平均数问题公式

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【平均数问题公式】总数量÷总份数=平均数。【一般行程问题公式】平均速度×时间=路程路程÷时间=平均速度;路程÷平均速度=时间。【反向行程问题公式】反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。这两种题,都可用下面的公式解答:

(速度和)×相遇(离)时间=相遇(离)路程;

相遇(离)路程÷(速度和)=相遇(离)时间;

相遇(离)路程÷相遇(离)时间=速度和。

【同向行程问题公式】

追及(拉开)路程÷(速度差)=追及(拉开)时间;

追及(拉开)路程÷追及(拉开)时间=速度差;

(速度差)×追及(拉开)时间=追及(拉开)路程。

【列车过桥问题公式】(桥长+列车长)÷速度=过桥时间;

(桥长+列车长)÷过桥时间=速度;速度×过桥时间=桥、车长度之和。【行船问题公式】(1)一般公式:

静水速度(船速)+水流速度(水速)=顺水速度;

船速-水速=逆水速度;(顺水速度+逆水速度)÷2=船速;

(顺水速度-逆水速度)÷2=水速。

(2)两船相向航行的公式:

甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度

(3)两船同向航行的公式:后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度。

(求出两船距离缩小或拉大速度后,再按上面有关的公式去解答题目)。

【工程问题公式】(1)一般公式:

工效×工时=工作总量;工作总量÷工时=工效;工作总量÷工效=工时。

(2)用假设工作总量为“1”的方法解工程问题的公式:

1÷工作时间=单位时间内完成工作总量的几分之几;

1÷单位时间能完成的几分之几=工作时间。

(注意:用假设法解工程题,可任意假定工作总量为2、3、4、5……。特别是假定工作总量为几个工作时间的最小公倍数时,分数工程问题可以转化为比较简单的整数工程问题,计算将变得比较简便。)【盈亏问题公式】(1)一次有余(盈),一次不够(亏),可用公式:(盈+亏)÷(两次每人分配数的差)=人数。

例如,“小朋友分桃子,每人10个少9个,每人8个多7个。问:有多少个小朋友和多少个桃子?”

解(7+9)÷(10-8)=16÷2

=8(个)………………人数

10×8-9=80-9=71(个)…桃子或8×8+7=64+7=71(个)(答略)

(2)两次都有余(盈),可用公式:

(大盈-小盈)÷(两次每人分配数的差)=人数。

例如,“士兵背子弹作行军训练,每人背45发,多680发;若每人背50发,则还多200发。问:有士兵多少人?有子弹多少发?”

解(680-200)÷(50-45)=480÷5=96(人)

45×96+680=5000(发)或50×96+200=5000(发)(答略)

(3)两次都不够(亏),可用公式:

(大亏-小亏)÷(两次每人分配数的差)=人数。

例如,“将一批本子发给学生,每人发10本,差90本;若每人发8本,则仍差8本。有多少学生和多少本本子?”

解(90-8)÷(10-8)=82÷2=41(人)10×41-90=320(本)(答略)(4)一次不够(亏),另一次刚好分完,可用公式:

亏÷(两次每人分配数的差)=人数。

(5)一次有余(盈),另一次刚好分完,可用公式:

盈÷(两次每人分配数的差)=人数。

【鸡兔问题公式】

(1)已知总头数和总脚数,求鸡、兔各多少:

(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;

总头数-鸡数=兔数。

例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”解一(100-2×36)÷(4-2)=14(只)兔;36-14=22(只)鸡。

解二(4×36-100)÷(4-2)=22(只鸡;36-22=14(只)兔。

(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式

(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚

数)=兔数;总头数-兔数=鸡数

或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。(例略)

(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。

(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。

或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。(例略)

(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:

(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?”

解一(4×1000-3525)÷(4+15)

=475÷19=25(个)

解二1000-(15×1000+3525)÷(4+15)

=1000-18525÷19

=1000-975=25(个)(答略)

(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费××元,破损者不仅不给运费,还需要赔成本××元……。它的解法显然可套用上述公式。)

(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:

〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;

〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数。

例如,“有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。鸡兔各是多少只?”

解〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2=20÷2=10(只)鸡〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2=12÷2=6(只)兔(答略)【植树问题公式】

(1)不封闭线路的植树问题:

间隔数+1=棵数;(两端植树)

路长÷间隔长+1=棵数。

或间隔数-1=棵数;(两端不植)

路长÷间隔长-1=棵数;

路长÷间隔数=每个间隔长;

相关文档
最新文档