是路上要花时间为24分钟. 这时每分钟必须多走25米所以总共多走了24X25二600米而这和30分钟时间里,后6分钟走的路程是一样的,所以原来每分钟走600三6二100米.总路程就是=100X30=3000 米.5、小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3. 5千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)?解:画示意图如下.第二次相遇两人己共同走了甲、乙两村距离的3倍,因此张走了3.5X3 = 10. 5 (千米).从图上可看出,第二次相遇处离乙村2千米.因此,甲、乙两村距离是10.5-2 = 8.5 (千米).每次要再相遇,两人就要共同再走甲、乙两村距离2倍的路程.第四次相遇时, 两人己共同走了两村距离(3+2 + 2)倍的行程.其中张走了3.5X7=24.5 (千米),24. 5二8. 5 + 8. 5 + 7. 5 (千米).就知道第四次相遇处,离乙村8. 5-7. 5=1 (千米).答:第四次相遇地点离乙村1千米.行程专题50道详解二6、小王的步行速度是4. 8千米/小时,小张的步行速度是5.4千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10. 8千米/小时,从乙地到甲地去. 他们3人同时出发,在小张与小李相遇后5分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?解:画一张示意图:王张李I -------------------- 1---------------------- 1 ---------------- 1甲 B 入乙,图中A点是小张与小李相遇的地点,图中再设置一个B点,它是张、李两人相遇时小王到达的地点.5分钟后小王与小李相遇,也就是5分钟的时间,小王和小李共同走了B与A之间这段距离,它等于(4.8 f 10.8)= (千米)这段距离也是出发后小张比小王多走的距离,小王与小张的速度差是(5. 4-4. 8)千米/小时•小张比小王多走这段距离,需要的时间是1.34- (5. 4-4.8) X60=130 (分钟).这也是从出发到张、李相遇时已花费的时间.小李的速度10. 8千米/小时是小张速度5. 4千米/小时的2倍.因此小李从A到甲地需要1304-2=65 (分钟).从乙地到甲地需要的时间是130+65=195 (分钟)=3 小时15 分.答:小李从乙地到甲地需要3小时15分.7、快车和慢车分别从A, B两地同时开出,相向而行.经过5小时两车相遇.已知慢车从B到A用了12. 5小时,慢车到A停留半小时后返回.快车到B停留1小时后返回.问:两车从第一次相遇到再相遇共需多少时间?解:画一张示意图:设C点是第一次相遇处.慢车从B到C用了5小时,从C到A用了12. 5-5=7. 5 (小时).我们把慢车半小时行程作为1个单位.B到C10个单位,C到A15个单位. 慢车每小时走2个单位,快车每小时走3个单位.有了上而〃取单位〃准备后,下面很易计算了.慢车从C到A,再加停留半小时,共8小时.此时快车在何处呢?去掉它在B 停留1小时.快车行驶7小时,共行驶3X7=21 (单位).从B到C再往前一个单位到D 点.离A点15-1 = 14 (单位).现在慢车从A,快车从D,同时出发共同行走14单位,相遇所需时间是14=(2 + 3) =2.8 (小时).慢车从C到A返回行驶至与快车相遇共用了7. 5 + 0. 5 + 2. 8 = 10. 8(小时).答:从第一相遇到再相遇共需10小时48分.8、一辆车从甲地开往乙地.如果车速提高20%,可以比原定时间提前一小时到达;如果以原速行驶120千米后,再将速度提高25%,则可提前40分钟到达. 那么甲、乙两地相距多少千米?解:设原速度是1.原时间=学,鹿耐间=学+ 2珈就得出,沁20%后,所用时间缩短1 _ 5到扇取圆的 1 + 20%_?这是具体地反映::距离固定,时间与速度成反比2 _ 片Cl-t> =6(小时)•□用原速行驶需要6J1 _ 4□同样道理,车遠提高25%,所用时间缩短到原来的1 + 25%_5\.换一句话说,缩短了]现在要充分利用这个;5 5如果一开始就加速25%,可少时间-360X | = 72 (分钟).现在只少了40分钟,72-40= 32 (分钟)•说明有一段路程耒加逮而没有少这个匸2分钟,它应是这的!因此这段路所用时间是32-|=160〔分钟).段路程所用时间 5 J真巧,$20760=160(分钟),120X (1+1)= 270 (千米)・原速的行程与加速的行程所用时间一样•因此全程长• 4 4答’甲、乙两地相距2®.壬米*9.—辆汽车从甲地开往乙地,如果车速提高20%,可以提前1小时到达。

小学奥数行程问题应用题100题及答案

小学奥数行程问题应用题100题及答案

小学奥数行程问题应用题100题及答案(1) 亮亮从家到学校需要走960米,他平时早晨7:00出发去上学,每分钟走40米,可以准时到校,亮亮今天起床晚了,他7:08才出发,为了准时到校,他每分钟需要走多少米?(2) 丹丹从家去学校,每分钟走60米,走了10分钟到达学校,问丹丹家到学校的距离有多远?(3) 王叔叔开车从北京到上海,从开始出发,车速即比原计划的速度提高了19,结果提前一个半小时到达;返回时,按原计划的速度行驶 280 千米后,将车速提高16,于是提前1 小时 40 分到达北京.北京、上海两市间的路程是多少千米? (4) 有一个圆形人工湖的周长是450米,小胖在雷雷前面50米处,两人同时沿顺时针方向跑。

已知小胖速度为200米/分,雷雷速度为150米/分,问:几分钟后小胖追上雷雷?(5) 甲乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。

中午12时甲到西村后立即返回东村,在距西村15千米处遇到乙。

求东西两村相距多少千米?(6) 田田和牛牛两人分别从甲、乙两地同时出发,如果两个人同向而行,田田26分钟可以赶上牛牛;如果两个人相向而行的话,6分钟就可以相遇。

已知牛牛每分钟走50米,求甲、乙两地之间的路程。

(7)上学路上当当发现田田在他前面,于是就开始追田田。

当当每分钟走70米,田田每分钟走45米,当当一共经过了30分钟才追上田田,请问:两人开始相距多远?(8)飞飞和薇薇在操场上比赛跑步,飞飞每分钟跑60米,薇薇每分钟跑40米,一圈跑道长400米,他们同时从起跑点背向出发,那么第一次相遇需要多少分钟?第二次相遇需要多少分钟?第三次相遇需要多少分钟?有什么规律呢?(9)小明在420米长的环形跑道上跑了一圈,前一半时间的速度为8米/秒,后一半时间的速度为6米/秒。

问:他后一半路程用了多少时间?(10)六年级同学从学校出发到公园春游,每分钟走72米。

15分钟以后,学校有急事要通知学生,派乐乐骑自行车从学校出发用9分钟追上同学们,乐乐每分钟要行多少米才可以准时追上同学们?(11)甲、乙两人在周长为400米的环形跑道上同时同地同向而行,甲每分钟走60米,乙每分钟走40米,甲每追上乙一次,两人就会击一次掌,当两人击了第3次掌时,甲掉头往回走,每相遇一次仍击一次掌,两人又击了5次掌,此时甲走了多少米?乙走了多少米?(12)有一个周长为100米的圆形花圃,小张和小王同时从边上同一点出发,沿着同一方向跑步,已知小张的速度是5米/秒,小王的速度是3米/秒,小张跑多少圈后才能第一次追上小王?(13)小王和小李两人分别从甲、乙两地同时出发同向而行,小李在前,小王在后面。

小学数学10种经典行程问题解法总结

小学数学10种经典行程问题解法总结

小学数学10种经典行程问题解法总结行程问题是小学数学应用题中的基本问题,它包含了简单的相遇及追及问题、多人相遇追及问题、多次相遇追及问题、流水行船问题、环形跑道问题、钟面行程问题、火车过桥问题、猎狗追兔问题等,但万变不离其宗。

行程问题是物体匀速运动的应用题。

不论是同向运动还是相向运动,最后反映出来的基本关系式都可以归纳为:路程=速度×时间。

要想解答行程问题,首先要弄清物体的具体运动情况,可以在纸上画出相应的运动轨迹,更方便观察思考。

以下是总结的10种经典行程问题的相关解法。

一、简单相遇及追及问题相遇问题:总路程=(甲速+乙速)×相遇时间相遇时间=总路程÷(甲速+乙速)甲速或乙速=总路程÷相遇时间-乙速或甲速追及问题:距离差=速度差×追及时间追及时间=距离差÷速度差速度差=距离差÷追及时间速度差=快速-慢速相离问题:两地距离=速度和×相离时间相离时间=两地距离÷速度和速度和=两地距离÷相离时间二、流水行船问题(1)船速+水速=顺水速度(2)船速-水速=逆水速度(3) (顺水速度+逆水速度)÷2=船速(4) (顺水速度-逆水速度)÷2=水速两船在水流中的相遇问题与在静水中及两车在陆地上的相遇问题一样,与水速没有关系因为:甲船顺水速度+乙船逆水速度=(甲船速+水速) + (乙船速-水速)=甲船速+乙船速如果两只船在水流中同向运动,一只船追上另一只船的时间,也与水速无关因为:甲船顺水/逆水速度-乙船顺水/逆水速度=(甲船速+/-水速)-(乙船速+/-水速)=甲船速-乙船速三、环形跑道问题从同一地点出发(1)如果是相向而行,则每走一图相遇一次(2)如果是同向而行,则每追上一图相過一次四、多人相遇追及问题基本公式:路程和=速度和×相遇时间路程差=速度差×追及时间例题:有甲、乙、丙三人,甲每分钟走80米,乙每分钟走60米,丙每分钟走40米,现在甲从东端,乙、丙两人从西端同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇。

小学奥数必做的30道行程问题

小学奥数必做的30道行程问题

1、邮递员早晨7时出发送一份邮件到对面的山坳里,从邮局开始要走12千米的上坡路,8 千米的下坡路。

他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地后停留1小时,又从原路返回,邮递员什么时候可以回到邮局?【解析】去时:T=12/4+8/5=4.6小时返回:T’=8/4+12/5=4.4小时T总=4.6+4.4+1=10小时7:00+10:00=17:00整体思考:全程共计:12+8=20千米去时的上坡变成返回时的下坡,去时的下坡变成返回时的上坡因此来回走的时间为:20/4+20/5=9小时所以总的时间为:9+1=10小时 7:00+10:00=17:002、小明从甲地到乙地,去时每小时走6千米,回时每小时走9千米,来回共用5小时。

小明来回共走了多少千米?【解析】速度比=6:9=2:3时间比=3:2 3+2=5小时,正好S=6×3=18千米来回为18×2=36千米3、A、B两城相距240千米,一辆汽车原计划用6小时从A城开到B城,汽车行驶了一半路程,因故在途中停留了30分钟。

如果按照原定的时间到达B城,汽车在后半段路程速度应该加快多少?【解析】前半程开了3小时,因故障停留30分钟,因此接下来的路程需要2.5小时来完成V=120÷2.5=48千米/小时原V=240/6=40千米/小时所以需要加快:48-40=8千米/小时4、甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地.最后乙车比甲车迟4分钟到C地.那么乙车出发后几分钟时,甲车就超过乙车。

【解析】 11-7=4分钟甲乙车的速度比=1:0.8=5:4 甲乙行的时间比=4:5=16:20 所以是在乙车出发后的16+11=27分钟追上甲车5、铁路旁的一条平行小路上,有一行人与一骑车人同时向南行进。

小学五年级行程问题

小学五年级行程问题

行程问题;1、两只船同时分别从两个港口相对开出,一只船每小时行45千米,另一只船每小时行48千米,开出2小时后,两船之间相距的路程是全程的一般,求两港口之间的距离?2、甲、乙两辆汽车同时从东西两地相向开出,甲车每小时行50千米,乙车每小时行42千米,两车在离中点16千米处相遇,求两地的距离?3、A、B两站相距366千米,两列火车从两站对开,快车每小时行56千米,慢车每小时行44千米,慢车先开出66千米后,快车才开出,再经过几小时两车相遇?4、甲、乙两村相距4800米,小王与小李同时从甲村出发前往乙村。

小王骑自行车每分钟行240米,小李步行每分钟走60米,小王到乙村后休息10分钟,然后返回,又经过几分钟与小李相遇?5、甲、乙两车同时从东站开往西站。

甲车每小时比乙车多行10千米。

甲车行驶5小时到达西站后,没有停留,立即原路返回,在距离西站30千米的地方与乙车相遇。

求甲车每小时行多少千米?6、甲、乙两车同时从A、B两地出发相向而行,5小时候相遇,相遇后甲车继续行驶了4小时到达B地,已知乙车每小时行44千米,求A、B两地相距多少千米?7、两辆汽车从相距760千米的两地同时相对开出,原计划甲车每小时行34千米,乙车每小时行42千米,实际开车时,甲车加快了速度,每小时行38千米,那么相遇时,乙车比原计划少行多少千米?8、快车与慢车同时从甲乙两地相对开出,经过12小时相遇。

相遇后快车又行驶了8小时到达乙地,慢车还要行多少小时到达甲地?9、甲乙两人从相距1700米的两地相对而行,甲每分钟行53米,乙每小时行47米,甲带了一只小狗与他同时出发,狗以每分钟160米的速度向乙跑去,遇到乙以后立即回头向甲跑去,就这样小狗在甲、乙二人之间来回奔跑,直到两人相遇为止,问这只小狗一共跑了多少米?10、A、B两地相距6千米,甲、乙两人分别从A、B两地同时出发,并在两地之间往返行走,(到达另一地就马上折回)。

出发后40分钟两人第一次相遇,乙到达A地后,在离A地2千米的地方与甲第二次相遇。

小学奥数行程问题汇总

小学奥数行程问题汇总

小学数学行程问题基本公式:路程=速度X时间(S=v X t)速度=路程+时间(v=s+t)时间=路程+速度(t=s + v)用s表示路程,v表示速度,t表示时间。

一、求平均速度。

公式:平均速度=总路程♦总时间(「平=’・: 一;;•・例题:摩托车驾驶员以每小时30千米的速度行驶了90千米到达某地,返回时每小时行驶45千米,求摩托车驾驶员往返全程的平均速度.分析:要求往返全程的平均速度是多少,必须知道摩托车“往”与“返”的总路程和“往” 与“返”的总时间.摩托车“往”行了90千米,“返”也行了90千米,所以摩托车的总路程是:90x2=180 (千米),摩托车“往”的速度是每小时30千米,所用时间是:90+30=3 (小时), 摩托车“返”的速度是每小时45千米,所用时间是:90+45=2 (小时),往返共用时间是:3+2=5(小时),由此可求出往返的平均速度,列式为:90x2+ (90+30+90+45)=180+5=36 (千米/小时)1、?山上某镇离山下县城有60千米路程,一人骑车从某镇出发去县城,每小时行20 千米;从县城返回某镇时,由于是上山路,每小时行15千米。

问他往返平均每小时约行多少千米?2、小明去某地,前两小时每小时行40千米,之后又以每小时60千米开了2小时,刚好到达目的地,问小明的平均速度是多少?3、小王去爬山,上山的速度为每小时3千米,下山的速度为每小时5千米,那么他上山、下山的平均速度是每小时多少千米?4、一辆汽车从甲地开往乙地,在平地上行驶2.5小时,每小时行驶42千米;在上坡路上行驶1.5小时,每小时行驶30千米;在下坡路上行驶2小时,每小时行驶45千米,正好到达乙地。

求这辆汽车从甲地到乙地的平均速度。

总结:求平均速度:时间一定(;」上):2;路程一定2「1「二:(1"1 ।[:),牢记平均速度公式,就不会错。

二、相遇问题公式:相遇路程=速度和x相遇时间:(L+l)xt=S相遇时间=相遇路程♦速度和:S+(L+1)=t相遇路程+相遇时间=速度和:S+t=(L+\)甲的速度=速度和一乙的速度:,:=S+t—1二乙的速度=速度和一甲的速度:k=S+t—L重要概念:甲的时间=乙的时间=相遇时间:'l=2=t甲的路程+乙的路程=相遇路程:’1, 飞=s例题.甲、乙两人分别从相距30千米的两地同时出发相向而行,甲每小时行6千米,乙每小时走4千米,二人几小时后相遇?分析:根据(相遇路程)小(速度和)=相遇时间,要求相遇时间,首先要求相遇路程,再求速度和。

小学行程问题43题

小学行程问题43题

行程问题1、一列火车通过360米的第一隧道,用去24秒;接着通过长224米的第二隧道用去了16秒。

这列火车的车身长和速度各是多少?2、一列火车每小时行50千米,48小时到达目的地,如果速度提高1/5,需要多少小时到达目的地?3、客货两车同时从甲地开往乙地,货车行完全程需6小时,客车比货车的速度快1/5,客车比货车提前几小时到达乙地?4、一辆货车和一辆轿车同时从A地开往B地,当轿车先行完全程的2/3时,货车行了全程的2/5,当轿车到达B 地时,货车离B地还有200千米,AB两地相距多少千米?5、有一艘轮船从甲港开往乙港,去时顺风每小时行60千米,返回时逆风每小时行30千米,往返共用5/2小时,甲乙两港相距多少千米?6、客货两车分别从甲乙两地同时出发,客车需6小时行完全程,货车需8小时行完全程,货车开出2小时后,客车才出发,两车相遇时,货车共行几小时?7、一列快车从甲地开往乙地,每小时65千米,一列客车从乙地同时开往甲地,速度比快车慢1/13,两车在中点20千米处相遇,甲乙两地相距多少千米?8、小丽和小军两个人同时从A、B两地出发相向而行,小丽骑自行车每小时行16千米,是小军骑摩托车速度的4/5,经过2小时相遇,AB两地相距多少千米?9、小华从家去姥姥家,每小时行4千米,6小时到达,如果回家时每小时速度提高20%,小华可提前几小时到家?10、一辆轿车从甲城开往乙城需要4小时,一辆汽车从乙城开往甲城需要6小时,轿车出发3小时与汽车相遇,汽车比轿车晚到几小时?11、客货两车分别从AB两地同时对开,经过6小时后,客车距B地还有1/8,货车行驶了400千米,已知客车每小时比货车每小时多行15千米,AB两地相距多少千米?12、甲乙两辆轿车分别从相距540千米的AB两地同时对开,经过3小时相遇,已知甲乙两车速度比是5:4 ,相遇后按原速度继续行驶,当甲车到达B地时,乙车距A地还有多少千米?13、小勇步行每分钟行80米,小华骑自行车每分钟200米,二人同时同地向背而行3分钟后,小华立即掉头来追小勇,在经过多少分钟小华才能追上小勇?14、甲乙两车同时同地同向出发,甲车每小时行40千米,乙车每小时行50千米,出发4.5小时后,乙车立即返回,还要多少小时才能相遇?15、两人骑自行车以同样的速度从A地到B地,甲先行8千米后乙才出发,甲到B地立即返回,在途中与乙相遇,相遇地点离A地的路程占全程的7/8,这时乙行了多少千米?16、小军和小丽分别从AB两地同时出发,相向而行,小军骑摩托车每小时行40千米,小丽乘汽车每小时行50千米;小军从A地到B 地后立即返回A地,小丽从B地到A地后立即返回B地,AB两地相距31.5千米,他们从出发到返回途中相遇时共用了几小时?17、一辆汽车从甲地到乙地用6小时,由乙地返回甲地用4小时,返回时每小时比去时多行16千米,这辆汽车往返两地的平均速度是多少千米?18、有一个人骑自行车从坡底骑上坡顶平均速度是每小时4千米,沿原路返回时平均速度是10千米,这个人往返一回的平均速度是多少千米?19、客货两车同时从两站相对开出,相遇时客车比货车多行120千米,已知客车行完全程需要10小时,货车行完全程需要15小时,求两站的距离是多少千米?20、甲乙丙三人参加400米赛跑,甲到终点时乙还有40米没有跑完,乙到终点时,丙还有40米没跑完,当甲到终点时,丙还有多少米没有跑完?21、甲乙两车分别从AB两地同时相对而行,在距中点24千米处相遇,已知甲乙两车所行路程相等时,时间的比是3:2,相遇时甲车行了多少千米?22、甲乙两车分别从AB两地相向出发,经过10小时相遇,相遇后继续行驶3小时,这是甲车离B地还有1/5,而乙车离A地还有150千米,AB两地相距多少千米?23、一列快车和一列慢车同时从南北两站相对开出,4小时后两车共行路程与剩下的路程的比3:2,已知快车每小时行60千米,慢车每小时行48千米,南北两站相距多少千米?24、从甲城到乙城,一辆汽车第一小时行了全程的40%,第二小时比第一小时多行10千米,这是离乙城还有全程的1/10,全程长多少千米?25、甲乙两辆汽车分别从AB两地同时相向开出,经过10小时相遇,相遇后继续行驶6小时,这时甲车到达B地,而乙车距A地还有140千米,AB两地相距多少千米?26、客货两车同时从甲乙两镇中点向相反方向行驶,经过4小时,客车到达甲镇,货车离乙镇还有60千米,已知客货两车的速度比是4:3,如果两车分别从甲乙两镇同时相向而行,多少小时相遇?27、甲乙两辆汽车同时从AB两地相向而行,甲车每小时行40千米,乙车每小时行44千米,行驶1小时后,剩下的路程与已行的路程的比是3:4,AB两地相距多少千米?28、王明家距学校有300米,一天妹妹领着小狗从家去接哥哥,王明和妹妹的速度都是每分钟50米,小狗的速度是每分钟200米,小狗遇到王明后用同样的速度不停的往返于王明和妹妹之间,当王明和妹妹相距10米时,小狗一共跑了多少米?29、一列快车从甲站到乙站要5小时,一列慢车从乙站到甲站要8小时,快车先行2小时后慢车才出发,两车相遇时,离开两站中点84千米,甲乙两站相距多少千米?30、甲乙两辆汽车从A、B两地同时相向而行,2.5小时后相遇,如果甲先行一又六分之一小时,则两车1.8小时后相遇,已知两地相距250千米,甲车每小时行多少千米?31、一段公路,甲骑自行车行完全程要10小时,乙骑自行车行完全程要15小时,现在两人从公路两端相向而行,乙比甲早出发1小时,甲又在途中停留30分钟,但相遇时,甲还比乙多行12千米,这段公路长多少千米?32、一列客车和一列货车,从甲乙两地相对开出,6小时在一车站相遇,已知火车每小时行75千米,客车每小时比货车慢16%,甲乙两地相距多少千米?33、快车和慢车同时从甲乙两地相向而行,经过5小时两车相遇,相遇后快车再行3小时到达乙地,慢车每小时行48千米,甲乙两地相距多少千米?34、甲乙二人沿同一条路线同时出发由A地开往B地,甲骑自行车每小时行20千米,乙乘公共汽车每小时行30千米,结果甲比乙晚到1/12小时,AB相距多少千米?35、甲乙两车同时从A地开往B地,甲车到达B地后立即返回,在离B地45千米与乙车相遇,甲乙两车的速度比是3:2,相遇时甲车行了多少千米?36、快车从甲地到乙地需要10小时,慢车从乙地到甲地需行15小时,两车同时相向开出,相遇时快车距乙地还有180千米,甲乙两地相距多少千米?37、一辆客车和一辆货车同时从甲乙两地相对开出,3小时后相遇,客车再开2小时到达乙地,已知客车每小时比货车快20千米,甲乙两地相距多少千米?38、小王由A地到B地,又从B地回到A地,去时每小时走7千米,晚到1小时,回来时每小时行9千米,可早到5小时,AB两地间的路程是多少千米?39、甲乙丙三人的速度分别是每分钟60千米、50千米、40千米,甲从东村,乙丙从西村同时相向而行,甲与乙相遇后15分钟又与丙相遇,东西两村路程长多少千米?40、快车从甲地开往乙地,慢车从乙地开往甲地,两车同时相对开出,8小时相遇后,各自继续行驶2小时,这是快车距乙地还有250千米,慢车距甲地还有350千米,甲乙两地路程长多少千米?41、甲乙两列火车同时从A地向相反方向行驶,分别开往B地和C地,已知AB之间的路程是AC之间路程的9/10,当甲车行驶60千米时,乙车行驶的路程与剩下的路程的比是1:3,这时两列火车离目的地的路程相等,AC两地相距多少千米?42、甲乙两车站相距540千米,两站之间有个丙站,快车从甲站开往丙站,已行驶220千米,慢车从乙站开往丙站,已行了它的路程的2/5,这时快车和慢车余下的路程恰好相等,乙丙两站的距离是多少千米?43、甲乙两人骑摩托车从A地出发,背向而行,分别前往BC两地,已知甲乙两人每小时共行96千米,甲乙的速度比是9:7,两人恰好分别同时到达BC两地,乙立即用原速度返回,当乙行了40分钟后,甲在B地得到通知,要求立即返回并且要与乙同时到达A 地,甲返回时把原速度提高了20%,这样两人同时到达A地,BC之间的路程是多少千米?。

小学数学总复习行程问题

小学数学总复习行程问题

⼩学数学总复习⾏程问题⾏程问题经典题型(⼀)1、甲、⼄两地相距6千⽶,某⼈从甲地步⾏去⼄地,前⼀半时间平均每分钟⾏80⽶,后⼀半时间平均每分钟⾏70⽶。

问他⾛后⼀半路程⽤了多少分钟?分析:解法1、全程的平均速度是每分钟(80+70)/2=75⽶,⾛完全程的时间是6000/75=80分钟,⾛前⼀半路程速度⼀定是80⽶,时间是3000/80=37.5分钟,后⼀半路程时间是80-37.5=42.5分钟解法2:设⾛⼀半路程时间是x分钟,则80*x+70*x=6*1000,解⽅程得:x=40分钟因为80*40=3200⽶,⼤于⼀半路程3000⽶,所以⾛前⼀半路程速度都是80⽶,时间是3000/80=37.5分钟,后⼀半路程时间是40+(40-37.5)=42.5分钟答:他⾛后⼀半路程⽤了42.5分钟。

2、⼩明从家到学校有两条⼀样长的路,⼀条是平路,另⼀条是⼀半上坡路、⼀半下坡路。

⼩明上学⾛两条路所⽤的时间⼀样多。

已知下坡的速度是平路的1.5倍,那么上坡的速度是平路的多少倍?分析:解法1:设路程为180,则上坡和下坡均是90。

设⾛平路的速度是2,则下坡速度是3。

⾛下坡⽤时间90/3=30,⾛平路⼀共⽤时间180/2=90,所以⾛上坡时间是90-30=60 ⾛与上坡同样距离的平路时⽤时间90/2=45 因为速度与时间成反⽐,所以上坡速度是下坡速度的45/60=0.75倍。

解法2:因为距离和时间都相同,所以平均速度也相同,⼜因为上坡和下坡路各⼀半也相同,设距离是1份,时间是1份,则下坡时间=0.5/1.5=1/3,上坡时间=1-1/3=2/3,上坡速度=(1/2)/(2/3)=3/4=0.75解法3:因为距离和时间都相同,所以:1/2*路程/上坡速度+1/2*路程/1.5=路程/1,得:上坡速度=0.75答:上坡的速度是平路的0.75倍。

3、⼀只⼩船从甲地到⼄地往返⼀次共⽤2⼩时,回来时顺⽔,⽐去时的速度每⼩时多⾏驶8千⽶,因此第⼆⼩时⽐第⼀⼩时多⾏驶6千⽶。

小学奥数行程问题大汇总

小学奥数行程问题大汇总

小学数学行程问题基本公式:路程=速度×时间(s=v×t)速度=路程÷时间(v=s÷t)时间=路程÷速度(t=s÷v)用s表示路程,v表示速度,t表示时间。

一、求平均速度。

公式:平均速度=总路程÷总时间(例题:摩托车驾驶员以每小时30千米的速度行驶了90千米到达某地,返回时每小时行驶45千米,求摩托车驾驶员往返全程的平均速度.分析:要求往返全程的平均速度是多少,必须知道摩托车“往”与“返”的总路程和“往”与“返”的总时间.摩托车“往”行了90千米,“返”也行了90千米,所以摩托车的总路程是:90×2=180(千米),摩托车“往”的速度是每小时30千米,所用时间是:90÷30=3(小时),摩托车“返”的速度是每小时45千米,所用时间是:90÷45=2(小时),往返共用时间是:3+2=5(小时),由此可求出往返的平均速度,列式为:90×2÷(90÷30+90÷45)=180÷5=36(千米/小时)1、山上某镇离山下县城有60千米路程,一人骑车从某镇出发去县城,每小时行20千米;从县城返回某镇时,由于是上山路,每小时行15千米。

问他往返平均每小时约行多少千米?2、小明去某地,前两小时每小时行40千米,之后又以每小时60千米开了2小时,刚好到达目的地,问小明的平均速度是多少?3、小王去爬山,上山的速度为每小时3千米,下山的速度为每小时5千米,那么他上山、下山的平均速度是每小时多少千米?4、一辆汽车从甲地开往乙地,在平地上行驶2.5小时,每小时行驶42千米;在上坡路上行驶1.5小时,每小时行驶30千米;在下坡路上行驶2小时,每小时行驶45千米,正好到达乙地。

求这辆汽车从甲地到乙地的平均速度。

总结:求平均速度:时间一定()2;路程一定2(),牢记平均速度公式,就不会错。

(完整版)小学奥数行程问题汇总

(完整版)小学奥数行程问题汇总

小学数学行程问题基本公式:路程=速度×时间(s=v×t)速度=路程÷时间(v=s÷t)时间=路程÷速度(t=s÷v)用s表示路程,v表示速度,t表示时间。

一、求平均速度。

公式:平均速度=总路程÷总时间(v平=s总÷t总例题:摩托车驾驶员以每小时30千米的速度行驶了90千米到达某地,返回时每小时行驶45千米,求摩托车驾驶员往返全程的平均速度.分析:要求往返全程的平均速度是多少,必须知道摩托车“往”与“返”的总路程和“往”与“返”的总时间.摩托车“往”行了90千米,“返”也行了90千米,所以摩托车的总路程是:90×2=180(千米),摩托车“往”的速度是每小时30千米,所用时间是:90÷30=3(小时),摩托车“返”的速度是每小时45千米,所用时间是:90÷45=2(小时),往返共用时间是:3+2=5(小时),由此可求出往返的平均速度,列式为:90×2÷(90÷30+90÷45)=180÷5=36(千米/小时)1、山上某镇离山下县城有60千米路程,一人骑车从某镇出发去县城,每小时行20千米;从县城返回某镇时,由于是上山路,每小时行15千米。

问他往返平均每小时约行多少千米?2、小明去某地,前两小时每小时行40千米,之后又以每小时60千米开了2小时,刚好到达目的地,问小明的平均速度是多少?3、小王去爬山,上山的速度为每小时3千米,下山的速度为每小时5千米,那么他上山、下山的平均速度是每小时多少千米?4、一辆汽车从甲地开往乙地,在平地上行驶2.5小时,每小时行驶42千米;在上坡路上行驶1.5小时,每小时行驶30千米;在下坡路上行驶2小时,每小时行驶45千米,正好到达乙地。

求这辆汽车从甲地到乙地的平均速度。

总结:求平均速度:时间一定(v1+v2)÷2;路程一定2v1v2÷(v1+v2),牢记平均速度公式,就不会错。

小学行程问题汇总(含典型例题和习题)精选全文

小学行程问题汇总(含典型例题和习题)精选全文

可编辑修改精选全文完整版小学行程问题汇总(含典型例题和习题)我们把研究路程、速度、时间这三者之间关系的问题称为行程问题。

行程问题主要包括相遇问题、相背问题和追及问题。

这一周我们来学习一些常用的、基本的行程问题。

解答行程问题时,要理清路程、速度和时间之间的关系,紧扣基本数关系“路程=速度×时间”来思考,对具体问题要作仔细分析,弄清出发地点、时间和运动结果。

知道三个量中的两个量,就能求出第三个量。

它大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度和×时间。

(3)同向而行:速度慢的在前,快的在后。

追及时间=追及距离÷速度差在环形跑道上,速度快的在前,慢的在后。

追及距离=速度差×时间。

解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。

在行程问题中,与环行有关的行程问题的解决方法与一般的行程问题的方法类似,但有两点值得注意:一是两人同地背向运动,从第一次相遇到下次相遇共行一个全程;二是同地、同向运动时,甲追上乙时,甲比乙多行了一个全程。

结合分数、百分数知识相关的较为复杂抽象的行程问题。

要注意:出发的时间、地点和行驶方向、速度的变化等,常常需画线段图来帮助理解题意。

例1:甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。

两人几小时后相遇?分析与解答:这是一道相遇问题。

所谓相遇问题就是指两个运动物体以不同的地点作为出发地作相向运动的问题。

根据题意,出发时甲乙两人相距20千米,以后两人的距离每小时缩短6+4=10千米,这也是两人的速度和。

所以,求两人几小时相遇,就是求20千米里面有几个10千米。

因此,两人20÷(6+4)=2小时后相遇。

练习 11、甲乙两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18千米,乙船每小时行驶15千米,经过6小时两船在途中相遇。

小学数学—行程问题大全

小学数学—行程问题大全

行程问题
1.甲、乙两艘轮船分别从两港同时出发相向而行,甲船每小时行驶19千米,乙船每小时行驶13千米,经过8小时两艘轮船在途中相遇。

两港间的水路长多少千米?
2.甲、乙两车分别从相距240千米的A、B两地同时出发,相向而行,已知甲车到达B城需3小时,乙车到达A城需6小时,两车出发后多少时间相遇?
3.东、西两镇相距45千米,甲、乙两人分别从两镇同时出发相向而行,甲每小时行的路程是乙的2倍,5小时后两人相遇。

两面三刀的速度各是多少?
4.两地相距6600千米,甲、乙两列火车同时从两地出发,相向而行。

甲车每小时行驶100千米,乙车每小时行驶120千米,两车在途中相遇后继续前进。

从相遇时算起,两车开到对方的出发点各需多少小时?
5.甲每小时行9千米,乙每小时比甲少行3千米,两人于相隔20千米的两地同时相背而行,几小时后两人相隔80千米?
6.甲每小时行12千米,乙每小时行8千米,甲自南庄向南行,同时乙自北庄向北行,经过5小时后,两人相隔103千米。

南北两庄相距多少千米?
7.解放军某部从营地出发,以每小时6千米的速度向目的地前进,6小时后,部队有急事,派通讯员骑摩托车以每小时78千米的速度前去联络。

多少时间后,通讯员能赶上队伍?
8.一条环形跑道长400米,甲骑车每分行450米,乙跑步每分跑250米,两人同时同地同向出发,经过多少分两相遇?
9.育才小学有条300米长的环形跑道,扬扬和宁宁同时从起跑线起跑,扬扬每秒跑6米,宁宁每秒跑4米。

问:
(1)扬扬第一次追上宁宁时两人各跑了多少米?
(2)扬扬第二次追上宁宁时两人各跑了几圈?。

小学六年级数学行程问题

小学六年级数学行程问题

基本的行程问题例1:李明家到学校有600米,李明4分钟走60米。

问:李明从家到学校需要多长时间?例2:杰克和玛丽同时从学校出发去游乐园,杰克每分钟走75米,玛丽每分钟行50米,杰克走了20分钟就到了游乐园。

问:玛丽到游乐园需要多长时间?例3:一辆小轿车从A到开往B村,每分钟行420米,计划50分钟到达,但路程行到一半时,小轿车发生的故障,用10分钟修好,如果想准时到达,余下的路程分钟行多米?例4:小东和小西同时从学校出发到同一书店,学校到书店的距离为1800米,小东比小西早到5分钟。

当东西到达书店时,小西离书店还有300米.求:小东从学校到书店用了多少分钟?相遇问题例1:甲乙两人分别从相距30千米的两地同时出发,相向而行。

甲每小时走6千米,乙每小时走4千米。

问(1)甲乙二人几小时相遇?(2)甲乙何时还相距10千米?例2:两城市相距138千米,甲乙两人骑自行车分别从两城同时出发相向而行,甲每小时走13千米,乙每小时走12千米,乙在行进中因修车耽误1小时,然后继续前进与甲相遇。

求从出发到相遇经过几小时?例3:小东和小西两人同时从学校到游乐园,学校到游乐园的距离为1820米。

小东骑车每分钟行200米,小南步行每分钟行60米,小东到游乐园后因有事立即返回,与前来的小南相遇.求这时小南走了多少分钟?例4:两列火车同时从相距720千米的两地出发相向而行,经过3。

6小时相遇。

已知客车的速度为每小时80千米,求货车的速度.例5:甲乙两个工程队合修一条公路。

甲队每天修280米.乙队每天比甲队多修40米.两队同时从公路的两端修起,15天后全部修完。

求这条公路长多少米?例6:甲乙两辆汽车同时从两地相向开出,甲汽车每小时行60千米,乙汽车每小时行52千米,两车离中心16千米处相遇.求两地之间的路程.例7:一辆货车和一辆客车分别从A、B两地同时出发,相向而行。

货车每小时行49千米,客车每小时行51千米。

两车第一次相遇后以原速继续前进,并在到达对方出发点后都立即按原路返回,两车从开始到第二次相遇共用了6小时。

小学行程问题汇总

小学行程问题汇总

小学行程问题汇总一、相遇与追及1、路程和路程差公式【例1】某城市东西路与南北路交会于路口.甲在路口南边560米的点,乙在路口.甲向北,乙向东同时匀速行走.4分钟后二人距的距离相等.再继续行走24分钟后,二人距的距离恰又相等.问:甲、乙二人的速度各是多少?2、多人相遇【例2】有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇.那么,东、西两村之间的距离是多少米?3、多次相遇【例3】甲、乙两车分别同时从A、B两地相对开出,第一次在离A地95千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离B地25千米处相遇.求A、B两地间的距离是多少千米?二、典型行程专题1、火车过桥【例4】某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米.时速为72千米的列车相遇,错车而过需要几秒钟?2、流水行船【例5】甲、乙两艘游艇,静水中甲艇每小时行千米,乙艇每小时行千米.现在甲、乙两游艇于同一时刻相向出发,甲艇从下游上行,乙艇从相距27千米的上游下行,两艇于途中相遇后,又经过4小时,甲艇到达乙艇的出发地.水流速度是多少?3、猎狗追兔【例6】猎人带猎狗去捕猎,发现兔子刚跑出40米,猎狗去追兔子。

已知猎狗跑2步的时间兔子跑3步,猎狗跑4步的距离与兔子跑7步的距离相等,求兔子再跑多远,猎狗可以追上它?4、环形跑道【例7】甲和乙两人分别从圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇。

求此圆形场地的周长?5、走停问题【例8】小红上山时每走30分钟休息10分钟,下山时每走30分钟休息5分钟.已知小红下山的6、变速问题【例9】(时间相同模型)甲、乙两车分别从、两地同时出发,相向而行.出发时,甲,乙的速度之比是,相遇后甲的速度减少,乙的速度增加.这样当甲到达地时,乙离地还有千米.那么、两地相距多少千米?【例10】(路程相同模型)一列火车出发1小时后因故停车0.5小时,然后以原速的3/4前进,最终到达目的地晚1.5小时.若出发1小时后又前进90公里再因故停车0.5小时,然后同样以原速的3/4前进,则到达目的地仅晚1小时,那么整个路程为多少公里?7、自动扶梯【例11】小志与小刚两个孩在电梯上的行走速度分别为每秒个台阶和每秒个台阶,电梯运行后,他俩沿电梯运行方向的相同方向从一楼走上二楼,分别用时秒和秒,那么如果小志攀登静止的电梯需要用时多少秒?8、发车间隔【例12】某人沿着电车道旁的便道以每小时千米的速度步行,每分钟有一辆电车迎面开过,每12分钟有一辆电车从后面追过,如果电车按相等的时间间隔以同一速度不停地往返运行.问:电车的速度是多少电车之间的时间间隔是多少9、接送问题【例13】甲、乙、丙三个班的学生一起去郊外活动,他们租了一辆大巴,但大巴只够一个班的学生坐,于是他们计划先让甲班的学生步行,乙丙两班的学生步行,甲班学生搭乘大巴一段路后,下车步行,然后大巴车回头去接乙班学生,并追赶上步行的甲班学生,再回头载上丙班学生后一直驶到终点,此时甲、乙两班也恰好赶到终点,已知学生步行的速度为5千米/小时,大巴车的行驶速度为55千米/小时,出发地到终点之间的距离为8千米,求这些学生到达终点一共所花的时间.10、钟表问题【例14】小红在9点与10点之间开始解一道数学题,当时时针和分针正好成一条直线,当小红解完这道题时,时针和分针刚好第一次重合,小红解这道题用了多少时间?三、综合行程(主要运用比例法)【例15】A、B两地相距7200米,甲、乙分别从A,B两地同时出发,结果在距B地2400米处相遇.如果乙的速度提高到原来的3倍,那么两人可提前10分钟相遇,则甲的速度是每分钟行多少米?【例16】甲、乙两人同时同地同向出发,沿环形跑道匀速跑步.如果出发时乙的速度是甲的倍,当乙第一次追上甲时,甲的速度立即提高,而乙的速度立即减少,并且乙第一次追上甲的地点与第二次追上甲的地点相距100米,那么这条环形跑道的周长是多少米?【例17】A、B两地位于同一条河上,B地在A地下游100千米处.甲船从A地、乙船从B地同两船在静水中的速度相同.如果两船两次相遇的地点相距20千米,那么两船在静水中的速度是多少?1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离?【解析】两人同时出发,相向而行,第一次相遇合走一个全程,第二次相遇合走三个全程。

小学数学知识点:行程问题

小学数学知识点:行程问题

小学数学知识点:行程问题公式:1. 行程问题:行程问题可以大概分为简单问题、相遇问题、时钟问题等。

2.常用公式:1)速度×时间=路程;路程÷速度=时间;路程÷时间=速度;2)速度和×时间=路程和;3)速度差×时间=路程差。

3.常用比例关系:1)速度相同,时间比等于路程比;2)时间相同,速度比等于路程比;3)路程相同,速度比等于时间的反比。

4.行程问题中的公式:1)顺水速度=静水速度+水流速度;2)逆水速度=静水速度-水流速度。

3)静水速度=(顺水速度+逆水速度)/24)水流速度=(顺水速度–逆水速度)/25.基本数量关系是火车速度×时间=车长+桥长1)超车问题(同向运动,追及问题)路程差=车身长的和超车时间=车身长的和÷速度差2)错车问题(反向运动,相遇问题)路程和=车身长的和错车时间=车身长的和÷速度和3)过人(人看作是车身长度是0的火车)4)过桥、隧道(桥、隧道看作是有车身长度,速度是0的火车)例题:例1:已知某铁路桥长1000米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用120秒,整列火车完全在桥上的时间为80秒,求火车的速度和长度。

分析:本题关键在求得火车行驶120秒和80秒所对应的距离。

解答:设火车长为L米,则火车从开始上桥到完全下桥行驶的距离为(1000+L)米,火车完全在桥上的行驶距离为(1000-L)米,设火车行进速度为u米/秒,则:由此知200×u=2000,从而u=10,L=200,即火车长为200米,速度为10米/秒。

评注:行程问题中的路程、速度、时间一定要对应才能计算,另外,注意速度、时间、路程的单位也要对应。

例2:甲、乙各走了一段路,甲走的路程比乙少1/5,乙用的时间比甲多了1/8,问甲、乙两人的速度之比是多少?分析:速度比可以通过路程比和时间比直接求得。

解答:设甲走了S米,用时T秒,则乙走了S÷(1-1/5)=5/4 S(米),用时为:T×(1+1/8)=9/8 T(秒),甲的速度为:S/T,乙速度为:5/4 S÷ 9/8 T=10S/9T,甲乙速度比为S/T :10S/9T=9:10评注:甲、乙路程比4/5,时间比8/9,速度比可直接用:4/5 ÷ 8/9=9/10,即9:10。

六年级行程问题经典例题40题

六年级行程问题经典例题40题

六年级行程问题经典例题40题一、相遇问题1. 甲、乙两人分别从A、B两地同时出发,相向而行。

甲的速度是每小时5千米,乙的速度是每小时4千米,经过3小时后两人相遇。

求A、B两地的距离。

解析:根据相遇问题的公式,路程 = 速度和×相遇时间。

甲、乙的速度和为5 + 4 = 9(千米/小时),相遇时间是3小时,所以A、B两地的距离为9×3 = 27(千米)。

2. 两地相距600千米,上午8时,客车以每小时60千米的速度从甲地开往乙地,货车以每小时50千米的速度从乙地开往甲地。

要使两车在中点相遇,货车必须在上午几时出发?解析:两地中点距离为600÷2 = 300千米。

客车到达中点需要的时间为300÷60 = 5小时,货车到达中点需要的时间为300÷50 = 6小时。

客车上午8时出发,5小时后即13时到达中点,货车要6小时到达中点,所以货车必须提前1小时出发,也就是上午7时出发。

3. 甲、乙两车分别从A、B两地同时出发,相向而行,甲车每小时行70千米,乙车每小时行80千米,3小时后两车还相距50千米。

A、B两地相距多远?解析:甲、乙两车3小时行驶的路程之和为(70 + 80)×3=450千米,此时还相距50千米,所以A、B两地相距450+ 50 = 500千米。

二、追及问题4. 甲、乙两人在相距12千米的A、B两地同时出发,同向而行。

甲步行每小时行4千米,乙骑车在后面,每小时速度是甲的3倍。

几小时后乙能追上甲?解析:乙的速度是4×3 = 12千米/小时,乙与甲的速度差是12 4 = 8千米/小时。

追及路程是12千米,根据追及时间 = 追及路程÷速度差,可得追及时间为12÷8 = 1.5小时。

5. 一辆汽车从甲地开往乙地,每小时行40千米,开出5小时后,一列火车以每小时90千米的速度也从甲地开往乙地。

在甲乙两地的中点处火车追上汽车,甲乙两地相距多少千米?解析:汽车先开出5小时行驶的路程为40×5 = 200千米。

小学数学小升初数学所有类型行程问题(相遇问题追及问题火车行船问题环形跑道)集齐了(图文结合)

小学数学小升初数学所有类型行程问题(相遇问题追及问题火车行船问题环形跑道)集齐了(图文结合)

行程问题基础篇
【练习2】
1,甲每分钟走75米,乙每分钟走80米,丙每分钟走100米,甲、乙从东镇,丙人 西镇,同时相向出发,丙遇到乙后3分钟再遇到甲。求两镇之间相距多少米?
2,有三辆客车,甲、乙两车从东站,丙车从西站同时相向而行,甲车每分钟行 1000米,乙车每分钟行800米,丙车每分钟行700米。丙车遇到甲车后20分钟又遇 到乙车。求东西两站的距离。
行程问题基础篇
【例题1】货车和客车同时从东西两地相向而行,货车每小 时行48千米,客车每小时行42千米,两车在距中点18千米处 相遇。东西两地相距多少千米?
【思路导航】 由条件“货车每小时行48千米,客车每小时行42千米”可知货、
客车的速度和是48+42=90千米。由于货车比客车速度快,当货车过 中点18千米时,客车距中点还有18千米,因此货车比客车多行 18×2=36千米。因为货车每小时比客车多行48-42=6千米,这样货 车多行36千米需要36÷6=6小时,即两车相遇的时间。所以,两地相 距90×6=540千米。
2,一只轮船从甲码头开往乙码头,逆流每小时行15千米,返回时顺流而 下用了18小时。已知这段航道的水流是每小时3千米,求甲、乙两个码头 间水路长多少千米?
3,某轮船在相距216千米的两个港口间往返运送货物,已知轮船在静水 中每小时行21千米,两个港口间的水流速度是每小时3千米,那么,这只 轮船往返一次需要多少时间?
行程问题基础篇
【练习5】 1,甲乙两个码头间的水路长288千米,货船顺流而下需要8小时,逆流而 上需要16小时。如果客船顺流而下需要12小时,那么客船在静水中的速 度是多少?
2,A、B两个码头间的水路全长80千米,甲船顺流而下需要4小时,逆流 而上需要10小时。如果乙船逆流而上需要20小时,那么乙船在静水中的 速度是多少?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、相遇与追及1、路程和路程差公式【例1】某城市东西路与南北路交会于路口.甲在路口南边560米的点,乙在路口.甲向北,乙向东同时匀速行走.4分钟后二人距的距离相等.再继续行走24分钟后,二人距的距离恰又相等.问:甲、乙二人的速度各是多少?2、多人相遇【例2】有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇.那么,东、西两村之间的距离是多少米?3、多次相遇【例3】甲、乙两车分别同时从A、B两地相对开出,第一次在离A地95千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离B地25千米处相遇.求A、B两地间的距离是多少千米?二、典型行程专题1、火车过桥【例4】某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米.时速为72千米的列车相遇,错车而过需要几秒钟?2、流水行船【例5】甲、乙两艘游艇,静水中甲艇每小时行千米,乙艇每小时行千米.现在甲、乙两游艇于同一时刻相向出发,甲艇从下游上行,乙艇从相距27千米的上游下行,两艇于途中相遇后,又经过4小时,甲艇到达乙艇的出发地.水流速度是多少?3、猎狗追兔【例6】猎人带猎狗去捕猎,发现兔子刚跑出40米,猎狗去追兔子。

已知猎狗跑2步的时间兔子跑3步,猎狗跑4步的距离与兔子跑7步的距离相等,求兔子再跑多远,猎狗可以追上它?4、环形跑道【例7】甲和乙两人分别从圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇。

求此圆形场地的周长?5、走停问题【例8】小红上山时每走30分钟休息10分钟,下山时每走30分钟休息5分钟.已知小红下山的速度是上山速度的2倍,如果上山用了3时50分,那么下山用了多少时间?6、变速问题【例9】(时间相同模型)甲、乙两车分别从、两地同时出发,相向而行.出发时,甲,乙的速度之比是,相遇后甲的速度减少,乙的速度增加.这样当甲到达地时,乙离地还有千米.那么、两地相距多少千米?【例10】(路程相同模型)一列火车出发1小时后因故停车0.5小时,然后以原速的3/4前进,最终到达目的地晚1.5小时.若出发1小时后又前进90公里再因故停车0.5小时,然后同样以原速的3/4前进,则到达目的地仅晚1小时,那么整个路程为多少公里?7、自动扶梯【例11】小志与小刚两个孩在电梯上的行走速度分别为每秒个台阶和每秒个台阶,电梯运行后,他俩沿电梯运行方向的相同方向从一楼走上二楼,分别用时秒和秒,那么如果小志攀登静止的电梯需要用时多少秒?8、发车间隔【例12】某人沿着电车道旁的便道以每小时千米的速度步行,每分钟有一辆电车迎面开过,每1 2分钟有一辆电车从后面追过,如果电车按相等的时间间隔以同一速度不停地往返运行.问:电车的速度是多少?电车之间的时间间隔是多少?9、接送问题【例13】甲、乙、丙三个班的学生一起去郊外活动,他们租了一辆大巴,但大巴只够一个班的学生坐,于是他们计划先让甲班的学生步行,乙丙两班的学生步行,甲班学生搭乘大巴一段路后,下车步行,然后大巴车回头去接乙班学生,并追赶上步行的甲班学生,再回头载上丙班学生后一直驶到终点,此时甲、乙两班也恰好赶到终点,已知学生步行的速度为5千米/小时,大巴车的行驶速度为55千米/小时,出发地到终点之间的距离为8千米,求这些学生到达终点一共所花的时间.10、钟表问题【例14】小红在9点与10点之间开始解一道数学题,当时时针和分针正好成一条直线,当小红解完这道题时,时针和分针刚好第一次重合,小红解这道题用了多少时间?三、综合行程(主要运用比例法)【例15】A、B两地相距7200米,甲、乙分别从A,B两地同时出发,结果在距B地2400米处相遇.如果乙的速度提高到原来的3倍,那么两人可提前10分钟相遇,则甲的速度是每分钟行多少米?【例16】甲、乙两人同时同地同向出发,沿环形跑道匀速跑步.如果出发时乙的速度是甲的倍,当乙第一次追上甲时,甲的速度立即提高,而乙的速度立即减少,并且乙第一次追上甲的地点与第二次追上甲的地点相距100米,那么这条环形跑道的周长是多少米?【例17】A、B两地位于同一条河上,B地在A地下游100千米处.甲船从A地、乙船从B地同时出发,相向而行,甲船到达B地、乙船到达A地后,都立即按原来路线返航.水速为2米/秒,且两船在静水中的速度相同.如果两船两次相遇的地点相距20千米,那么两船在静水中的速度是多少?1.羊跑5步的时间马跑3步,马跑4步的距离羊跑7步,现在羊已跑出30米,马开始追它。

问:羊再跑多远,马可以追上它?2.甲乙辆车同时从a b两地相对开出,几小时后再距中点40千米处相遇?已知,甲车行完全程要8小时,乙车行完全程要10小时,求a b 两地相距多少千米?3.在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?4.慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间?5.在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒4.4米,两人起跑后的第一次相遇在起跑线前几米?6.一个人在铁道边,听见远处传来的火车汽笛声后,在经过57秒火车经过她前面,已知火车鸣笛时离他1360米,(轨道是直的),声音每秒传340米,求火车的速度(得出保留整数)7.猎犬发现在离它10米远的前方有一只奔跑着的野兔,马上紧追上去,猎犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的动作快,猎犬跑2步的时间,兔子却能跑3步,问猎犬至少跑多少米才能追上兔子。

8. AB两地,甲乙两人骑自行车行完全程所用时间的比是4:5,如果甲乙二人分别同时从AB两地相对行使,40分钟后两人相遇,相遇后各自继续前行,这样,乙到达A 地比甲到达B地要晚多少分钟?9.甲乙两车同时从AB两地相对开出。

第一次相遇后两车继续行驶,各自到达对方出发点后立即返回。

第二次相遇时离B地的距离是AB全程的1/5。

已知甲车在第一次相遇时行了120千米。

AB两地相距多少千米?10.一船以同样速度往返于两地之间,它顺流需要6小时;逆流8小时。

如果水流速度是每小时2千米,求两地间的距离?11.快车和慢车同时从甲乙两地相对开出,快车每小时行33千米,相遇是已行了全程的七分之四,已知慢车行完全程需要8小时,求甲乙两地的路程。

12.小华从甲地到乙地,3分之1骑车,3分之2乘车;从乙地返回甲地,5分之3骑车,5分之2乘车,结果慢了半小时.已知,骑车每小时12千米,乘车每小时30千米,问:甲乙两地相距多少千米?查看答案请点击:1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离?【解析】两人同时出发,相向而行,第一次相遇合走一个全程,第二次相遇合走三个全程。

而甲在一个全程中要走4千米,那么三个全程里应该走4*3=12千米。

通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9-(3+4)=2千米。

2、A、B两地相距10000米,甲骑自行车,乙步行,同时从A地去B地。

甲的速度是乙的4倍,途中甲的自行车发生故障,修车耽误了一段时间,这样乙到达B地时,甲离B地还有200米。

甲修车的时间内,乙走了多少米?【解析】甲离B地还有200米,说明他共走了10000-200=9800(米)。

假设甲的车没有发生故障,由于甲的速度是乙的4倍,相同时间内乙应该只走9800÷4=2450(米)。

可以推出剩下的路程全部都是在甲修车的时间内走的,即10000-2450=7550(米)。

3、某人沿电车线路行走,每12分钟有一辆电车从后面追上,每4分钟有一辆电车迎面开来。

假设两个起点站的发车间隔是相同的,求这个发车间隔?【解析】因为两个起点站的发车间隔是相同的,我们不妨设两车的距离为单位“1”,那么求出车速就可以搞定发车间隔了。

于是我们想,在车追人的时候,一辆车用12分钟追上人,所以车与人的速度差为1÷12=1/12;而在车与人迎面相遇时,人与车的速度和为1÷4=1/4.于是乎,我们得到了一个“人速和车速的和差问题”,那么车速=(1/12+1/4)÷2=1/6,所以发车间隔应为1÷1/6=6(分钟)。

4、甲、乙两人分别从A、B两地同时出发,相向而行,出发时他们的速度之比是3:2,他们第一次相遇后甲的速度提高了20﹪,乙的速度提高了30﹪,这样,当甲到达B地时,乙离A地还有14千米,那么A、B两地的距离是多少千米?【解析】这是一个变速问题,比例方法将是解决这类问题的最好方法。

第一次相遇时他们的速度比是3:2,而相遇时所用的时间相同,那么两人所行的路程比也是3:2.同学们不如自己试着在纸上画一个线段图,将全程平均分为5份,第一次相遇时甲应走3份,乙应该走2份。

接下来,两人相遇后分别提速,于是两人的速度比就变成了〔3×(1+20﹪)〕:〔2×(1+30﹪)〕=3.6:2.6=18:13。

当甲到达B地时,也就是说甲应该走了18份路程,而这18份路程实际上就是刚才5份中乙走的那2份,于是我们可以将5份路程的每一份都平均分成9份,那么甲走了18份,乙应该走13份,而距离A地还剩14份,这14份正好是那14KM,于是每一份都是14÷14=1(KM),共有45份,所以全程应该是45KM。

5、甲、乙两港相距360千米,一轮船往返两港需35小时,逆流航行比顺流航行多花了5小时。

现在有一机帆船,静水中速度是每小时12千米,这机帆船往返两港要多少小时?【解析】知道两港距离和机帆船在静水中的速度,要求机帆船往返两港的时间,肯定需要先求出水速。

已知轮船逆流航行与顺流航行的时间和是35小时,时间差是5小时,用和差问题解法可以求出逆流航行时间是(35+5)÷2=20(小时),顺流航行时间是35-20=15(小时)。

进一步得出,轮船逆流航行速度是360÷20=18(千米/小时),顺流航行速度是360÷15=24(千米/小时)。

再进一步得出水速是(24-18)÷2=3(千米/小时),所以机帆船的顺水速度是15千米/小时,逆流速度是9千米/小时,那么机帆船往返两港需要360÷15+360÷9=24+40=64(小时)。

相关文档
最新文档