变压吸附制氢工艺

合集下载

6塔变压吸附制氢工艺流程

6塔变压吸附制氢工艺流程

6塔变压吸附制氢工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!塔变压吸附制氢工艺是一种通过物理方法将氢气从混合气体中分离出来的技术,主要通过吸附剂对氢气和其它组分的选择性吸附来实现。

甲醇驰放气变压吸附制氢工艺控制优化

甲醇驰放气变压吸附制氢工艺控制优化

甲醇驰放气变压吸附制氢工艺控制优化在甲醇过程中产生了一些惰性气体聚集在系统中,对于甲醇的合成过程有着不利的影响,为此就要进行驰放气。

而在甲醇驰放气中氢气的含量较高,只要通过科学、有效的变压吸附技术,就可将氢气有效的收集起来,还能起到增产、节能的功效,本文主要对甲醇驰放气变压吸附的相关概论进行详细的阐述,并对制氢工艺优化进行了深入的分析,继而确保其发挥更高的效用。

标签:甲醇驰放气;变压吸附技术;制氢工艺1 变压吸附制氢工艺原理分析在变压吸附制氢过程中,吸附剂发挥的作用至关重要,其主要有两个特性:其一是在特定的条件下,吸附剂对于不同的吸附质发出的效力也不尽相同;其二是在不同的条件下,吸附剂对吸附质的吸附容量也存在较大差异。

随着吸附质分压的不断增加,其吸附量也会随之上升;随着吸附温度的不断升高,其吸附量便会不断地减小。

所以吸附剂的其中一个特性就是能够将氢气中的大颗粒杂质预先吸附出来,这样就能够确保氢气提取的纯度;吸附剂的第二个特性是在低温、高压条件下大量吸附杂质,在高温、低压条件下,就可进行吸附质解析、吸附剂再生的实现,如此反反复复就可达到氢气的提纯。

2 甲醇驰放气变压吸附工艺流程将原料气混合后置于3.2-3.5MPa及零下40℃的条件下,通过气液分离器将液态物质清除掉送入PSA系统进行氢气的提纯。

在甲醇驰放气制氢工艺中,每台吸附装置需要经过吸附过程、多挤压力降低过程、顺放过程、逆放过程、冲洗过程、多挤压力上升过程、升压过程等环节。

在逆放环节中将吸附装置中残留的杂质排出,然后通过冲洗环节将剩余杂质完全解吸掉。

在逆放环节前期压力较大时,气体进入缓冲罐,在不经过逆放或冲洗气较小的时候输送到混合罐,确保混合罐中进气始终保持均匀性,继而确保混合罐压力的稳定性;在逆放环节的末期,压力较低部位的气体及冲洗环节的气体均送入到解吸气混合罐中。

解吸气通过对应的缓冲罐、混合罐压力稳定后输送到甲醇装置中炉燃料气管网。

最后通过将原料气中的氢气提纯,并与氮气进行有效的混合后,通过干燥处理便能够得到氨原料气。

变压吸附制氢工艺

变压吸附制氢工艺

工艺技术说明1、吸附制氢装置工艺技术说明1)工艺原理吸附是指:当两种相态不同的物质接触时,其中密度较低物质的分子在密度较高的物质表面被富集的现象和过程。

具有吸附作用的物质(一般为密度相对较大的多孔固体)被称为吸附剂,被吸附的物质(一般为密度相对较小的气体或液体)称为吸附质。

吸附按其性质的不同可分为四大类,即:化学吸附、活性吸附、毛细管凝缩和物理吸附。

变压吸附(PSA)气体分离装置中的吸附主要为物理吸附。

物理吸附是指依靠吸附剂与吸附质分子间的分子力(包括范德华力和电磁力)进行的吸附。

其特点是:吸附过程中没有化学反应,吸附过程进行的极快,参与吸附的各相物质间的动态平衡在瞬间即可完成,并且这种吸附是完全可逆的。

变压吸附气体分离工艺过程之所以得以实现是由于吸附剂在这种物理吸附中所具有的两个基本性质:一是对不同组分的吸附能力不同,二是吸附质在吸附剂上的吸附容量随吸附质的分压上升而增加,随吸附温度的上升而下降。

利用吸附剂的第一个性质,可实现对混合气体中某些组分的优先吸附而使其它组分得以提纯;利用吸附剂的第二个性质,可实现吸附剂在低温、高压下吸附而在高温、低压下解吸再生,从而构成吸附剂的吸附与再生循环,达到连续分离气体的目的。

吸附剂:工业PSA-H2装置所选用的吸附剂都是具有较大比表面积的固体颗粒,主要有:活性氧化铝类、活性炭类、硅胶类和分子筛类吸附剂;另外还有针对某种组分选择性吸附而研制的特殊吸附材料,如CO专用吸附剂和碳分子筛等。

吸附剂最重要的物理特征包括孔容积、孔径分布、表面积和表面性质等。

不同的吸附剂由于有不同的孔隙大小分布、不同的比表面积和不同的表面性质,因而对混合气体中的各组分具有不同的吸附能力和吸附容量。

吸附剂对各种气体的吸附性能主要是通过实验测定的吸附等温线和动态下的穿透曲线来评价的。

优良的吸附性能和较大的吸附容量是实现吸附分离的基本条件。

同时,要在工业上实现有效的分离,还必须考虑吸附剂对各组分的分离系数应尽可能大。

变压吸附煤气制氢工艺改造

变压吸附煤气制氢工艺改造
(h odR ln l t fia o n te C .Ld,ia 5 1 1C ia T eC l ol g a J nI na d e l o, t.J n20 0 , hn ) i P no n r S n
Ab ta t n od rt e ov h e u n q pme tto b e n o a albit fh do e kn rm a e eutd i src:I r e o r sle te f q e te ui r n ru ls a d lw v i ly o y rg n ma ig fo g s strs l n a i e d fce td s lh rz t n a d n p tae e rmo a,Jn n Se l od rlig Pa tto o au e u h a pi zn h eiin e up uiai n a h h ln e v l ia te C l— oln ln o k s me me s rs s c s o tmiig te o
第3卷 第5 2 期 2 1 1 月 00年 O
山 东 冶 金
S a d n M ealr y hn og tl g u
V0 _ 2 l NO5 3 .
0c o e O O tb r 2 1
变压 吸附煤气 制氢工艺改造
邵 传收 , 董 凯, 薛垂 义 , 王雪 晗
5 ~ 0 0. 0 8 3 5 5 8 15 3 2 2 4 ~ 0 ~1 0 ~ O 5 6 4~ . ~ ~ . ~3 2 ~ 8 ~ 2 5 5
焦炉煤气 中C H 以后 的组 分是 沸 点 较 高 的组 分, 与吸 附剂结合 吸 附性较 强 。采用 变温解 析 先除
污染 。为此 , 对制 氢机组进行 了针对性 的改造 。

psa变压吸附制氢原理

psa变压吸附制氢原理

psa变压吸附制氢原理变压吸附制氢(PSA)是一种用于制备高纯度氢气的方法,它基于吸附剂对氢气和其他气体的选择性吸附特性而设计。

在PSA过程中,气体混合物通过逐步压缩和脱压的吸附/解吸过程,从而分离出高纯度的氢气。

本文将介绍PSA制氢的原理、工作流程、设备和应用,并对其优缺点进行分析。

1.原理PSA制氢基于吸附剂对氢气和其他气体的不同吸附性能。

通常情况下,PSA包含两个或多个吸附塔,并在不同阶段进行吸附和解吸。

PSA 制氢的原理可以分为以下几个步骤:1)压缩:原始气体混合物含有大量氢气以及其他杂质气体,如甲烷、氮气、氧气等。

首先,气体混合物被压缩到一定压力下,以便于之后的吸附过程。

2)吸附:压缩后的气体混合物经过吸附塔,其中填充有选择性吸附剂。

由于吸附剂对不同气体的亲和力不同,它们会根据吸附剂的特性被吸附在吸附塔中,而氢气则被分离出来。

3)解吸:当吸附塔中吸附剂吸附饱和时,需要进行解吸来释放吸附的气体。

通常采用降压的方式来解吸,从而将吸附在吸附剂上的气体释放出来。

这样,可以得到高纯度的氢气。

4)再生:当一个吸附塔工作周期结束后,需要对吸附塔进行再生,以恢复其吸附性能。

再生通常采用换热和脱附的方式来进行。

通过这些步骤,PSA可以实现高纯度氢气的制备,适用于各种领域的氢气需求,如化工、电力、新能源等。

2.工作流程PSA制氢的工作流程通常包括多个步骤,如压缩、吸附、解吸和再生。

其典型工作流程如下:1)原始气体混合物通过压缩机被压缩到一定压力下,同时经过预处理以去除杂质气体和水分。

2)压缩后的气体混合物进入至少两个吸附塔中,其中填充了选择性吸附剂。

在吸附过程中,吸附剂吸附对杂质气体具有选择性,而氢气则通过吸附塔后被分离出来。

3)当一个吸附塔达到吸附饱和后,需要进行解吸来释放氢气。

通常采用降压的方式来进行解吸。

4)解吸后,吸附塔需要进行再生来恢复其吸附性能,这通常包括换热和脱附。

5)同时,另一个吸附塔开始工作,实现连续生产高纯度氢气的目的。

psa变压吸附制氢原理

psa变压吸附制氢原理

psa变压吸附制氢原理变压吸附制氢(Pressure Swing Adsorption,PSA)是一种常见的氢气分离和纯化技术,用于从混合气体中提纯氢气。

该技术的原理是利用吸附剂对气体分子的吸附和解吸特性,在不同压力下实现对氢气的分离和纯化。

本文将重点介绍PSA制氢的原理、设备和应用,以及相关的优缺点和发展趋势。

一、PSA制氢的原理PSA制氢的原理基于吸附剂对气体分子的吸附和解吸特性。

通常情况下,PSA系统包括两个吸附塔或更多,并在一定的压力下进行交替工作。

工作过程主要包括吸附、脱附、再生和压力升降四个步骤。

1.吸附PSA系统的吸附塔含有一种或多种高效的吸附剂,如活性炭、分子筛等。

当混合气体进入吸附塔时,氢气分子由于具有较高的吸附性能,会被吸附剂吸附,而其它气体分子则较少被吸附。

2.脱附随着吸附塔中氢气的逐渐吸附,吸附塔内的压力逐渐上升。

当压力上升到一定程度时,吸附剂对氢气的吸附能力会降低,从而使已吸附的氢气分子开始脱附。

此时,吸附塔内的氢气会随着逆流的惰性气体流动而脱附出来。

3.再生当吸附塔内的吸附剂饱和吸附后,需要对吸附塔进行再生,使吸附剂重新具备吸附性能。

通常采用减压或加热等方法来实现吸附剂的再生,从而使吸附塔恢复到初始状态。

4.压力升降PSA系统需要在不同的压力下进行吸附、脱附和再生,通过控制阀门和压缩机等设备来实现吸附塔的压力升降。

通常情况下,一个吸附塔进行吸附操作,而另一个吸附塔进行再生操作,随后通过压力升降的方式进行切换工作。

综上所述,PSA制氢的原理是利用吸附剂对气体分子的吸附和解吸特性,在不同压力下实现对氢气的分离和纯化。

通过交替操作不同的吸附塔,实现了对混合气体中氢气的分离和纯化。

二、PSA制氢的设备PSA制氢的主要设备包括吸附塔、气体压缩机、阀门、控制系统等。

下面将分别介绍吸附塔和气体压缩机等设备的主要特点和作用。

1.吸附塔吸附塔是PSA制氢的核心设备,用于进行气体的吸附、脱附和再生操作。

变压吸附制氢工艺技术说明(21页)

变压吸附制氢工艺技术说明(21页)

将工艺流程设定为如下流程
分别简述其流程如下 z
(1)
压缩工序
压缩工厅 由 2 台 CI 开 l 备 ) 三级往复式压缩机组成。由于本装置的原料气中的 ,
茶含量非常低(仅为 5mg/Nm勺 , 所以 , 即使到 了 压缩三段也不会在三级冷却器中出现
茶结晶堵塞管道的问题。因此 , 来自界区外的焦炉煤气首先经压缩机的 级加压至~
在变压吸附气体分离装置常用的几种吸附剂中,活性氧 化铝类属于对水杳强亲和
力的固体 ,
干燥。
般采用三水合侣或三水铝矿的热脱水或热活化法制备 ,主要用于气体的
硅胶类吸附剂属于一种合成的无定形二氧化硅 , 它是胶态 二氧化硅球形控子的刚
性连续网络 , 一般是 由 硅酸饷溶液和无机殴混合来制备的,硅胶不仅对水有极强的亲
附剂选择吸附的条件下一次性除去氢以外的绝大部分杂质 , 获得纯度大于 99.9% 的
粗氢气 , 从塔顶排出送净化工序。 当被吸附杂质的传质区 前沿(称为吸附前沿)到达床层出口预留段某
停止吸附 , 转入再生过程。
位置时 ,
吸附剂的再生过程依次如下
a 均压阵压过程 这是在吸附过程结束后 , 顺着吸附方向将塔内的较高压力的氢气放入其它已完
品氢
il\
O .02 MPa 解 吸气
4
3)
装置 工艺流程描述
本装置中焦炉煤气组成复杂且产品氢纯度要求高 , 因而本装置工艺流程由压缩工
序、预处理工序 、 变压吸附工 序和净化工序组成。由 于 原料气中的硫\茶及焦油含量很 低 , 所以在考虑工 艺流程设计时 , 为节省用户的投资额同时又能保证装置的正常运行 ,
0.22MPa(G) , 然后进入压缩机第二和第 三级压缩至~ 1.7讯。a(G)后进入后续预处理系

简述变压吸附制氢工艺

简述变压吸附制氢工艺

关键设备与材料
关键设备与材料
关键设备
变压吸附制氢工艺的关键设备包括
原料气预处理设备:用于去除原料气 中的杂质
吸附塔:装填有吸附剂的吸附塔是实 现氮气和氢气分离的核心设备
压力调节器:用于控制原料气和产品 气的压力
解吸器:使被吸附的氮气解吸
产品气输出设备:用于输出产品气
吸附剂再生设备:在较低压力下使吸 附在吸附剂上的氮气完全解吸
吸附剂再生:完成上述步骤后, 需要对吸附剂进行再生处理,以 便进行下一轮的吸附过程。再生 通常是在较低压力下进行的,以 使吸附在吸附剂上的氮气完全解

1
2
3
4
5
加压吸附:将预处理后的原料气 在加压条件下通过装填有吸附剂 的吸附塔,此时氮气被吸附剂选 择性吸附,而氢气则通过吸附塔
继续前行
产品气处理:解吸后的氮气作为 产品气输出,而氢气则可能需要 进一步处理,如进行纯化或液化
变压吸附制氢工艺的流程 通常包括以下几个步骤
原料气准备:首先,需要将原料 气进行预处理,以去除其中的杂 质,如二氧化碳、水分等,避免 这些杂质对后续的吸附过程产生
影响
工艺流程
减压解吸:经过加压吸附后的吸 附塔,通过减压手段使被吸附的 氮气解吸,同时使氢气继续留在 吸附剂中。这一步实现了氮气和
氢气的分离
简述变压吸附制 氢工艺
指导老师:xxx
-
1 工艺流程 2 关键设备与材料
简述变压吸附制氢工艺
变压吸附(PSA)制氢工艺是一种常用的制备氢 气的方法,其通过吸附剂在加压和减压之间变
化,实现对氮气和氢气的选择性吸附和解吸
这种工艺具有高效、环保、操作简便等优点, 广泛应用于工业和实验室领域

变压吸附制氢系统 操作说明

变压吸附制氢系统 操作说明

\变压吸附制氢系统操作说明一、工艺原理及其特点本工艺以来源方便的甲醇和脱盐水为原料,在220~280℃下,专用催化剂上催化转化为组成为主要含氢和二氧化碳转化气,其原理如下:主反应:CH3OH=CO+2H2+90.7 KJ/molCO+H2O=CO2+H2-41.2 KJ/mol总反应:CH3OH+H2O=CO2+3H2+49.5 KJ/mol副反应:2CH3OH=CH3OCH3+H2O -24.9 KJ/molCO+3H2=CH4+H2O -+206.3KJ/mol上述反应生成的转化气经冷却、冷凝后其组成为:H273~74%CO223~24.5%CO ~1.0%CH3OH 300ppmH2O 饱和该转化气很容易用变压吸附等技术分离提取纯氢。

本工艺技术有下列特点:1.甲醇蒸汽在专用催化剂上裂解和转化一步完成。

2.采用加压操作,产生的转化气经过氢气压缩机的进一步加压,即可直接送入变压吸附分离装置,降低了能耗。

3.与电解法相比,电耗下降90%以上,生产成本可下降40~50%,且氢气纯度高。

与煤造气相比则显本工艺装置简单,操作方便稳定。

煤造气虽然原料费用稍低,但流程长投资大,且污染大,杂质多,需脱硫净化等,对中小规模装置不适用。

4.专用催化剂具有活性高、选择性好、使用温度低,寿命长等特点。

5.采用导热油作为循环供热载体,满足了工艺要求,且投资少,能耗低,降低了操作费用。

二、工艺过程简述工艺流程简图如图所示。

甲醇和脱盐水按一定比例混合后,经换热器预热后送入汽化器,汽化后的水甲醇蒸汽经汽化器过热后进入转化器在催化剂床层进行催化裂解和变换反应,产出转化气含约74%氢气和24%二氧化碳,经换热、冷却冷凝后进入净化器,吸附未转化完的甲醇和水供循环使用,净化后的混合气再进入变压吸附装置提纯。

根据对产品气纯度和微量杂质组分的不同要求,采用四塔或四塔以上流程,纯度可达到99.9~99.999%。

转化气中二氧化碳可用变压吸附装置提纯到食品级,用于饮料及酒类行业。

变压吸附制氢工艺流程

变压吸附制氢工艺流程

变压吸附制氢工艺流程嘿,咱来讲讲变压吸附制氢的工艺流程哈。

我有一次去参观一个制氢工厂,那里面的变压吸附制氢设备可真神奇。

首先呢,原料气得准备好,就像做饭得把食材准备齐全。

原料气就像一群准备被加工的小客人。

这些原料气主要包含一些含氢的气体,它们被送进一个大罐子一样的设备里。

我看着那些气体“呼呼”地被吸进去,就像被吸进一个神秘的洞穴。

然后就开始变压吸附啦。

这个过程就像是给气体们玩一场“压力游戏”。

在一个吸附塔里面,有一些特殊的吸附剂,这些吸附剂就像一个个有魔法的小海绵。

当压力高的时候,那些杂质气体就被吸附剂吸附住了,而氢气呢,就像一个机灵的小家伙,不太容易被吸附,就从吸附塔里跑出来啦。

我在旁边看着,感觉就像在看一场气体的“大逃脱”。

我记得有一次,设备的压力在调节的时候,那些气体的流动好像有点变化。

操作人员就像经验丰富的老司机,马上调整参数,让一切恢复正常。

接着呢,吸附剂吸附了杂质气体后,就需要把这些杂质气体给释放出来。

这就像把小海绵里的脏东西挤出来一样。

通过降低压力,吸附剂就把杂质气体放出来了,然后它又可以准备下一轮的吸附工作啦。

从吸附塔里出来的氢气,还得经过一些后续的处理。

就像把刚采摘的水果再清洗、包装一下。

让氢气变得更纯净,更符合使用的要求。

我在那个制氢工厂里,从原料气进入到最后氢气出来,感觉就像见证了氢气从一堆混合气体中被提炼出来的神奇过程。

所以说,变压吸附制氢的工艺流程就是准备原料气,然后通过变压吸附把杂质气体去掉,再对氢气进行后续处理。

就像我在工厂里看到的那样,每一个环节都很关键呢。

浅谈PSA变压吸附制氢工艺及优化

浅谈PSA变压吸附制氢工艺及优化

102研究与探索Research and Exploration ·工艺流程与应用中国设备工程 2023.07 (下)近年来,我国的化工行业进步明显,各个化工企业为适应行业现代化的发展步伐,都越发关注工艺革新,希望通过现代化工艺克服传统工艺的不足,提升生产效率与质量。

PSA 变压吸附制氢工艺的流程多、要素多,其工艺应用效果与许多因素有关,化工企业内应用PSA变压吸附制氢工艺时应立足实际情况,创造良好的工艺条件,强化工艺中的流程把控。

一些化工企业的PSA 变压吸附制氢工艺中存在诸多技术不足,未来这些企业需加强工艺优化与技术改进。

1 影响变压吸附的主要因素1.1 PSA 变压吸附制氢影响吸附能力的主要因素PSA 变压吸附制氢工艺中,吸附能力为衡量该工艺应用效果的关键指标,就实际的生产过程来看,吸附能力与诸多因素都有关,主要因素为:(1)原料气温度,这一因素与吸附能力有着紧密的联系,二者呈反比曲线,温度越大对应着越小的吸附剂容量,也就导致吸附、解吸、再生循环的效率大大提升,时间缩短,吸附塔的处理能力偏低。

(2)原料气组分,企业中采用PSA 变压吸附制氢工艺时使用的原料有一定差异,其差异主要体现在物质组分方面,如原料中的杂质含量超标,吸附塔的吸附能力显著下降,在工艺中为达到最佳的吸附效果,应选用低杂质原料。

(3)操作压力,PSA 变压吸附制氢工艺中压力与吸附量为正向变化的关系,压力越大吸附量越大,此时吸附塔有较强的处理能力,但解吸气的压力值越小,意味着吸附剂具有更强的再生能力,因此,吸附剂的动态吸附容量越大,吸附塔具有更强的处理能力。

(4)氢气纯度,在PSA 制氢工艺的吸附剂再生阶段,氢气损失较大,此时的吸附塔处理能力越强,对应的再生周期较长,而单位时间内的再生次数相对较少,在此关系下,如在工艺中减小氢气损失量,可提升整体效率。

1.2 PSA 变压吸附制氢影响氢气收率的因素在PSA 变压吸附制氢工艺中,氢气收率也是需重点关注的部分,但氢气收率同样与很多因素有关。

变压吸附法制氢操作规程

变压吸附法制氢操作规程

变压吸附法制氢操作规程
一、大体概述
1.1氢的加工是一种重要的工业技术,可用于制备高品质氢气,是氢能源发展及应用的龙头。

目前,主要有热分解、催化裂解、变压吸附(PSA)三种技术可用于提纯氢气。

变压吸附(PSA),是利用提纯氢气高吸附性,利用对压力很敏感,由低压改变到高压、或由高压改变到低压时的吸附原理,以获得高纯度的氢气。

1.2变压吸附(PSA)技术主要包括双级变压吸附(DPSA)和三级变压吸附(TSA)。

变压吸附(PSA)技术,有着高经济效益的特点,应用广泛,是近年来发展起来的一种有效的技术。

二、变压吸附(PSA)技术原理
2.1氢气变压吸附(PSA)技术是一种压力变化下的吸附分离原理,以获得高纯提纯氢气。

2.2氢气变压吸附(PSA)主要原理是利用吸附剂的吸附选择原理,不同成分气体或气体混合物在固定的条件下,存在不同的吸附速率,从而达到分离气体的目的。

2.3氢气变压吸附(PSA)技术分为双级变压吸附(DPSA)和三级变压吸附(TSA)。

制氢操作规程(变压吸附部分)

制氢操作规程(变压吸附部分)

制氢操作规程(变压吸附部分)第二部分变压吸附部分1 主题内容本操作规程描述了甲醇重整制氢的工艺控制、设备运行的操作规范,以及操作中的注意事项、异常情况的处理;通过实施本操作规程,确保甲醇重整制氢的质量和设备的正常运行,减少事故的发生。

2 适用范围本操作规程适用甲醇重整制氢装置的操作与控制。

3 职责3.1 生产部管理人员负责本工艺操作规程的编制、修改、监督与管理。

3.2 制氢岗位操作人员负责执行本操作规程。

4 工作程序4.1 装置概况4.1.1 概述本装置采用变压吸附(简称PSA)法从甲醇转化气中提取氢气,在正常操作条件,转化气的处理量可达到800NM3 --1200NM3/h。

在不同的操作条件下可生产不同纯度的氢气,氢气纯度最高可达99,9995%。

4.1.2 吸附剂的工作原理本装置采用变压吸附(PSA)分离气体的工艺,从含氢混合气中提取氢气。

其原理是利用吸附剂对不同吸附质的选择性吸附,同时吸附剂对吸附质的吸附容量是随压力的变化而有差异的特性,在吸附剂选择吸附条件下,高压吸附除去原料中杂质组份,低压下脱附这些杂质而使吸附剂获得再生。

整个操作过程是在环境温度下进行的。

4.1.3 吸附剂的再生吸附剂的再生是通过三个基本步骤来完成的:(1)吸附塔压力降至低压吸附塔内的气体逆着原料气进入的方向进行降压,称为逆向放压,通过逆向放压,吸附塔内的压力直到接近大气压力。

逆向放压时,被吸附的部分杂质从吸附剂中解吸,并被排出吸附塔。

(2)抽真空吸附床压力下降到大气压后,床内仍有少部分杂质,为使这部分杂质尽可能解吸,要求床内压力进一步降低,在此利用真空泵抽吸的方法使杂质解吸,并随抽空气体带出吸附床。

(3)吸附塔升压至吸附压力,以准备再次分离原料气4.2 工艺操作本装置是有5台吸附塔(T201A、B、C、D、E)、二台真空泵(P203A、B)、33台程控阀和2个手动调节阀通过若干管线连接构成4.2.1 工艺流程说明工艺过程是按设定好的运行方式,通过各程控阀有序地开启和关闭来实现的。

变压吸附(PSA)法制氢操作规程

变压吸附(PSA)法制氢操作规程

变压吸附(PSA)法变换气制氢操作手册(工艺部分)XXXX化工有限公司2009年9月第一章前言第二章工艺说明第一节装置概述第二节一段系统工作原理和过程实施第三节二段系统工作过程第四节工艺流程第三章变压吸附装置的开停车第一节系统的置换第二节系统仪器仪表及自控系统开车前的准备工作第三节系统试车第四节系统运行调节第五节系统停车第六节系统停车后的再启动第四章安全技术第一节概述第二节本装置有害物质对人体的危害及预防措施第三节装置的安全设施第四节氢气系统运行安全要点第五节消防第六节安全生产基本注意事项第五章安全规程第一章前言本装置是采用两段法变压吸附(Pressure Swing Adsorption简称PSA)工艺分离原料气,获得合格的二氧化碳及产品氢气。

其中一段将原料气中二氧化碳分离提浓(≥98。

5%)后送往下工段,脱除部分二氧化碳后的中间气再经二段完全脱除CO2及其他杂质气体,使产品氢气中H2含量≥99.9%。

装置设计参数如下:原料气组成(V):H2 N2 CO2 CO CH441~43% 0。

5~2% 55~60% 0.5~2% ~1。

0%处理能力:4500Nm3/h中间气CO2含量:10%(V)产品氢气中H2含量:≥99。

9%产品气CO2浓度:≥98。

5%吸附压力:一段0。

72~0.977 MPa(G)二段0.7~0.957 MPa(G)吸附温度:≤40 ℃本装置为吹扫解吸PSA脱碳工艺,就本工艺特点而言,氢气中杂质含量越低,氢气等气体回收率就越低。

所以操作中不应单纯追求氢气的纯度,而应视实际需要,控制适当纯度,以获较高的经济效益。

在启动和运转这套装置前,要求操作人员透彻地阅读这份操作手册,因为不适当的操作会导致运行性能低劣和吸附剂损坏。

本手册中所涉及压力均为表压,组成浓度均为体积百分数,以下不再专门标注。

第二章工艺说明第一节装置概述本装置由两个系统组成,即一段和二段。

一段采用12个吸附塔1塔同时吸附8次均压吹扫工艺,二段采用4个吸附塔1塔同时吸附1次均压2次吹扫工艺,其示意图如图1-1所示。

psa变压吸附制氢原理

psa变压吸附制氢原理

psa变压吸附制氢原理PSA变压吸附制氢是一种常见的制氢技术,它利用氢气在吸附剂上的吸附与再脱附过程,使气体中的杂质被吸附剂去除,纯度更高的氢气被获得。

该技术应用广泛,如化工、石油、化肥、电子等行业,是一项十分重要的技术。

PSA变压吸附制氢利用吸附剂在不同压力下对气体的吸附与再脱附过程实现纯净氢气的分离与提纯。

主要分为吸附、排放和再生三个过程。

其步骤如下:第一步:吸附氢气与杂质气体被压缩进入PSA装置,进入吸附剂层,不同的吸附剂对气体中各种气体有不同的吸附能力,如氧气、氮气等,各被吸附在不同位置的吸附剂上。

在此过程中,只有氢气未被吸附而通过吸附剂层,进入下一步。

第二步:排放在吸附之后,剩余的杂质气体和已吸附的氧气、氮气等杂志在吸附剂上被去除。

这样就能得到高纯度氢气。

随后通过降压来实现纯净氢的排出。

第三步:再生跟排放一样,再生也是PSA装置的一个必要的过程。

在吸附过程中吸附剂上的杂质气体会被去除,空气中的氧气聚集在吸附剂中也需要去除,所以要通过升压的方式脱除,这就是再生过程。

PSA变压吸附制氢技术具有以下优点:第一、操作简单、自动化程度高,在工业生产中可以实现连续化操作,生产效率高;第二、通过配置不同的吸附剂可实现对不同纯度和流量的制氢;第三、对于经济实惠的小型工艺来说,成本低廉,利用不同条件,可制得我们所需要的氢气;第四、根据制氢的规模与需要纯度精度,系统可以实现多重循环,实现多重纯度转换;第五、制氢过程中无二次排放,对环境污染小,绿色环保。

总之,PSA变压吸附制氢是一种十分先进的技术,其优点明显,可以高效地制得纯净的氢气,已广泛在不同领域应用。

变压吸附制氢工艺

变压吸附制氢工艺
(1)压缩工序
压缩工序由2台(1开1备)三级往复式压缩机组成。由于本装置的原料气中的萘含量非常低(仅为5mg/Nm3),所以,即使到了压缩三段也不会在三级冷却器中出现萘结晶堵塞管道的问题。因此,来自界区外的焦炉煤气首先经压缩机的一级加压至~0.22MPa(G),然后进入压缩机第二和第三级压缩至~1.7MPa(G)后进入后续预处理系统。
变压吸附过程正是利用吸附剂在A-B段的特性来实现吸附与解吸的。吸附剂在常温高压(即A点)下大量吸附原料气中除的某些杂质组分,然后降低杂质的分压(到B点Fra bibliotek使杂质得以解吸。
吸附剂的这一特性也可以用Langmuir吸附等温方程来描述:
(Ai:吸附质i的平衡吸附量,K1、K2:吸附常数,P:吸附压力,Xi:吸附质i的摩尔组成)。
碳分子筛是一种以碳为原料,经特殊的碳沉积工艺加工而成的专门用于提纯空气中的氮气的专用吸附剂,使其孔径分布非常集中,只比氧分子直径略大,因此非常有利于对空气中氮氧的分离。
对于组成复杂的气源,在实际应用中常常需要多种吸附剂,按吸附性能依次分层装填组成复合吸附床,才能达到分离所需产品组分的目的。
吸附平衡:
在压力高时,由于单位时间内撞击到吸附剂表面的气体分子数多,因而压力越高动态平衡吸附容量也就越大;在温度高时,由于气体分子的动能大,能被吸附剂表面分子引力束缚的分子就少,因而温度越高平衡吸附容量也就越小。
我们用不同温度下的吸附等温线来描述这一关系,吸附等温线就是在一定的温度下,测定出各气体组份在吸附剂上的平衡吸附量,将不同压力下得到的平衡吸附量用曲线连接而成的曲线。
经过预处理后的焦炉煤气自塔底进入吸附塔中正处于吸附工况的吸附塔,在吸附剂选择吸附的条件下一次性除去氢以外的绝大部分杂质,获得纯度大于99.9%的粗氢气,从塔顶排出送净化工序。

psa变压吸附制氢原理

psa变压吸附制氢原理

psa变压吸附制氢原理变压吸附制氢技术(Pressure Swing Adsorption, PSA)是一种用于制备高纯度氢气的先进技术,具有广泛的应用前景。

PSA技术通过在不同压力下利用吸附剂对氢气和其他气体进行分离,从而获得高纯度的氢气。

本文将重点介绍PSA技术的原理、工艺流程和优缺点,并探讨其在制氢领域的应用前景。

一、PSA技术的原理PSA技术是基于吸附剂对气体分子的选择性吸附特性而实现气体混合物的分离。

在PSA装置中,吸附剂通常是一种多孔材料,例如沸石、活性碳等,其内部结构具有较大的表面积和一定的孔径尺寸。

这些特性使得吸附剂能够选择性地吸附某种气体分子,而对其他气体分子具有较低的吸附能力。

PSA技术的分离原理基于吸附剂对氢气和其他气体的吸附选择性差异。

当混合气体通过PSA装置时,吸附剂将选择性地吸附其中的一种气体分子,而不同的气体分子将在吸附剂表面上形成不同的吸附层。

通过改变装置中的压力,可以实现吸附剂对已吸附气体的脱附和再生,从而实现气体的分离和纯化。

PSA技术的原理基于一系列的吸附、脱附和再生操作。

在PSA装置中,通常包括两个或多个吸附塔,每个吸附塔都装有吸附剂。

在每个吸附塔中,气体混合物首先经过吸附剂,其中一种气体分子被选择性地吸附,从而达到气体混合物的分离。

随后,改变装置中的压力,吸附剂对吸附的气体进行脱附,再经过再生操作得到高纯度氢气。

通过交替运行两个吸附塔,可以实现持续地生产高纯度氢气。

二、PSA技术的工艺流程PSA技术的工艺流程通常包括吸附、脱附和再生三个主要操作。

下面将分别介绍这三个操作的具体内容:1.吸附操作:气体混合物首先进入吸附塔,其中的氢气被选择性地吸附在吸附剂表面上,而其他气体则通过吸附塔,实现气体混合物的分离。

在吸附操作中,需要控制适当的温度和压力,以保证吸附剂对氢气有较高的吸附选择性。

2.脱附操作:一旦吸附剂达到饱和吸附,需要通过降低压力来实现对吸附的氢气的脱附。

制氢过程变压吸附 吸附剂

制氢过程变压吸附 吸附剂

制氢过程变压吸附吸附剂制氢过程是一种能够产生绿色环保能源的技术,但传统的制氢方法有着高成本、低效率的问题。

因此,人们一直在寻求新的改进方法,其中变压吸附吸附剂是一种有前途的方案。

首先,我们来了解一下制氢过程变压吸附的基本步骤。

制氢过程变压吸附是利用吸附剂在不同压力下吸附和释放氢气的物理过程。

这个过程可以分解为几个基本步骤。

第一步是压缩气体以将其浓缩,然后将其与吸附剂接触。

在接触后,吸附剂会吸附其中的氢分子,留下其他气体分子,比如氮和甲烷。

第二步是将压力降低,使吸附剂释放其吸附的氢分子。

这些氢分子可以被捕获并用于能量生产。

这种制氢过程的核心在于吸附剂的使用。

有几种吸附剂可以用于制氢过程变压吸附,包括金属有机骨架材料(MOF)和碳材料。

这些吸附剂都可以通过改变其表面化学性质来增强其吸附氢气的能力。

MOF吸附材料是一种晶体化合物,其中金属离子和有机配体相互结合形成孔隙网络。

这些孔隙可以捕捉气体分子,包括氢气和其他气体。

MOF材料的优点在于它们可以设计成具有吸附氢气的高选择性和高容量。

这些材料也可以容易地合成和定制,以满足特定应用的需求。

碳吸附材料也可以用于制氢过程变压吸附。

这些材料具有非常大的表面积,可以通过在表面上引入不同的化学基团来定制其吸附性能。

石墨烯和多孔碳材料是常用的碳吸附材料,但是它们的选择性和容量相对较低,因此需要更多的研究来改进其性能。

总体来说,制氢过程变压吸附是一种具有前途的制氢技术。

吸附剂的选择非常关键,因为其能力直接影响到过程的效率和成本。

MOF和碳材料是当前研究的热点,但是还需要进一步改进和优化,以实现高效、可靠的制氢过程。

psa变压吸附制氢原理

psa变压吸附制氢原理

psa变压吸附制氢原理变压吸附(Pressure Swing Adsorption, PSA)制氢技术是一种利用吸附剂对气体进行分离的方法,通过适当的压力调节和吸附剂的选择,可以实现将氢气从混合气体中分离出来。

PSA制氢技术已经被广泛应用于工业生产中,包括氢气的制备、精制及补充。

一、PSA制氢原理在PSA制氢过程中,主要有吸附、脱附、减压和再生等四个步骤,下面将详细介绍PSA制氢的工作原理。

1.吸附阶段在吸附阶段,混合气体首先被送入吸附塔中,吸附剂吸附出其中的氢气。

吸附剂通常为有机或无机多孔质材料,如活性炭、分子筛等。

由于氢气具有较高的亲和力,因此会优先被吸附在吸附剂的表面上,而其他气体如氮气、二氧化碳等则较难被吸附。

2.压缩阶段当吸附剂吸附满氢气后,压缩机开始工作,将吸附塔内的压力升高,从而促使未被吸附的气体分子迅速通过吸附剂层,进入下一个吸附塔。

3.脱附阶段在高压下,吸附剂开始释放吸附的氢气。

由于吸附剂的选择和操作条件的不同,吸附剂对不同气体的吸附性能存在差异,使得各种气体在释放时需要不同的时间。

因此,需要设计适当的程序和控制系统来确保吸附剂能够释放出大部分已吸附的氢气。

4.减压阶段当吸附塔内的压力降至一定程度时,需要进行减压,以便将脱附后的吸附剂中残留的氢气全部抽出。

此外,减压还可以促进吸附剂的再生过程。

5.再生阶段在吸附完成后,吸附塔需要进行再生,以恢复吸附剂的吸附性能。

通常采用气流对吸附剂进行再生,将残余的氢气和其他杂质从吸附剂表面排出,使吸附剂恢复到适合再次吸附的状态。

以上四个步骤便构成了PSA制氢的工作过程。

在整个过程中,通过适当的压力和吸附剂的选择,可以实现氢气的高效分离和纯度的提高。

二、PSA制氢的应用PSA制氢技术在工业生产中有着广泛的应用。

以下将列举一些PSA 制氢技术的应用领域:1.氢气制备PSA制氢技术可应用于氢气的工业制备。

在工业上,通常采用甲烷蒸汽重整或石油加氢等方法生产氢气,而这些方法会产生含有氮气、二氧化碳等其他杂质的混合气体。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变压吸附制氢工艺Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998工艺技术说明1、吸附制氢装置工艺技术说明1)工艺原理吸附是指:当两种相态不同的物质接触时,其中密度较低物质的分子在密度较高的物质表面被富集的现象和过程。

具有吸附作用的物质(一般为密度相对较大的多孔固体)被称为吸附剂,被吸附的物质(一般为密度相对较小的气体或液体)称为吸附质。

吸附按其性质的不同可分为四大类,即:化学吸附、活性吸附、毛细管凝缩和物理吸附。

变压吸附(PSA)气体分离装置中的吸附主要为物理吸附。

物理吸附是指依靠吸附剂与吸附质分子间的分子力(包括范德华力和电磁力)进行的吸附。

其特点是:吸附过程中没有化学反应,吸附过程进行的极快,参与吸附的各相物质间的动态平衡在瞬间即可完成,并且这种吸附是完全可逆的。

变压吸附气体分离工艺过程之所以得以实现是由于吸附剂在这种物理吸附中所具有的两个基本性质:一是对不同组分的吸附能力不同,二是吸附质在吸附剂上的吸附容量随吸附质的分压上升而增加,随吸附温度的上升而下降。

利用吸附剂的第一个性质,可实现对混合气体中某些组分的优先吸附而使其它组分得以提纯;利用吸附剂的第二个性质,可实现吸附剂在低温、高压下吸附而在高温、低压下解吸再生,从而构成吸附剂的吸附与再生循环,达到连续分离气体的目的。

吸附剂:工业PSA-H2装置所选用的吸附剂都是具有较大比表面积的固体颗粒,主要有:活性氧化铝类、活性炭类、硅胶类和分子筛类吸附剂;另外还有针对某种组分选择性吸附而研制的特殊吸附材料,如CO专用吸附剂和碳分子筛等。

吸附剂最重要的物理特征包括孔容积、孔径分布、表面积和表面性质等。

不同的吸附剂由于有不同的孔隙大小分布、不同的比表面积和不同的表面性质,因而对混合气体中的各组分具有不同的吸附能力和吸附容量。

吸附剂对各种气体的吸附性能主要是通过实验测定的吸附等温线和动态下的穿透曲线来评价的。

优良的吸附性能和较大的吸附容量是实现吸附分离的基本条件。

同时,要在工业上实现有效的分离,还必须考虑吸附剂对各组分的分离系数应尽可能大。

所谓分离系数是指:在达到吸附平衡时,(弱吸附组分在吸附床死空间中残余量/弱吸附组分在吸附床中的总量)与(强吸附组分在吸附床死空间中残余量/强吸附组分在吸附床中的总量)之比。

分离系数越大,分离越容易。

一般而言,变压吸附气体分离装置中的吸附剂分离系数不宜小于3。

另外,在工业变压吸附过程中还应考虑吸附与解吸间的矛盾。

一般而言,吸附越容易则解吸越困难。

如对于C5、C6等强吸附质,就应选择吸附能力相对较弱的吸附剂如硅胶等,以使吸附容量适当而解吸较容易;而对于N2、O2、CO等弱吸附质,就应选择吸附能力相对较强的吸附剂如分子筛等,以使吸附容量更大、分离系数更高。

此外,在吸附过程中,由于吸附床内压力是周期性变化的,吸附剂要经受气流的频繁冲刷,因而吸附剂还应有足够的强度和抗磨性。

在变压吸附气体分离装置常用的几种吸附剂中,活性氧化铝类属于对水有强亲和力的固体,一般采用三水合铝或三水铝矿的热脱水或热活化法制备,主要用于气体的干燥。

硅胶类吸附剂属于一种合成的无定形二氧化硅,它是胶态二氧化硅球形粒子的刚性连续网络,一般是由硅酸钠溶液和无机酸混合来制备的,硅胶不仅对水有极强的亲和力,而且对烃类和CO2等组分也有较强的吸附能力。

活性炭类吸附剂的特点是:其表面所具有的氧化物基团和无机物杂质使表面性质表现为弱极性或无极性,加上活性炭所具有的特别大的内表面积,使得活性炭成为一种能大量吸附多种弱极性和非极性有机分子的广谱耐水型吸附剂。

沸石分子筛类吸附剂是一种含碱土元素的结晶态偏硅铝酸盐,属于强极性吸附剂,有着非常一致的孔径结构和极强的吸附选择性,对CO、CH4、N2、Ar、O2等均具有较高的吸附能力。

碳分子筛是一种以碳为原料,经特殊的碳沉积工艺加工而成的专门用于提纯空气中的氮气的专用吸附剂,使其孔径分布非常集中,只比氧分子直径略大,因此非常有利于对空气中氮氧的分离。

对于组成复杂的气源,在实际应用中常常需要多种吸附剂,按吸附性能依次分层装填组成复合吸附床,才能达到分离所需产品组分的目的。

吸附平衡:吸附平衡是指在一定的温度和压力下,吸附剂与吸附质充分接触,最后吸附质在两相中的分布达到平衡的过程,吸附分离过程实际上都是一个平衡吸附过程。

在实际的吸附过程中,吸附质分子会不断地碰撞吸附剂表面并被吸附剂表面的分子引力束缚在吸附相中;同时吸附相中的吸附质分子又会不断地从吸附剂分子或其它吸附质分子得到能量,从而克服分子引力离开吸附相;当一定时间内进入吸附相的分子数和离开吸附相的分子数相等时,吸附过程就达到了平衡。

在一定的温度和压力下,对于相同的吸附剂和吸附质,该动态平衡吸附量是一个定值。

在压力高时,由于单位时间内撞击到吸附剂表面的气体分子数多,因而压力越高动态平衡吸附容量也就越大;在温度高时,由于气体分子的动能大,能被吸附剂表面分子引力束缚的分子就少,因而温度越高平衡吸附容量也就越小。

我们用不同温度下的吸附等温线来描述这一关系,吸附等温线就是在一定的温度下,测定出各气体组份在吸附剂上的平衡吸附量,将不同压力下得到的平衡吸附量用曲线连接而成的曲线。

不同温度下的吸附等温线示意图:渐减小。

实际上,变温吸附过程正是利用上图中吸附剂在A-D段的特性来实现吸附与解吸的。

吸附剂在常温 (即A点)下大量吸附原料气中的某些杂质组分,然后升高温度(到D点)使杂质得以解吸。

从上图的B→A可以看出:在温度一定时,随着杂质分压的升高吸附容量逐渐增大;变压吸附过程正是利用吸附剂在A-B 段的特性来实现吸附与解吸的。

吸附剂在常温高压(即A 点)下大量吸附原料气中除的某些杂质组分,然后降低杂质的分压(到B 点)使杂质得以解吸。

吸附剂的这一特性也可以用Langmuir 吸附等温方程来描述: PXi K PXi K A i ⋅⋅+⋅⋅=211 (A i :吸附质i 的平衡吸附量,K 1、K 2: 吸附常数 ,P :吸附压力,Xi :吸附质i 的摩尔组成)。

在通常的工业变压吸附过程中,由于吸附--解吸循环的周期短(一般只有数分钟),吸附热来不及散失,恰好可供解吸之用,所以吸附热和解吸热引起的吸附床温度变化一般不大,吸附过程可近似看做等温过程,其特性基本符合Langmuir 吸附等温方程。

在实际应用中一般依据气源的组成、压力及产品要求的不同来选择PSA 、TSA 或PSA+TSA 工艺。

变温吸附(TSA )法的循环周期长、投资较大,但再生彻底,通常用于微量杂质或难解吸杂质的脱除;变压吸附(PSA )的循环周期短,吸附剂利用率高,吸附剂用量相对较少,不需要外加换热设备,被广泛用于大气量多组分气体的分离与纯化。

在变压吸附(PSA )工艺中,通常吸附剂床层压力即使降至常压,被吸附的组分也不能完全解吸,因此根据降压解吸方式的不同又可分为两种工艺:一种是用产品气或其他不易吸附的组分对床层进行“冲洗”,使被吸附组分的分压大大降低,将较难解吸的杂质冲洗出来,其优点是在常压下即可完成,不再增加任何设备,但缺点是会损失产品气体,降低产品气的收率。

另一种是利用抽真空的办法降低被吸附组分的分压,使吸附的组分在负压下解吸出来,这就是通常所说的真空变压吸附(Vacuum Pressure Swing Absorption,缩写为VPSA)。

VPSA 工艺的优点是再生效果好,产品收率高,但缺点是需要增加真空泵。

在实际应用过程中,究竟采用以上何种工艺,主要视原料气的组成性质、原料气压力、流量、产品的要求以及工厂的资金和场地等情况而决定。

由于焦炉煤气提纯氢气的特点是:原料压力低,原料组分复杂并含有焦油、萘等难以解吸的重组分,产品纯度要求高。

因而装置需采用“加压+TSA预处理+PSA氢提纯+脱氧+TSA干燥”流程。

2)装置流程框图工序、预处理工序、变压吸附工序和净化工序组成。

由于原料气中的硫\萘及焦油含量很低,所以在考虑工艺流程设计时,为节省用户的投资额同时又能保证装置的正常运行,将工艺流程设定为如下流程:分别简述其流程如下:(1)压缩工序压缩工序由2台(1开1备)三级往复式压缩机组成。

由于本装置的原料气中的萘含量非常低(仅为5mg/Nm3),所以,即使到了压缩三段也不会在三级冷却器中出现萘结晶堵塞管道的问题。

因此,来自界区外的焦炉煤气首先经压缩机的一级加压至~(G),然后进入压缩机第二和第三级压缩至~(G)后进入后续预处理系统。

(2)预处理工序预处理系统主要由2台除油塔、2台预处理塔、1台解吸气加热器、1台解吸气缓冲罐组成。

来自压缩三段,压力为~(G)的焦炉煤气进入预处理工序后,首先经过除油塔分离掉其中夹带的油滴,然后自塔底进入预处理塔,其中一台处于吸附脱油、脱硫萘状态、一台处于再生状态。

当预处理塔吸附焦油、硫和萘饱和后即转入再生过程。

预处理塔的再生过程包括:a?降压过程预处理塔逆着吸附方向,即朝着入口端卸压,气体排至煤气管网。

b?加热脱附杂质用PSA工序副产的解吸气经加热至140~160℃后逆着吸附方向吹扫吸附层,使萘、焦油、NH3、H2S及其它芳香族化合物在加温下得以完全脱附,再生后的解吸气送回焦炉煤气管网。

c?冷却吸附剂脱附完毕后,停止加热再生气,继续用常温解吸气逆着进气方向吹扫吸附床层,使之冷却至吸附温度。

吹冷后的解吸气也送回焦炉煤气管网。

d?升压过程用处理后的煤气逆着吸附方向将预处理塔加压至吸附压力,至此预处理塔就又可以进行下一次吸附了。

(3)变压吸附工序本装置变压吸附(PSA)工序采用5-1-3 PSA工艺,即装置由五个吸附塔组成,其中一个吸附塔始终处于进料吸附状态,其工艺过程由吸附、三次均压降压、顺放、逆放、冲洗、三次均压升压和产品最终升压等步骤组成,具体工艺过程如下:经过预处理后的焦炉煤气自塔底进入吸附塔中正处于吸附工况的吸附塔,在吸附剂选择吸附的条件下一次性除去氢以外的绝大部分杂质,获得纯度大于%的粗氢气,从塔顶排出送净化工序。

当被吸附杂质的传质区前沿(称为吸附前沿)到达床层出口预留段某一位置时,停止吸附,转入再生过程。

吸附剂的再生过程依次如下:a. 均压降压过程这是在吸附过程结束后,顺着吸附方向将塔内的较高压力的氢气放入其它已完成再生的较低压力吸附塔的过程,这一过程不仅是降压过程,更是回收床层死空间氢气的过程,本流程共包括了三次连续的均压降压过程,以保证氢气的充分回收。

b.顺放过程在均压回收氢气过程结束后,继续顺着吸附方向进行减压,顺放出来的氢气放入顺放气缓冲罐中混合并储存起来,用作吸附塔冲洗的再生气源。

c. 逆放过程在顺放结束、吸附前沿已达到床层出口后,逆着吸附方向将吸附塔压力降至接近常压,此时被吸附的杂质开始从吸附剂中大量解吸出来,解吸气送至解吸气缓冲罐用作预处理系统的再生气源。

相关文档
最新文档