仿生机器人技术简介ppt课件
合集下载
仿生机器人综述
仿生机器人
Ⅰ、研究背景
自然界在亿万年的演化过程中孕育了各种各样的生物, 每种生物都 拥有神奇的特性与功能,能够在复杂多变的环境中生存下来。因此,人类 通过研究、学习、模仿来复制和再造某些生物特性和功能,可以极大的 提高人类对自然的适应和改造能力,产生巨大的社会经济效益。
• 仿生学(Bionics) 仿生学诞生于20世纪60年代, 是生
仿生水母是一种模仿水母运动机理以 及外形柔软的机器人。由生物感应记忆合 金制成的细线连接,当这些金属细线被加 热时,就会像肌肉组织一样收缩。
Ⅳ、仿生机器人研究中亟需解决的问题
• 体积重量过大 • 平台承载能力不强 • 视觉研究不成熟 • 步行敏捷性不强 • 控制方法控制算法需要改进 • 供能续航问题
• 机器蜘蛛
左图为美国宇航局喷气推进实验室于 2002年12月研制成功的机器蜘蛛Spiderpot。
该机器蜘蛛上装有一对可以用来探测 障碍的天线,且拥有异常灵活的腿。它们 能跨越障碍,攀登岩石,探访靠轮子滚动 前进的机器人无法抵达的区域。机器蜘蛛 一类微型仿生机器人非常适合勘探彗星、 小行星等小型天体。在国际空间站上它们 可以充当维护员,及时发现空气泄漏等意 外故障。
• 水下仿生机器人
水下机器人又称为水下无人潜器,是一种工作于水下的极限作业机 器人,能潜入水中代替人完成某些操作,又为开发海洋的重要工具。
•
英国埃塞克斯大学的环境检测机器人 主要用于环境检测和绘制3D污染图
机器鱼
鱼类的高效、快速、机动灵活的水 下推进方式吸引了国内外的科学家们从 事仿生机器鱼的研究。
Ⅳ、仿生机器人研究发展方向
➢ 微型化 将驱动器、传动装置、传感器、控制器、电源等集成到一 块硅片上,构成微机电系统;
➢ 仿生机器人的仿形 仿生机器人的外形与所模仿的生物的相似性
Ⅰ、研究背景
自然界在亿万年的演化过程中孕育了各种各样的生物, 每种生物都 拥有神奇的特性与功能,能够在复杂多变的环境中生存下来。因此,人类 通过研究、学习、模仿来复制和再造某些生物特性和功能,可以极大的 提高人类对自然的适应和改造能力,产生巨大的社会经济效益。
• 仿生学(Bionics) 仿生学诞生于20世纪60年代, 是生
仿生水母是一种模仿水母运动机理以 及外形柔软的机器人。由生物感应记忆合 金制成的细线连接,当这些金属细线被加 热时,就会像肌肉组织一样收缩。
Ⅳ、仿生机器人研究中亟需解决的问题
• 体积重量过大 • 平台承载能力不强 • 视觉研究不成熟 • 步行敏捷性不强 • 控制方法控制算法需要改进 • 供能续航问题
• 机器蜘蛛
左图为美国宇航局喷气推进实验室于 2002年12月研制成功的机器蜘蛛Spiderpot。
该机器蜘蛛上装有一对可以用来探测 障碍的天线,且拥有异常灵活的腿。它们 能跨越障碍,攀登岩石,探访靠轮子滚动 前进的机器人无法抵达的区域。机器蜘蛛 一类微型仿生机器人非常适合勘探彗星、 小行星等小型天体。在国际空间站上它们 可以充当维护员,及时发现空气泄漏等意 外故障。
• 水下仿生机器人
水下机器人又称为水下无人潜器,是一种工作于水下的极限作业机 器人,能潜入水中代替人完成某些操作,又为开发海洋的重要工具。
•
英国埃塞克斯大学的环境检测机器人 主要用于环境检测和绘制3D污染图
机器鱼
鱼类的高效、快速、机动灵活的水 下推进方式吸引了国内外的科学家们从 事仿生机器鱼的研究。
Ⅳ、仿生机器人研究发展方向
➢ 微型化 将驱动器、传动装置、传感器、控制器、电源等集成到一 块硅片上,构成微机电系统;
➢ 仿生机器人的仿形 仿生机器人的外形与所模仿的生物的相似性
六足仿生机器人PPT课件
• 组长:张晓强 • 分工:
1:制作六足机器人的3D模型,设计结构:张晓强,王旭 阳,盛文涛 2:设计电路:吴斌斌 3:编辑控制程序:王新春2021/3/7CHENLI15
谢谢观赏
2021/3/7
CHENLI
16
• 二.5月进行三维模型绘制,cad图纸制作, 软件中进行装配,运动仿真,大体实现运动效 果
• 三.6月进行中期检查合格后,开始进行零件 制作,进行小部件拼接。另一方面,开始购买 相应的电子元件,传感器设备,计算性能数据。
•
2021/3/7
CHENLI
13
• 四.七、八月实体加工大零件,并对零件进行 检测。此期间,由于零部件较多,所以需要分 两部分进行:七月制作机器人的腿部零件并组 装,八月制作身体零件并组装。之后将两者组 装。
• 应用仿生学原理,模拟生物的运 动形式,就成为机器人领域研究 的热点之一。
2021/3/7
CHENLI
2
随着机器人在现代化各个行业中的广泛应用,社会对机器人的要求不断提高。 由于机器人应用范围的不断扩展,一些特殊工作环境对于机器人提出了特殊的要求, 但在任何环境下作业的机器人要完成特定的任务,
2021/3/7
• 1.机器人穿越障碍的能力将会有更大的提高。
• 2.机器人六足之间的协作及配合能力应高于六足 机器人。
• 3.机器人能实现更多的动作,而且实现同一动作 应有不同的实现方式,已解决在某些情况下, 某些过程无法实现的弊端。
2021/3/7
CHENLI
11
设计方案
• 承载装置:底盘——安装单片机支撑舵机整体 机身;
2021/3/7
CHENLI
5
2021/3/7
基于此项的六足机器人
1:制作六足机器人的3D模型,设计结构:张晓强,王旭 阳,盛文涛 2:设计电路:吴斌斌 3:编辑控制程序:王新春2021/3/7CHENLI15
谢谢观赏
2021/3/7
CHENLI
16
• 二.5月进行三维模型绘制,cad图纸制作, 软件中进行装配,运动仿真,大体实现运动效 果
• 三.6月进行中期检查合格后,开始进行零件 制作,进行小部件拼接。另一方面,开始购买 相应的电子元件,传感器设备,计算性能数据。
•
2021/3/7
CHENLI
13
• 四.七、八月实体加工大零件,并对零件进行 检测。此期间,由于零部件较多,所以需要分 两部分进行:七月制作机器人的腿部零件并组 装,八月制作身体零件并组装。之后将两者组 装。
• 应用仿生学原理,模拟生物的运 动形式,就成为机器人领域研究 的热点之一。
2021/3/7
CHENLI
2
随着机器人在现代化各个行业中的广泛应用,社会对机器人的要求不断提高。 由于机器人应用范围的不断扩展,一些特殊工作环境对于机器人提出了特殊的要求, 但在任何环境下作业的机器人要完成特定的任务,
2021/3/7
• 1.机器人穿越障碍的能力将会有更大的提高。
• 2.机器人六足之间的协作及配合能力应高于六足 机器人。
• 3.机器人能实现更多的动作,而且实现同一动作 应有不同的实现方式,已解决在某些情况下, 某些过程无法实现的弊端。
2021/3/7
CHENLI
11
设计方案
• 承载装置:底盘——安装单片机支撑舵机整体 机身;
2021/3/7
CHENLI
5
2021/3/7
基于此项的六足机器人
ASIMO机器人PPT课件
认知环境,识别周围的环境,把握障碍物的位置,可以避免碰 撞并绕行。人或其他移动的障碍物突然出现在面前时会停下来, 离开后继续步行。2005年末Honda发表的新技术提高了各传感 器的精度,使ASIMO对周围环境的认知度更高。
NewIC通信卡 ,根据IC通信卡提供的客人信息,ASIMO可判断
出对方的属性和位置,判断与客人的距离,还会与擦身而过的
25
自由动作
打出手语 ,高性能小型多指手,在手掌、五指中分别内置 接触传感器与压力传感器后,可对各节手指进行独立操控, 从而完成需复杂手指运动才可实现的手语表达。
踢足球,全新控制技术,让腿部力量加大,活动范围扩大, 并能自由变换着位置。
2021/3/7
自在步行,ASIMO可以在平坦的地面上顺畅行走。可调整步 伐来保持上半身的平衡,还可旋回、8字行走
上下台阶,ASIMO可以在平坦的地面上顺畅行走。可调整步 伐来保持上半身的平衡,还可旋回、8字行走。
CHENLI
26
自由动作
2021/3/7
自动修正位置,ASIMO可自行识别步行路线上的标示,根据标 示一边走一边。
直线行走,ASIMO在双脚均离地时可积极地控制姿势,保持直 线行走。2005年Honda发表的新技术使ASIMO的最高时速提高 至6km。
2021/3/7
CHENLI
16
ASIMO研发历程
2021/3/7
CHENLI
17
设计理念
ASIMO的外形尺寸设计,需要满足它能够在人类生活环境 中自由地移动并使它更加便利化。ASMIO的身高尺寸要使 它能够操作电灯开关和门把手,并在桌旁和工作台旁进行 工作。其眼睛的高度应与坐在椅子上的成年人眼睛的高度 在一个水平面上,这样较易于与其进行信息联络。
四足仿生机器人详解 ppt课件
3、一种T型单自由度机器人关节模块
3、一种T型单自由度机器人关节模块
1、伺服电机及光电编码器组件 2、关节套筒 3、电机座 4、关 节基座 5、6角接触球轴承及轴 承套环 7、内轴套 8、小锥齿 轮 9、齿轮端盖 10、关节轴端 盖 11、关节轴 12、关节盖 13、大锥齿轮 14、关节输出连 接件 15、关节轴角接触球轴承 16、关节轴固定片 17、轴承端 盖 18、轴承端盖 19、谐波减 速器输出轴 20、谐波减速器输 出过渡盘 21盘式谐波减速器组 件 22电机轴套
1.日本Tekken
Tekkn整个机体的重量是3.1kg,单个腿的重量0.5kg。 每条腿有3个主动关和一个被动关节,分别是一个pitch髋关 节、yaw髋关节和pitch膝关节,踝关节是被动关节,主要由 弹性装置和自锁装置构成。
2、Little Dog
2004 年 Boston Dynamics 发布了四足机器人LittleDog, 如图所示。LittleDog 有四条腿,每条腿有 3 个驱动器,具有 很大的工作空间。携带的 PC 控制器可以实现感知、电机控 制和通信功能。LittleDog 的传感器可以测量关节转角、电机 电流、躯体方位和地面接触信息。铿聚合物电池可以保证 LittleDog 有 30 分钟的运动,无线通信和数据传输支持遥控 操作和分析。
2、一种I型单自由度机器人关节模块
2、一种I型单自由度机器人关节模块
1、伺服电机及光电编码器组件2 、关节套筒3、电机轴套4、电机 座5、关节基座6、轴承端盖7、轴 承座8、角接触球轴承及外轴套9 、轴承端盖10、内齿轮11、关节 输出端连接件12、过渡齿轮轴13 、过渡齿轮14、谐波减速器输出 轴15、中心齿轮16、小轴承端盖 17、轴套18、角接触球轴承19、 谐波减速器输出过渡盘20、盘式 谐波减速器组件
200920301401仿生机器人资料PPT教学课件
2002年12月研制成功的机器蜘蛛Spiderpot。
该机器蜘蛛上装有一对可以用来探测 障碍的天线,且拥有异常灵活的腿。它们 能跨越障碍,攀登岩石,探访靠轮子滚动 前进的机器人无法抵达的区域。机器蜘蛛 一类微型仿生机器人非常适合勘探彗星、 小行星等小型天体。在国际空间站上它们 可以充当维护员,及时发现空气泄漏等意 外故障。
左下图是国防科技大学2001年研制的 蛇形机器人。这条长1.2m,直径0.06m,重1. 8kg的机器蛇,能扭动身躯,在地上或草丛中 婉蜒爬行,可前进、后退,拐弯和加速,最大 前进速度可达每分钟20m,披上特制的“蛇 皮”后还能像蛇一样在水中游泳。
9
2020/10/16
• 机器蜘蛛 左图为美国宇航局喷气推进实验室于
10
2020/10/16
• 机器蛙 在崎岖多障碍的外星表面,跳跃显然
是一种理想的行动方式,在低重力环境下, 跳跃更是一种高效使用能量的运动方式。 左图为美国宇航局喷气推进实验室研制的 机器蛙形状有点像青蛙,质量不超过1.3千 克。
机器蛙腿的膝部装有弹簧,能像青蛙 那样先弯起腿,再一跃而起。蛙身装有小 马达、传感器、照相机、小型电脑和太阳 能电池极等部件。
11
• 水下仿生机器人
水下机人完成某些操作,又称潜水器。水下环境恶劣危 险,人的潜水深度有限,所以水下机器人已成为开发海洋的重要工具。
•
英国埃塞克斯大学的环境检测机器人 主要用于环境检测和绘制3D污染图
机器鱼
鱼类的高效、快速、机动灵活的水 下推进方式吸引了国内外的科学家们从 事仿生机器鱼的研究。
极简的用料和轻量的结构使得资源和
能源的消耗降到最低。
7
• 陆地仿生机器人
2020/10/16
该机器蜘蛛上装有一对可以用来探测 障碍的天线,且拥有异常灵活的腿。它们 能跨越障碍,攀登岩石,探访靠轮子滚动 前进的机器人无法抵达的区域。机器蜘蛛 一类微型仿生机器人非常适合勘探彗星、 小行星等小型天体。在国际空间站上它们 可以充当维护员,及时发现空气泄漏等意 外故障。
左下图是国防科技大学2001年研制的 蛇形机器人。这条长1.2m,直径0.06m,重1. 8kg的机器蛇,能扭动身躯,在地上或草丛中 婉蜒爬行,可前进、后退,拐弯和加速,最大 前进速度可达每分钟20m,披上特制的“蛇 皮”后还能像蛇一样在水中游泳。
9
2020/10/16
• 机器蜘蛛 左图为美国宇航局喷气推进实验室于
10
2020/10/16
• 机器蛙 在崎岖多障碍的外星表面,跳跃显然
是一种理想的行动方式,在低重力环境下, 跳跃更是一种高效使用能量的运动方式。 左图为美国宇航局喷气推进实验室研制的 机器蛙形状有点像青蛙,质量不超过1.3千 克。
机器蛙腿的膝部装有弹簧,能像青蛙 那样先弯起腿,再一跃而起。蛙身装有小 马达、传感器、照相机、小型电脑和太阳 能电池极等部件。
11
• 水下仿生机器人
水下机人完成某些操作,又称潜水器。水下环境恶劣危 险,人的潜水深度有限,所以水下机器人已成为开发海洋的重要工具。
•
英国埃塞克斯大学的环境检测机器人 主要用于环境检测和绘制3D污染图
机器鱼
鱼类的高效、快速、机动灵活的水 下推进方式吸引了国内外的科学家们从 事仿生机器鱼的研究。
极简的用料和轻量的结构使得资源和
能源的消耗降到最低。
7
• 陆地仿生机器人
2020/10/16
第9课 仿生机器人
仿生机器人
仿生机器人已 经被应用到各 种领域,人形 机器人也是仿 生机器人的一 种。
Hale Waihona Puke 奔跑的兔子“仿生机器人”是指模仿生物、 从事生物特点工作的机器人。仿 生机器人的设计来源与人们对生 活的观察,下面请大家仔细观察 图片,说说兔子的身体构造和兔 子是怎么奔跑的。
机械兔子
搭建步骤
材料准 备
搭建步骤
实现效果,机 械兔子向前轻 跳一段距离, 然后开始奔跑, 思考一下参数 该如何去设置。
程序搭建
电机转速和延 时时间可以自 行设定,考虑 一下如何通过 控制电机速度 和延时时间来 实现兔子的轻 跳和奔跑动作。
第九课 仿生机器人
仿生机器人
“仿生机器人”是指模仿生物、 从事生物特点工作的机器人。目 前在西方国家,机械宠物十分流 行,另外,仿麻雀机器人可以担 任环境监测的任务,具有广阔的 开发前景。二十一世纪人类将进 入老龄化社会,发展“仿人机器 人”将弥补年轻劳动力的严重不 足,解决老龄化社会的家庭服务 和医疗等社会问题,并能开辟新 的产业,创造新的就业机会。
仿生机器人的特点
身体由金属及符合材料制作 机器人身体部件由金属及 符合材料制作,依靠齿轮。 连杆机构等装置运行。
前进方式模仿生物行为 仿生机器人的外形和前进 方式模仿生物的日常行为, 如机械蜘蛛,机械蛇等
可以代替人类完成一些工作
仿生机器人可以代替人类 完成一些人类无法完成的 事情,如蛇形机器人可以 潜入较狭小的空间进行探 测和信息搜集的工作。
搭建身体部分
搭建步骤
搭建机 械兔子 的后腿 部分
搭建步骤
搭建 机械 兔子 的前 腿部 分
搭建步骤
组装机 械兔子 的身体 部分。
仿生机器人介绍
搜救行动
仿生机器人能够模仿搜救 犬的行为,在废墟中寻找 被困人员,提高搜救效率。
物资运输
仿生机器人可以承担物资 运输任务,将救援物资快 速送达灾区,保障救援行 动的顺利进行。
科学探索
环长期监测,为生态 保护和科学研究提供数据支持。
生物研究
仿生机器人可用于研究生物行为和 生态系统的相互作用,揭示生物奥 秘。
移动速度和灵活性。
仿生机器人在人工智能领域的应用
智能控制
仿生机器人可以应用于智能控制 领域,通过模拟生物体的行为和 决策过程,实现更高效和智能的 控制算法。
机器学习
仿生机器人可以作为机器学习的 模型,通过模拟生物体的学习和 进化过程,提高机器学习的效率 和准确性。
虚拟现实
仿生机器人可以应用于虚拟现实 领域,通过模拟生物体的感知和 行为,提高虚拟环境的真实感和 沉浸感。
仿生机器人介绍
• 引言 • 仿生机器人的种类 • 仿生机器人的应用领域 • 仿生机器人的技术实现 • 仿生机器人的未来展望
目录
01
引言
仿生机器人的定义
总结词
仿生机器人是一种模仿生物形态 、运动方式以及感知能力的机器 人。
详细描述
仿生机器人不仅在外形上模仿生 物,还借鉴了生物的感知、运动 和行为模式,以实现更高效、灵 活和自主的运动能力。
THANKS
鱼类仿生机器人以鱼类为原型,具有高速游动、灵活转向、低阻航行等特点。
详细描述
鱼类仿生机器人通常采用流线型设计,利用水动力学原理,模拟鱼类的游动方式 和行为特征,如摆尾、转弯、加速等。它们在水下探测、海洋资源开发、水下救 援等领域具有广泛的应用前景。
鸟类仿生机器人
总结词
鸟类仿生机器人以鸟类为原型,具有飞行高度高、速度快、机动性强等特点。
仿生机器人
器测量值)传输到平板电脑。
BionicFinWave
BionicMotionRobot
• 以自然样板为灵感的柔性运动装置
• 无论是敏感、柔和、强大或动态——BionicMotionRobot 从象鼻和章鱼触须的运动中获得启发。气动轻型机器人拥有
十二个自由度,可通过约3千克的工作负载支撑自身重量。
仿生ቤተ መጻሕፍቲ ባይዱ器人分类
水下仿生机器人
水下仿生机器人是指模仿鱼类或者是其它水生生物的一些特性研制出的新型高速、低噪音、机动灵 活的柔体潜水器,这些仿鱼推进器的效率可以达到70%到90%。比如说机器鱼、机器蟹等等。由于 单个水下仿生机器人的活动范围和能力有限,所以具有高机动性、高灵活性、高效率、高协作性的 群体仿生水下机器人系统将是未来发展的趋势。如机器鱼,仿生水母。
BionicFlyingFox 飞蝠
• 运用智能运动学的超轻型飞行物
• 狐蝠(英文:flying fox)是蝙蝠的一种。蝙蝠是唯一可以 主动飞行的哺乳动物。狐蝠的一个典型特征是它精细且富有 弹性的翼膜,从延长的前掌骨与指骨一直延伸至脚关节。在 飞行时,狐蝠能用手指有针对性地控制翼膜的曲率,从而能 够以符合空气动力学的方式在空中灵活飞行。这样一来,即
BionicFlyingFox 飞蝠
•
可移动式照相系统动态追踪飞行器
BionicWheelBot 蜘蛛
• 如同摩洛哥后翻蜘蛛一样行走与翻滚
BionicWheelBot的生物样板为摩洛哥后翻蜘蛛(cebrennus rechenbergi)——一种生活在撒哈拉边缘比沙丘沙漠的蜘蛛, 由柏林技术大学仿生学教授Ingo Rechenberg于2008年发现。 这种蜘蛛可以与其同类一样行走,但也能够以空中翻转与地面 翻滚的组合形式移动。
仿生机器人技术教材
(c) 鲉行式:又称鲹 科结合新月形尾鳍 模式,鱼类有灿鱼、 鳍鱼、马林鱼等, 常有大展弦比的尾 鳍,在快速运动中 最为高效。海洋中 游速最高的鱼类大 都采用这种游动方 式。
BCF推进方式 (a)鳗行式 (b)鳟行式 (c) 鲉行式
据统计,大约只有15%的鱼类采用BCF推进方式以外的其他方式 推进。由于MPF推进方式速度慢、效率低,因此我们把研究的 重点放在BCF推进方式中在速度、加速度和可操控性上有最好的 平衡的鲹科模式。
3 信息融合问题
信息融合技术把分布在不同位置的多个同类或不同类的传感器所提供的 局部环境的不完整信息加以综合,消除多传感器信息之间可能存在的冗 余和矛盾,从而提高系统决策、规划、反应的快速性和正确性。
4 机构设计问题
生物的形态经过千百万年的进化,其结构特征极具合理性,而要用机械 来完全取其精髓进行简化,才能开发全方位关节机构和简单 关节组成高灵活性的机器人机构。
鱼类的高效、快速、机动灵活的水下推进方式吸引了国内外的科学 家们从事仿生机器鱼的研究。美国、日本等国的科学家们研制出了 各种类型的仿生机器鱼实验平台和原理样机。国内的中科院自动化 研究所和北京航空航天大学等单位已研制了机器鱼样机。
基于鲹科模型的 “游龙”系列机械鱼
2.2 仿生机器人关键技术问题
1 建模问题
5 微传感和微驱动问题
微型仿生机器人的开发涉及到电磁、机械、热、光、化学、生物等多学 科。对于微型仿生机器人的制造,需要解决一些工程上的问题。如动力 源、驱动方式、传感集成控制以及同外界的通讯等。
2.3 仿生机器人发展趋势
特种仿生机器人 微型化仿生机器人 仿形仿生机器人 生物仿生机器人
3 仿生机器鱼
仿生机器人的运动具有高度的灵活性和适应性,其一般都是冗 余度或超冗余度机器人,结构复杂。运动学和动力学模型与常 规机器人有很大差别,且复杂程度更大。
仿生机器人概论PPT课件
微小型仿生机器鱼是指结构尺寸微小、器件精密、可进行 微细操作的机器鱼,主要用于医学和一些工业领域。
2021/5/5
✓按照其驱动方式主要分为:压电 晶体式(PZT)微小型机器鱼、 永磁体式(NdFeB)微小型机器 鱼、离子交换聚合体膜式(ICPF 或 IPMC)微小型机器鱼、介电 弹性体式(ANTLA)微小型机器 鱼、形状记忆合金式(SMA)微 小 型 机 器 鱼 和 超 磁 致 伸第缩9页材/共料19页式
利用躯干部和尾部肌肉(大侧肌)的交替伸缩,使身体左右扭动屈 曲前 进即通过身体的波动和尾鳍的摆动产生推进力。
2021/5/5
四种BCF模式
第5页/共19页
二. 仿生机器鱼推进机理
1.鱼类游动机理
b.中间鳍、对鳍推进模式(MPF Model)
主要依靠胸鳍或腹鳍的摆动产生推进力,一般为辅助推进模式, 但对于而鳐科模式(Rajiform) 、刺鲀科模式(Diodontiform)的 鱼类MPF则为主要的推进方式。
娱乐方面
第2页/共19页
一. 仿生机器鱼概述
3.仿生机器鱼特点
与传统螺旋桨水中推进器比较,仿生机器鱼有以下优点 ✓推进效率高:可以达到80%以上,螺旋桨推进只有 40%~50% ✓机动性好:转弯半径只有体长10%~30% ✓噪音低 ✓对环境扰动小
2021/5/5
第3页/共19页
二. 仿生机器鱼推进机理
27(6):518-519. 【13】王扬威,王振龙,李健,杭观荣. 形状记忆合金驱动仿生蝠鲼机器鱼的设计【J】.机器人,
2010 32(2):256-260.
2021/5/5
第17页/共19页
2021/5/5
谢谢!
欢迎批评指正
第18页/共19页
2021/5/5
✓按照其驱动方式主要分为:压电 晶体式(PZT)微小型机器鱼、 永磁体式(NdFeB)微小型机器 鱼、离子交换聚合体膜式(ICPF 或 IPMC)微小型机器鱼、介电 弹性体式(ANTLA)微小型机器 鱼、形状记忆合金式(SMA)微 小 型 机 器 鱼 和 超 磁 致 伸第缩9页材/共料19页式
利用躯干部和尾部肌肉(大侧肌)的交替伸缩,使身体左右扭动屈 曲前 进即通过身体的波动和尾鳍的摆动产生推进力。
2021/5/5
四种BCF模式
第5页/共19页
二. 仿生机器鱼推进机理
1.鱼类游动机理
b.中间鳍、对鳍推进模式(MPF Model)
主要依靠胸鳍或腹鳍的摆动产生推进力,一般为辅助推进模式, 但对于而鳐科模式(Rajiform) 、刺鲀科模式(Diodontiform)的 鱼类MPF则为主要的推进方式。
娱乐方面
第2页/共19页
一. 仿生机器鱼概述
3.仿生机器鱼特点
与传统螺旋桨水中推进器比较,仿生机器鱼有以下优点 ✓推进效率高:可以达到80%以上,螺旋桨推进只有 40%~50% ✓机动性好:转弯半径只有体长10%~30% ✓噪音低 ✓对环境扰动小
2021/5/5
第3页/共19页
二. 仿生机器鱼推进机理
27(6):518-519. 【13】王扬威,王振龙,李健,杭观荣. 形状记忆合金驱动仿生蝠鲼机器鱼的设计【J】.机器人,
2010 32(2):256-260.
2021/5/5
第17页/共19页
2021/5/5
谢谢!
欢迎批评指正
第18页/共19页
演示文稿仿生机器人介绍(优秀文档)PPT
特伍德的第一双人工翅膀展翅飞翔的时
候,这种初为人父般的骄傲来临了。
第十二页,共十九页。
仿生机器人国内外研究情况
宠物“小狗”的主人们可以通过个人计算机,在无线环境下完成控制、编程以及导航操作。
这是一种名为GreenX的机器鸟,外形酷似鹰,地面人员像遥控飞机一样指挥机器鸟的飞行。
这是一种名为GreenX的机器鸟,外形酷似鹰,地面人员像遥控飞机一样指挥机器鸟的飞行。
器企鹅等。
• 生物机器人,生物机器人是利用单细胞打造成的,具有特殊功能
特性的机器人,他们能够完成普通仿真机器人所不能完成的任务,
生物机器人被设计成通过光和电磁刺激来激发化学反应。
第四页,共十九页。
仿生机器人的特点
• 多为冗余自由度或超冗余自由度的机器人,机构复杂。
• 其驱动方式不同于常规的关节型机器人,通常采用绳索、人造肌
固定翼技术已经成熟,其翼展200mm以下不足以产生足够的升力.
【机器企鹅】 如图所示,机器企鹅可以无需人们的帮助下在池塘中巡游,但并不像真实企鹅那样可以背身反向游动。
仿生机器人国内外研究情况
新一代“爱宝”还装有一个与微软公司Outlook 软件兼容的日程安排程序,因此,这只机器狗可以及时地提醒它的主人们,不要忘记约会的时间。
1个发动机和6个可移动部件,使其
能更好地模拟真实金枪鱼的活动。
它的身体是由软聚合体制成,该材
料不会受到水的腐蚀作用。 真实
的金枪鱼每秒可游动自已体长10倍
的距离,而这款机器人仅能每秒游
动相当于自身体长的距离。
第八页,共十九页。
仿生机器人国内外研究情况
中国科技大学陈小平教授介绍,机器人一般根据不同应用需求被设计成不同形状,如运用于工业的机械臂、轮椅机器人、步行机器人等。
候,这种初为人父般的骄傲来临了。
第十二页,共十九页。
仿生机器人国内外研究情况
宠物“小狗”的主人们可以通过个人计算机,在无线环境下完成控制、编程以及导航操作。
这是一种名为GreenX的机器鸟,外形酷似鹰,地面人员像遥控飞机一样指挥机器鸟的飞行。
这是一种名为GreenX的机器鸟,外形酷似鹰,地面人员像遥控飞机一样指挥机器鸟的飞行。
器企鹅等。
• 生物机器人,生物机器人是利用单细胞打造成的,具有特殊功能
特性的机器人,他们能够完成普通仿真机器人所不能完成的任务,
生物机器人被设计成通过光和电磁刺激来激发化学反应。
第四页,共十九页。
仿生机器人的特点
• 多为冗余自由度或超冗余自由度的机器人,机构复杂。
• 其驱动方式不同于常规的关节型机器人,通常采用绳索、人造肌
固定翼技术已经成熟,其翼展200mm以下不足以产生足够的升力.
【机器企鹅】 如图所示,机器企鹅可以无需人们的帮助下在池塘中巡游,但并不像真实企鹅那样可以背身反向游动。
仿生机器人国内外研究情况
新一代“爱宝”还装有一个与微软公司Outlook 软件兼容的日程安排程序,因此,这只机器狗可以及时地提醒它的主人们,不要忘记约会的时间。
1个发动机和6个可移动部件,使其
能更好地模拟真实金枪鱼的活动。
它的身体是由软聚合体制成,该材
料不会受到水的腐蚀作用。 真实
的金枪鱼每秒可游动自已体长10倍
的距离,而这款机器人仅能每秒游
动相当于自身体长的距离。
第八页,共十九页。
仿生机器人国内外研究情况
中国科技大学陈小平教授介绍,机器人一般根据不同应用需求被设计成不同形状,如运用于工业的机械臂、轮椅机器人、步行机器人等。
仿生机器人
仿生机器人
Ⅰ、研究背景
自然界在亿万年的演化过程中孕育了各种各样的生物 , 每种生物都 拥有神奇的特性与功能,能够在复杂多变的环境中生存下来。因此,人类 通过研究、学习、模仿来复制和再造某些生物特性和功能 , 可以极大的 提高人类对自然的适应和改造能力,产生巨大的社会经济效益。
• 仿生学(Bionics) 仿生学诞生于20世纪60年代, 是生 物科学和工程技术相结合的一门边缘学 科,通过学习、模仿、复制和再造生物 系统的结构、功能、工作原理及控制机 制,来改进现有的或创造新的机械、仪 器、建筑和工艺过程。
Ⅲ、仿生机器人国内外研究情况
现代仿生学已经延伸到很多领域,机器人学是其主要的结合和应用领 域之一,这方面的研究引起各国相关研究人员和专家的极大兴趣和关注,取 得了大量可喜成果和积极进展。
• 空中仿生机器人
飞行机器人即具有自主导航能力的无人驾驶飞行器。
• 美国机器蝇 美国加州大学伯克利分校的研究小组 用了4年的时间基于仿生学原理制造出了世 界上第一只能飞翔的机器苍蝇,其身高不 到30mm,翼展25mm,翼振频率150Hz,重量只 有100mg。 若在机器蝇身上安装许多传感器和微 型摄像机,可广泛应用于环境监测,废墟 救援以及军事间谍等领域。
• 机器飞虫 图为美国哈佛大学微型机器人实验室 设计的一种能扑打翅膀飞行的微型机器飞 虫,其机翼张开仅为3厘米。 机器飞虫的振动机翼是仿照自然界昆 虫翅膀的大小和振动频率用特殊方法制成 的,它能检测分析多重压力,在翅膀以每 秒超过100次的速率振动时,还能观察包围 机翼的气流的变化。 • 德国机器鸟 左图为德国科技公司费斯托(FESTO) 的科学家发明的一种叫做SmartBird的机 器鸟,它可以自主地启动、飞翔和降落, 灵活程度可以和真正的鸟相媲美。 极简的用料和轻量的结构使得资源和 能源的消耗降到最低。
Ⅰ、研究背景
自然界在亿万年的演化过程中孕育了各种各样的生物 , 每种生物都 拥有神奇的特性与功能,能够在复杂多变的环境中生存下来。因此,人类 通过研究、学习、模仿来复制和再造某些生物特性和功能 , 可以极大的 提高人类对自然的适应和改造能力,产生巨大的社会经济效益。
• 仿生学(Bionics) 仿生学诞生于20世纪60年代, 是生 物科学和工程技术相结合的一门边缘学 科,通过学习、模仿、复制和再造生物 系统的结构、功能、工作原理及控制机 制,来改进现有的或创造新的机械、仪 器、建筑和工艺过程。
Ⅲ、仿生机器人国内外研究情况
现代仿生学已经延伸到很多领域,机器人学是其主要的结合和应用领 域之一,这方面的研究引起各国相关研究人员和专家的极大兴趣和关注,取 得了大量可喜成果和积极进展。
• 空中仿生机器人
飞行机器人即具有自主导航能力的无人驾驶飞行器。
• 美国机器蝇 美国加州大学伯克利分校的研究小组 用了4年的时间基于仿生学原理制造出了世 界上第一只能飞翔的机器苍蝇,其身高不 到30mm,翼展25mm,翼振频率150Hz,重量只 有100mg。 若在机器蝇身上安装许多传感器和微 型摄像机,可广泛应用于环境监测,废墟 救援以及军事间谍等领域。
• 机器飞虫 图为美国哈佛大学微型机器人实验室 设计的一种能扑打翅膀飞行的微型机器飞 虫,其机翼张开仅为3厘米。 机器飞虫的振动机翼是仿照自然界昆 虫翅膀的大小和振动频率用特殊方法制成 的,它能检测分析多重压力,在翅膀以每 秒超过100次的速率振动时,还能观察包围 机翼的气流的变化。 • 德国机器鸟 左图为德国科技公司费斯托(FESTO) 的科学家发明的一种叫做SmartBird的机 器鸟,它可以自主地启动、飞翔和降落, 灵活程度可以和真正的鸟相媲美。 极简的用料和轻量的结构使得资源和 能源的消耗降到最低。
相关主题