制动盘模态试验分析

制动盘模态试验分析
制动盘模态试验分析

制动盘模态试验分析

作者:上海汇众汽车制造有限公司陈晓鹏

模态分析技术是用于对零部件或工程结构系统进行动力学分析的现代化方法和手段,借此可以解决很多工程实际问题。对零部件进行模态分析有利于优化运动机械的整体性能。以汽车制动盘为例,制动盘的模态决定着车辆在制动过程中的部分振动、噪声性能,并对制动盘的寿命、异常磨损等产生影响,测量并确定制动盘的模态频率与振型是研究并解决车辆制动引起振动与噪声的重要手段。

本文利用LMS公司有关模态测试软件对我公司某车型前制动盘进行比较完整的模态测量后,得出了制动盘的各种模态特性;并利用测试软件对测试方法进行了简短的分析,给出了在仅仅想得到零部件固有频率的试验要求下可以简化几何模型、减少测量次数,从而达到最快得到试件固有频率的目的。

制动盘模态特性及要求

作为高速旋转部件,制动盘具有中心对称特性。对于制动盘制动摩擦面,其振型主要是沿圆周均匀分布的变形(对于矩坐标系,相同θ角的各点位相相同,沿圆周呈波浪分布)及相同r(在矩坐标系中)具有相同形变(幅值与位相均相同)的变形。当与制动系统中其他部件组合后,如果某种激励正好位于某一固有频率下,模态被激发,处于共振情形中的这种自身变形会产生强烈的振动与噪音。前一种模态发生共振的可能性更大。通常,制动盘处于本文后面所提到的0/4模态占优势,在产品设计与开发阶段要特别注意此类模态的特性。

测量与分析

利用LMS TestLab 中的MODAL IMPACT模块可对制动盘进行模态测量。用弹性绳把制动盘悬挂起来,将由试件与软绳所组成的系统振动的固有频率控制在5Hz以下,就能完全满足测试要求。

制动盘具有中心对称轴,以中心轴为Z轴,建立柱坐标系。显然,制动盘除Z轴外的其他两方向的刚度比Z轴方向的刚度要大得多,在常规频段振动主要是沿着Z轴方向发生,因此只测定Z轴方向的加速度值即可。制动盘结构相对较小,质量不大,因此在粘贴传感器

时应尽量减小附加质量的影响,为此采用分别在多点激励、测取某一点处的响应的方法进行。激励与响应均只有沿Z轴方向的数值。制动盘为小质量、高硬度的部件,固有频率较高,利用LMS Modal Impact模块进行测量。综合考虑传感器频响特性、试件模态特性及测试状况,频率范围选为0~6 400Hz可以满足实际要求。频率的分辨率选为1Hz以下。

1. 精细测量

为了不遗漏每一个模态(包括制动盘固定面的局部,即凸台部分的模态),我们建立了比较精细的几何模型(如图1),摩擦面外、内圈分别设定了24个点,固定凸台上外圈24点、内圈12点,共84点。单向加速度传感器粘贴于摩擦面外圈某点处,分别在每一点沿Z向用力锤进行激励,每一次激励重复3次测量。用PolyMax对测试数据进行处理,所得到的稳态图(所有点响应的总和)如图2。

图1 制动盘的几何模型

图2 精细测量时利用LMS软件所获得的稳态图

从图1可看出,LMS软件处理的结果非常清晰,通过选取稳态图上标明有s的点很容易把

某一固有频率确立下来。从稳态图上可以而且只能确立14个固有频率(模态)。利用软件进一步处理,得到6 400Hz以下所有模态的振型(如图3)。

图3 精细测量时利用LMS软件所获得的各模态振型

下面对各级模态做简单分析,首先根据模态的振型对模态进行分类:

(1)按变形部位,可以分为制动摩擦面(如图3中的1、4、7、10、13等)、固定凸台(如图3中的6、8、14等)及其摩擦面与凸台组合的变形。随着制动盘的磨损,与摩擦面有关的模态固有频率将发生改变。

(2)按变形形态分类,可以分为沿周边波浪式的变形(在矩坐标系中摩擦面相同θ角的各点变形位相相同),如图3中的1、4、7、10、13等。相同r具有相同变形(位相与幅度)的圆变形,如图3中的2、6、12等。此外,还包含其他组合变形。

可以测出的模态与仪器的精度有关。一般盘式制动系统采用浮动制动钳,凸台部分固定于轮毂上,其模态对系统的影响不是最主要的。制动时,摩擦面部分的模态的激发是产生噪声的主要原因。为此,我们特定义图3中的第1、4、7、10、13阶模态分别为0/2、0/3、0/4、0/5、0/6,而将圆变形,如图3中的第2、12阶模态,定义为1/1、1/2。其他还有较为复杂的组合振型或仅仅凸台上各种振型。

2. 简易测量

制动盘质量较小,任何外在的附加质量对测量结果都将产生影响,在上面的测量过程中,我们利用一只单向传感器对所有点进行激励来测试,得到了较好的效果。在后面的分析中会发现,欲测试出尽量高阶的模态需要进行大量几何点的测试。实际工作中,在产品开发的某几个阶段以及在正式生产中每一次的测试经常需要大量的被测试件,这些都带来较大

的工作量。为此,我们又进一步探索利用LMS相关软件进行简易测试方法,以期能达到模态测试的目的,且减少工作量。

图4 建立简单几何模型,利用PolyMax所获得的稳态图

首先,建立简单的几何模型,重点关注制动盘的摩擦面,该平面模型仅包括8点,连接成中间有一方孔的正方形。与精细测量的过程完全相同,分别对几何模型中的每一点进行激励,测取相关数据,由此所得到的稳态图如图4所示。图中曲线的形状及具有稳定的模态的频率位置与精细测量所得到的稳态图(图2)基本一致。除了精细测量中的第8阶模态(3494.3Hz),其他模态的位置在要求的精度内完全相同。从图3的模态振型中可以发现,此模态完全是凸台的变形,与摩擦面无关。其他结果参数的比较如表1所示。

表1 不同几何模型或测试点的数量0/4模态各参数比较

3. 少点测量

为进一步简化测试过程,我们在试验过程中尝试仅对部分几何模型中的点进行激励,探讨测量结果的可靠性。

试验过程中,我们利用“简易测量”中的8点简单几何模型,仅对其中的部分点进行激励,

其他测试及求算过程不变,得到一个稳态图(如图5)。图5的稳态图与图4几乎没有差别,模态数量完全一样,各模态的频率在测量精度内也完全相等。

图5 建立简单几何模型,通过部分几何点的测试,利用PolyMax所获得的稳态图

4. 结果比较

以上3种方法所建立的几何模型差别较大,测试的轮次也各不相同,但数据结果均能满足实际要求。以我们最为关注的制动盘0/4模态为例,各模态参数比较结果如表1。从表1

可看出,通过简单的几何模型和少量的测量轮次即可得到试件的模态参量,包括固有频率、阻尼比、模态刚度、模态质量等,并且在要求的精度内完全相等。当然,模态振型的得出还是需要充分多点的几何模型,并且要进行充分多的点的激励和测量。

表2 波浪变形模态几何模型测点数量

下面简单分析欲判别出模态振型建立几何模型所需要的点的数量。以摩擦面的模态为例,主要是沿周边的波浪式的变形。一个波浪需要5点来描述其变形,考虑到所有波浪形成一圆圈,平均一个波浪4点。如果需要描绘出沿制动摩擦面周边的波浪变形,各级模态在制动盘的边缘所需要的几何点的数量如表2。其他部位几何模型点的数量的要求将根据边缘部位点的数量作相应的确定。

结语

利用LMS TestLab模态测试软件,通过对某制动盘模态的测量与分析,可以得出以下结论:

1. 利用LMSTestLab中的Modal Impact软件工具,能很好地得出制动盘6 400Hz以下所有的模态,包含凸台的局部模态。包含摩擦面与凸台的模态较为复杂,有的是摩擦面的模态,有的是凸台的模态,但大部分是它们的组合。

2. 建立最简单的几何模型,只进行部分几何点的测试也能得到绝大部分的模态及其各种参数;但如果要判别出具体的模态振型还是要根据所要判别的具体模态的振型状况建立包含充分多的点的几何模型,并且对各点进行激励、测试。(end)

白车身模态分析试验方法研究 毕业设计

目录 中文摘要 (1) 英文摘要 (2) 1 绪论 (3) 2 试验模态分析 (5) 2.1模态试验理论 (5) 2.2试验测试系统组成 (6) 3 模态参数识别方法 (7) 3.1模态参数识别主要方法 (7) 3.2最小二乘复频域法 (9) 3.2.1最小二乘复频域法简介 (9) 3.2.2系统模型的确定 (9) 4 白车身模态试验 (10) 4.1白车身参数 (10) 4.2试验结构的支撑方式 (10) 4.3传感器的选择及布置原则 (12) 4.4激励系统 (13) 4.4.1激励方式 (13) 4.4.2振动激励源的选择和比较 (14) 4.4.3设备传感器 (15) 4.5试验测试系统检验 (16) 5 试验测试结果及分析 (21) 5.1稳态图 (21) 5.2模态频率与阻尼比 (23) 5.3模态振型 (24) 5.4模态试验的有效性 (26) 6 有限元分析结果与试验结果对比 (30) 结论 (33) 谢辞 (34) 参考文献 (35)

白车身模态试验方法研究 摘要:本文的目的在于研究模态分析参数识别不同方法之间的优缺点,重点是PolyMAX法和时域分析法之间的对比,以研究通过何种方法才能获得精 确地实验数据。为此本文分别采用多参考最小二乘复频域(PolyMAX) 法和时域分析法对结构模态参数进行识别,得到白车身各阶的模态图、 模态频率和振型并采用模态置信判据法(MAC)验证试验结果,比较二者 之间的优缺点,从而发现PolyMAX能提供比时域法法更多的稳定极点 并且有一个清晰地图标,确保一个用户独立和简洁明了的解释,大量简 化了鉴别过程。为进一步验证PolyMAX法的准确性,将PolyMAX分析 结果与有限元分析相对比,发现两者具有相当高的一致性。因此,本文 认为在白车身模态试验中PolyMAX法是最佳的试验模态分析方法。 关键词:白车身模态试验分析方法MIMO PolyMAX 1

模态分析实验指导书1

模态分析实验指导书 实验名称振动结构的实验模态分析 附录1 QL-108数据采集箱使用说明书 附录2 QL-021二通道电荷电压放大及十六通道接口使用说明书附录3 随机信号与振动分析系统CRAS V5.1

实验名称振动结构的实验模态分析 一、实验内容 用锤击激振法测量振动结构的模态参数。 二、实验目的 1、通过实验模态分析实验的全过程,了解实验模态分析的基本方法。 2、了解模态分析软件的使用方法。 三、实验原理 3.1模态试验基本过程 二十年来,由于计算机技术、FFT分析仪、高速数据采集系统以及振动传感器激励器等技术的发展,试验模态分析得到了很快的发展,受到了机械、电力、建筑、水利、航空、航天等许多产业部门的高度重视。已有多种档次、各种原理的模态分析硬件与软件问世。在各种各样的模态分析方法中,大致均可分为四个基本过程: 1.动态数据的采集及频响函数或脉冲响应函数分析。 (1) 激励方法:试验模态分析是在试验室内人为地对结构物施加一定动态激励,采集各点的振动响应信号及激振力信号,根据力及响应信号用各种参数识别方法获取模态参数。激励方法不同,相应识别方法也不同。目前主要由单输入单输出(SISO)、单输入多输出(SIMO)、多输入多输出(MIMO)三种方法。以输入力的信号特征还可分为正弦慢扫描、正弦快扫描、稳态随机(包括白噪声、宽带噪声或伪随机)、瞬态激励(包括随机脉冲激励)等。 (2) 数据采集:SISO方法要求同时高速采集输入与输出两个点的信号,用不断移动激励点位置或响应点位置的办法取得振型数据。SIMO及MIMO的方法则要求大量通道数据的高速并行采集,因此要求大量的振动测量传感器或激振器,试验成本极高。 (3) 时域或频域信号处理。例如谱分析、传递函数估计、脉冲响应测量以及滤波、相关分析等。 2.建立结构数学模型。根据已知条件,建立一种描述结构状态及

模态分析实验报告

篇一:模态分析实验报告 模态分析实验报告 姓名:学号:任课教师:实验时间:指导老师:实验地点: 实验1传递函数的测量 一、实验内容 用锤击激振法测量传递函数。 二、实验目的 1) 掌握锤击激振法测量传递函数的方法; 2) 测量激励力和加速度响应的时间记录曲线、力的自功率谱和传递函数; 3) 分析传递函数的各种显示形式(实部、虚部、幅值、对数、相位)及相干函 数; 4) 比较原点传递函数和跨点传递函数的特征; 5) 考察激励点和响应点互换对传递函数的影响; 6) 比较不同材料的力锤锤帽对激励信号的影响; 三、实验仪器和测试系统 1、实验仪器 主要用到的实验仪器有:冲击力锤、加速度传感器,lms lms-scadas ⅲ测试系统,具体型号和参数见表1-1。 仪器名称 型号 序列号 3164 灵敏度 2.25 mv/n 100 mv/g 备注比利时 丹麦 b&k 数据采集和分析系统 lms-scadas ⅲ 2302-10 力锤 加速度传感器 表1-1 实验仪器 2 、测试系统 利用试验测量的激励信号(力锤激励信号)和响应的时间历程信号,运用数字 信号处理技术获得频率响应函数(frequency response function, frf),得到系统的非参数模型。然后利用参数识别方法得到系统的模态参数。测试系统主要完成力锤激励信号及各点响应信号时间历程的同步采集,完成数字信号的处理和参数的识别。 测量分析系统的框图如图1-1所示。测量系统由振动加速度传感器、力锤和比利时lms公司scadas采集前端及modal impact测量分析软件组成。力锤及加速度传感器通过信号线与scadas采集前端相连,振动传感器及力锤为icp型传感器,需要scadas采集前端对其供电。scadas采集相应的信号和进行信号处理(如抗混滤波,a/d转换等),所测信号通过电缆与电脑完成数据通讯。图1-1 测试分析系统框图 四、实验数据采集 1、振动测试实验台架 实验测量的是一段轴,在轴上安装了3个加速度传感器,如图1-2所示,轴由四根弹簧悬挂起来,使得整个测试统的频率很低,基本上不会影响到最终的测试结果。整个测试系统如下图所示:a1 a 测点2测点3测点4 图1-2 测试系统图

模态分析实验报告

模态分析实验报告 姓名: 学号: 任课教师: 实验时间: 指导老师: 实验地点:

实验1 传递函数的测量 一、实验内容 用锤击激振法测量传递函数。 二、实验目的 1)掌握锤击激振法测量传递函数的方法; 2)测量激励力和加速度响应的时间记录曲线、力的自功率谱和传递函数; 3)分析传递函数的各种显示形式(实部、虚部、幅值、对数、相位)及相干函 数; 4)比较原点传递函数和跨点传递函数的特征; 5)考察激励点和响应点互换对传递函数的影响; 6)比较不同材料的力锤锤帽对激励信号的影响; 三、实验仪器和测试系统 1、实验仪器 主要用到的实验仪器有:冲击力锤、加速度传感器,LMS LMS-SCADAS Ⅲ测试系统,具体型号和参数见表1-1。 仪器名称型号序列号灵敏度备注 数据采集和分析系统LMS-SCADAS Ⅲ比利时力锤2302-10 3164 2.25 mV/N 加速度传感器100 mV/g 丹麦B&K 表1-1 实验仪器 2 、测试系统 利用试验测量的激励信号(力锤激励信号)和响应的时间历程信号,运用数字信号处理技术获得频率响应函数(Frequency Response Function, FRF),得到系统的非参数模型。然后利用参数识别方法得到系统的模态参数。测试系统主要完成力锤激励信号及各点响应信号时间历程的同步采集,完成数字信号的处理和参数的识别。 测量分析系统的框图如图1-1所示。测量系统由振动加速度传感器、力锤和比利时LMS公司SCADAS采集前端及Modal Impact测量分析软件组成。力锤及加速度传感器通过信号线与SCADAS采集前端相连,振动传感器及力锤为ICP

机械结构实验模态分析实验报告书

《机械结构实验模态分析》实验报告 开课实验室:汽车结构实验室 2019年月日 学院 姓名 成绩 课程 名称 机械结构实验模态分析 实验项目 名 称 机械结构实验模态分析 指导教师 教师评语 教师签名: 年 月 日 机械结构实验模态分析实验报告 一、实验目的和意义 模态分析技术是近年来在国内外得到迅速发展的一门新兴科学技术,广泛应用于航空、航天、机械制造、建筑、汽车等许多领域,在识别系统的动力学参数、动态优化设计、设备故障诊断等许多方面发挥了日益重要的作用。 本实验采用CCDS-1模态分析微机系统,对图1所示的框架结构进行分析。通过该实验达到如下目的: 212019 1817 16 1514 13121110 987 6 5 4 3 222120 20 202090 9090 90 90909090113 113 113 113 113 113 115 115 115 115 图1 框架结构图 详细了解CCDAS-1模态分析微机系统,并熟练掌握使用本系统的全过程,包括 了解测量点和激振点的选择。 了解模态分析实验采用的仪器,实验的连接、安装和调整。 1、 激励振时各测点力信号和响应信号的测量及利用这些测量信号求取传递函数,并分析影响传递 函数精度的因素。 2、 SSDAS-1系统由各测点识别出系统的模态参数的步骤。 3、 动画显示。 4、 灵敏度分析及含义。 通过CCDAS-1模态分析的全部过程及有关学习,能祥述实验模态的一般步骤。 通过实验和分析,大大提高综合分析能力和动手能力。

CCDAS-1系统模态分析的优缺点讨论并提出改进实验的意见。 二、测试及数据处理框图 加速度传感器 力传感器 脉冲锤 四个点由橡胶绳悬挂 1724 打印机 IBM PC 微型计算机 含AD板 CCMAS-1模态分析软件 双通道低 通滤波器 电荷放大器 电荷放大器 图2 测量及数据处理系统框图 三、实验模态分析的基本原理 对于一个机构系统,其动态特性可用系统的固有频率、阻尼和振型来描述,与模态质量和模态刚度一起通称为机械系统的模态参数。模态参数既可以用有限元的方法对结构进行简化得到,也可以通过激振实验对采集的振动数据进行处理识别得到。通过实验数据求取模态参数的方法就是实验模态分析。只要保证测试仪器的精度、实验条件和数据分析处理的精度就能获得高质量的模态参数。 一个线性系统,若在某一点j 施加激振力j F ,系统各点的振动响应为i X 1,2,...,i n =,系统任意两点的传递函数ij h 之间的关系可用矩阵表示如下: 11112122122212()... 0()...()...()...0n n j n n n nn x h h h x h h h F x h h h ωωωω?????? ???????????? =??? ??????????????? ??????M M M O M (1-1) 可记为:{}{}[]X H F = []H 称为传递函数矩阵。其中的任意元素ij h 可以通过激振实验得到 () () i ij j X h F ωω= ()i X ω,()j F ω分别表示响应i X 与激振力j F 的傅立叶变换。 测量方法是给系统施加一有限带宽频率的激振力(冲击也是一有限带宽激振力),同时测量系统的响应,将力和响应信号进行滤波,A/D 转换并离散采样,进行双通道FFT 变换,计算出激振力j F 与响应i X 之间的传递函数ij h 。 对测量的传递函数进行曲线拟和得到模态参数,一个多自由度系统曲线拟和传递函数的解析式为:* * 1 ()[]n ijk ijk ij k k k r r h S S P S P == - --∑ (1-3)

各种模态分析方法总结与比较

各种模态分析方法总结与比较 一、模态分析 模态分析是计算或试验分析固有频率、阻尼比和模态振型这些模态参数的过程。 模态分析的理论经典定义:将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。坐标变换的变换矩阵为模态矩阵,其每列为模态振型。 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模记分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过 AHA12GAGGAGAGGAFFFFAFAF

模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。 模态分析最终目标是在识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。 AHA12GAGGAGAGGAFFFFAFAF

AHA12GAGGAGAGGAFFFFAFAF 二、各模态分析方法的总结 (一)单自由度法 一般来说,一个系统的动态响应是它的若干阶模态振型的叠加。但是如果假定在给定的频带内只有一个模态是重要的,那么该模态的参数可以单独确定。以这个假定为根据的模态参数识别方法叫做单自由度(SDOF)法n1。在给定的频带范围内,结构的动态特性的时域表达表示近似为: ()[]}{}{T R R t r Q e t h r ψψλ= 2-1 而频域表示则近似为: ()[]}}{ {()[]2ωλωψψωLR UR j Q j h r t r r r -+-= 2-2 单自由度系统是一种很快速的方法,几乎不需要什么计算时间和计算机内存。 这种单自由度的假定只有当系统的各阶模态能够很好解耦时才是正确的。然而实际情况通常并不是这样的,所以就需要用包含若干模态的模型对测得的数据进行近似,同时识别这些参数的模态,就是所谓的多自由度(MDOF)法。 单自由度算法运算速度很快,几乎不需要什么计算和计

机床实验模态分析综述

机床的模态分析方法综述 甄真 (北京信息科技大学机电工程学院,北京100192) 摘要:模态分析是研究机械结构动力特性的一种近代方法,是结构动态设计及设备的故障诊断的重要方法。机床在工作时,由于要承受各种变载荷而产生振动,其精度和寿命会受到影响。因此有必要对机床进行模态分析,了解其动态特性,以便进一步分析和改进。本文概述了模态分析的概念、研究意义及发展历史,介绍了机床模态分析的研究现状, 从理论方法与试验方法两方面指出了其关键技术以及研究发展方向。 关键词:模态分析;动态特性;机床;理论方法;实验方法 Summary of the model analysis method of machine tool ZHEN Zhen (Beijing Information Science & Technology University, Mechanical and Electrical Engineering College, Beijing, 100192) Abstract:Modal analysis is a modern method to study the dynamic characteristics of mechanical structure. It’s an important method in structure dynamic design and fault diagnosis of equipment.Its accuracy and lifetime will be affected due to withstand all kinds of variable load and vibration when the machine tool works.So it is necessary to make modal analysis and to understand the dynamic characteristics for machine tool in order to further analyze and improve. This paper summarizes the concept, significance and history of modal analysis and introduces the research status of model analysis of machine tool. It also points out the key technology and research direction in this field from two aspects of theoretical method and experimental method. Key words:model analysis; dynamic characteristics; machine tool; theoretical method; experimental method 0 引言 模态是指机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。模态分析是一种研究机械结构动力的方法,是系统辨别方法在工程振动领域中的应用。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析法搞清楚了结构物在某一个易受影响的频率范围内各阶主要模态的特性,就可预言结构在此频段内在外部或内部各种振源作用下实际响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法[1]。 模态分析将构件的复杂振动分解为许多简单而独立的振动,并用一系列模态参数来表征的过程。根据线性叠加原理,一个构件的复杂振动是由无数阶模态叠加的结果。在这些模态中。模态分析最终目标是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。模态分析主要分为3类方法:一是,基于计算机仿真的有限元分析法;二是,基于输入(激励)输出(响应)模态试验的试验模态分析法;三是,基于仅有输出(响应)模态试验的运行模态分析法。有限元分析属结构动力学正问题,但受无法准确描述复杂边界条件、结构物理参数和部件连接状态等不确定性因素的限制难以达到很高的精度。第二、三类方法属结构动力学反问题,基于真实结构的模态试验。因而能得到更准确

晶钻模态分析软件系列十标准模态分析(Standard Modal Analysis)

EDM-Modal 模态分析软件的标准模态分析是一套完整的分析流程,包括从FRF数据选择到模态参数识别,再到结果验证和振型动画。 模态实验完成后,所有的FRF数据可用来进行下一步的模态分析。用户也可以从外部导入需要的FRF数据,增加或替换某些FRF信号。编辑完成的FRF 数据列表可导出到本地成为一个已选择集合,也可以导入已选择的集合直接用于分析。这些操作集中在“模态数据选择”模块。所有的FRF数据都能在模块浏览,同时几何模型显示已选择信号的测点,信号窗口分单独显示和集中显示两种方式浏览信号。 单击“模态参数”健,模态辨识过程将被启动。模态指示函数(MIF),包括MMIF,CMIF, RMIF,虚部集总,以及Mag集总,有助于指示重根和高度偶合的根(模态)。 稳态图(Stability Diagram)是模态参数识别的一种迭代方法。在标准模态分析中,我们使用最小二乘复指数法(LSCE)识别出所有极点。在稳态图中可以选择稳定的物理极点(而不是计算极点),使用最小二乘频域法进行用于下一步的振型计算。 计算出的振型结果将被保存并用以进行振型的动画显示。模态置信准则

(MAC)和FRF综合都可用来验证模态参数的正确性。 ★EDM Modal 标准模态分析主要特征如下: ①易用的模态数据选择 ②采用反卷积使信号平滑(仅限OMA模态测试) ③模态指示函数:Multivariate MIF, Complex MIF, Real MIF, Image Sum 自定义需要进行参数辨识的频段 ④稳态图 ⑤提供曲线拟合算法LSCE ⑥模态形状计算的最小二乘频域(LSFD)算法 ⑦可编辑的模态振型表 ⑧模态振型动画自/互MAC计算和显示 ⑨拟合FRF与测量FRF对比输入/输出振型:UFF格式 ★EDM Modal模态支持的功能如下: ①几何模型的创建/编辑/导入/导出/动画。 ②工作变形分析(ODS) ③锤击法模态实验

制动盘模态试验分析

制动盘模态试验分析 作者:上海汇众汽车制造有限公司陈晓鹏 模态分析技术是用于对零部件或工程结构系统进行动力学分析的现代化方法和手段,借此可以解决很多工程实际问题。对零部件进行模态分析有利于优化运动机械的整体性能。以汽车制动盘为例,制动盘的模态决定着车辆在制动过程中的部分振动、噪声性能,并对制动盘的寿命、异常磨损等产生影响,测量并确定制动盘的模态频率与振型是研究并解决车辆制动引起振动与噪声的重要手段。 本文利用LMS公司有关模态测试软件对我公司某车型前制动盘进行比较完整的模态测量后,得出了制动盘的各种模态特性;并利用测试软件对测试方法进行了简短的分析,给出了在仅仅想得到零部件固有频率的试验要求下可以简化几何模型、减少测量次数,从而达到最快得到试件固有频率的目的。 制动盘模态特性及要求 作为高速旋转部件,制动盘具有中心对称特性。对于制动盘制动摩擦面,其振型主要是沿圆周均匀分布的变形(对于矩坐标系,相同θ角的各点位相相同,沿圆周呈波浪分布)及相同r(在矩坐标系中)具有相同形变(幅值与位相均相同)的变形。当与制动系统中其他部件组合后,如果某种激励正好位于某一固有频率下,模态被激发,处于共振情形中的这种自身变形会产生强烈的振动与噪音。前一种模态发生共振的可能性更大。通常,制动盘处于本文后面所提到的0/4模态占优势,在产品设计与开发阶段要特别注意此类模态的特性。 测量与分析 利用LMS TestLab 中的MODAL IMPACT模块可对制动盘进行模态测量。用弹性绳把制动盘悬挂起来,将由试件与软绳所组成的系统振动的固有频率控制在5Hz以下,就能完全满足测试要求。 制动盘具有中心对称轴,以中心轴为Z轴,建立柱坐标系。显然,制动盘除Z轴外的其他两方向的刚度比Z轴方向的刚度要大得多,在常规频段振动主要是沿着Z轴方向发生,因此只测定Z轴方向的加速度值即可。制动盘结构相对较小,质量不大,因此在粘贴传感器

悬臂梁地振动模态实验报告材料

实验 等截面悬臂梁模态测试实验 一、 实验目的 1. 熟悉模态分析原理; 2. 掌握悬臂梁的测试过程。 二、 实验原理 1. 模态分析基本原理 理论上,连续弹性体梁有无限多个自由度,因此需要无限多个连续模型才能描述,但是在实际操作中可以将连续弹性体梁分为n 个集中质量来研究。简化之后的模型中有n 个集中质量,一般就有n 个自由度,系统的运动方程是n 个二阶互相耦合(联立)的常微分方程。这就是说梁可以用一种“模态模型”来描述其动态响应。 模态分析的实质,是一种坐标转换。其目的在于把原在物理坐标系统中描述的响应向量,放到所谓“模态坐标系统”中来描述。这一坐标系统的每一个基向量恰是振动系统的一个特征向量。也就是说在这个坐标下,振动方程是一组互无耦合的方程,分别描述振动系统的各阶振动形式,每个坐标均可单独求解,得到系统的某阶结构参数。 多次锤击各点,通过仪器记录传感器与力锤的信号,计算得到第i个激励点与定响应点(例如点2)之间的传递函数 ω ,从而得到频率响应函数矩阵中的一行 频响函数的任一行包含所有模态参数,而该行的r 阶模态的频响函数 的比值,即为r 阶模态的振型。 2. 激励方法 为进行模态分析,首先要测得激振力及相应的响应信号,进行传递函数分析。传递函数分析实质上就是机械导纳,i 和j 两点之间的传递函数表示 [] ∑==N r iN r i r i r H H H 1 21 ... [] Nr r r N r r r r ir k c j m ???ωω? (2112) ∑ =++-=[]{}[] T r ir N r r iN i i Y H H H ??∑==1 21 ...

模态分析与振动测试技术

模态分析与振动测试技术 固体力学 S0902015 李鹏飞

模态分析与振动测试技术 模态分析的理论基础是在机械阻抗与导纳的概念上发展起来的。近二十多年来,模态分析理论吸取了振动理论、信号分析、数据处理数理统计以及自动控制理论中的有关“营养”,结合自身内容的发展,形成了一套独特的理论,为模态分析及参数识别技术的发展奠定了理论基础。 一、单自由度模态分析 单自由度系统是最基本的振动系统。虽然实际结构均为多自由度系统,但单自由度系统的分析能揭示振动系统很多基本的特性。由于他简单,因此常常作为振动分析的基础。从单自由度系统的分析出发分析系统的频响函数,将使我们便于分析和深刻理解他的基本特性。对于线性的多自由度系统常常可以看成为许多单自由度系统特性的线性叠加。 二、多自由度系统模态分析 对于多自由度系统频响函数数学表达式有很多种,一般可以根据一个实际系统来讨论,给出一种形式;也可根据问题的要求来讨论,给出其他不同的形式。为了课程的紧凑,直接联系本课程的模态分析问题,我们就直接讨论多自由度系统通过频响函数表达形式的模态参数和模态分析。即多自由度系统模态参数与模态分析。 多自由度系统模态分析将主要用矩阵分析方法来进行。 我们以N个自由度的比例阻尼系统作为讨论的对象。然后将所分析的结果推广到其他阻尼形式的系统。 设所研究的系统为N个自由度的定常系统。其运动微分方程为: (2—1) ++= M X CX KX F ?)阶式中M,C,K分别为系统的质量、阻尼及刚度矩阵。均为(N N 矩阵。并且M及K矩阵为实系数对称矩阵,而其中质量矩阵M是正定矩阵,刚度矩阵K对于无刚体运动的约束系统是正定的;对于有刚体运动的自由系统则是半正定的。当阻尼为比例阻尼时,阻尼矩阵C为对称矩阵(上述是解耦条件)。 N?阶矩阵。即 X及F分别为系统的位移响应向量及激励力向量,均为1

随机振动试验报告

随机振动试验报告 高等桥梁结构试验报告 讲课老师: 张启伟(教授) 姓名: 史先飞 学号: 1232627 试验报告 1 试验目的 1.过试验进一步加深对结构模态分析理论知识的理解; 2.熟悉随机振动试验常用仪器的性能与操作方法; 3.复习和巩固随机振动数据测量和分析中有关基本概念; 4.掌握通过多点激振、单点拾振的方法,利用DASP2005软件进行模态分析的基本操作步骤。

2 试验仪器和设备 1. ZJY-601振动与控制教学实验仪系统(ZJY-601A型振动教学实验仪、激励锤、YJ9-A型压电型加速度传感器等)。 2. DASP 16通道接口箱。 3. 装有“DASP2005智能数据采集和信号分析系统”软件的PC机。 4. 有关设备之间的联接电缆。 3 试验原理 3.1模态叠加原理 N自由度线性振动系统的运动微分方程是一组耦合的方程组: 引入模态矩阵Φ和模态坐标(广义坐标或主坐标)q,使X= Φq。 如果阻尼矩阵能对角化,方程组即可解耦: 解耦后的第i个方程为: 可见,采用固有振型描述振动的模态坐标后,N自由度线性振动系统的振动响应可以表示为N阶模态响应的叠加。 3.2实模态理论 实模态理论建立在无阻尼的假设基础上。在实模态理论中,模态频率就是系统的无阻 ,尼模态固有频率错误~未找到引用源。;而固有振型矩阵中的各元素都是实数,它们之间i 的相位差是0?或180?。 系统在P点激励,l点测量的频响函数为:

K,,式中,称为频率比,,为模态固有频率。当,则: ,,,,,/,,,iiiiiMi 取频响函数矩阵的一列或一行,如第P列,就可确定振动系统的全部动力特性(模态参数)。 3.3伪实模态理论 某些有阻尼振动系统有时会出现与实模态一样的实数振型,而非复数振型,但其模态 2,,,,,1固有频率为,具有这种性质的振动系统的模态称为伪实模态。伪实模态理diii 论仅适应于阻尼矩阵可解耦,即可采用固有振型矩阵正交化模态称为伪实模态。在伪实模态下,各测点的相位差都是0?或180?。 伪实模态理论仅适应于阻尼矩阵可解耦,即可采用固有振型矩阵正交化的情况。一般情况下,阻尼矩阵对角化的充要条件为: 上式也是有阻尼振动系统方程解耦的充要条件。 总之,H(ω)建立了模态参数与频响函数的关系。因此,利用实验测出的H(ω) 值,即可计算出系统的模态参数。根据频响函数的互易定理及模态理论,只需 H(ω)矩阵的一列(或一行)即可求出全部模态参数。

模态分析在工程中的应用概述

模态分析在工程中的应用概述 学号:XXXXXX 姓名:XXX 模态分析是研究结构动力特性的一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模态分析(FEA);如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为实验模态分析(EMA)。通常,模态分析都是指实验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一个易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。 模态分析所寻求的最终目标在于改变机械结构系统由经验与类比和静态设计为动态、优化设计方法;在于借助试验与理论分析相结合的方法,对已有结构系统进行识别、分析和评价,从中找出结构系统在动态性能上所存在的问题,确保工程结构能安全可靠及有效地工作;在于根据现场测试的数据来这段及预报振动故障和进行噪声控制。通过这些方法为老产品的改进和新产品的设计提供可靠的依据。[1] 模态分析是一项综合性技术,可以应用于各个工程部门及各种工程结构。机器、建筑物、航天航空飞行器、船舶、汽车等的实际振动千姿百态、瞬息万变。模态分析提供了研究各种实际结构振动的一条有效途径。首先,将结构物在静止状态下进行人为激振,通过测量激振力与响应并进行双通道快速Fourier 变换(FFT)分析,得到任意两点之间的机械导纳函数(传递函数)。用模态分析理论通过对实验导纳函数的曲线拟合,识别出结构物体的模态参数,从而建立起结构物体的模态模型。根据模态叠加原理,在已知各种载荷时间历程的情况下,就可以预言结构物体的实际振动的响应历程或响应谱。[2] 模态分析技术的应用可以归纳为以下几个方面:评价现有结构系统的动态特性,在新产品设计中进行结构动态特性的预估及优化设计,诊断及预报机构系统的故障,控制结构的辐射噪声,识别结构系统的载荷。[1] 下面对近几年国内模态分析在工程中各个方面的应用分别进行概述。 1.评价现有结构系统的动态特性 在处理结构的振动问题时,必须对其动态特性有全面的了解,而其动态特性

模态分析实验报告

研究生学院 机械工程专业硕士结课作业 课程题目:机械结构模态分析实验 指导老师: 姓名: 学号: 2015年08月23日

一、概述 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模态分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。 振动模态是弹性结构固有的、整体的特性。通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内的各阶主要模态的特性,就可以预言结构在此频段内在外部或内部各种振源作用下产生的实际振动响应。因此,模态分析是结构动态设计及设备故障诊断的重要方法。 机器、建筑物、航天航空飞行器、船舶、汽车等的实际振动模态各不相同。模态分析提供了研究各类振动特性的一条有效途径。首先,将结构物在静止状态下进行人为激振,通过测量激振力与响应并进行双通道快速傅里叶变换(FFT)分析,得到任意两点之间的机械导纳函数(传递函数)。用模态分析理论通过对试验导纳函数的曲线拟合,识别出结构物的模态参数,从而建立起结构物的模态模型。根据模态叠加原理,在已知各种载荷时间历程的情况下,就可以预言结构物的实际振动的响应历程或响应谱。 模态分析的经典定义:将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。坐标变换的变换矩阵为模态矩阵,其每列为模态振型。模态分析的最终目标是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。 模态分析技术的应用可归结为以下几个方面: 1) 评价现有结构系统的动态特性; 2) 在新产品设计中进行结构动态特性的预估和优化设计; 3) 诊断及预报结构系统的故障; 4) 控制结构的辐射噪声; 5) 识别结构系统的载荷 二、实验的基本过程 1、动态数据的采集及频响函数或脉冲响应函数分析 (1)激励方法。试验模态分析是人为地对结构物施加一定动态激励,采集各点的振动响应信号及激振力信号,根据力及响应信号,用各种参数识别方法获取模态参数。激励方法不同,相应识别方法也不同。目前主要由单输入单输出(SISO)、单输入多输出(SIMO)多输入多输出(MIMO)三种方法。以输入力的信号特征还可分为正弦慢扫描、正弦快扫描、稳态随机(包括白噪声、宽带噪声或伪随机)、瞬态激励(包括随机脉冲激励)等。 (2)数据采集。SISO方法要求同时高速采集输入与输出两个点的信号,用不断移动激励点位置或响应点位置的办法取得振形数据。SIMO及MIMO的方法则要求大量通道数据的高速并行采集,因此要求大量的振动测量传感器或激振器,试验成本较高。 (3)时域或频域信号处理。例如谱分析、传递函数估计、脉冲响应测量以及滤波、相关分析等。

盘式制动器仿真分析

《制动器的动力学仿真》 专业:机械设计制造 学号: 姓名: 2015年1月12日

目录 第一章、概述 (1) 1.1 制动器的分类 (1) 1.2 国内外针对盘式制动器的研究 (2) 1.2.1 国外研究现状 (2) 1.2.2 国内研究现状 (2) 第二章基于ADAMS 建模的理论基础 (3) 2.1 系统动力学 (3) 第三章动力学仿真 (3) 3.1 刚柔体混合动力学模型 (3) 3.2 改变弹簧弹性系数的仿真分析 (6) 3.3 结果分析 (9)

第一章、概述 1.1 制动器的分类 制动器即为刹车,通常称之为刹车、闸,它能使机械系统中的执行构件运动运动或减速慢行。其重要装置主要有传动装置、制动构件和操纵装置以及动力能源装置等。并且某些制动器存在有自隙调整机构。制动器可分为行车制动器和驻车制动器,即分别为脚刹和手刹,其中脚刹一般都用于行车过程中,但如果制动失效时,我们需要使用手刹。但车在停稳时,需使用手刹的方式以防止车向前滑行或者向后滑动。 制动器的分类方法还有很多: 例如制动器按接触方式能够被分成非摩擦式与摩擦式这两大类。其中,前者按结构形式分类,主要可以分成磁涡流式制动器(利用励磁电流的改变来使制动力矩大小得以改变)、磁粉式制动器(磁化磁粉产生的剪力进行制动)与水涡流式制动器等[3];还能够根据制动件的结构的组成形式进行分类,又能够把它分为外抱块式制动器、内张蹄式制动器、带式制动器、盘式制动器(碟刹)等;按制动件的工作状态一般可以分为常处于闭合制动器(只有施加外力才能把使制动不工作,正常为紧闸状态)和常处于张开状态的制动器(只有在受到外力时才可会正常工作即具有制动作用,正常为松闸状态);按操纵的形式进行分类时,又可以分为人力、液压、气压和电磁力操纵的制动器;按制动系统的作用进行分类,又可以把它分为驻车与行车这两种类型的制动系统以及应急、辅助类型的制动系统等。而当前各辆的汽车上都一定备置脚刹同手刹;按制动操纵的能源装置进行分类,可以把它分为人力、动力和伺服类型等;按制动能量的传输方式分类,可以分为机械式、液压式、气压式、电磁式及组合式(同时含量中已上两种供能方式)等。

有限元模态分析报告实例

ANSYS 模态分析实例 5.2ANSYS 建模 该课题研究的弹性联轴器造型如下图 5.2 : 图勺2弹性联轴器 1-联接柴油机大铁圈;茁橡胶膜片;3-联接电动机小铁圈 在ANSYS 中建立模型,先通过建立如 5.2所式二分之一的剖面图,通过绕中轴线 旋转建立模拟模型如下图 5.3资料个人收集整理,勿做商业用途 _.:q: 4 1(. 片三 _」」_止

5.3单元选择和网格划分 由于模型是三给实体模型,故考虑选择三维单元,模型中没有圆弧结构,用六面体单元划分网格不会产生不规则或者畸变的单元,使分析不能进行下去,所以采用六面体单元。经比较分析,决定采用六面体八结点单元SOLID185,用自由划分的方式划 分模型实体。课题主要研究对象是联轴器中橡胶元件,在自由划分的时候,中间件2 网格选择最小的网格,smart size设置为1,两端铁圈的smart size设置为6,网格划分 后模型如图5.4。资料个人收集整理,勿做商业用途 5.4边界约束 建立柱坐标系R- &Z,如5-5所示,R为径间,Z为轴向

选择联轴器两个铁圈的端面,对其面上的节点进行坐标变换,变换到如图5.5所示的柱坐标系,约束节点R,Z方向的自由度,即节点只能绕Z轴线转资料个人收集整理,勿做商业用途 5.5联轴器模态分析 模态分析用于确定设计中的结构或者机器部件振动特性(固有频率和振型),也是瞬态变动力学分析和谐响应分析和谱分析的起点。资料个人收集整理,勿做商业用途在模态分析中要注意:ANSYS模态分析是线性分析,任何非线性因素都会被忽略。因此在设置中间件2的材料属性时,选用elastic材料。资料个人收集整理,勿做商业用途 5.5.1联轴器材料的设置 材料参数设置如下表5-1 : 表5.1材料参数设置 表5.1材料参数设置 5.5.2联轴器振动特性的有限元计算结果及说明 求解方法选择Damped方法,频率计算结果如表5-2,振型结果为图5.6: 表5.2固有频率

制动盘模态试验分析

制动盘模态试验分析 陈晓鹏 上海汇众汽车制造有限公司研究开发中心 上海 200122 〔摘要〕本文叙述了利用LMS TestLab模态测试软件测取某轿车制动盘的各种模态,并对其模态进行了简单的分析。探讨了利用更简单的几何模型及对部分测量点进行激励时对模态测量的影响,指出如果只要求测定固有频率而不关心具体的振型,可以采用简单的几何模型及进行部分点的测试。 关键词:制动盘 模态 试验 key words: brake disc, modal, test 1 前 言 汽车工业的发展对零部件的开发也提出了越来越高的要求。制动盘的模态决定着车辆在制动过程中的部分振动、噪声性能,并对制动盘的寿命、异常磨损等产生影响。 模态分析技术是用于对零部件或工程结构系统进行动力学分析的现代化方法和手段,借此可以解决很多工程实际问题。测量并确定制动盘的模态频率与振型是研究并解决车辆制动引起振动与噪声的重要手段。 本文利用LMS公司有关模态测试软件对某车型的前制动盘进行比较完整的模态测量后,得出了制动盘的各种模态特性;并利用测试软件对测试方法进行了简短的分析,给出了在仅仅想得到零部件的固有频率的试验要求下可以简化几何模型、减少测量次数,从而达到最快得到试件的固有频率的目的。 2 制动盘模态特性及要求 作为高速旋转部件,制动盘具有中心对称特性。对于制动盘制动摩擦面,其振型主要是沿圆周均匀分布的变形(对于矩坐标系,相同θ角的各点位相相同,沿圆周呈波浪分布)及相同 r(在矩坐标系中)具有相同形变(幅值与位相均相同)的变形。当与制动系统中其它部件组合后,如果某种激励正好位于某一固有频率下,模态被激发,处于共振情形中的这种自身变形会产生强烈的振动与噪音。前一种模态发生共振的可能性更大。通常,制动盘处于本文后面所提到的0/4模态占优势,在产品设计与开发阶段要特别注意此类模态的特性。

盘式制动器模态分析与阻尼测试

第57卷 第3期Vol. 57 No. 3 2019年3月 March 2019农业装备与车辆工程 AGRICULTURAL EQUIPMENT & VEHICLE ENGINEERING doi:10.3969/j.issn.1673-3142.2019.03.014 盘式制动器模态分析与阻尼测试 张雪刚,曾康 (200093 上海市 上海理工大学 机械工程学院) [摘要] 基于有限元理论和试验模态方法,对盘式制动器进行模态分析。通过CATIA软件建立制动盘的三 维几何模型,之后导入到有限元软件ABAQUS中进行模态分析,得到制动盘的固有频率和模态振型。利 用DASP和RTE两种设备对制动盘进行模态试验,得到制动盘的固有频率,并与有限元仿真的结果做对比。 结果表明,利用3种方法测得的固有频率相差很小,误差在允许范围内,试验结果和仿真结果可以接受。 最后,利用DASP和RTE两种设备测量制动盘的阻尼并做对比,所得的研究成果为进一步提高盘式制动 器制动性能提供了可靠试验依据。 [关键词] 盘式制动器;模态分析;固有频率;阻尼;ABAQUS;DASP;RTE [中图分类号] U463.51 [文献标识码] A [文章编号] 1673-3142(2019)03-0062-05 Modal Analysis and Damping Test of Disc Brake Zhang Xuegang, Zeng Kang (School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China) [Abstract] Based on finite element theory and experimental modal method, modal analysis of disc brakes is carried out. The 3D geometric model of the brake disc is established by CATIA software. Then, import the model into the finite element software ABAQUS for the modal analysis to obtain the natural frequency and mode shape of the brake disc. At the same time, the modal test of the brake disc is carried out by using two kinds of equipment, DASP and RTE. The natural frequency of the brake disc is obtained and compared with the result of the finite element simulation. The results show that the difference between the natural frequencies measured by the three methods is very small, the error is within the allowable range, and the experimental results and the simulation results can be accepted. After that, the damping of the brake disc is measured by using two kinds of DASP and RTE equipment, and the results obtained provide a reliable experimental basis for further improving the brake performance of disc brake. [Key words] brake disc; modal analysis; natural frequency; damping; ABAQUS; DASP; RTE 0 引言 盘式制动器具有结构简单、体积小、制动力矩大、操作维护方便等特点,是目前常用的一种安全制动装置,被广泛应用于车辆、矿井提升机、带式输送机等各个领域。制动盘在制动过程中产生制动噪声,制动噪声的频率范围较宽,通常可以分为1 kHz以内的低频噪声和1 kHz以上的高频噪声。低频噪声主要包括groan和judder,高频噪声主要包括squeal,而实际中发生较多的噪声问题是频率在1 kHz以上的高频制动尖叫声[1~2]。制动噪声长期以来一直困扰着汽车制造商,消除和限制制动噪声是一个迫切需要解决的课题。 制动噪声发生机理和影响因素比较复杂,20世纪80年代中期以来,许多学者从制动器结构设计角度研究制动尖叫的发生机理。文献[3-4]借助于有限元和模态综合技术,建立了盘式制动器制动尖叫的摩擦耦合模型,文献[4]的试验表明,制动尖叫的频率主要集中在1~10 kHz之间。文献[5]针对制动噪声,进行了盘式制动器零部件实模态分析,认为制动器各零部件动力学参数匹配不当是引起制动尖叫的主要因素,并通过建立制动器的动力学模型,从理论上对制动尖叫进行定性定量的分析。本文基于有限元理论和试验模态方法,对制动系统中的关键部件制动盘进行模态分析,以了解制动噪声的动态特性,为制动盘设计和结构优化提供一些有意义的依据。 1 模态分析基本理论 模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型,通 收稿日期: 2018-03-08 修回日期: 2018-03-16

相关文档
最新文档