精细有机合成原理

合集下载

《精细有机合成原理》课程教学探讨

《精细有机合成原理》课程教学探讨

《 精细有机合成化学原理》课程所采用 的教材 是唐培垄 、 冯亚青 主编的《 细有机合成化学及工 精 艺学》 。课 程 内容 涉及 精 细有 机 合成 的理 论及 工 艺 学基础 、3 1 种单元反应的特点、反应机理 、影响因 素、 生产 实例 等 , 知识体 系非 常零 散且 庞 。 对 于每 一种 单 元反 应 , 习方法 应 该 从 以下 几 学 个 方 面考 虑 : 反应 历 程 ; 应 特 点 ; 响 因素 和生 产 反 影 实例 。 对 每 一 个 单 元 反 应 ,首 先 要 了解 该 反 应 的历 程, 是属于亲电取代还是亲核置换反应 等等 , 否则 在 分 析其 反 应 的影 响 因素上 理 不清 思 路 ; 后应 该 然 1 从 学生 出发 , 实际 出发 从 了解 这 个 反 应 的特 点 表 现 在 哪些 ,包 括 优 点 和缺 才 广 西 民族 师范 学 院是 刚 升 本 的 民族 、 边疆 地 方 点 。 因为学 生 只有 了解 了该 类 反 应特 点 , 能 在进 行 合 成 设 计 路 线及 工 艺 设 置 上 更 好 的 把 握 住 关 键 院校 , 据 学 生 对 基 础 知识 的掌 握 程 度 , 根 在对 原 理 就是要搞清楚有哪些因素或者说条件可 的理解 、 操作 的规范等方面要有针对性 。所以, 在进 点 。再者 , 行教学中要根据学生的具体实际情况 , 合理安排上 以影响到这个反应 。否则在进行合成过程 中, 会忽 略掉某些 因素 , 从而遇到多副产物 , 低转化率 , 产物 课 内容及其 上课 的方 式 。 后续分离 比较 困难等 问题 。最后 , 需要给学生讲述 个典型的生产实例 , 把反应历程及其特点体现出 2 从课 程设 置上进 行考 虑 来, 使学生更好的理解所讲述 的理论知识。 该课 程 的基 础是 有 机 化学 , 是 有 机化 学 安 排 但

精细有机合成的一般原理

精细有机合成的一般原理

环丁二烯
p electrons: 4
三元环
环丙烯体系
.
.-.
+
p electrons: 3
p electrons: 4
antiaromatic
p electrons: 2
aromatic
七元环 环庚三烯离子 Cycloheptatrienyl Ions
p electrons: 8
环庚三烯负离子 antiaromatic
HO OH
* COOH NHAc
OCH3 R
P Ph
L-多巴
均相手性催化剂用于手性丁内酯旳合 成
H3C O H3C
OO
H2 BPPM-Rh* 87% e.e.
H3C H3C
* OH
OO
Ph2P
BPPM :
N CH3 COOBu-t
α-酮酸
手性硼氢化试剂ⅠpcBHR*用于 (1s,2s)-反-2-甲基环戊醇旳合成
科学与艺术融合期
20世纪后半叶至今
合成反应和措施学研究 天然产物全合成 功能分子旳合成研究
E. J. Corey提出逆合成份析
E. J. Corey提出了一套进行有机合成设 计旳原则和措施,即拟定怎样将要合成旳 目旳分子按可再结合旳原则在分子旳合适 部位进行切割,而成为较小旳起始原料分 子,然后再将这些原料分子按一定顺序和 反应结合起来(涉及分子旳立体构造), 从而得到目旳化合物。
O. Hassel确立了环己烷体系旳椅式构象、 直立和平伏键以及构象转换
1950年有机化学家D. H. R. Barton建立了 构象分析理论体系
环辛四烯 Cyclooctatetraene
4n systems, 8 pi electrons Nonplanar “tub” conformation Huckel’s rule does not apply

精细有机合成技术:催化加氢的基本原理—碳-碳双键加氢

精细有机合成技术:催化加氢的基本原理—碳-碳双键加氢

1、加氢非常容易,选择性很高,而且副产物少。 2、加氢的活性与分子结构有关,分子越简单,即双键碳原子上取代基越少、越小,则活性 越高,乙烯的加氢反应活性最高
直链双烯烃较单烯烃更容易加氢,加氢的位置与双烯烃的结构有关。双烯烃的 加氢可停留在单烯烃。
多烯烃的加氢也有类似过程。即每一个双键可吸收一分子氢,直至饱和。如果 选择合适的催化剂和反应条件,就可以对多烯烃进行部分加氢,保留一部分双键。
精细合成化学
许航线
碳-碳双键加氢
烯烃加氢常用的催化剂有:铂、骨架镍、载体镍和各种多金属催化剂(铜-铬、锌 -铬等)。
在催化剂存在下,100~200℃、1~2MPa下加氢反应很快。若原料中含有硫化物, 则会使催化剂中毒,因此必须对原料进行精制。否则需要采用抗硫催化剂,通常为金 属硫化物如:硫化镍、钨、钼等,但是这类催化剂的活性较低,所需要的反应条件为: 300~320℃、25~30MPa。
环烯烃的加氢有发生开环副反应的可能,因此要得到环状产物则需要控制反应 条件。通常五元环和六元环较稳定。
碳-碳双键的加氢反应主要用于汽油的加工和精制。另外一些重要的中间体的 制备也是其重要的应用。
ቤተ መጻሕፍቲ ባይዱ谢观看

精细有机合成化学及工艺学

精细有机合成化学及工艺学
羰基的缩合与加成
羰基可与亲核试剂发生缩合反应,生成醇、醚或酯类化合物;也可与亲电试剂发生加成反 应,生成烯烃或卤代烃类化合物。
羰基的α-卤代与α-氨基化
在羰基α位引入卤素或氨基,可生成α-卤代酮或α-氨基酮类化合物。常用的卤化剂有卤素、 N-卤代酰胺等,氨基化试剂有氨、胺类化合物等。
氨基官能团转化与合成策略
其他领域
此外,精细有机合成还在染料、香料、 涂料、食品添加剂等领域有着广泛的 应用。
02
基本原理与方法
有机合成反应类型及机理
亲电取代反应
亲电试剂进攻有机分子中的电 子云密度较大的部位,发生取 代反应。
消除反应
有机化合物在特定条件下失去 小分子,形成不饱和键。
亲核取代反应
涉及亲核试剂对有机化合物中 的离去基团进行攻击,形成新 的化学键。
大环化合物合成技术
01
线性合成策略
通过逐步增长碳链的方法合成大环化合物,如酰胺化、酯化等缩合反应
构建大环。
02
模板合成法
利用模板效应控制分子内成环反应,实现大环化合物的合成,如分子内
Diels-Alder反应、分子内Michael加成等。
03
片段连接法
将预先制备好的片段通过高效连接反应组合成大环化合物,如Suzuki偶
初始阶段
早期的有机合成主要依赖于天然产物的提取和分离,合成方法相对 简单。
发展阶段
随着有机化学理论的不断发展和合成方法的不断创新,精细有机合 成逐渐成为一个独立的学科领域。
成熟阶段
现代精细有机合成已经发展成为一个高度成熟的领域,合成方法和技 术不断更新和完善,能够合成出各种复杂结构和功能的有机化合物。
未来研究方向和挑战
复杂天然产物的全合成

精细有机合成与工艺介绍课件

精细有机合成与工艺介绍课件

03 反应釜的压力:根据化学反 应的压力要求选择合适的压 力等级,以确保安全生产。
04 反应釜的搅拌与加热:根据 化学反应的工艺要求选择合 适的搅拌与加热方式,以提 高反应效率和生产质量。
反应温度与压力的控制
01
反应温度:影响反应速率和产物选择性,需要精确控制
02
反应压力:影响反应速率和产物收率,需要精确控制
03
温度和压力的测量:采用温度计和压力表进行实时监测
04
温度和压力的控制:采用加热和冷却设备进行调节,确保反应条件稳定
反应时间的控制
反应时间对反 应结果的影响
反应时间的 控制方法
反应时间的 优化
反应时间的 监测与调整
典型反应案例
01
酯化反应: 乙酸乙酯 的合成
02
加成反应: 苯乙酮的 合成
03
自动化与智能 化:提高生产 效率,降低成

03
生物催化:利 用生物酶进行 有机合成,提 高反应选择性
04
连续流反应: 提高反应效率, 减少溶剂使用
05
纳米材料:提 高催化剂性能, 降低反应能耗
06
超临界流体: 提高反应速率, 降低反应条件
要求
化学反应原理
精细有机合成的基 本原理是化学反应 的机理和过程。
催化剂选择:催 化剂对反应速率 和产物选择性有 很大影响
压力控制:压力 对反应速率和产 物选择性有很大 影响
反应时间控制: Байду номын сангаас应时间对反应 速率和产物选择 性有很大影响
溶剂选择:溶剂 对反应速率和产 物选择性有很大 影响
反应顺序控制: 反应顺序对反应 速率和产物选择 性有很大影响
反应产物分离与纯化

精细有机合成技术:形成杂环的缩合

精细有机合成技术:形成杂环的缩合

4.吡啶及烷基吡啶的合成
工业上的合成方法是采用乙醛、甲醛和氨气在常压 和370℃左右通过装有催化剂的反应器,反应后的气体经 萃取、精馏得到吡啶(40%~50%)和3-甲基吡啶 (20%~30%)。
2CH3CHO +
N
乙醛与氨气在常压、350~500℃下通过装有Al2O3和金 属氧化物催化剂的反应器,反应出来的气体冷凝后经脱 水、分馏和精馏,得到含量为99.2%~99.5%的2-甲基吡 啶和4-甲基吡啶,收率为40%~60%。其中两种异构体 各占一半。
精细有机合成技术 邹静


形成杂环的缩合
典型杂环化合物的合成 1
Contents
其他杂环化合物的合成 2
形成杂环的缩合
环中含有杂原子(O、S、N等)的环状化合物为杂 环化合物。精细有机合成中的杂环化合物主要是五元或 六元杂环化合物。常有多种可能的合成途径。但以环合 时形成的新键来划分可以归纳为以下三种环合方式。
制备杂环化合物时,环合方式的选择与起始原料的关 系很密切。一般都选用分子结构比较接近,价廉易得的化 合物作为起始原料。由于杂环化合物品种繁多,原料差别 很大,上述环合方式仅提供了一般规律,对某一具体杂环 化合物的合成还要经过多方面综合分析,才能确定适宜的 合成途径。
1.香豆素的合成
• 邻羟基苯甲醛和乙酐在无水醋酸钠和碘催化作用下, 在180~190℃,保温4h,经减压蒸馏可得香豆素粗品, 乙醇中重结晶得精品。
1 通过形成碳-杂键完成环合。 2 通过形成碳-杂键和碳-碳键完成环合。 3 通过形成碳-碳键完成环合。
• 含一个或两个杂原子的五元和六元杂环以及它们的 苯并稠杂环,绝大多数是采用第一种或第二种环合 方式成环的。可见,杂环的环合往往是通过碳-杂键 的形成而实现。从键的形成而言,碳原子与杂原子 之间结合成C—N、C—O、C—S键要比碳原子之间 结合成C—C键要容易得多。

精细有机单元反应合成技术手册

精细有机单元反应合成技术手册

精细有机单元反应合成技术手册精细有机单元反应合成技术是有机合成化学中非常重要的一个分支,通过该技术可以合成出高纯度、高质量的有机化合物,是有机化学领域的重要研究方向之一。

下面,本手册将详细介绍精细有机单元反应合成技术的相关知识。

精细有机单元反应合成技术是指针对有机化合物中特定的化学键或化学基团进行反应,以合成高纯度、高质量的有机化合物的技术。

其特点是化学反应条件温和,反应时间短,得率高,产品纯度高,适用范围广等。

二、精细有机单元反应的分类1、加成反应加成反应是指在有机化合物中,两个单体通过化学键的形式结合在一起,生成新的含有多个化学基团的有机化合物的反应。

常见的加成反应有有机酸酐的开环反应、氨基酸与酸酐的酰化反应等。

2、消除反应消除反应是指在有机反应中,有机分子中的两个基团通过一个化学键的断裂分离为两个分子的化学反应。

常见的消除反应有脱水反应、烷基化反应等。

3、取代反应取代反应是指有机化合物中原子或基团被其他原子或基团所取代的化学反应。

常见的取代反应有亲核取代反应、电子转移取代反应等。

4、重排反应重排反应是指在有机反应中,有机化合物中某些化学键的位置重新排列,生成新的有机化合物的化学反应。

常见的重排反应有Wittig重排反应、Hofmann重排反应等。

精细有机单元反应的研究是有机合成领域中非常活跃和重要的研究方向。

目前,有机合成化学的发展和技术的不断改进,加速了精细有机单元反应合成技术的研究。

研究的主要方向是开发新的精细有机单元反应,提高精细有机单元反应的反应选择性和反应效率,开发新的催化剂和溶剂,在实际应用中得到广泛的应用。

精细有机合成技术:N-酰化反应基本原理

精细有机合成技术:N-酰化反应基本原理
苯胺与水的混合物在常温下滴加乙酐,酰化反应立即进行,并放出热量, 物料搅拌冷却后即可析出乙酰苯胺。
第二节 N-酰化反应
间苯二胺与等摩尔的盐酸作用,生成间苯二胺的单盐酸盐,然后控制在 40℃以下加入过量5%的乙酐,将得到间乙酰氨基苯胺的盐酸盐。
将H-酸悬浮在水中,用NaOH调节pH为6.7~7.1,在30~50℃滴加稍过量的 乙酐可以制得N-乙酰基-H-酸。
在酰化剂分子中,X是—OH时,酰化剂是羧酸;X是—OCOR时,酰化剂是 酸酐;X是—Cl时,酰化剂是酰氯。
第二节 N-酰化反应
2. N-酰化影响因素 (1)酰化剂的活性的影响 酰化剂的反应活性取决于羰基碳上部分正电荷
的大小,正电荷越大反应活性越强。对于R相同的羧酸衍生物,离去基团X的吸 电子能力越强酰基上部分正电荷越大。所以其反应活性如下:
通常对于活泼的胺,化方法 第二节 N-酰化反应
1. 用羧酸的N-酰化 羧酸是最廉价的酰化剂,用羧酸酰化是可逆过程。
为了使酰化反应尽可能完全,并使用过量不太多的羧酸,必须除去反应生成 的水。如果反应物和生成物都是难挥发物,则可以不断地将反应生成的水蒸出; 如果反应物能与水形成共沸混合物冷凝后又可与水分层,则可以采用共沸蒸馏, 冷凝后使有机层返回反应器。也可以加苯或甲苯等能与水形成共沸混合物帮助脱 水。少数情况可以加入化学脱水剂如五氧化二磷,三氯化磷等。
第二节 N-酰化反应
由于酰化时生成的氯化氢与游离氨结合成盐,降低了N-酰化反应的速度, 因此在反应过程中一般要加入缚酸剂来中和生成的氯化氢,使介质保持中性或 弱碱性,并使胺保持游离状态,以提高酰化反应速度和酰化产物的收率。但是, 介质的碱性太强,会使酰氯水解,同时耗用量也增加。常用的缚酸剂有:氢氧 化钠、碳酸钠、碳酸氢钠、醋酸钠及三乙胺等有机叔胺。但是,酰氯与氨或易 挥发的低碳脂肪胺反应时,则可以用过量的氨或胺作为缚酸剂。在少数情况下, 也可以不用缚酸剂而在高温下进行气相反应。

精细有机合成的名词解释

精细有机合成的名词解释

精细有机合成的名词解释在化学领域中,精细有机合成是指通过化学反应路线和手工操作,以及精细的控制条件,将简单的有机化合物转化为复杂的目标分子的过程。

这项技术的发展为物质的合成提供了重要的方法和手段,有着广泛的应用领域,包括医药、材料科学和农业等。

精细有机合成的核心思想是通过选择适当的试剂和反应条件,将化合物中的特定功能团进行转化。

这种转化过程通常需要高度纯度的试剂和催化剂,以及准确的反应控制,其中包括反应的时间、温度、压力等因素。

通过仔细的设计和实验过程,可以保证反应的高收率和高选择性,从而实现目标分子的合成。

在精细有机合成中,有几个关键概念需要注意。

首先是催化剂的选择和设计。

催化剂可以加速反应速率,并且可以提高反应的选择性。

合理选择催化剂不仅可以降低反应温度和压力,还可以减少副反应的产生。

其次是原料的选择和制备。

高纯度的原料可以提高反应的效率和选择性。

因此,在合成过程中,我们需要选择高纯度的起始材料,并对其进行适当的处理和纯化。

最后是反应的优化和控制。

通过对反应条件的优化和调控,可以达到最佳的反应效果。

精细有机合成在医药领域扮演着重要的角色。

现代医药中的许多活性分子和药物都需要通过精细有机合成来合成。

例如,抗癌药物、抗生素以及多种抗病毒药物等都是通过这种方法得到的。

通过对具有特定生物活性的分子结构进行合成,可以为研发新药提供重要的基础。

此外,精细有机合成还在材料科学领域有着广泛的应用。

通过这种方法,可以合成各种有机材料,如染料、涂料、高分子材料和液晶显示器等。

这种技术的发展不仅可以满足不同应用领域对材料的需求,还可以为环境友好型材料的合成提供新思路。

在农业领域,精细有机合成也发挥着重要作用。

通过合成特定结构的化合物,可以用作农药和植物生长调节剂等。

这些化合物可以帮助农民提高作物产量,减少病虫害的侵害,从而促进农业的发展。

总之,精细有机合成是一项重要的化学技术,通过合理的试剂选择、反应条件优化和催化剂设计等手段,可以将简单的有机化合物转化为具有复杂结构和特定功能的目标分子。

精细有机合成知识点总结

精细有机合成知识点总结

精细有机合成知识点总结一、有机合成基础知识1. 有机化合物的结构特点:有机化合物以碳为主要元素,通常含有氢、氧、氮、硫等元素,具有复杂的结构和多样的性质。

有机化合物的结构特点对于合成时的反应条件和合成路径具有重要的影响。

2. 有机合成的基本原理:有机合成是指通过将简单的有机化合物经过一系列的反应转化成目标化合物的过程。

合成的基本原理包括合成途径的选择、反应条件的控制、反应机理的理解等方面。

3. 有机合成的分类:有机合成可以根据合成途径、合成目标、合成方法等多个方面进行分类。

常见的分类包括:官能团化合成、碳碳键形成、环化反应、取代反应等。

二、精细有机合成的理论基础1. 反应机理:在精细有机合成中,对于反应的机理的理解是非常重要的。

包括反应物的选择、反应条件的控制、中间体的形成等方面的理论基础。

2. 功能团保护和去保护:在有机合成过程中,有时需要对特定的官能团进行保护,以防止其在反应过程中发生不必要的改变。

同时,也需要在合成的适当时机去除这些保护基团,以获得目标产物。

3. 立体化学:有机合成中的立体化学是一个重要的理论基础。

包括立体化学的理论基础、手性分子的制备和合成、手性识别和手性分离等方面的知识。

4. 共价键断裂和形成:在有机合成中,共价键的断裂和形成是非常常见的反应过程。

了解这些反应的机理和条件对于合成路径的选择和优化具有重要的意义。

三、精细有机合成的实验技术1. 反应条件的控制:在实际合成过程中,对反应条件的控制是非常重要的。

包括温度、压力、溶剂的选择等方面的实验技术。

2. 操作技术:精细有机合成涉及到很多精细的操作技术,包括溶剂的蒸馏、试剂的使用、产物的提取和纯化等。

3. 合成路径的选择和优化:在精细有机合成中,选择合适的合成路径对于提高产物收率和纯度都具有重要的意义。

需要根据反应物的结构特点和反应机理进行合适的路径设计和优化。

四、精细有机合成的应用1. 药物合成:精细有机合成在药物合成领域有着广泛的应用。

精细有机合成实验

精细有机合成实验

CHO OH
Ac2O, KF 170℃
COOH OH
200℃ -H2O
OO
CH3 OH
1/3POCl3 -HCl
CH3 O-(P=O)1/3
2Cl2 -2HCl
CH2Cl2 O-(P=O)1/3
(CH3CO)2O, CH3COONa -NaCl, -HCl, -CH3COOH
O
CH3
Cl-C-Cl
精 细 有 机 合 成 实 验
实验一 阳离子型表面活性剂 十二醇硫酸钠
(实验时间3.5h)
一、实验目的
了解阳离子型表面活性剂的结构、性能和一般制法。
二、实验原理
CH3(CH2)11OH + ClSO2OH
CH3(CH2)11OSO2OH + HCl
CH3(CH2)11OSO2OH + NaOH
CH3(CH2)11OSO2ONa + H2O
OH + 4HBr
CH3
Br
CH3
Br
三、实验用品
双酚A、95%乙醇、溴(≥99%,无水)
实验四、内酯类香料 香豆素
(实验时间6h)
一、实验目的
学习合成香料的基本知识和用Perkin反应制备香豆素的实验方法
二、实验原理
本实验分别以水杨醛、邻甲苯酚为原料,与醋酐在缩合剂醋酸钠 的存在下进行缩合反应(Perkin反应)来合成。
0.1%~0.2%),通过酯化反应制取增塑剂。反应后只须进行减压蒸馏 脱
醇,而毋须进行其它后处理,即可获得较纯的增塑剂。
O
C O
C
+ 2CH3(CH2)7OH
n-(C4H9)2SnO
COO(CH2)7CH3 + H2O

精细有机合成技术

精细有机合成技术

第二节 酯化反应基本原理
③反应温度。羧酸与醇在液相中进行酯化时几乎不 吸收或放出热,所以平衡常数与温度基本无关,但在气 相中进行旳酯化反应,为放热反应,此时平衡常数与温 度有一定旳关系,如制取乙酸乙酯时,150℃旳平衡常数 为30,而在300℃下降为9;当用酰氯或酸酐作酰化剂时, 也是放热反应,温度对平衡常数一样有影响。
酯化反应也可不用催化剂,但为了加速反应旳进行, 必须采用200~300℃旳高温。若工艺过程对产品纯度要 求极高,而采用催化剂时又分离不净,则宜采用高温无 催化剂酯化工艺。
第一节 概述
(2)酸酐法 羧酸酐是比羧酸强旳酰化剂,合用于 较难反应旳酚类化合物及空间阻碍较大旳叔羟基衍生物 旳直接酯化,此法也是酯类旳主要合成措施之一,其反 应过程为:
第二节 酯化反应基本原理
常用旳有机酸催化剂有:甲磺酸、苯磺酸、对甲苯 磺酸等。它们较硫酸旳活性低,但无氧化性,其中对甲 苯磺酸最为常用。对甲苯磺酸具有浓硫酸旳一切优点, 而且无氧化性,碳化作用较弱,但价格较高。常用于反 应温度较高及浓硫酸不能使用旳场合,如长碳链脂肪酸 和芳香酸旳酯化。
硫酸盐也可作为酯化催化剂。如用硫酸锆为催化剂 合成丁酸乙酯。硫酸氢盐与硫酸盐有相同旳催化性能, 但能使产品旳色泽变浅。
醇与酰氯酯化时,其平衡常数很大,一般可视为不 可逆反应。
第二节 酯化反应基本原理
(2)影响酯化平衡常数旳原因 反应物构造和反应 条件对酯化反应平衡有主要影响。
①醇或酚旳构造。醇或酚旳构造对酯化平衡常数旳 影响较为明显。表13-1乙酸与多种醇旳反应转化率及平 衡常数,由表中数据能够表白,伯醇旳酯化平衡常数最 大,反应速度也最快,其中又以甲醇为最;仲醇、烯丙 醇以及苯甲醇旳平衡常多次之,反应速度也较慢;叔醇 和酚旳平衡常数最小,反应速度最慢。

精细有机合成原理

精细有机合成原理

溶剂分解反应,主要是水解反应,占溶剂分解反应的77%,可以合成醇
酸化反应,是药物合成中常用的对碱性药物的成盐修饰反应,可以提高
药物的水溶性,改善剂型加工性能以及药物的转运和代谢过程,提高生物 利用度。主要使用盐酸、硫酸、酒石酸、抗坏血酸等。
CH2CH2CH2NHNH2 N Cl HCl / CH3CH2OH S (药物:盐酸氯丙嗪) CH2CH2CH2NHNH2 HCl N Cl
%,硫化物还原占8%。
O Et ph O N
加氢还原反应,催化加氢占45%,电子还原占29%,氢负离子还原占17
O Zn / HCl Et ph N N
S N
O (药物:扑米酮)
第一章
医药工业常用化学反应:
概 论
• 精细化工中的常用的化学反应:
(酚)、醛、羧酸等,同时羟基OH、氨基NH2、羰基CO的去保护也通过 溶剂分解反应来实现。来自 精细化工的加工方法:
(1)物理方法:
萃取、精馏、蒸馏、重结晶、浸取、升华、溶解、混配、包埋(膜)
(2)化学方法
各种化学反应
精细化工的产品形式:
精细化学品工业很注重产品的剂型加工,其产品形式很多。可 以直接以化学品面市、也可以以各种剂型的终端产品面市。
第一章
医药工业常用化学反应:
反应类型 烷基化 溶剂解 使用频率 22.3 12.3 反应类型 酯化 氧化
基化使用频率最高。
烷基化反应 C- 使用频率 20.6
概 论
• 精细化工中的常用的化学反应:
烷基化反应,主要有C-、N-、O-、S-烷基化反应,其中以N-烷
N- 54.3 O- 16.5 S- 8.6
酰化反应,和烷基化反应一样,同样是N-酰化反应使用频率最高

精细有机合成

精细有机合成

精细有机合成一、简述什么是精细有机合成。

精细有机合成是指利用有机反应将简单的有机物和无机物作为原料,创造新的、更复杂、更有价值的精细机化合物的过程。

人们通过精细机合成,不仅能制造出自然界已有的、甚至非常复杂的物质,而且能制造出自然界尚不存在的、具有各种特殊性能的物质,以适应人类生活、生产和科学研究的需要。

精细有机合成有两大任务:一是实现有价值的已知化合物的高效生产;二是创造新的有价值的物质与材料。

精细有机合成有两个基本目的。

一个是为了合成一些特殊的、新的有机化合物,探索一些新的合成路线或研究其他理论问题,即是实验室合成。

为这一目的所需要的量较少,但纯度常常要求较高,而成本在一定范围内不是主要问题。

另一个是为了工业上大量生产,即工业合成。

为了这一目的,成本问题是非常重要的,即使是收率上的极小变化,或工艺路线或设备的微小改进都会对成本发生很大的影响。

二、列举至少5种精细有机品。

硬脂酸钠、月桂醇聚环氧乙烷醚磷酸钠、十二烷基苯磺酸钠、失水山梨醇的脂肪酸钠、脂肪醇聚氧乙烯醚三、列举一种精细有机品的合成路线,合成方法不少于3步,并写出合成反应方程式(结构式),简述该产品的用途以及特性。

烷基苯磺酸钠合成路线煤油正构烷烃分子筛尿素络合脱氢氯化再脱HCL 正构烯烃石蜡乙烯α-烯烃丙烯四聚丙烯烷基苯氯化再烷基化烷基化烷基化烷基化发烟硫酸磺化SO3磺化中和烷基苯磺酸钠裂解齐格勒聚合三氧化硫磺化法:发烟硫酸磺化法:烷基苯磺酸钠的用途:易氧化,起泡力强,去污力高,易与各种助剂复配,成本较低,合成工艺成熟,应用领域广泛,是非常出色的易氧化,起泡力强,去污力高,易与各种助剂复配,成本较低,合成工艺成熟,应用领域广泛,是非常出色的阴离子表面活性剂。

烷基苯磺酸纳对颗粒污垢,蛋白污垢和油性污垢有显著的去污效果,对天然纤维上颗粒污垢的洗涤作用尤佳,去污力随洗涤温度的升高而增强,对蛋白污垢的作用高于非离子表面活性剂,且泡沫丰富。

但烷基苯磺酸钠存在两个缺点,一是耐硬水较差,去污性能可随水的硬度而降低,因此以其为主活性剂的洗涤剂必须与适量螯合剂配用;二是脱脂力较强,手洗时对皮肤有一定的刺激性,洗后衣服手感较差,宜用阳离子表面活性剂作柔软剂漂洗。

精细有机合成技术:C-酰化反应原理

精细有机合成技术:C-酰化反应原理
精细有机合成技术
黄锋-酰化反应原理
1
C-酰化反应历程
1
一、C-酰化反应原理 1.C-酰化反应历程 当用酰氯作酰化剂时,以无水三氯化铝为催化剂,反
应历程大致如下:
首先酰氯与无水三氯化铝作用生成各种正碳离子活性中间体 (a)、(b)、(c)。
这些活性中间体在溶液中呈平衡状态,进攻芳环的 中间体可能是(b)或(c),它们与芳环作用生成芳酮 与三氯化铝的络合物。例如:
芳酮与三氯化铝的络合物经水解即可得到芳酮。 当用酸酐作酰化剂时,它首先与AlCl3作用生成酰氯。
如果只有一个酰基参加酰化反应,每摩尔酸酐至少需要 2mol三氯化铝。这个反应的总方程式可简单表示如下: 上式中的RCOOAlCl2在AlCl3存在下也可以转变为酰氯,即
感谢观看
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.浓硝酸作为硝化剂时,参加硝化反应的活性质点是NO2+,稀硝酸作为硝化剂时,参加硝化反应的活性质点是NO+。

是(邻对位)定位基;-COOH是(间位)定位基。

2.在芳香族的亲电取代反应中,苯环上的-OCH
3
3.(间歇操作)是将各种反应原料按一定的顺序加到反应器中,并在一定的温度、压力下经过一定时间完成特定的反应,然后将反应好的物料从反应器中放出。

4.在连续操作的反应器中,有两种极限的流动模型是(理想混合型和理想置换型)
10% 的发烟硫酸换算成硫酸的浓度是。

5.按照原料单体的种类和数目不同,缩聚反应可以分为(均缩聚、异缩聚、共缩聚)三类。

6.一氯苯的生产工艺经过了三个阶段的变革即(单锅间歇生产工艺、多锅连续生产工艺、塔式沸腾连续生产工艺)。

7.芳环的取代卤化属于亲电反应,在这个反应中,卤素做亲电试剂。

8.(芳伯胺)化合物转变成重氮化合物的反应称为重氮化反应。

9.在铁屑还原法还原硝基时,铁屑的高纯度对反应利。

10.羟基是第 1 类定位基。


1以季铵盐为例,简述相转移催化的原理,并画出示意图
在互不相溶的两相体系中,亲核试剂M+Nu-只溶于水相而不溶于有机相,而有机反应物R-X+只溶于有机溶剂而不溶于水相。

两者不易相互靠拢而发生化学反应。

在上述体系中加入季铵盐Q+X-,它的季铵盐正离子Q+具有亲油性,因此季铵盐既能溶于水相又能溶于有机相。

当季铵盐与水相中的亲核试剂M+Nu-接触时,亲核试剂中的负离子Nu-可以同季铵盐中的负离子X-进行交换生成Q+Nu-离子对。

这个离子对可以从水相转移到有机相,并且与有机相中的反映物R-X发生亲核取代反应而生成目的产物R+Nu-,在反应中生成的Q+X-离子对又可以从有机相转移到水相,从而完成相转移催化的催化循环,使上述的亲核取代反应顺利完成。

2.在进行芳香族重氮化反应时,往往加入亚硝酸钠,然后再用淀粉-碘化钾试纸鉴定有过量的亚硝基存在时,再加入脲,把过量的亚硝基除去,才进行下一步的反应。

解释这一系列的变化并写出可能的反应方程式。

在重氮化时,要用到亚硝酸做重氮化试剂,而且在反应中应保持亚硝酸微过量,可用淀粉-碘化钾试纸检验,微过量的亚硝酸可以将试纸中的碘化钾氧化,游离出碘单质使试纸变为蓝色。

反应为
2HNO2 + 2KI +2H2O I2 +2kCl +2NO
而重氮化反应完毕,过量的亚硝酸对下一步反应不利,因此常加入尿素或氨基磺酸将过量的亚硝酸分解
掉,或加入少量的芳胺,使之与过量的亚硝酸作用。

反应为:
H2N-C O-N H2 + 2H N O2C O2 + 2N2 + 3H2O
3.苯甲酸与苯哪一个更容易硝化?为什么?
苯比苯甲酸更容易硝化。

因为苯环上的硝化反应是亲电取代反映,苯环上电子云密度越高对反应越有利,而羧基-COOH的诱导效应和共轭效应都是吸电子的,它使苯环上的电子云密度降低,所以苯甲酸不易硝化。

4.在苯的氯化反应中,为什么不希望原料中含有水。

水的存在会大大降低有机物中催化剂三氯化铁的浓度,使反应速度减慢。

因为水与反应生成的氯化氢作用生成盐酸,它对催化剂三氯化铁的溶解度,大大超过有机物对三氯化铁的溶解度。

实验证明,苯中的含水量大于千分之二时,氯化反应将不能进行。

五.写出由苯制备苯胺-2,4-二磺酸的合成路线,各步反应的名称,磺化反应的详细名称以及反应的大致条件。

相关文档
最新文档