MSTP配置要点概述1
MSTP协议配置
步骤3 exit 退出VLAN配置模式
使能MSTP
使能MSTP的配置步骤
步骤1 config spanning-tree 进入spanning-tree配置模式
步骤2 Spanning-tree mode mst 配置mst工作模式
1.1.9 设置MSTP使能
接口配置
MSTP在只二层接口上起作用,包括普通以太网和Trunk端口,以太网和Trunk缺省都为二层接口。当用户希望使能某以太网或trunk的二层转发功能,以使其参与生成树计算时,可以进行以下配置:
MSTP在二层接口上的配置步骤
步骤1 interface ethernet 进入以太网接口
1.1.7 设置端口non-stp特性
MSTP可以将某些端口设置为不参与协议计算的端口,其方法是设置non-stp属性。
non-stp属性配置步骤
步骤1 config spanning-tree 进入spanning-tree配置模式并配置生成树模式
步骤2 spanning-tree port [none-stp] [yes|no] {}*1 配置端口是否参加STP运算,端口不参加STP运算后,处于Forward状态。
Maximum-age:报文最大的生存周期;
Max-hops:MST域内报文的最大生存周期。
下面说明MST模式接口的时间参数配置:
设置时间参数配置步骤
步骤1 config spanning-tree 进入spanning-tree配置模式
步骤2 Spanning-tree mode mst 配置mst工作模式
总结mstp的功能及其配置步骤
MSTP(多生成树协议)的主要功能是将一个交换网络划分成多个域,每个域内形成多棵生成树,生成树之间彼此独立,实现不同VLAN流量的分离,达到网络负载均衡的目的。
它解决了STP(生成树协议)的各种问题,如初始化慢、直连故障需要等待30秒、非直连需要等待50秒、拓扑变化处理机制复杂等。
MSTP的配置步骤如下:
1. 给交换设备配置MSTP的工作模式、配置域并激活。
2. 启动MSTP,MSTP开始进行生成树计算,将网络修剪成树状,破除环路。
3. 若网络规划者需要人为干预生成树计算的结果,可以采取以下方式:
* 手动配置指定根桥和备份根桥设备。
* 配置交换设备在指定生成树实例中的优先级数值:数值越小,交换设备在该生成树实例中的优先级越高,成为根桥的可能性越大;数值越大,交换设备在该生成树实例中的优先级越低,成为根桥的可能性越小。
* 配置端口在指定生成树实例中的路径开销数值:在同一种计算方法下,数值越小,端口在该生成树实例中到根桥的路径开销越小,
成为根端口的可能性就越大;数值越大,端口在该生成树实例中到根桥的路径开销越大,成为根端口的可能性越小。
* 配置端口在指定生成树实例中的优先级数值:数值越小,端口在该生成树实例中成为指定端口的可能性就越大;数值越大,端口在该生成树实例中成为指定端口的可能性越小。
以上信息仅供参考,建议咨询专业人士获取更准确的信息。
MSTP的配置
课程名称华为HCIA实验课程实验成绩实验名称MSTP配置学号姓名班级日期10.30实验目的:1.通过MSTP的配置了解多实例MSTP的特点:可以通过vlan和instance之间的绑定,让接入交换机的两条上行链路在正常的情况下同时承载业务,实现负载分担。
、2.当主用上行链路故障时,stp会进行收敛,把备用链路从阻塞端口变为root端口来转发数据,从而恢复业务。
3.当规划的主用链路恢复后,会根据cost值重新选路,恢复规划的主用链路进行业务数据转发。
实验平台:ENSP一、实验任务能够完善的配置各个交换机上MSTP,让MSTP收敛后,SWC上的一个上行端口在相应的MSTI上是阻塞的,达到拆环。
当端口状态发生变化后,stp进行收敛,查看链路是否切换。
二、网络规划MSTI1:instance 1对应的是vlan 10MSTI2:instance 2对应的是vlan 20SWA是instance 1的根桥,instance 2的备份根桥SWB是instance 2的根桥,instance 1的备份根桥所有接PC和路由器的端口设置为边缘端口增加备用链路的cost值为20000三、网络结构图如下所示8,将主用链路shutdown后,查看SWC的stp收敛情况可以看到实例1和实例2都从Ethernet0/0/4转发数据,完成了stp收敛以及达到了SWC上行链路被保护的目的。
同时将链路恢复,在Eethernet0/0/3下面输入undo shutdown即可。
然后把instance 2的主用链路shutdow,查看一下stp的收敛情况。
9,当退出ensp时,点击保存。
MSTP配置要点
4、设备缺省开启TC-BPDU 攻击保护功能。
பைடு நூலகம்
5、如果上游设备为第三方设备,下游设备为H3C设备,则建议在下游设备根端口开启No Agreement Check 功能。
#配置端口的优先级 stp [ instance instance-id ] port priority priority 缺省情况下,设备所有以太网端口的优先级为128
的配置生效,从而减少对网络的冲击;而关闭摘要侦听功能时,只需全局关闭即可,不必逐个
端口关闭。
1、配置端口优先级,指定根端口:
端口优先级是确定该端口是否会被选为根端口的重要依据,同等条件下优先级高的端口将被选为根
端口。在支持MSTP 的设备上,端口可以在不同的生成树实例中拥有不同的优先级,同一端口可以
1、对于接入层设备,接入端口一般直接与用户终端(如PC)或文件服务器相连,此时接入端口被设置:边缘端口。另外接入设备系统视图开启stp bpdu-protection功能。
2、指定核心设备为根桥、备份桥,同时请在核心设备的指定端口上进行如下配置:stp root-protection。
3、在核心设备的根端口和Alternate 端口上进行如下配置:stp loop-protection。
在不同的生成树实例中担任不同的角色,从而使不同VLAN 的数据沿不同的物理路径传播,实现按
VLAN 进行负载分担的功能。用户可以根据组网的实际需要来设置端口的优先级。
2、配置端口的路径开销:
路径开销(Path Cost)是与端口相连的链路速率相关的参数。在支持MSTP 的设备上,端口在不
[Sysname-GigabitEthernet1/0/1] stp instance 2 cost 200
MSTP生成树基本原理及配置总结
MSTP生成树MSTP 基本原理将多个vlan关联(映射)到一个实例(instance),默认已存在实例0(包含所有vlan),通常自定义实例1和2,不同实例的根不相同,可负载均衡,具备RSTP的快速收敛。
通过MSTP把一个交换网络划分成多个域,每个域内形成多棵生成树,生成树之间彼此独立。
每棵生成树叫做一个多生成树实例MSTI(Multiple Spanning Tree Instance),每个域叫做一个MST域(MST Region:Multiple Spanning Tree Region)。
MST regions(区域):以下参数相同的switch就在同一个区域①名称:每个域有一个唯一名称;②修订号:暂保留,默认为0;③配置摘要:vlan映射表(关联表)。
实现MST:在BID中加入system ID表示实例号并将其加入优先级域根:域根(Regional Root)分为IST(Internal Spanning Tree)域根和MSTI域根。
主桥:(Master Bridge)也就是IST Master,域内距离总根最近的交换设备。
公共生成树:CST(Common Spanning Tree)连接交换网络内所有MST域的一棵生成树。
内部生成树:IST(Internal Spanning Tree)是各MST域内的一棵生成树。
公共和内部生成树:CIST是通过STP或RSTP协议计算生成的,连接一个交换网络内所有交换设备的单生成树。
构成单生成树:SST(Single Spanning Tree)有两种情况:运行STP或RSTP的交换设备只能属于一个生成树。
MST域中只有一个交换设备,这个交换设备构成单生成树。
端口角色:根端口、指定端口、Alternate端口、Backup端口、边缘端口、Master端口和域边缘端口。
MSTP 基本配置实验主链路配置为Trunk 并放行所有VLAN,将SWA作为vlan 2 to vlan 10 的主根,SWB 为备份根;SWB作为vlan 11 to 20 的主根,SWA为备份根。
MSTP配置
Cisco MSTP配置(多生成树)一、什么是MSTP当前和STP相关的协议有:IEEE 802.1D(STP),802.1W(RSTP),802.1(MSTP)。
其中802.1D是最早关于STP的标准。
RSTP(Rapid Spanning Tree Protocol)是STP 的扩展,其主要特点是增加了端口状态快速切换的机制,能够实现网络拓扑的快速转换。
MSTP(Multiple Spanning Tree Protocol)提出了多生成树的概念,可以把不同的vlan 映射到不同的生成树,从而达到网络负载均衡的目的。
Configuring IEEE 802.1s MSTRelease 12.1(13)E and later releases support MST. These sections describe how to configure MST:Enabling MST (1)Displaying MST Configurations (4)Configuring MST Instance Parameters(参数) (8)Configuring MST Instance Port Parameters (10)Restarting Protocol Migration (11)Enabling MSTTo enable and configure MST on the switch, perform these tasks in privileged mode:These examples show how to enable MST:Router# show spanning-tree mst configuration% Switch is not in mst modeName []Revision 0Instance Vlans mapped----------------------------------------------------------------------------- 0 1-4094-------------------------------------------------------------------------------Router# configure terminalEnter configuration commands, one per line. End with CNTL/Z.Router(config)# spanning-tree mode mstRouter(config)# spanning-tree mst configurationRouter(config-mst)# show currentCurrent MST configurationName []Revision 0Instance Vlans mapped----------------------------------------------------------------------------- 0 1-4094-------------------------------------------------------------------------------Router(config-mst)# name ciscoRouter(config-mst)# revision 2Router(config-mst)# instance 1 vlan 1Router(config-mst)# instance 2 vlan 1-1000Router(config-mst)# show pendingPending MST configurationName [cisco]Revision 2Instance Vlans mapped----------------------------------------------------------------------------- 0 1001-40942 1-1000-------------------------------------------------------------------------------Router(config-mst)# no instance 2Router(config-mst)# show pendingPending MST configurationName [cisco]Revision 2Instance Vlans mapped----------------------------------------------------------------------------- 0 1-4094-------------------------------------------------------------------------------Router(config-mst)# instance 1 vlan 2000-3000Router(config-mst)# no instance 1 vlan 2500Router(config-mst)# show pendingPending MST configurationName [cisco]Revision 2Instance Vlans mapped-----------------------------------------------------------------------------0 1-1999,2500,3001-40941 2000-2499,2501-3000-------------------------------------------------------------------------------Router(config)# exitRouter(config)# no spanning-tree mst configurationRouter(config)# do show spanning-tree mst configurationName []Revision 0Instance Vlans mapped----------------------------------------------------------------------------- 0 1-4094-------------------------------------------------------------------------------Displaying MST ConfigurationsTo display MST configurations, perform these tasks in MST mode:These examples show how to display spanning tree VLAN configurations in MST mode:Router(config)# spanning-tree mst configurationRouter(config-mst)# instance 1 vlan 1-10Router(config-mst)# name ciscoRouter(config-mst)# revision 1Router(config-mst)# ^ZRouter# show spanning-tree mst configurationName [cisco]Revision 1Instance Vlans mapped-----------------------------------------------------------------------------0 11-40941 1-10-------------------------------------------------------------------------------Router# show spanning-tree mst###### MST00 vlans mapped: 11-4094Bridge address 00d0.00b8.1400 priority 32768 (32768 sysid 0) Root address 00d0.004a.3c1c priority 32768 (32768 sysid 0) port Fa4/48 path cost 203100IST master this switchOperational hello time 2, forward delay 15, max age 20, max hops 20 Configured hello time 2, forward delay 15, max age 20, max hops 20Interface Role Sts Cost Prio.Nbr Status---------------- ---- --- --------- ----------------------------------------Fa4/4 Back BLK 1000 160.196 P2pFa4/5 Desg FWD 200000 128.197 P2pFa4/48 Root FWD 200000 128.240 P2p Bound(STP)###### MST01 vlans mapped: 1-10Bridge address 00d0.00b8.1400 priority 32769 (32768 sysid 1) Root this switch for MST01Interface Role Sts Cost Prio.Nbr Status---------------- ---- --- --------- ----------------------------------------Fa4/4 Back BLK 1000 160.196 P2pFa4/5 Desg FWD 200000 128.197 P2pFa4/48 Boun FWD 200000 128.240 P2p Bound(STP)Router# show spanning-tree mst 1###### MST01 vlans mapped: 1-10Bridge address 00d0.00b8.1400 priority 32769 (32768 sysid 1) Root this switch for MST01Interface Role Sts Cost Prio.Nbr Status---------------- ---- --- --------- ----------------------------------------Fa4/4 Back BLK 1000 160.196 P2pFa4/5 Desg FWD 200000 128.197 P2pFa4/48 Boun FWD 200000 128.240 P2p Bound(STP)Router# show spanning-tree mst interface fastEthernet 4/4FastEthernet4/4 of MST00 is backup blockingEdge port:no (default) port guard :none (default)Link type:point-to-point (auto) bpdu filter:disable (default)Boundary :internal bpdu guard :disable (default)Bpdus sent 2, received 368Instance Role Sts Cost Prio.Nbr Vlans mapped-------- ---- --- --------- -------- -------------------------------0 Back BLK 1000 160.196 11-40941 Back BLK 1000 160.196 1-10Router# show spanning-tree mst 1 interface fastEthernet 4/4FastEthernet4/4 of MST01 is backup blockingEdge port:no (default) port guard :none (default)Link type:point-to-point (auto) bpdu filter:disable (default)Boundary :internal bpdu guard :disable (default)Bpdus (MRecords) sent 2, received 364Instance Role Sts Cost Prio.Nbr Vlans mapped-------- ---- --- --------- -------- ------------------------------- 1 Back BLK 1000 160.196 1-10Router# show spanning-tree mst 1 detail###### MST01 vlans mapped: 1-10Bridge address 00d0.00b8.1400 priority 32769 (32768 sysid 1) Root this switch for MST01FastEthernet4/4 of MST01 is backup blockingPort info port id 160.196 priority 160 cost 1000Designated root address 00d0.00b8.1400 priority 32769 cost 0Designated bridge address 00d0.00b8.1400 priority 32769 port id128.197Timers:message expires in 5 sec, forward delay 0, forward transitions 0Bpdus (MRecords) sent 123, received 1188FastEthernet4/5 of MST01 is designated forwardingPort info port id 128.197 priority 128 cost 200000Designated root address 00d0.00b8.1400 priority 32769 cost 0Designated bridge address 00d0.00b8.1400 priority 32769 port id128.197Timers:message expires in 0 sec, forward delay 0, forward transitions 1Bpdus (MRecords) sent 1188, received 123FastEthernet4/48 of MST01 is boundary forwardingPort info port id 128.240 priority 128 cost 200000Designated root address 00d0.00b8.1400 priority 32769 cost 0Designated bridge address 00d0.00b8.1400 priority 32769 port id128.240Timers:message expires in 0 sec, forward delay 0, forward transitions 1Bpdus (MRecords) sent 78, received 0Router# show spanning-tree vlan 10MST01Spanning tree enabled protocol mstpRoot ID Priority 32769Address 00d0.00b8.1400This bridge is the rootHello Time 2 sec Max Age 20 sec Forward Delay 15 secBridge ID Priority 32769 (priority 32768 sys-id-ext 1)Address 00d0.00b8.1400Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec Interface Role Sts Cost Prio.Nbr Status---------------- ---- --- --------- ----------------------------------------Fa4/4 Back BLK 1000 160.196 P2pFa4/5 Desg FWD 200000 128.197 P2pRouter# show spanning-tree summaryRoot bridge for:MST01EtherChannel misconfiguration guard is enabledExtended system ID is enabledPortfast is disabled by defaultPortFast BPDU Guard is disabled by defaultPortfast BPDU Filter is disabled by defaultLoopguard is disabled by defaultUplinkFast is disabledBackboneFast is disabledPathcost method used is longName Blocking Listening Learning Forwarding STPActive---------------------- -------- --------- -------- --------------------MST00 1 0 0 2 3 MST01 1 0 0 2 3 ---------------------- -------- --------- -------- --------------------2 msts 2 0 0 4 6 Router#Configuring MST Instance Parameters(参数)To configure MST instance parameters, perform these tasks:This example shows how to configure MST instance parameters:Router(config)# spanning-tree mst 1 priority ?<0-61440> bridge priority in increments of 4096Router(config)# spanning-tree mst 1 priority 1% Bridge Priority must be in increments of 4096.% Allowed values are:0 4096 8192 12288 16384 20480 24576 2867232768 36864 40960 45056 49152 53248 57344 61440Router(config)# spanning-tree mst 1 priority 49152Router(config)#Router(config)# spanning-tree mst 0 root primarymst 0 bridge priority set to 24576mst bridge max aging time unchanged at 20mst bridge hello time unchanged at 2mst bridge forward delay unchanged at 15Router(config)# ^ZRouter#Router# show spanning-tree mst###### MST00 vlans mapped: 11-4094Bridge address 00d0.00b8.1400 priority 24576 (24576 sysid 0) Root this switch for CST and ISTConfigured hello time 2, forward delay 15, max age 20, max hops 20Interface Role Sts Cost Prio.Nbr Status---------------- ---- --- --------- ----------------------------------------Fa4/4 Back BLK 1000 160.196 P2pFa4/5 Desg FWD 200000 128.197 P2pFa4/48 Desg FWD 200000 128.240 P2p Bound(STP)###### MST01 vlans mapped: 1-10Bridge address 00d0.00b8.1400 priority 49153 (49152 sysid 1) Root this switch for MST01Interface Role Sts Cost Prio.Nbr Status---------------- ---- --- --------- ----------------------------------------Fa4/4 Back BLK 1000 160.196 P2pFa4/5 Desg FWD 200000 128.197 P2pFa4/48 Boun FWD 200000 128.240 P2p Bound(STP)Router#Configuring MST Instance Port ParametersTo configure MST instance port parameters, perform these tasks:This example shows how to configure MST instance port parameters:Router(config)# interface fastEthernet 4/4Router(config-if)# spanning-tree mst 1 ?cost Change the interface spanning tree path cost for an instanceport-priority Change the spanning tree port priority for an instanceRouter(config-if)# spanning-tree mst 1 cost 1234567Router(config-if)# spanning-tree mst 1 port-priority 240Router(config-if)# ^ZRouter# show spanning-tree mst 1 interface fastEthernet 4/4FastEthernet4/4 of MST01 is backup blockingEdge port:no (default) port guard :none (default)Link type:point-to-point (auto) bpdu filter:disable (default)Boundary :internal bpdu guard :disable (default)Bpdus (MRecords) sent 125, received 1782Instance Role Sts Cost Prio.Nbr Vlans mapped-------- ---- --- --------- -------- ------------------------------- 1 Back BLK 1234567 240.196 1-10Router#Restarting Protocol MigrationA switch running both MSTP and RSTP supports a built-in protocol migration mechanism that enables the switch to interoperate with legacy 802.1D switches. If this switch receives a legacy 802.1D configuration BPDU (a BPDU with the protocol version set to 0), it sends only 802.1D BPDUs on that port. An MSTP switch can also detect that a port is at the boundary of a region when it receives a legacy BPDU, an MST BPDU (version 3) associated with a different region, or an RST BPDU (version 2).However, the switch does not automatically revert to the MSTP mode if it no longer receives 802.1D BPDUs because it cannot determine whether the legacy switch has been removed from the link unless the legacy switch is the designated switch. A switch also might continue to assign a boundary role to a port when the switch to which it is connected has joined the region.To restart the protocol migration process (force the renegotiation with neighboring switches) on the entire switch, you can use the clear spanning-tree detected-protocols privileged EXEC command. Use the clear spanning-tree detected-protocols interface interface-id privileged EXEC command to restart the protocol migration process on a specific interface.This example shows how to restart protocol migration:Router# clear spanning-tree detected-protocols interface fastEthernet 4/4Router#。
mstp知识点汇总
mstp知识点汇总MSTP(Multiple Spanning Tree Protocol)是一种用于交换机网络中的冗余路径选择的协议。
它可以有效地解决网络中的环路问题,并提供快速的故障恢复能力。
本文将对MSTP的知识点进行汇总,包括MSTP的基本原理、配置方法以及优势等。
一、MSTP的基本原理MSTP是基于IEEE 802.1Q标准的一种冗余路径选择协议,它通过构建多个生成树来实现环路的消除。
MSTP使用了一种称为RSTP (Rapid Spanning Tree Protocol)的快速生成树协议来计算生成树,同时允许多个生成树的存在,这些生成树可以根据网络的拓扑结构进行划分。
二、MSTP的配置方法1. 配置根桥:在MSTP网络中,根桥是生成树的根节点,负责计算生成树的路径。
可以通过配置根桥的优先级来确定根桥。
优先级越低的交换机将成为根桥。
2. 配置生成树实例:MSTP支持同时存在多个生成树实例,每个实例可以独立配置。
可以通过命令行或者图形界面来配置生成树实例,并指定对应的VLAN。
3. 配置端口角色:MSTP中的端口可以分为根端口、指定端口和替代端口三种角色。
根端口是直接连接到根桥的端口,指定端口是连接到其他交换机的端口,替代端口是备用的路径。
可以通过配置端口的优先级来确定端口的角色。
三、MSTP的优势1. 冗余路径选择:MSTP可以构建多个生成树,通过选择最佳路径来提供冗余和容错能力,确保网络的可靠性和稳定性。
2. 快速收敛:MSTP使用RSTP协议计算生成树,可以在网络发生故障时快速收敛,减少网络中断时间。
3. 灵活性:MSTP可以根据网络的拓扑结构进行生成树的划分,可以更好地适应不同规模和复杂度的网络环境。
4. 可扩展性:MSTP支持多个生成树实例,可以根据需求配置不同的实例,提供更多的灵活性和可扩展性。
5. 兼容性:MSTP基于IEEE 802.1Q标准,与其他兼容该标准的设备和协议兼容,可以与现有网络设备无缝集成。
MSTP概述
MSTP 的发展
从单一的SDH/PDH业务的接入到现在的Ethernet、ATM、 DDN等多种业务接入,即由传统SDH向MSTP演进 MSTP是SDH网络的延伸,是现有SDH网络的前向推进 MSTP可以针对多种不同网络的业务接入与传送提供不同 的解决方案,包括PSTN、数据网、商业网、3G、 DSLAM等网络 宽带等数据业务的兴起是MSTP发展的源动力 新一代数据特性单板为宽带等数据业务提供了更强力的支 持:更大的带宽(622M/2.5G),更强的网络适应性 (LCAS、RPR)、更好的标准遵从性(GFP、 VC12/VC3/VC4虚级联)、更有效的QOS保证
链路状态透传(LST)
LST 利用CSF帧来传递CSF告警并在某些情况下控 Link down
EOS 透传 制用户端口的 MSTP LINK状态
MSTP
EOS(ETHERNET OVER SDH)
端口链路聚合(Trunking 组)
Trunk组功能又名链路聚合,指将多个以太网物理
EOS(ETHERNET OVER SDH)
链路带宽自动调整(LCAS)
虚级联组(VCG)中的一个或多个成员出现失效
时,通过自动去掉失效成员并降低VCG的容量, 避免业务中断。当网络故障排除后,通过自动加 入原失效成员恢复VCG的容量 LCAS通过控制帧来实现源和宿VCG容量的变化同 步
Ethernet/RPR L2交换 Ethernet 透明传送
PDH/SDH 传统接口、 PoS( 级联 / 非级联可选 ) 、 Ethernet 接口( 10M/100M/GE )、 ATM-UNI接口( 622M/155M/34M/45M)、RPR业务接口
MSTP配置(迈普路由器)
MSTP 配置手册本手册著作权属迈普通信技术有限公司所有,未经著作权人书面许可,任何单位或个人不得以任何方式摘录、复制或翻译。
侵权必究。
策划:研究院资料服务处* * *迈普(四川)通信技术有限公司地址:成都市高新区九兴大道16号迈普大厦技术支持热线:400 886 8669传真:(+8628)85148948E-mail:support@网址:邮编:610041* * *版本:2008年6月第1版编号:MP/DC-RD-CPSJ-114前言读者对象z网络工程师z技术推广人员z网络管理人员适用范围本手册适用于迈普路由器6.1.X的版本及对应的设备。
本书约定命令行关键字用加粗表示;命令行参数用斜体表示。
大括号“{ }”表示括号中的选项是必选的;中括号“[ ]”表示括号中的选项是可选的;尖括号“<>”表示括号中的信息不被显示出来;方括号“【】”表示括号中的内容需要用户注意;竖线“|”用于分隔若干选项,表示二选一或多选一;正斜线“/”用于分隔若干选项,表示被分隔的各选项是可以被同时选中的;“ 注意”表示需要读者注意的事项,是配置系统的关键之处,希望用户能认真阅读。
“ 注”表示对前面内容的注解;“ 图解”表示对图例的文字解释。
声明由于产品版本升级或其它原因,本手册内容会不定期进行更新。
除非另有约定,本手册仅作为使用指导,本手册中的所有陈述、信息和建议不构成任何明示或暗示的担保。
目录第1章MSTP配置 (1)第2章MSTP协议简介 (2)第3章MSTP基本配置指令 (4)第4章MSTP协议互操作性 (15)第5章MSTP保护功能特性 (17)第6章应用实例 (20)第7章显示与维护 (23)7.1 显示命令实例 (24)7.2 调试命令 (25)7.3 调试命令实例 (25)第1章 MSTP配置本章主要介绍交换机的MSTP配置。
本章主要内容:z MSTP协议简介z MSTP基本配置指令z MSTP协议互操作性z MSTP保护功能特性z MSTP典型应用实例z MSTP显示与维护第2章 MSTP协议简介Spanning Tree Protocol(STP,生成树协议)是IEEE组织制订的用于在网络中消除数据链路层物理环路的协议;狭义的STP是指IEEE802.1D标准中定义的STP协议,广义的STP是指包括IEEE802.1D定义的STP协议以及各种在其基础上经过改进的生成树协议。
MSTP配置
1.4 配置叶子节点................................................................................................................................... 1-24 1.4.1 配置MST域 ........................................................................................................................... 1-24 1.4.2 配置MSTP的工作模式 .......................................................................................................... 1-24 1.4.3 配置超时时间因子................................................................................................................. 1-24 1.4.4 配置端口的最大发送速率...................................................................................................... 1-24 1.4.5 配置端口为边缘端口 ............................................................................................................. 1-24 1.4.6 配置端口的Path Cost............................................................................................................ 1-25 1.4.7 配置端口的优先级................................................................................................................. 1-26 1.4.8 配置端口是否与点对点链路相连 ........................................................................................... 1-27 1.4.9 配置端口识别/发送MSTP报文的方式.................................................................................... 1-27 1.4.10 打开端口状态变化信息显示开关 ......................................................................................... 1-27 1.4.11 开启MSTP特性 ................................................................................................................... 1-27
简述MSTP与配置
简述MSTP与配置⼀、简介多⽣成树协议MSTP(Multiple Spanning Tree Protocol)是IEEE 802.1s中定义的⽣成树协议,通过⽣成多个⽣成树,来解决以太⽹环路问题。
MSTP的⽹络层次带外管理流量:管理平⾯和业务平⾯的数据是两根不同的线路带内管理流量:管理平⾯和业务平⾯的数据是同⼀根线路⼆、MSTP概述传统的⽣成树只运⾏⼀个实例,且收敛速度慢,RSTP在传统的STP基础上通过改进达到了加速⽹络拓扑收敛的⽬的,但是仍有缺陷,由于STP和RSTP在整个局域⽹中,所有VLAN共享⼀个⽣成树实例,因此⽆法实现基于VLAN的负载均衡,⽹络环境稳定状态下备份链路始终不能转发数据流量,造成带宽的浪费PVST-----它是思科私有的,多实例多WLAN可以实现负载均衡,但是他有缺陷⼀个实例只能p跑⼀个VLAN ,意味着100VLAN要开100个实例,它很吃资源的,所以是它的弊端MSTP-----多⽣成树协议。
⼀个实例当中,可以包含多个VLAN,它这个性能要⽐PVST性能好得多三、功能(1)具有TDM,以太以及ATM⽹络等多样业务的接⼊服务(2)包括TDM、以太⽹以及ATM⽹络等多样业务的传输服务包括P2P的⽹络传送功能(3)⽀持以太⽹与ATM的⽹络处理与复⽤功能(4)⽀持以太⽹和ATM业务,映射到SDH虚拟容器的功能四、配置命令1、stp mode mstp ###将交换机配置成MSTP模式2、Stp region-configuration ###创建stp区域设置3、Region-name huawei ###配置MSTP的区域名为huawei4、Revision-level 1 ###配置MSTP域的修订级别为15、Instance 1 vlan 10 ###将vlan 10加⼊实例1中6、Instance 2 vlan 20 ###将vlan 20加⼊实例2中7、active region-configuration ###激活MSTP域的配置8、Quit ###退出配置模式9、Stp instance 1 root primary ###配置交换机为实例1的主根桥10、Stp instance 2 root secondary ###配置此交换机为实例2的备份根桥11、Stp enable ###在所有的交换机上启⽤MSTP12、dis stp brief ###查看STP接⼝⾓⾊及状态信息。
MSTP技术概述
MSTP技术概述MSTP,全称为多层分组交换技术(Multi-Service Transport Platform),是一种用于集成数传、电传、视频传输以及数据传输等多业务传输的通信网络技术。
随着信息技术的快速发展,各种新的服务和应用的出现导致了传输网络的要求变得越来越复杂。
以前的传输网络主要支持数据和语音业务,随着视频、云计算、大数据等新技术的出现,网络传输的要求也逐渐增加。
因此,传统的SDH(同步数字系列层次结构)技术无法满足多种业务传输的要求。
为了满足这种多业务传输的需求,MSTP技术应运而生。
1.多业务传输:MSTP技术支持多种业务的传输,包括数据、语音、视频等。
它可以通过对不同业务的分组交换来满足各种业务的传输需求。
2.灵活性和可扩展性:MSTP技术具有很高的灵活性和可扩展性。
它可以根据不同的业务需求进行配置和调整,可以随时增加或减少网络容量,以适应不断变化的业务需求。
3.抗灾备份:MSTP技术支持灾备份功能,可以在网络故障或节点故障时自动切换到备份路径,确保业务的连续性和可靠性。
4.多协议支持:MSTP技术支持多种传输协议,包括PDH、SDH、ATM等。
它可以将不同协议的数据进行适配和转换,实现不同网络之间的互联互通。
5.简化网络管理:MSTP技术提供了集中式的网络管理功能,可以对网络进行统一管理和监控。
管理员可以通过集中的管理系统来配置、监测和故障排除网络中的设备和链路。
1.网络架构设计:MSTP网络的架构设计是整个实施过程中的第一步。
在架构设计中,需要考虑各种业务的传输需求、网络拓扑结构、网络容量等因素,以确定最佳的网络设计方案。
2.设备配置和调整:MSTP网络的设备配置和调整是实施过程的重要环节。
在配置和调整过程中,需要根据网络设计方案对设备进行配置、调整和优化,以确保网络的正常运行和性能优化。
3.迁移和更新:对于现有的传输网络,如果要引入MSTP技术,需要进行迁移和更新。
在迁移和更新过程中,需要逐步替换或调整现有的设备和链路,以实现MSTP技术的全面应用。
mstp报文详解
mstp报文详解(实用版)目录1.MSTP 概述2.MSTP 报文结构3.MSTP 报文类型及功能4.MSTP 报文实例分析正文一、MSTP 概述MSTP(Multiple Spanning Tree Protocol)即多实例生成树协议,是一种用于在局域网中防止环路的协议。
通过 MSTP 协议,可以在保证网络安全性的同时,实现网络的负载均衡,提高网络的性能。
二、MSTP 报文结构MSTP 报文主要包括以下几种类型:配置报文(Config)、切接报文(Cut)、连接报文(Join)、断开报文(Discard)、通知报文(通告)和消息报文(Message)。
这些报文均采用固定长度的前导码和后导码,以及6 字节的协议标识符来标识 MSTP 协议。
三、MSTP 报文类型及功能1.配置报文(Config):用于在 MSTP 协议的邻居设备之间交换配置信息,包括 Hello 报文、MaxAge 报文、HelloInterval 报文、ForwardDelay 报文等。
2.切接报文(Cut):用于通知邻居设备某个端口已经从 MSTP 协议中的一个实例切换到另一个实例。
3.连接报文(Join):用于请求邻居设备将某个端口连接到 MSTP 协议的实例中。
4.断开报文(Discard):用于通知邻居设备某个端口已经从 MSTP 协议的实例中断开。
5.通知报文(通告):用于向邻居设备通告某个端口所连接的 MSTP 协议实例的状态信息。
6.消息报文(Message):用于在 MSTP 协议的邻居设备之间传输其他类型的信息,如 BPDU(Bridge Protocol Data Units)等。
四、MSTP 报文实例分析以配置报文(Config)为例,其主要包含以下字段:1.前导码:用于标识报文的开始,长度为 8 字节。
2.协议标识符:占用 6 字节,固定值为 0x00000001,表示 MSTP 协议。
3.Version:用于表示 MSTP 协议的版本号,占用 1 字节,取值范围为 0-255。
MSTP基本概念小结
THANKS
感谢观看
05 MSTP性能评估 与优化建议
性能评估指标及方法
误码率(BER)
衡量传输质量的重要指标,通过统计接收端 错误比特数与总比特数的比值来计算。
时延
数据从发送端到接收端所需的时间,包括传 输时延、处理时延等。
吞吐量
单位时间内成功传输的数据量,反映MSTP 设备的处理能力和传输效率。
抖动
时延的变化程度,反映MSTP设备时钟同步 的稳定性和数据传输的平滑性。
关键技术:复用、交叉连接和映射
复用技术
MSTP采用SDH的复用技术,将 多个低速率信号复用成高速率信 号进行传输,提高了传输效率。
交叉连接技术
MSTP通过交叉连接技术实现VC 信号的灵活调度和交换,支持业 务的动态配置和调整。
映射技术
MSTP采用映射技术将各种业务信 号适配到SDH的VC信号中,保证 了信号的可靠传输。
MSTP在通信网络中的应用
MSTP技术在通信网络中发挥着重要作用,为运营商和企业用户提供了高效、可靠的业务传输解决方案。它广泛应用 于城域网、骨干网和接入网等场景,支持语音、数据、视频等多种业务的传输。
MSTP技术发展趋势
随着通信技术的不断演进和网络需求的日益增长,MSTP技术也在不断发展和完善。未来,MSTP技术将 更加注重智能化、高集成度和绿色节能等方面的发展,以适应未来网络的需求。
实现对TDM、ATM、以太网等业务的综合传输。
02 03
传输过程
MSTP在传输过程中,首先将各种业务信号进行适配和映射,将其转换 为SDH的VC(虚容器)信号,然后通过SDH的复用和交叉连接功能, 实现信号的传输和交换。
业务接入与汇聚
MSTP支持多种业务接口,如E1、ATM、以太网等,实现业务的接入和 汇聚,满足不同用户的需求。
网络优化第一讲mstp配置
第一讲MSTP本章内容▪生成树背景▪STP▪RSTP▪MSTP基本概念▪配置MSTP生成树背景▪生成树的作用▪通过阻断冗余链路,来消除网络中可能存在的物理环路;▪当前链路出现故障,激活备份链路,恢复网络的连通性;STA生成树算法▪选举根桥,跟桥上的所有端口为指定端口;▪计算非根桥到根桥的最短路径,确定根端口;▪每个LAN选择一个指定交换机,且该交换机到根桥有最短路径。
所有连接到该指定交换机上的端口被确定为指定端口;▪所有指定端口和根端口进入转发状态,其余端口阻塞。
生成树协议STP(IEEE 802.1d)STP的拓扑变更RSTP(IEEE 802.1w)▪IEEE 802.1w RSTP(Rapid Spanning Tree Protocol,快速生成树协议)对于STP技术的改进主要在于缩短网络的收敛时间。
RSTP的收敛时间最快可以达到1s以内。
▪RSTP具有向下兼容的特性,如果网络中部分交换机运行STP,那么运行RSTP的交换机会自动以STP方式运行。
RSTP状态RSTP端口角色▪根端口(Root Port):根端口处于非根交换机上,根端口是本地交换机距离根交换机最近地端口。
非根交换机通过根端口接收BPDU。
▪指定端口(Designated Port):RSTP的指定端口也和STP中的一样,指定端口是以太网段用于转发数据的端口。
▪替代端口(Alternate Port):替代端口是RSTP中新引入的端口角色,作为根端口的备份端口。
替代端口可以接收BPDU报文但是不转发数据。
▪备份端口(Backup Port):RSTP中的备份端口作为指定端口的备份端口,可以接收BPDU 报文但是不转发数据。
▪边缘端口(Edge Port):直接与终端相连接的端口称为边缘端口。
RSTP快速过渡机制▪第一点改进:为根端口和指定端口设置了快速切换用的替换端口(Alternate Port)和备份端口(Backup Port)两种角色,当根端口/指定端口失效的情况下,替换端口/备份端口就会无时延地进入转发状态。
MSTP原理及配置
提高MSTP网络的可靠性,采用冗余 设计、故障切换等技术手段,确保业 务不中断。
面临挑战及应对策略
技术更新迅速 网络安全问题
运维成本高 应对策略
MSTP技术发展迅速,要求企业和运营商不断跟进新技术,提升 网络性能。
MSTP网络面临各种安全威胁,需要加强网络安全防护,采用加 密、防火墙等技术手段。
MSTP网络运维涉及多个专业和领域,需要专业的运维团队和高 昂的运维成本。
建立专业的技术研发团队,跟踪新技术发展;加强网络安全管 理,完善安全防护体系;提高运维自动化水平,降低运维成本
。
未来展望
5G/6G与MSTP融合
随着5G/6G技术的发展,MSTP技术 将与5G/6G网络深度融合,提供更加 高效、灵活的业务传输方案。
智能化发展
利用人工智能、大数据等技术手段, 实现MSTP网络的智能化管理和优化 ,提高网络性能和运维效率。
MSTP在工业自动化领域也有广 泛应用,为工业自动化系统提供 实时、可靠的通信保障。
运营商网络 企业专网 智慧城市
工业自动化
MSTP在运营商网络中广泛应用 ,提供多种业务的接入、处理和 传送功能。
MSTP作为智慧城市的重要传输 平台,为各种智慧应用提供稳定 、高效的传输服务。
02
MSTP基本原理
Chapter
06
MSTP技术发展趋势与挑战
Chapter
技术发展趋势
引入人工智能技术,实现网络故障自 动定位、业务自动配置等智能化功能 。
随着业务需求的增长,MSTP技术将 不断提升传输容量,满足大容量业务 传输需求。
多业务融合
智能化
高可靠性
大容量
MSTP技术正朝着多业务融合的方向 发展,实现语音、数据、视频等多种 业务的综合传输。
mstp报文详解
mstp报文详解摘要:1.MSTP 概述2.MSTP 协议报文结构3.MSTP 协议报文类型及功能4.MSTP 协议的应用场景5.总结正文:一、MSTP 概述MSTP(Multiple Spanning Tree Protocol)即多实例生成树协议,是一种用于在计算机网络中防止环路产生的协议。
通过MSTP 协议,可以在不同的网络设备之间实现快速的数据传输,同时保证数据的安全性。
二、MSTP 协议报文结构MSTP 协议报文主要包括以下几种类型:配置报文(Config)、切接报文(Cut)、开放报文(Open)、关闭报文(Close)、学习报文(Learn)以及通告报文(Advertise)。
这些报文各自承担不同的功能,共同构成了MSTP 协议的完整功能体系。
三、MSTP 协议报文类型及功能1.配置报文(Config):用于在MSTP 协议启动时,设备之间交换配置信息,建立基本的邻居关系。
2.切接报文(Cut):用于在MSTP 协议运行过程中,设备之间协商切断某个链路,以避免环路的产生。
3.开放报文(Open):用于在MSTP 协议运行过程中,设备之间协商开放某个链路,以实现数据的传输。
4.关闭报文(Close):用于在MSTP 协议运行过程中,设备之间协商关闭某个链路,以避免环路的产生。
5.学习报文(Learn):用于在MSTP 协议运行过程中,设备之间交换学习到的链路状态信息,以便其他设备更新生成树。
6.通告报文(Advertise):用于在MSTP 协议运行过程中,设备之间通告某个链路的状态变化,以便其他设备更新生成树。
四、MSTP 协议的应用场景MSTP 协议广泛应用于以太网、FDDI、Token Ring 等局域网和广域网环境中,主要目的是防止网络中的环路,确保数据的安全传输。
同时,MSTP 协议还可以实现负载均衡、链路备份等功能,提高网络的可靠性和性能。
五、总结MSTP 协议作为一种重要的生成树协议,通过丰富的报文类型和功能,为网络设备提供了可靠的数据传输保障。
mstp技术参数
mstp技术参数MSTP(Multiple Spanning Tree Protocol,多重生成树协议)是一种用于以太网交换网络的网络协议。
它基于Spanning Tree Protocol(生成树协议),但通过引入多个实例(instance)来实现更大规模的网络拓扑的冗余。
一、MSTP技术概述MSTP技术是一种以太网交换技术,其主要目的是增加网络的冗余性和可靠性。
通过允许多个生成树实例共存,MSTP技术能够支持更大规模的网络拓扑,从而提高网络整体的容错性。
MSTP可以通过配置不同的桥实例(Bridge Instance)来划分网络。
每个桥实例都可以拥有独立的生成树,因此可以适应复杂的网络拓扑结构。
MSTP技术与RSTP(Rapid Spanning Tree Protocol)兼容,可以在同一个网络中同时使用。
二、MSTP技术参数下面是MSTP技术常用的参数及其说明:1. 根桥(Root Bridge):网络中生成树的顶部,负责向下分发生成树的配置信息。
2. 生成树(Spanning Tree):由根桥向下分发的配置信息,用于计算网络中的最短路径。
3. 桥优先级(Bridge Priority):每个桥实例的优先级,用于选举根桥。
优先级越低,越有可能被选为根桥。
4. 端口优先级(Port Priority):每个接口(端口)的优先级,用于选举树根端口。
优先级越低,越有可能成为树根端口。
5. 哈希算法(Hash Algorithm):用于实现端口聚合(Link Aggregation)时的负载均衡。
常见的哈希算法有源MAC地址哈希、目的MAC地址哈希等。
6. 最大Hops(Max Hops):网络中一个生成树的最大跳数。
一般用于限制生成树的扩展范围,保证网络性能。
7. 根端口(Root Port):每个非根桥上与根桥相连的端口,用于向上转发生成树。
8. 设备ID(Device ID):用于唯一标识网络中的每个交换机设备。
MSTP传输设备及其配置
2010.12.3
1
主要内容 1. MSTP概述 2. 组网方式 3. 产品介绍
3.1 中兴产品 3.2 华为产品
4.案例
2
MSTP概述
• 基于 SDH 的多业务传送节点( MSTP )是指,基于 SDH 平台,同时 实现 TDM 业务、 ATM 业务、以太网业务等的接入、处理和传送, 提供统一网管的多业务节点。 • 基于 SDH 的多业务传送节点除应具有标准 SDH 传送节点所具有的 功能外,还具有以下主要功能特征:
交 叉 时 钟
光 光 光 光 光 / 光 光 / / / / 电 电 电 电 电 / 保
1
2
3
4 5
6
51
7
FAN
8
9
10 11 12 13 14 15 16
52 FAN 53
FAN
19
中兴S385产品简介
接口名称 STM-64 STM-16 STM-4 STM-1 STM-1e E3 T3 E1 T1 GE SEC RPR MPLS 端口密度 (路/板) 1 1 1/2/4 4/8 4/8 6 6 63 63 2 8FE+GE 8FE+2GE 8FE+2GE 单子架最大接入能力 14 14 56 112 64 48 48 630 630 28 64FE+8GE 64FE+16GE 64FE+16GE 实现版本 V2.0 V1.1 V2.1 V2.0 V1.1 V2.0 V2.0 V1.1 V2.0 V1.1 V1.1 V2.0 V2.0
单板配置
15
中兴S330产品简介
业务功能:业务功能包括光接口功能、电接口
功能以及数据/电话功能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MSTP配置要点概述
1、MSTP基本原理
MSTP是ISP将用户的以太帧封装到SDH内传输的技术,和传统SDH点对点链路不同之处在于:用户可以灵活开通任意带宽而不再受限于2M带宽的叠加。
对于用户而言,ISP的MSTP网络就是一个巨大的交换机。
用户通过给每个节点分配一个vlan的方式实现互联。
因此,每个分支就相当于一个vlan,而中心端相当于trunk,每个子接口对应一个vlan。
因此,用户需要为每个分支分配vlan编号和对应的IP地址,vlan编号需要和ISP共享,ISP负责将每个VLAN和SDH通道一一对应起来。
2、MSTP的线路监测配置
以太接口下的IP配置和原有的串口或E1口配置没有什么区别,只是将原有接口的配置迁移到以太口下而已。
但是由于以太口的物理性质和串口不同,导致端口监测和QoS配置有较大差异。
以太口因为不是点对点性质,因此当线路中断时,路由器和MSTP设备的互联还是完好的,因此端口不会down,如果使用的是静态路由,则路由表不会更新,导致断网。
因此需要使用额外的PING检查配置来克服这点,不同厂家配置有所不同。
Cisco:使用IP SLA。
IP SLA即服务质量保证,实际上就是由路由器主动的通过PING、TCP SYN 等数据包去检查某项应用的可用状态,然后将检查结果反馈给路由器(即track),路由器随机做出反应。
在MSTP中我们使用PING来检查线路的通断。
命令如下:ip sla monitor 1
type echo protocol ipIcmpEcho 1.1.1.1 source-ipaddr 1.1.1.2
frequency 10
timeout 500
vrf XXX
!
ip sla monitor schedule 1 start-time now life forever
!
track 1 rtr 1 state
!
ip route **** **** next-hop track 1
本配置中,启用一个编号为1的SLA,使用ICMP从本地接口地址ping对端设备地址做检查,并配置ping测试的周期为10秒,每次ping的超时时间为500毫秒,并放入某vrf内。
然后启动编号为1的track,rtr 1即表示使用IP SLA 1内定义的策略进行监控,state表示只有在收到成功的信息时track状态才是UP的。
最后将tack应用在静态路由中,若track状态为down,则该路由失效。
还可配置SLA重试延时和次数,具体命令可在路由器上查询。
每条MSTP线路都要配置一个对应的SLA和track。
Cisco3845在升级后发现新版IOS的部分SLA和track命令发生改变,新命令如下:ip sla 1
icmp-echo 1.1.1.1 source-ip 1.1.1.2
frequency 10
timeout 500
vrf XXX
!
track 1 ip sla 1 state
其余的命令保持不变。
在更换IOS后原有的老命令会丢失导致track失效,因此需要及时更换新命令。
MAIPU:迈普设备也可以通过端口下的PING检查MSTP的线路通断,命令如下:
interface XX
keepalive-gateway *.*.*.*
即在接口模式下配置检测对端IP地址即可,若对端地址不通,该接口失效。
Huawei及H3C:其和cisco SLA对应的配置叫NQA,命令如下:
system-view
nqa test-instance mstp icmp
test-type icmp
destination-address ipv4 10.1.1.1
start now
#
track 1 nqa entry admin icmp reaction 3
#
ip route-static **** **** next-hop track 1
本配置中,为nqa起名为mstp,编号为icmp,指明ping对端地址。
然后应用在track 1和静态路由中。
reaction指明重试次数为3次。
另外,可以使用BFD做MSTP线路测试。
BFD是专门用于侦测线路通断的协议,分为普通和回声(echo)模式两种。
通过在两端设备接口上激活BFD协议,双方建立BFD邻居并互发控制包,一旦线路中断可以很快的发现,BFD必须和路由协议或静态路由同时使用,否则没有意义。
H3C的echo模式BFD,只在一端设备上启用BFD即可,echo的原理是向对端设备发送一个目标地址是自己的BFD包,对方因此会将这个包“反弹”回来,若收不到则是线路出问题,使用这种方式建议在对端接口上取消ICMP重定向功能。
BFD配置简单,这里不做阐述,具体命令可查阅相关命令文档。
3、以太子接口的CBWFQ配置
MSTP中心端设备的接口会划分子接口。
而以太子接口的CBWFQ中不支持带宽保证(bandwidth或priority),只支持流量整形(shape)。
为了让以太子接口下仍然可以使用带宽保证,必须配置层次化的CBWFQ,即嵌套式的CBWFQ。
嵌套式CBWFQ本来是为如下QOS模式设计的:假设有A、B两种流量,分别有不同的带宽需求,而B中又细分了B1和B2两种流量,分别需要保证不同的带宽,则配置模板如下:class A
class B
class B1
class B2
!
policy-map child
class B1
bandwidth XXX
class B2
bandwidth XXX
!
policy-map father
class A
bandwidth XXX
class B
bandwidth XXX
service-policy child
!
interface f0/0.200
service-policy out father
上述配置中,分别定义了四种流量的class-map。
然后定义了两个policy-map,分别为流量A、B和B1、B2定义了不同的QoS策略。
然后将子策略嵌套在父策略之中。
父策略应用在接口上。
路由器执行CBWFQ时先执行父策略,当执行至classB时,不仅为B执行了QoS,还继续匹配子策略,为B1和B2执行不同的QoS。
在我方所需的Qos中,所谓的父策略是为所有流量(即class default)整形,使其匹配为每个子接口开通的物理带宽,然后在子策略里为不同的流量做带宽保证。
本质上就是把我方现有的CBWFQ嵌套到一个针对缺省流量做整形的父策略中。
这里假设下行线路为MSTP,模板如下:
class A
match XXXX
class B
math XXXX
!
policy-map xiaxing
class class-default
shape average speed bc be
service-policy xiaxing_child
!
policy-map xiaxing_child
class A
bandwidth XXX
class B
priority XXX
class class-default
random-detect
!
interface G0/0.200
service-policy out xiaxing
以上配置中,shape average即为流量整形,speed为子接口的实际带宽bit,bc和be是可以容纳突发流量的“桶”。
当突发流量小于bc时,数据包被缓存不会丢失,在流量降低时再发送,当突发流量超过bc时进入be,并开始被随机丢弃,若突发流量仍然超过了be,则
超出部分全部丢弃。
bc和be的值一般为speed的1/8(注意bite和byte的换算),在实际应用中根据流量可实际情况调整,以免限速后的流量未能达到实际带宽的最大值而导致浪费。