2013年西城区高三一模数学理科试题及答案
2013北京西城区高考一模数学理答案试卷
北京市西城区2013年高三一模试卷 高三数学(理科)参考答案及评分标准 2013.4一、选择题:本大题共8小题,每小题5分,共40分.1. B ; 2.A ; 3.D ; 4.B ; 5.C ; 6.B ; 7.D ; 8.A .二、填空题:本大题共6小题,每小题5分,共30分.9.22230x y y +--=; 10.5; 11.32-12.152,5; 13.1 14.1,.注:12、14题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分.若考生的解法与本解答不同,正确者可参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:依题意,得π()04f =, ………………1分即ππsincos 044a -==, (3)分解得 1a =. ………………5分(Ⅱ)解:由(Ⅰ)得 ()sin cos f x x x =-. ………………6分()()()cos g x f x f x x x =⋅-+(sin cos )(sin cos )2x x x x x =---+ ………………7分22(cos sin )2x x x =- ………………8分cos 22x x =+ ………………9分π2sin(2)6x =+. ………………10分由πππ2π22π262k x k -≤+≤+,得 ππππ36k x k -≤≤+,k ∈Z . (12)分所以 ()g x 的单调递增区间为ππ[π,π]36k k -+,k ∈Z . ………………13分16.(本小题满分13分)(Ⅰ)解:依题意,甲、乙两组的学生人数之比为 (35):(22)2:1++=, ……………1分所以,从甲组抽取的学生人数为2323⨯=;从乙组抽取的学生人数为1313⨯=.………2分设“从甲组抽取的同学中恰有1名女同学”为事件A , ………………3分则113528C C 15()C 28P A ⋅==, 故从甲组抽取的同学中恰有1名女同学的概率为1528. (5)分 (Ⅱ)解:随机变量X的所有取值为0,1,2,3. ………………6分21522184C C 5(0)C C 28P X ⋅===⋅, 111213525221218484C C C C C 25(1)C C C C 56P X ⋅⋅⋅==+=⋅⋅, 211113235221218484C C C C C 9(2)C C C C 28P X ⋅⋅⋅==+=⋅⋅, 21322184C C 3(3)C C 56P X ⋅===⋅.……………10分所以,随机变量X 的分布列为:………………11分5259350123285628564EX =⨯+⨯+⨯+⨯=. (13)分17.(本小题满分14分)(Ⅰ)证明:因为BC AB 2=,60ABC ︒∠=,在△ABC 中,由余弦定理可得 BC AC 3=,所以 BC AC ⊥. ………………2分 又因为 AC FB ⊥,所以⊥AC 平面FBC . ………………4分 (Ⅱ)解:因为⊥AC 平面FBC ,所以FC AC ⊥.因为FC CD ⊥,所以⊥FC 平面ABCD .………………5分 所以,,CA CF CB 两两互相垂直,如图建立的空间直角坐标系xyz C -. ………………6分在等腰梯形ABCD 中,可得 CB CD =.设1BC =,所以11(0,0,0),(0,1,0),,0),,1)22C A B D E --.所以)1,21,23(-=CE ,)0,0,3(=CA ,)0,1,0(=CB .设平面EAC 的法向量为=()x,y,z n ,则有0,0.CE CA ⎧⋅=⎪⎨⋅=⎪⎩n n 所以 10,20.x y z -+== 取1z =,得=n (0,2,1). (8)分设BC 与平面EAC 所成的角为θ,则||sin |cos ,|||||CB CB CB ⋅=〈〉==θn n n 所以 BC 与平面EAC 所成角的正弦值为552. (9)分(Ⅲ)解:线段ED 上不存在点Q ,使平面EAC ⊥平面QBC .证明如下: ………………10分假设线段ED 上存在点Q ,设),21,23(t Q - )10(≤≤t ,所以),21,23(t CQ -=.设平面QBC 的法向量为=m ),,(c b a ,则有0,0.CB CQ ⎧⋅=⎪⎨⋅=⎪⎩m m 所以 0,10.2b b tc =⎧-+= 取 1=c ,得=m )1,0,32(t -. (12)分要使平面EAC ⊥平面QBC ,只需0=⋅n m ,………………13分即002110⨯+⨯+⨯=, 此方程无解.所以线段ED 上不存在点Q ,使平面EAC ⊥平面QBC . ………………14分18.(本小题满分13分) (Ⅰ)解:()f x 的定义域为(0,)+∞, ………………1分且11()ax f x a x x -'=-=. ………………2分① 当0a ≤时,()0f x '<,故()f x 在(0,)+∞上单调递减.从而)(x f 没有极大值,也没有极小值. ………………3分② 当0a >时,令()0f x '=,得1x a =.()f x 和()f x '的情况如下:故()f x 的单调减区间为1(0,)a ;单调增区间为1(,)a +∞.从而)(x f 的极小值为1()1ln f aa =+;没有极大值. (5)分(Ⅱ)解:()g x 的定义域为R ,且 ()e 3axg x a '=+. ………………6分③ 当0a >时,显然 ()0g x '>,从而()g x 在R 上单调递增.由(Ⅰ)得,此时()f x 在1(,)a +∞上单调递增,符合题意. ………………8分④ 当0a =时,()g x 在R 上单调递增,()f x 在(0,)+∞上单调递减,不合题意.……9分⑤ 当0a <时,令()0g x '=,得013ln()x a a =-.()g x 和()g x '的情况如下表:当30a -≤<时,00x ≤,此时()g x 在0(,)x +∞上单调递增,由于()f x 在(0,)+∞上单调递减,不合题意. ………………11分当3a <-时,00x >,此时()g x 在0(,)x -∞上单调递减,由于()f x 在(0,)+∞上单调递减,符合题意. 综上,a 的取值范围是(,3)(0,)-∞-+∞. (13)分 19.(本小题满分14分)(Ⅰ)解:依题意,当直线AB 经过椭圆的顶点(0,)b 时,其倾斜角为60︒. ………………1分设 (,0)F c -,则tan 60bc ︒==.2分 将 b =代入 222a b c =+,解得 2a c =. ………………3分所以椭圆的离心率为12c e a ==. ………………4分(Ⅱ)解:由(Ⅰ),椭圆的方程可设为2222143x y c c +=. ………………5分 设11(,)A x y ,22(,)B x y .依题意,直线AB 不能与,x y 轴垂直,故设直线AB 的方程为()y k x c =+,将其代入2223412x y c +=,整理得222222(43)84120k x ck x k c c +++-=. ………………7分则2122843ck x x k -+=+,121226(2)43cky y k x x c k +=++=+,22243(,)4343ck ck G k k -++. (8)分因为 GD AB ⊥,所以 2223431443Dckk k ck x k +⨯=---+,2243D ck x k -=+. ………………9分因为 △GFD ∽△OED ,所以 2222222212222243()()||434343||()43ck ck ck S GD k k k ck S OD k ---++++==-+ (11)分222242222242(3)(3)99999()ck ck c k c k ck c k k ++===+>. ………………13分所以12S S 的取值范围是(9,)+∞. ………………14分20.(本小题满分13分)(Ⅰ)解:当5n =时,由51(,)||7i i i d A B a b ==-=∑,得5|12||24||12||21||3|7a -+-+-+-+-=,即 5|3|2a -=.由 *5a ∈N ,得 51a =,或55a =. ………………3分 (Ⅱ)(ⅰ)证明:设12(,,,)n A a a a =,12(,,,)n B b b b =,12(,,,)n C c c c =.因为 0∃>λ,使 AB BC λ=,所以 0∃>λ,使得 11221122(,,)((,,)n n n n b a b a b a c b c b c b ---=---λ,,,即 0∃>λ,使得 ()ii i i b a c b λ-=-,其中1,2,,i n =.所以i i b a -与(1,2,,)i i c b i n -=同为非负数或同为负数.………………5分所以11(,)(,)||||nni i i i i i d A B d B C a b b c ==+=-+-∑∑1(||||)ni i i i i b a c b ==-+-∑1||(,)ni i i c a d A C ==-=∑. ………………6分(ⅱ)解:设,,n A B C S ∈,且(,)(,)(,)d A B d B C d A C +=,此时不一定0∃>λ,使得AB BC λ=. ………………7分反例如下:取(1,1,1,,1)A =,(1,2,1,1,,1)B =,(2,2,2,1,1,,1)C ,则 (,)1d A B =,(,)2d B C =,(,)3d A C =,显然(,)(,)(,)d A B d B C d A C +=. 因为(0,1,0,0,,0)AB =,(1,0,1,0,0,,0)BC =,所以不存在>0λ,使得AB BC λ=. ………………8分(Ⅲ)解法一:因为 1(,)||ni i i d A B b a ==-∑,设(1,2,,)i i b a i n -=中有()m m n ≤项为非负数,n m -项为负数.不妨设1,2,,i m=时0i i b a -≥;1,2,,i m m n =++时,0i i b a -<.所以 1(,)||ni i i d A B b a ==-∑12121212[()()][()()]m m m m n m m n b b b a a a a a a b b b ++++=+++-+++++++-+++因为 (,)(,)d I A d I B p ==,所以11(1)(1)n niii i a b ==-=-∑∑, 整理得11n ni ii i a b===∑∑.所以 12121(,)||2[()]ni i m m i d A B b a b b b a a a ==-=+++-+++∑.……………10分因为121212()()m n m m n b b b b b b b b b +++++=+++-+++()()1p n n m p m ≤+--⨯=+; 又121m a a a m m+++≥⨯=,所以1212(,)2[()]m m d A B b b b a a a =+++-+++2[()]2p m m p ≤+-=.即 (,)2d A B p ≤. ……………12分 对于 (1,1,,1,1)A p =+,(1,1,1,,1)B p =+,有 A ,n B S ∈,且(,)(,)d I A d I B p ==,(,)2d A B p =.综上,(,)d A B 的最大值为2p . ……………13分 解法二:首先证明如下引理:设,x y ∈R ,则有 ||||||x y x y +≤+. 证明:因为 ||||x x x -≤≤,||||y y y -≤≤, 所以 (||||)||||x y x y x y -+≤+≤+,即 ||||||x y x y +≤+.所以11(,)|||(1)(1)|n ni i i i i i d A B b a b a ===-=-+-∑∑1(|1||1|)ni i i b a =≤-+-∑11|1||1|2nni i i i a b p===-+-=∑∑. ……………11分上式等号成立的条件为1i a =,或1i b =,所以 (,)2d A B p ≤. ……………12分 对于 (1,1,,1,1)A p =+,(1,1,1,,1)B p =+,有 A ,n B S ∈,且(,)(,)d I A d I B p ==,(,)2d A B p =.综上,(,)d A B 的最大值为2p . ……………13分。
北京市西城区2012-2013学年度第一学期期末试卷高三数学(理科)
(A)充分而不必要条 (B)必要而不充分条
件
件
·3·
(C)充分必要条件
HLLYBQ 整理 供“高中试卷网()”
(D)既不充分也不必 要条件
6.已知 a,b 是正数,且满足 2 a 2b 4.那么 a2 b2 的取 值范围是( )
(
( 4 ,16)
A
) (B) (4 ,16) 5
cos 3
4.执行如图所示的程序框图.若输出 S 15 , 则框 图中
① 处可以填入( )
(A) k 2 (B) k 3 (C) k 4 (D) k 5
5 . 已 知 函 数 f (x) x bcos x , 其 中 b 为 常 数 . 那 么
“b 0”是“ f (x) 为奇函数”的( )
55
(C) (1,16)
(D) (16 , 4) 5
7.某四面体的三视图如图所示.该四面体的 六条棱的长度中,最大的是( )
(A) 2 5 (B) 2 6 (C) 2 7 (D) 4 2
8.将正整数1,2,3,4,5,6,7 随机分成两组,使得每组至 少有一个数,则两组中各数之和相等的概率是
·4·
()
分.在每小题列出的四个选项中,选出符合题目
要求的一项.
1.已知集合 A {x R | 0 x 1}, B {x R | (2x 1)(x 1) 0},则
AB ( )
(A) (0, 1) 2
(B) (1,1)
(C) (, 1) (1 , ) 2
(D) (, 1) (0, )
2.在复平面内,复数 5i 的对应点位于( ) 2i
北 京 市 西 城 区 2012-2013 学 年 度第一学期期末试卷高三数学 (理科)
北京市西城区2013—2014学年度高三年级第一学期期末数学理科
北京市西城区2013 — 2014学年度第一学期期末试卷高三数学(理科)2014.1第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.设集合{|02}A x x =<<,1{|||}B x x =≤,则集合A B = ( ) (A )(0,1)(B )(0,1](C )(1,2)(D )[1,2)3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 若3a =,2b =,1cos()3A B +=,则c =( ) (A )4(B(C )3(D4.执行如图所示的程序框图,输出的S 值为( ) (A )34 (B )45(C )56(D )12.已知复数z 满足2i=1iz +,那么z 的虚部为( ) (A )1-(B )i -(C )1(D )i5.已知圆22:(1)(1)1C x y ++-=与x 轴切于A 点,与y 轴切于B 点,设劣弧»AB 的中点为M ,则过点M 的圆C 的切线方程是( ) (A)2y x =+-(B)1y x =+-(C)2y x =-+(D)1y x =+-6. 若曲线221ax by +=为焦点在x 轴上的椭圆,则实数a ,b 满足( ) (A )22a b > (B )11a b< (C )0a b <<(D )0b a <<7.定义域为R 的函数()f x 满足(1)2()f x f x +=,且当(0,1]x ∈时,2()f x x x =-,则当[2,1]x ∈--时,()f x 的最小值为( ) (A )116-(B ) 18-(C ) 14-(D ) 08. 如图,正方体1111ABCD A B C D -的棱长为P 在对角线1BD 上,过点P 作垂直于1BD 的平面α,记这样得到的截面多边形(含三角形)的周长为y ,设BP =x , 则当[1,5]x ∈时,函数()y f x =的值域为( )(A) (B) (C) (D)第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.9. 在平面直角坐标系xOy 中,点(1,3)A ,(2,)B k -,若向量OA AB ⊥,则实数k = ____. 10.若等差数列{}n a 满足112a =,465a a +=,则公差d =______;24620a a a a ++++= ______.11.已知一个正三棱柱的所有棱长均相等,其侧(左)视图如图所示,那么此三棱柱正(主)视图的面积为______.12.甲、乙两名大学生从4个公司中各选2个作为实习单位,则两人所选的实习单位中恰有1个相同的选法种数是______. (用数字作答)13. 如图,,B C 为圆O 上的两个点,P 为CB 延长线上一点,PA 为圆O 的切线,A 为切点. 若2PA =,3BC =,则PB =______;ACAB=______.1侧(左)视图14.在平面直角坐标系xOy 中,记不等式组220,0,2x y x y x y +⎧⎪-⎨⎪+⎩≥≤≤所表示的平面区域为D .在映射,:u x y T v x y =+⎧⎨=-⎩的作用下,区域D 内的点(,)x y 对应的象为点(,)u v . (1)在映射T 的作用下,点(2,0)的原象是 ; (2)由点(,)u v 所形成的平面区域的面积为______.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数()f x x ω=,π()sin()(0)3g x x ωω=->,且()g x 的最小正周期为π.(Ⅰ)若()2f α=[π,π]α∈-,求α的值; (Ⅱ)求函数()()y f x g x =+的单调增区间.16.(本小题满分13分)以下茎叶图记录了甲、乙两组各三名同学在期末考试中的数学成绩.乙组记录中有一个数字模糊,无法确认,假设这个数字具有随机性,并在图中以a 表示.(Ⅰ)若甲、乙两个小组的数学平均成绩相同,求a 的值; (Ⅱ)求乙组平均成绩超过甲组平均成绩的概率;(Ⅲ)当2a =时,分别从甲、乙两组中各随机选取一名同学,记这两名同学数学成绩之差的绝对值为X ,求随机变量X 的分布列和数学期望.17.(本小题满分14分)如图,在多面体ABCDEF 中,底面ABCD 是边长为2的菱形, 60=∠BAD ,四边形BDEF 是矩形,平面BDEF ⊥平面ABCD ,BF =3, H 是CF 的中点.(Ⅰ)求证:AC ⊥平面BDEF ;(Ⅱ)求直线DH 与平面BDEF 所成角的正弦值; (Ⅲ)求二面角H BD C --的大小.甲组 乙组 891 a822 F CEHD18.(本小题满分13分)已知函数()()e xf x x a =+,其中e 是自然对数的底数,a ∈R . (Ⅰ)求函数)(x f 的单调区间;(Ⅱ)当1a <时,试确定函数2()()g x f x a x =--的零点个数,并说明理由.19.(本小题满分14分)已知,A B 是抛物线2:W y x =上的两个点,点A 的坐标为(1,1),直线AB 的斜率为k , O 为坐标原点. (Ⅰ)若抛物线W 的焦点在直线AB 的下方,求k 的取值范围;(Ⅱ)设C 为W 上一点,且AB AC ⊥,过,B C 两点分别作W 的切线,记两切线的交点为D ,求OD 的最小值.20.(本小题满分13分)设无穷等比数列{}n a 的公比为q ,且*0()n a n >∈N ,[]n a 表示不超过实数n a 的最大整数(如[2.5]2=),记[]n n b a =,数列{}n a 的前n 项和为n S ,数列{}n b 的前n 项和为n T . (Ⅰ)若114,2a q ==,求n T ; (Ⅱ)若对于任意不超过2014的正整数n ,都有21n T n =+,证明:120122()13q <<. (Ⅲ)证明:n n S T =(1,2,3,n =L )的充分必要条件为1,a q N N **挝.北京市西城区2013 — 2014学年度第一学期期末高三数学(理科)参考答案及评分标准2014.1一、选择题:本大题共8小题,每小题5分,共40分.1.B 2.C 3.D 4.B 5.A 6.C 7.A 8.D 二、填空题:本大题共6小题,每小题5分,共30分. 9.4 10.125511. 12.24 13.1 214.(1,1) π注:第10、13、14题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:因为π()sin()(0)3g x x ωω=->的最小正周期为π, 所以2||ωπ=π,解得2ω=. ……………… 3分由 ()2f α=22α=, 即 cos 22α=, ……… 4分 所以 π22π4k α=±,k ∈Z . 因为 [π,π]α∈-, 所以7πππ7π{,,,}8888α∈--. ……………… 6分(Ⅱ)解:函数 π()()2sin(2)3y f x g x x x =+=+-ππ2sin 2cos cos 2sin 33x x x =+- ……………… 8分1sin 222x x =πsin(2)3x =+, ……………10分 由 2πππ2π2π232k k x -++≤≤, ………………11分 解得 5ππππ1212k k x -+≤≤. ………………12分所以函数()()y f x g x =+的单调增区间为5ππ[ππ]()1212k k k -+∈Z ,.…………13分16.(本小题满分13分)(Ⅰ)解:依题意,得 11(889292)[9091(90)]33a ++=+++, ……………… 2分解得 1a =. ……………… 3分 (Ⅱ)解:设“乙组平均成绩超过甲组平均成绩”为事件A , ……………… 4分依题意 0,1,2,,9a = ,共有10种可能. ……………… 5分 由(Ⅰ)可知,当1a =时甲、乙两个小组的数学平均成绩相同,所以当2,3,4,,9a = 时,乙组平均成绩超过甲组平均成绩,共有8种可能.… 6分 所以乙组平均成绩超过甲组平均成绩的概率84()105P A ==. ……………… 7分 (Ⅲ)解:当2a =时,分别从甲、乙两组同学中各随机选取一名同学,所有可能的成绩结果有339⨯=种, 它们是:(88,90),(88,91),(88,92),(92,90),(92,91),(92,92),(92,90),(92,91),(92,92), ……………… 9分则这两名同学成绩之差的绝对值X 的所有取值为0,1,2,3,4. ……………… 10分 因此2(0)9P X ==,2(1)9P X ==,1(2)3P X ==,1(3)9P X ==,1(4)9P X ==. ……………… 11分所以随机变量X 的分布列为:………………12分所以X 的数学期望221115()01234993993E X =⨯+⨯+⨯+⨯+⨯=.……………13分 17.(本小题满分14分)(Ⅰ)证明:因为四边形ABCD 是菱形,所以 AC BD ⊥. ……… 1分因为平面BDEF ⊥平面ABCD ,且四边形BDEF 是矩形,所以 ED ⊥平面ABCD , ……………… 2分 又因为 AC ⊂平面ABCD ,所以 ED AC ⊥. …………… 3分 因为 ED BD D = ,所以 AC ⊥平面BDEF . …………… 4分 (Ⅱ)解:设AC BD O = ,取EF 的中点N ,连接ON ,因为四边形BDEF 是矩形,,O N 分别为,BD EF 的中点,所以 //ON ED ,又因为 ED ⊥平面ABCD ,所以 ON ⊥平面ABCD ,由AC BD ⊥,得,,OB OC ON 两两垂直.所以以O 为原点,,,OB OC ON 所在直线分别为x 轴,y 轴,z 轴,如图建立空间直角坐标系. ……… 5分 因为底面ABCD 是边长为2的菱形,60BAD ∠= ,3BF =, 所以(0,A ,(1,0,0)B ,(1,0,0)D -,(1,0,3)E -,(1,0,3)F,C,13()22H . ………………6分因为 AC ⊥平面BDEF ,所以平面BDEF的法向量AC =. …………7分设直线DH 与平面BDEF 所成角为α,由33(,)222DH = , 得sin |cos ,|DH AC DH AC DH ACα⋅=<>=== ,所以直线DH 与平面BDEF. ………………9分 (Ⅲ)解:由(Ⅱ),得13()222BH =- ,(2,0,0)DB = .设平面BDH 的法向量为111(,,)x y z =n ,所以0,0,BH DB ⎧⋅=⎪⎨⋅=⎪⎩ n n ………………10分即111130,20,x z x ⎧-++=⎪⎨=⎪⎩ 令11z =,得(0,=n . ………………11分由ED ⊥平面ABCD ,得平面BCD 的法向量为(0,0,3)ED =-,则00(01(3)1cos ,232ED ED ED⋅⨯+⨯+⨯-<>===-⨯n n n . ………………13分 由图可知二面角H BD C --为锐角,所以二面角H BD C --的大小为60 . ………………14分18.(本小题满分13分)(Ⅰ)解:因为()()e xf x x a =+,x ∈R ,所以()(1)e x f x x a '=++. ……………… 2分 令()0f x '=,得1x a =--. ……………… 3分 当x 变化时,()f x 和()f x '的变化情况如下:……………… 5分故()f x 的单调减区间为(,1)a -∞--;单调增区间为(1,)a --+∞.………… 6分 (Ⅱ)解:结论:函数()g x 有且仅有一个零点. ……………… 7分理由如下:由2()()0g x f x a x =--=,得方程2e x ax x -=,显然0x =为此方程的一个实数解.所以0x =是函数()g x 的一个零点. ……………… 9分 当0x ≠时,方程可化简为e x ax -=.设函数()ex aF x x -=-,则()e 1x a F x -'=-,令()0F x '=,得x a =.当x 变化时,()F x 和()F x '的变化情况如下:即()F x 的单调增区间为(,)a +∞;单调减区间为(,)a -∞.所以()F x 的最小值min ()()1F x F a a ==-. ………………11分 因为 1a <,所以min ()()10F x F a a ==->, 所以对于任意x ∈R ,()0F x >, 因此方程e x a x -=无实数解.所以当0x ≠时,函数()g x 不存在零点.综上,函数()g x 有且仅有一个零点. ………………13分19.(本小题满分14分)(Ⅰ)解:抛物线2y x =的焦点为1(0,)4. ……………… 1分由题意,得直线AB 的方程为1(1)y k x -=-, ……………… 2分 令 0x =,得1y k =-,即直线AB 与y 轴相交于点(0,1)k -. ……………… 3分 因为抛物线W 的焦点在直线AB 的下方, 所以 114k ->, 解得 34k <. ……………… 5分 (Ⅱ)解:由题意,设211(,)B x x ,222(,)C x x ,33(,)D x y ,联立方程21(1),,y k x y x -=-⎧⎨=⎩ 消去y ,得210x kx k -+-=,由韦达定理,得11x k +=,所以 11x k =-. ……………… 7分 同理,得AC 的方程为11(1)y x k-=--,211x k =--. ……………… 8分对函数2y x =求导,得2y x '=,所以抛物线2y x =在点B 处的切线斜率为12x ,所以切线BD 的方程为21112()y x x x x -=-, 即2112y x x x =-. ……………… 9分 同理,抛物线2y x =在点C 处的切线CD 的方程为2222y x x x =-.………………10分联立两条切线的方程2112222,2,y x x x y x x x ⎧=-⎪⎨=-⎪⎩ 解得12311(2)22x x x k k +==--,3121y x x k k==-,所以点D 的坐标为111((2),)2k k k k---. ………………11分 因此点D 在定直线220x y ++=上. ………………12分因为点O 到直线220x y ++=的距离d ==所以5OD ≥,当且仅当点42(,)55D --时等号成立. ………………13分 由3125y k k =-=-,得k =.所以当k =OD………………14分20.(本小题满分13分)(Ⅰ)解:由等比数列{}n a 的14a =,12q =, 得14a =,22a =,31a =,且当3n >时,01n a <<. ……………… 1分所以14b =,22b =,31b =,且当3n >时,[]0n n b a ==. ……………… 2分即 ,6, 2,4, 17, 3.n n n T n ==⎧⎪=⎨⎪⎩≥ ……………… 3分(Ⅱ)证明:因为 201421()n T n n =+≤,所以 113b T ==,120142(2)n n n b T T n -=-=≤≤. ……………… 4分 因为 []n n b a =,所以 1[3,4)a ∈,2014[2,3)(2)n a n ∈≤≤. ……………… 5分 由 21a q a =,得 1q <. ……………… 6分 因为 201220142[2,3)a a q =∈,所以 20122223qa >≥,第 11 页 共 11 页 所以 2012213q <<,即 120122()13q <<. ……………… 8分 (Ⅲ)证明:(充分性)因为 1a N *Î,q N *Î, 所以 11n n a a q N -*= ,所以 []n n n b a a == 对一切正整数n 都成立.因为 12n n S a a a =+++L ,12n n T b b b =+++L ,所以 n n S T =. ……………… 9分 (必要性)因为对于任意的n N *Î,n n S T =,当1n =时,由1111,a S b T ==,得11a b =;当2n ≥时,由1n n n a S S -=-,1n n n b T T -=-,得n n a b =.所以对一切正整数n 都有n n a b =.由 n b Z Î,0n a >,得对一切正整数n 都有n a N *Î, ………………10分 所以公比21a q a =为正有理数. ………………11分 假设 q N *Ï,令p q r=,其中,,1p r r N *?,且p 与r 的最大公约数为1. 因为1a 是一个有限整数,所以必然存在一个整数()k k N Î,使得1a 能被k r 整除,而不能被1k r+整除. 又因为111211k k k k a p a a q r++++==,且p 与r 的最大公约数为1. 所以2k a Z +Ï,这与n a N *Î(n N *Î)矛盾.所以q *∈N .因此1a N *Î,q *∈N . ……………13分。
北京市西城区2013 — 2014学年度第一学期期末试卷高三数学(理科)
北京市西城区2013 — 2014学年度第一学期期末试卷高三数学(理科)一、选择题(共8小题;共40分)1. 设集合A=x x+1<3,x∈R,B=0,1,2,则A∩B= A. x0<x<2B. x−4<x<2C. 0,1,2D. 0,12. 已知复数z满足z=2i1+i,那么z的虚部为______A. −1B. −iC. 1D. i3. 在△ABC中,角A,B,C所对的边分别为a,b,c.若a=3,b=2,cos A+B=13,则c= ______A. 4B.C. 3D.4. 执行如图所示的程序框图,输出的S值为______A. 34B. 45C. 56D. 15. 已知圆C:x+12+y−12=1与x轴切于A点,与y轴切于B点,设劣弧AB的中点为M,则过点M的圆C的切线方程是______A. y=x+2−B. y=x+12C. y=x−2+D. y=x+1−6. 若曲线ax2+by2=1为焦点在x轴上的椭圆,则实数a,b满足______A. a2>b2B. 1a <1bC. 0<a<bD. 0<b<a7. 定义域为R的函数f x满足f x+1=2f x,且当x∈0,1时,f x=x2−x,则当x∈−2,−1时,f x的最小值为______A. −116B. −18C. −14D. 08. 如图,正方体ABCD−A1B1C1D1的棱长为23,动点P在对角线BD1上,过点P作垂直于BD1的平面α,记这样得到的截面多边形(含三角形)的周长为y,设BP=x,则当x∈1,5时,函数y=f x的值域为______A. 26,66B. 26,18C. 36,18D. 36,66二、填空题(共6小题;共30分)9. 在平面直角坐标系xOy中,点A1,3,B−2,k,若向量OA⊥AB,则实数k= ______.10. 若等差数列a n满足a1=12,a4+a6=5,则公差d= ______;a2+a4+a6+⋯+a20= ______.11. 已知一个正三棱柱的所有棱长均相等,其侧(左)视图如图所示,那么此三棱柱正(主)视图的面积为______.12. 甲、乙两名大学生从4个公司中各选2个作为实习单位,则两人所选的实习单位中恰有1个相同的选法种数是______.(用数字作答)13. 如图,B,C为圆O上的两个点,P为CB延长线上一点,PA为圆O的切线,A为切点.若PA=2,BC=3,则PB= ______;ACAB= ______.14. 在平面直角坐标系xOy中,记不等式组x+y≥0,x−y≤0,x2+y2≤2所表示的平面区域为D.在映射T:u=x+y,v=x−y的作用下,区域D内的点x,y对应的象为点u,v.(1)在映射T的作用下,点2,0的原象是______;(2)由点u,v所形成的平面区域的面积为______.三、解答题(共6小题;共78分)15. 已知函数f x=3cosωx,g x=sin ωx−π3ω>0,且g x的最小正周期为π.(1)若fα=62,α∈−π,π,求α的值;(2)求函数y=f x+g x的单调增区间.16. 以下茎叶图记录了甲、乙两组各三名同学在期末考试中的数学成绩.乙组记录中有一个数字模糊,无法确认,假设这个数字具有随机性,并在图中以a表示.(1)若甲、乙两个小组的数学平均成绩相同,求a的值;(2)求乙组平均成绩超过甲组平均成绩的概率;(3)当a=2时,分别从甲、乙两组中各随机选取一名同学,记这两名同学数学成绩之差的绝对值为X,求随机变量X的分布列和数学期望.17. 如图,在多面体ABCDEF中,底面ABCD是边长为2的菱形,∠BAD=60∘,四边形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,H是CF的中点.(1)求证:AC⊥平面BDEF;(2)求直线DH与平面BDEF所成角的正弦值;(3)求二面角H−BD−C的大小.18. 已知函数f x=x+a e x,其中e是自然对数的底数,a∈R.(1)求函数f x的单调区间;(2)当a<1时,试确定函数g x=f x−a−x2的零点个数,并说明理由.19. 已知A,B是抛物线W:y=x2上的两个点,点A的坐标为1,1,直线AB的斜率为k,O为坐标原点.(1)若抛物线W的焦点在直线AB的下方,求k的取值范围;(2)设C为W上一点,且AB⊥AC,过B,C两点分别作W的切线,记两切线的交点为D,求 OD 的最小值.20. 设无穷等比数列a n的公比为q,且a n>0n∈N∗,a n表示不超过实数a n的最大整数(如2.5=2),记b n=a n,数列a n的前n项和为S n,数列b n的前n项和为T n.(1)若a1=4,q=12,求T n;(2)若对于任意不超过2014的正整数n,都有T n=2n+1,证明:2312012<q<1.(3)证明:S n=T n n=1,2,3,⋯的充分必要条件为a1∈N∗,q∈N∗.答案第一部分1. D2. C3. D4. B5. A6. C7. A8. D第二部分9. 410. 12;5511. 2312. 2413. 1;214. 1,1;π第三部分15. (1)因为g x=sin ωx−π3ω>0的最小正周期为π,所以2πω=π,解得ω=2.由fα=62,得3cos2α=62,即cos2α=22,所以2α=2kπ±π4,k∈Z.因为α∈−π,π,所以α∈ −7π8,−π8,π8,7π8.(2)y=f x+g x=3cos2x+sin2x−π3=3cos2x+sin2x cosπ3−cos2x sinπ3 =12sin2x+32cos2x=sin2x+π3,由2kπ−π2≤2x+π3≤2kπ+π2,解得kπ−5π12≤x≤kπ+π12.所以函数y=f x+g x的单调增区间为 kπ−5π12,π+π12k∈Z.16. (1)依题意,得1388+92+92=1390+91+90+a,解得a=1.(2)设“乙组平均成绩超过甲组平均成绩”为事件A,依题意a=0,1,2,⋯,9,共有10种可能.由(1)可知,当a=1时甲、乙两个小组的数学平均成绩相同,所以当a=2,3,4,⋯,9时,乙组平均成绩超过甲组平均成绩,共有8种可能.所以乙组平均成绩超过甲组平均成绩的概率P A=810=45.(3)当a=2时,分别从甲、乙两组同学中各随机选取一名同学,所有可能的成绩结果有3×3=9种,它们是:88,90,88,91,88,92,92,90,92,91,92,92,92,90,92,91,92,92,则这两名同学成绩之差的绝对值X的所有取值为0,1,2,3,4.因此P X=0=29,P X=1=29,P X=2=13,P X=3=19,P X=4=19.所以随机变量X的分布列为:X01234P2929131919所以X的数学期望E X=0×29+1×29+2×13+3×19+4×19=53.17. (1)因为四边形ABCD是菱形,所以AC⊥BD.因为平面BDEF⊥平面ABCD,且四边形BDEF是矩形,所以ED⊥平面ABCD,又因为AC⊂平面ABCD,所以ED⊥AC.因为ED∩BD=D,所以AC⊥平面BDEF.(2)设AC∩BD=O,取EF的中点N,连接ON.因为四边形BDEF是矩形,O,N分别为BD,EF的中点,所以ON∥ED.又因为ED⊥平面ABCD,所以ON⊥平面ABCD,由AC⊥BD,得OB,OC,ON两两垂直.O为原点,OB,OC,ON所在直线分别为x轴,y轴,z轴,如图建立空间直角坐标系.因为底面ABCD是边长为2的菱形,∠BAD=60∘,BF=3,所以A 0,−3,0,B1,0,0,D−1,0,0,E−1,0,3,F1,0,3,C 0,3,0,H12,32,32.因为AC⊥平面BDEF,所以平面BDEF的法向量AC=0,23,0.设直线DH与平面BDEF所成角为α,由DH=32,32,32,得sinα=cos DH,AC=DH⋅ACDH AC=32×0+32×23+32×021×23=77,所以直线DH与平面BDEF所成角的正弦值为77.(3)由(2),得BH= −12,32,32,DB=2,0,0.设平面BDH的法向量为n=x1,y1,z1,所以n⋅BH=0,n⋅DB=0,即−x1+3y1+3z1=0,2x1=0,令z1=1,得n=0,−3,1.由 ED ⊥平面ABCD ,得平面 BCD 的法向量为 ED= 0,0,−3 ,则cos n ,ED =n ⋅EDn ED=0×0+ − 3 ×0+1× −3 2×3=−12.由图可知二面角 H −BD −C 为锐角,所以二面角 H −BD −C 的大小为 60∘. 18. (1) 因为 f x = x +a e x ,x ∈R , 所以 fʹ x = x +a +1 e x . 令 fʹ x =0,得 x =−a −1.当 x 变化时,f x 和 fʹ x 的变化情况如下:x−∞,−a −1 −a −1 −a −1,+∞ fʹ x −0+f x ↘↗故 f x 的单调减区间为 −∞,−a −1 ;单调增区间为 −a −1,+∞ . (2) 结论:函数 g x 有且仅有一个零点.理由如下: 由 g x =f x −a −x 2=0,得方程 x e x−a =x 2, 显然 x =0 为此方程的一个实数解. 所以 x =0 是函数 g x 的一个零点. 当 x ≠0 时,方程可化简为 e x−a =x .设函数 F x =e x−a −x ,则 Fʹ x =e x−a −1,令 Fʹ x =0,得 x =a . 当 x 变化时,F x 和 Fʹ x 的变化情况如下:x−∞,a a a ,+∞Fʹ x−0+F x ↘↗即 F x 的单调增区间为 a ,+∞ ;单调减区间为 −∞,a .所以 F x 的最小值 F x min =F a =1−a . 因为 a <1,所以 F x min =F a =1−a >0, 所以对于任意 x ∈R ,F x >0, 因此方程 e x−a =x 无实数解.所以当 x ≠0 时,函数 g x 不存在零点. 综上,函数 g x 有且仅有一个零点. 19. (1) 抛物线 y =x 2 的焦点为 0,14 . 由题意,得直线 AB 的方程为 y −1=k x −1 ,令 x =0,得 y =1−k ,即直线 AB 与 y 轴相交于点 0,1−k . 因为抛物线 W 的焦点在直线 AB 的下方, 所以 1−k >14,解得 k <34.(2) 由题意,设 B x 1,x 12 ,C x 2,x 22 ,D x 3,y 3 ,联立方程 y −1=k x −1 ,y =x 2, 消去 y ,得x 2−kx +k −1=0,由韦达定理,得 1+x 1=k ,所以 x 1=k −1. 同理,得 AC 的方程为 y −1=−1k x −1 ,x 2=−1k −1. 对函数 y =x 2 求导,得 yʹ=2x ,所以抛物线y=x2在点B处的切线斜率为2x1,所以切线BD的方程为y−x12=2x1x−x1,即y=2x1x−x12.同理,抛物线y=x2在点C处的切线CD的方程为y=2x2x−x22.联立两条切线的方程y=2x1x−x12,y=2x2x−x22,解得x3=x1+x22=12k−1k−2,y3=x1x2=1k−k,所以点D的坐标为12 k−1k−2,1k−k .因此点D在定直线2x+y+2=0上.因为点O到直线2x+y+2=0的距离d=22+12=255,所以 OD ≥255,当且仅当点D的坐标为−45,−25时等号成立.由y3=1k −k=−25,得k=1±265,验证知符合题意.所以当k=1±265时, OD 有最小值255.20. (1)由等比数列a n的a1=4,q=12,得a1=4,a2=2,a3=1,且当n>3时,0<a n<1.所以b1=4,b2=2,b3=1,且当n>3时,b n=a n=0.即T n=4,n=1, 6,n=2, 7,n≥3.(2)因为T n=2n+1n≤2014,所以b1=T1=3,b n=T n−T n−1=22≤n≤2014.因为b n=a n,所以a1∈3,4,a n∈2,32≤n≤2014.由q=a2a1,得q<1.因为a2014=a2q2012∈2,3,所以q2012≥2a2>23,所以23<q2012<1,即231<q<1.(3)(充分性)因为a1∈N∗,q∈N∗,所以a n=a1q n−1∈N∗,所以b n=a n=a n对一切正整数n都成立.因为S n=a1+a2+⋯+a n,T n=b1+b2+⋯+b n,所以S n=T n.(必要性)因为对于任意的n∈N∗,S n=T n,当n=1时,由a1=S1,b1=T1,得a1=b1;当n≥2时,由a n=S n−S n−1,b n=T n−T n−1,得a n=b n.所以对一切正整数n都有a n=b n.由b n∈Z,a n>0,得对一切正整数n都有a n∈N∗,所以公比q=a2a1为正有理数.假设q∉N∗,令q=pr,其中p,r∈N∗,r>1,且p与r的最大公约数为1.因为a1是一个整数,所以必然存在一个整数k k∈N,使得a1能被r k整除,而不能被r k+1整除.又因为a k+2=a1q k+1=a1p k+1,且p与r的最大公约数为1.r所以a k+2∉Z,这与a n∈N∗(n∈N∗)矛盾.所以q∈N∗.因此a1∈N∗,q∈N∗.。
西城高三期末理科数学含答案
北京市西城区2012 — 2013学年度第一学期期末试卷高三数学(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|01}A x x =∈<<R ,{|(21)(1)0}B x x x =∈-+>R ,则A B =U ( )(A )1(0,)2 (B )(1,1)- (C )1(,1)(,)2-∞-+∞U (D )(,1)(0,)-∞-+∞U2.在复平面内,复数5i2i-的对应点位于( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限3.在极坐标系中,已知点(2,)6P π,则过点P 且平行于极轴的直线的方程是( )(A )sin 1=ρθ (B )sin =ρθ(C )cos 1=ρθ (D )cos =ρθ4.执行如图所示的程序框图.若输出15S =, 则框图中① 处可以填入( ) (A )2k < (B )3k < (C )4k < (D )5k <5.已知函数()cos f x x b x =+,其中b 为常数.那么“0b =”是“()f x 为奇函数”的( ) (A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件 6.已知,a b 是正数,且满足224a b <+<.那么22a b +的取值范围是( )(A )416(,)55 (B )4(,16)5 (C )(1,16) (D )16(,4)57.某四面体的三视图如图所示.该四面体的六条棱的长度中,最大的是( )(A )(B )(C )(D )8.将正整数1,2,3,4,5,6,7随机分成两组,使得每组至少有一个数,则两组中各数之和相等的概率是( )(A )221 (B )463 (C )121 (D )263二、填空题:本大题共6小题,每小题5分,共30分.9. 已知向量(1,3)=a ,(2,1)=-b ,(3,2)=c .若向量c 与向量k +a b 共线,则实数k = _____ 10.如图,Rt △ABC 中,90ACB ︒∠=,3AC =,4BC =.以AC 为直径的圆交AB 于点D ,则BD = ;CD =______.11.设等比数列{}n a 的各项均为正数,其前n 项和为n S . 若11a =,34a =,63k S =,则k =______.12.已知椭圆 22142x y +=的两个焦点是1F ,2F ,点P 在该椭圆上. 若12||||2PF PF -=,则△12PF F 的面积是______. 13.已知函数π()sin(2)6f x x =+,其中π[,]6x a ∈-.当3a π=时,()f x 的值域是______;若()f x 的值域是1[,1]2-,则a 的取值范围是______. 14.已知函数()f x 的定义域为R .若∃常数0c >,对x ∀∈R ,有()()f x c f x c +>-,则称函数()f x 具有性质P .给定下列三个函数:①()2xf x =; ②()sin f x x =; ③3()f x x x =-.其中,具有性质P 的函数的序号是______.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)在△ABC 21cos 2B B =-. (Ⅰ)求角B 的值; (Ⅱ)若2BC =,4A π=,求△ABC 的面积.16.(本小题满分14分)如图,四棱锥ABCD P -中,底面ABCD 为正方形,PD PA =,⊥PA 平面PDC ,E 为棱PD 的中点.(Ⅰ)求证:PB EAC PAD ⊥ABCD B AC E --8282100(Ⅰ)的前提下,(ⅰ)记X 为生产1件元件A 和1件元件B 所得的总利润,求随机变量X 的分布列和数学期望; (ⅱ)求生产5件元件B 所获得的利润不少于140元的概率. 18.(本小题满分13分)已知函数2()xf x x b=+,其中b ∈R . (Ⅰ)求)(x f 的单调区间;(Ⅱ)设0b >.若13[,]44x ∃∈,使()1f x ≥,求b 的取值范围.19.(本小题满分14分)如图,已知抛物线24y x =的焦点为F .过点(2,0)P 的直线交抛物线于11(,)A x y ,22(,)B x y 两点,直线AF ,BF 分别与抛物线交于点M ,N .(Ⅰ)求12y y 的值;(Ⅱ)记直线MN 的斜率为1k ,直线AB 的斜率为2k .证明:12k k 为定值. 20.(本小题满分13分)如图,设A 是由n n ⨯个实数组成的n 行n 列的数表,其中ij a (,1,2,3,,)i j n =L 表示位于第i 行第j 列的实数,且{1,1}ij a ∈-.记(,)S n n 为所有这样的数表构成的集合.对于(,)A S n n ∈,记()i r A 为A 的第i 行各数之积,()j c A 为A 的第j 列各数之积.令11()()()n ni j i j l A r A c A ===+∑∑.(Ⅰ)请写出一个(4,4)A S ∈,使得()0l A =; (Ⅱ)是否存在(9,9)A S ∈,使得()0l A =?说明理由;(Ⅲ)给定正整数n ,对于所有的(,)A S n n ∈,求()l A 的取值集合.北京市西城区2012 — 2013学年度第一学期期末 高三数学(理科)参考答案及评分标准一、选择题:本大题共8小题,每小题5分,共40分.1.D ; 2.B ; 3.A ; 4.C ; 5.C ; 6.B ; 7.C ; 8.B . 二、填空题:本大题共6小题,每小题5分,共30分.9.1-; 10.165,125; 11.6; 12; 13.1[,1]2-,[,]62ππ; 14.①③. 注:10、13题第一问2分,第二问3分;14题结论完全正确才给分.三、解答题:本大题共6小题,共80分.若考生的解法与本解答不同,正确者可参照评分标准给分. 15.(本小题满分13分)21cos 2B B =-, 所以 2cos 2sin B B B =. (3)分 因为 0B <<π, 所以 sin 0B >, 从而 tan B =,………………5分所以 π3B =. ………………6分 解法二: 依题意得2cos 21B B +=,所以 2sin(2)16B π+=,即 1sin(2)62B π+=. ………………3分因为 0B <<π, 所以 132666B πππ<+<,所以 5266B ππ+=.………………5分所以 π3B =. ………………6分(Ⅱ)解法一:因为 4A π=,π3B=, 根据正弦定理得 sin sin AC BCB A =, ……………7分 所以 sin sin BC BAC A⋅==. ………………8分因为512C A Bπ=π--=, ………………9分所以 5sin sinsin()12464C πππ==+=, ………………11分 所以 △ABC 的面积13sin 22S AC BC C =⋅=. ………………13分 解法二:因为 4A π=,π3B=, 根据正弦定理得 sin sin AC BC B A =, ……………7分 所以 sin sin BC BAC A⋅==. ………………8分根据余弦定理得 2222cos AC AB BC AB BC B =+-⋅⋅, ………………9分化简为 2220AB AB --=,解得1AB =+ ………………11分所以 △ABC 的面积1sin 2S AB BC B =⋅=. ………………13分 16.(本小题满分14分)(Ⅰ)证明:连接BD 与AC 相交于点O ,连结EO .因为四边形ABCD 为正方形,所以O 为BD 中点.因为 E 为棱PD 中点.所以 EO PB //. ………………3分 因为 ⊄PB 平面EAC ,⊂EO 平面EAC , 所以线PB EAC ⊥PA PDC CD PA ⊥ABCD CD AD ⊥CD ⊥ABCD Dz ⊥ABCD4(0,0,0),(4,0,0),(4,4,0),(0,4,0),(2,0,2),(1,0,1)D A B C PE )1,0,3(-=)0,4,4(-=EAC=()x,y,z n 0,0.EA AC ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r n n ⎩⎨⎧=+-=-.044,03y x z x 1=x (1,1,3)=n ABCD (0,0,1)=v |||cos ,|||||11⋅==〈〉n v n v n v B AC E --B AC E --11113-AD M BC N PM MN ABCDCDMN //⊥MN PAD PD PA =⊥PM AD ,,MP MA MN xyz M -4=AB (2,0,0),(2,4,0),(2,4,0),(2,0,0),(0,0,2),(1,0,1)A B C D P E ---)1,0,3(-=)0,4,4(-=EAC=()x,y,z n 0,0.EA AC ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r n n ⎩⎨⎧=+-=-.044,03y x z x 1=x =n )3,1,1(ABCD =v )1,0,0(|||cos ,|||||11⋅==〈〉n v n v n v B AC E --B AC E --11113-4032841005++=4029631004++=X90,45,30,15-433(90)545P X ==⨯=133(45)5420P X ==⨯=411(30)545P X ==⨯=111(15)P X =-=⨯=X1904530(15)66520520EX =⨯+⨯+⨯+-⨯=n 5n -依题意,得 5010(5)140n n --≥, 解得 196n ≥.所以 4n =,或5n =. ………………11分 设“生产5件元件B 所获得的利润不少于140元”为事件A , 则 445531381()C ()()444128P A =⨯+=.………………13分18.(本小题满分13分) (Ⅰ)解:① 当0b =时,1()f x x=. 故()f x 的单调减区间为(,0)-∞,(0,)+∞;无单调增区间. ………………1分② 当0b >时,222()()b x f x x b -'=+. ………………3分令()0f x '=,得1x =2x =()f x 和()f x '的情况如下:故()f x 的单调减区间为(,-∞,)+∞;单调增区间为(.………………5分③ 当0b <时,()f x 的定义域为{|D x x =∈≠R .因为222()0()b x f x x b -'=<+在D 上恒成立,故()f x 的单调减区间为(,-∞,(,)+∞;无单调增区间.………………7分(Ⅱ)解:因为0b >,13[,]44x ∈,所以 ()1f x ≥ 等价于 2b x x ≤-+,其中13[,]44x ∈. ………………9分 设2()g x x x =-+,()g x 在区间13[,]44上的最大值为11()24g =.………………11分 则“13[,]44x ∃∈,使得 2b x x ≤-+”等价于14b ≤. 所以,b 的取值范围是1(0,]4. ………………13分 19.(本小题满分14分)(Ⅰ)解:依题意,设直线AB 的方程为2x my =+. ………………1分将其代入24y x =,消去x ,整理得 2480y my --=. ………………4分 从而128y y =-. ………………5分 (Ⅱ)证明:设33(,)M x y ,44(,)N x y .则221234341121222234123123444444y y y y y y k x x y y k x x y y y y y y y y ----+=⨯=⨯=---+-. ………………7分 设直线AM 的方程为1x ny =+,将其代入24y x =,消去x , 整理得 2440y ny --=. ………………9分所以 134y y =-. ………………10分 同理可得 244y y =-. ………………11分 故112121223412444k y y y y y yk y y y y ++===--+-+. ………………13分 由(Ⅰ)得122k k =,为定值. ………………14分 20.(本小题满分13分)(Ⅰ)解:答案不唯一,如图所示数表符合要求.………………3分 (Ⅱ)解:不存在(9,9)A S ∈,使得()0l A =. ………………4分 证明如下:假设存在(9,9)A S ∈,使得()0l A =.因为(){1,1}i r A ∈-,(){1,1}j c A ∈- (19,19)i j ≤≤≤≤,所以1()r A ,2()r A ,L ,9()r A ,1()c A ,2()c A ,L ,9()c A 这18个数中有9个1,9个1-. 令129129()()()()()()M r A r A r A c A c A c A =⋅⋅⋅⋅⋅⋅⋅L L .一方面,由于这18个数中有9个1,9个1-,从而9(1)1M =-=-. ①另一方面,129()()()r A r A r A ⋅⋅⋅L 表示数表中所有元素之积(记这81个实数之积为m );129()()()c A c A c A ⋅⋅⋅L 也表示m , 从而21M m ==. ②①、②相矛盾,从而不存在(9,9)A S ∈,使得()0l A =. ………………8分(Ⅲ)解:记这2n 个实数之积为p .一方面,从“行”的角度看,有12()()()n p r A r A r A =⋅⋅⋅L ; 另一方面,从“列”的角度看,有12()()()n p c A c A c A =⋅⋅⋅L .从而有1212()()()()()()n n r A r A r A c A c A c A ⋅⋅⋅=⋅⋅⋅L L . ③ ………………10分注意到(){1,1}i r A ∈-,(){1,1}j c A ∈- (1,1)i n j n ≤≤≤≤.下面考虑1()r A ,2()r A ,L ,()n r A ,1()c A ,2()c A ,L ,()n c A 中1-的个数:由③知,上述2n 个实数中,1-的个数一定为偶数,该偶数记为2(0)k k n ≤≤;则1的个数为22n k -, 所以()(1)21(22)2(2)l A k n k n k =-⨯+⨯-=-. ………………12分 对数表0A :1ij a =(,1,2,3,,)i j n =L ,显然0()2l A n =. 将数表0A 中的11a 由1变为1-,得到数表1A ,显然1()24l A n =-. 将数表1A 中的22a 由1变为1-,得到数表2A ,显然2()28l A n =-. 依此类推,将数表1k A -中的kk a 由1变为1-,得到数表k A . 即数表k A 满足:11221(1)kk a a a k n ====-≤≤L ,其余1ij a =. 所以 12()()()1k r A r A r A ====-L ,12()()()1k c A c A c A ====-L . 所以()2[(1)()]24k l A k n k n k =-⨯+-=-.由k 的任意性知,()l A 的取值集合为{2(2)|0,1,2,,}n k k n -=L .……………13分。
北京市西城区2013—2014学年度高三第一学期期末数学(理)试题-含答案
北京市西城区2013 — 2014学年度第一学期期末试卷高三数学(理科) 2014.1第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合{|02}A x x =<<,1{|||}B x x =≤,则集合A B =( )(A )(0,1)(B )(0,1](C )(1,2)(D )[1,2)3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 若3a =,2b =,1cos()3A B +=,则c =( ) (A )4 (B(C )3(D2.已知复数z 满足2i=1iz +,那么z 的虚部为( ) (A )1- (B )i -(C )1(D )i4.执行如图所示的程序框图,输出的S 值为( ) (A )34 (B )45(C )56(D )16. 若曲线221ax by +=为焦点在x 轴上的椭圆,则实数a ,b 满足( ) (A )22a b > (B )11a b< (C )0a b << (D )0b a <<7.定义域为R 的函数()f x 满足(1)2()f x f x +=,且当(0,1]x ∈时,2()f x x x =-,则当[2,1]x ∈--时,()f x 的最小值为( ) (A )116- (B ) 18-(C ) 14-(D ) 05.已知圆22:(1)(1)1C x y ++-=与x 轴切于A 点,与y 轴切于B 点,设劣弧»AB 的中点为M ,则过点M 的圆C 的切线方程是( ) (A)2y x =+-(B)1y x =+-(C)2y x =-+(D)1y x =+-8. 如图,正方体1111ABCD A B C D -的棱长为P 在对角线1BD 上,过点P 作垂直于1BD 的平面α,记这样得到的截面多边形 (含三角形)的周长为y ,设BP =x ,则当[1,5]x ∈时,函数()y f x =的值域为( )(A) (B) (C) (D)第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.9. 在平面直角坐标系xOy 中,点(1,3)A ,(2,)B k -,若向量OA AB ⊥,则实数k = _____.10.若等差数列{}n a 满足112a =,465a a +=,则公差d =______;24620a a a a ++++=______.11.已知一个正三棱柱的所有棱长均相等,其侧(左)视图如图所示,那么此三棱柱正(主)视图的面积为______.12.甲、乙两名大学生从4个公司中各选2个作为实习单位,则两人所选的实习单位中恰有1个相同的选法种数是______. (用数字作答)1侧(左)视图13. 如图,,B C 为圆O 上的两个点,P 为CB 延长线上一点,PA 为圆O 的切线,A 为切点. 若2PA =,3BC =,则PB =______;ACAB=______.14.在平面直角坐标系xOy 中,记不等式组220,0,2x y x y x y +⎧⎪-⎨⎪+⎩≥≤≤所表示的平面区域为D .在映射,:u x y T v x y=+⎧⎨=-⎩的作用下,区域D 内的点(,)x y 对应的象为点(,)u v . (1)在映射T 的作用下,点(2,0)的原象是 ; (2)由点(,)u v 所形成的平面区域的面积为______.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数()f x x ω=,π()sin()(0)3g x x ωω=->,且()g x 的最小正周期为π.(Ⅰ)若()f α=,[π,π]α∈-,求α的值; (Ⅱ)求函数()()y f x g x =+的单调增区间.16.(本小题满分13分)以下茎叶图记录了甲、乙两组各三名同学在期末考试中的数学成绩.乙组记录中有一个数字模糊,无法确认,假设这个数字具有随机性,并在图中以a 表示.(Ⅰ)若甲、乙两个小组的数学平均成绩相同,求a 的值; (Ⅱ)求乙组平均成绩超过甲组平均成绩的概率;P(Ⅲ)当2a =时,分别从甲、乙两组中各随机选取一名同学,记这两名同学数学成绩之差的绝对值为X ,求随机变量X 的分布列和数学期望.17.(本小题满分14分)如图,在多面体ABCDEF 中,底面ABCD 是边长为2的菱形, 60=∠BAD ,四边形BDEF 是矩形,平面BDEF ⊥平面ABCD ,BF =3, H 是CF 的中点.(Ⅰ)求证:AC ⊥平面BDEF ;(Ⅱ)求直线DH 与平面BDEF 所成角的正弦值; (Ⅲ)求二面角H BD C --的大小.18.(本小题满分13分)已知函数()()e xf x x a =+,其中e 是自然对数的底数,a ∈R . (Ⅰ)求函数)(x f 的单调区间;(Ⅱ)当1a <时,试确定函数2()()g x f x a x =--的零点个数,并说明理由.19.(本小题满分14分)已知,A B 是抛物线2:W y x =上的两个点,点A 的坐标为(1,1),直线AB 的斜率为k , O 为坐甲组 乙组 891 a822 F BCEAHD标原点.(Ⅰ)若抛物线W 的焦点在直线AB 的下方,求k 的取值范围;(Ⅱ)设C 为W 上一点,且AB AC ⊥,过,B C 两点分别作W 的切线,记两切线的交点为D ,求OD 的最小值.20.(本小题满分13分)设无穷等比数列{}n a 的公比为q ,且*0()n a n >∈N ,[]n a 表示不超过实数n a 的最大整数(如[2.5]2=),记[]n n b a =,数列{}n a 的前n 项和为n S ,数列{}n b 的前n 项和为n T .(Ⅰ)若114,2a q ==,求n T ; (Ⅱ)若对于任意不超过2014的正整数n ,都有21n T n =+,证明:120122()13q <<. (Ⅲ)证明:n n S T =(1,2,3,n =L )的充分必要条件为1,a q N N **挝.北京市西城区2013 — 2014学年度第一学期期末高三数学(理科)参考答案及评分标准2014.1一、选择题:本大题共8小题,每小题5分,共40分.1.B 2.C 3.D 4.B5.A 6.C 7.A 8.D二、填空题:本大题共6小题,每小题5分,共30分.9.410.125511.12.2413.1214.(1,1)π注:第10、13、14题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:因为π()sin()(0)3g x xωω=->的最小正周期为π,所以2||ωπ=π,解得2ω=.………………3分由()fα=2α=,即cos2α=,………………4分所以π22π4kα=±,k∈Z.因为[π,π]α∈-,所以7πππ7π{,,,}8888α∈--. ………………6分(Ⅱ)解:函数 π()()2sin(2)3y f x g x x x =+=+-ππ2sin 2cos cos 2sin 33x x x =+- ……………… 8分1sin 2222x x =+ πsin(2)3x =+, ………………10分由 2πππ2π2π232k k x -++≤≤, ………………11分解得 5ππππ1212k k x -+≤≤. ………………12分所以函数()()y f x g x =+的单调增区间为5ππ[ππ]()1212k k k -+∈Z ,.…………13分16.(本小题满分13分)(Ⅰ)解:依题意,得 11(889292)[9091(90)]33a ++=+++, ……………… 2分解得 1a =. ……………… 3分 (Ⅱ)解:设“乙组平均成绩超过甲组平均成绩”为事件A , ……………… 4分依题意 0,1,2,,9a =,共有10种可能. ……………… 5分由(Ⅰ)可知,当1a =时甲、乙两个小组的数学平均成绩相同, 所以当2,3,4,,9a =时,乙组平均成绩超过甲组平均成绩,共有8种可能.… 6分所以乙组平均成绩超过甲组平均成绩的概率84()105P A ==. ……………… 7分 (Ⅲ)解:当2a =时,分别从甲、乙两组同学中各随机选取一名同学,所有可能的成绩结果有339⨯=种, 它们是:(88,90),(88,91),(88,92),(92,90),(92,91),(92,92),(92,90),(92,91),(92,92), ……………… 9分则这两名同学成绩之差的绝对值X 的所有取值为0,1,2,3,4. ……………… 10分 因此2(0)9P X ==,2(1)9P X ==,1(2)3P X ==,1(3)9P X ==,1(4)9P X ==. ……………… 11分所以随机变量X 的分布列为:………………12分所以X 的数学期望221115()01234993993E X =⨯+⨯+⨯+⨯+⨯=.……………13分17.(本小题满分14分)(Ⅰ)证明:因为四边形ABCD 是菱形,所以 AC BD ⊥. ……………… 1分 因为平面BDEF ⊥平面ABCD ,且四边形BDEF 是矩形,所以 ED ⊥平面ABCD , ……………… 2分 又因为 AC ⊂平面ABCD ,所以 ED AC ⊥. ……………… 3分 因为 EDBD D =,所以 AC ⊥平面BDEF . ……………… 4分 (Ⅱ)解:设ACBD O =,取EF 的中点N ,连接ON ,因为四边形BDEF 是矩形,,O N 分别为,BD EF 的中点, 所以 //ON ED ,又因为 ED ⊥平面ABCD ,所以 ON ⊥平面ABCD , 由AC BD ⊥,得,,OB OC ON 两两垂直.所以以O 为原点,,,OB OC ON 所在直线分别为x 轴,y 轴,z 轴,如图建立空间直角坐标系. ……………… 5分因为底面ABCD 是边长为2的菱形,60BAD ∠=,BF =所以 (0,A ,(1,0,0)B ,(1,0,0)D -,(1,0,3)E -,(1,0,3)F,C,13()22H . ………………6分因为 AC ⊥平面BDEF ,所以平面BDEF的法向量(0,AC =. …………7分 设直线DH 与平面BDEF 所成角为α, 由33(,)222DH =, 得32sin |cos ,|DH AC DH AC DH ACα⋅=<>===,所以直线DH 与平面BDEF ………………9分(Ⅲ)解:由(Ⅱ),得13()22BH =-,(2,0,0)DB =. 设平面BDH 的法向量为111(,,)x y z =n ,所以0,0,BH DB ⎧⋅=⎪⎨⋅=⎪⎩n n………………10分即111130,20,x z x ⎧-++=⎪⎨=⎪⎩ 令11z =,得(0,=n .………………11分 由ED ⊥平面ABCD ,得平面BCD 的法向量为(0,0,3)ED =-, 则1cos ,2ED ED ED⋅<>===-n n n . ………………13分由图可知二面角H BD C --为锐角,所以二面角H BD C --的大小为60. ………………14分18.(本小题满分13分)(Ⅰ)解:因为()()e xf x x a =+,x ∈R ,所以()(1)e xf x x a '=++. ……………… 2分 令()0f x '=,得1x a =--. ……………… 3分 当x 变化时,()f x 和()f x '的变化情况如下:)……………… 5分故()f x 的单调减区间为(,1)a -∞--;单调增区间为(1,)a --+∞.………… 6分 (Ⅱ)解:结论:函数()g x 有且仅有一个零点. ……………… 7分理由如下:由2()()0g x f x a x =--=,得方程2ex ax x -=, 显然0x =为此方程的一个实数解.所以0x =是函数()g x 的一个零点. ……………… 9分 当0x ≠时,方程可化简为e x ax -=.设函数()ex aF x x -=-,则()e 1x a F x -'=-,令()0F x '=,得x a =.当x 变化时,()F x 和()F x '的变化情况如下:即()F x 的单调增区间为(,)a +∞;单调减区间为(,)a -∞.所以()F x 的最小值min ()()1F x F a a ==-. ………………11分 因为 1a <,所以min ()()10F x F a a ==->, 所以对于任意x ∈R ,()0F x >, 因此方程ex ax -=无实数解.所以当0x ≠时,函数()g x 不存在零点.综上,函数()g x 有且仅有一个零点. ………………13分19.(本小题满分14分)(Ⅰ)解:抛物线2y x =的焦点为1(0,)4. ……………… 1分由题意,得直线AB 的方程为1(1)y k x -=-, ……………… 2分 令 0x =,得1y k =-,即直线AB 与y 轴相交于点(0,1)k -. ……………… 3分 因为抛物线W 的焦点在直线AB 的下方, 所以 114k ->, 解得 34k <. ……………… 5分 (Ⅱ)解:由题意,设211(,)B x x ,222(,)C x x ,33(,)D x y ,联立方程21(1),,y k x y x -=-⎧⎨=⎩ 消去y ,得210x kx k -+-=,由韦达定理,得11x k +=,所以 11x k =-. ……………… 7分 同理,得AC 的方程为11(1)y x k-=--,211x k =--. ……………… 8分对函数2y x =求导,得2y x '=,所以抛物线2y x =在点B 处的切线斜率为12x ,所以切线BD 的方程为21112()y x x x x -=-, 即2112y x x x =-. ……………… 9分同理,抛物线2y x =在点C 处的切线CD 的方程为2222y x x x =-.………………10分联立两条切线的方程2112222,2,y x x x y x x x ⎧=-⎪⎨=-⎪⎩ 解得12311(2)22x x x k k +==--,3121y x x k k==-, 所以点D 的坐标为111((2),)2k k k k---. ………………11分因此点D 在定直线220x y ++=上. ………………12分因为点O 到直线220x y ++=的距离5d ==,所以5OD ≥42(,)55D --时等号成立. ………………13分 由3125y k k =-=-,得15k ±=.所以当k =OD………………14分20.(本小题满分13分)(Ⅰ)解:由等比数列{}n a 的14a =,12q =, 得14a =,22a =,31a =,且当3n >时,01n a <<. ……………… 1分所以14b =,22b =,31b =,且当3n >时,[]0n n b a ==. ……………… 2分即 ,6, 2,4, 17, 3.n n n T n ==⎧⎪=⎨⎪⎩≥ ……………… 3分(Ⅱ)证明:因为 201421()n T n n =+≤,所以 113b T ==,120142(2)n n n b T T n -=-=≤≤. ……………… 4分因为 []n n b a =,所以 1[3,4)a ∈,2014[2,3)(2)n a n ∈≤≤. ……………… 5分 由 21a q a =,得 1q <. ……………… 6分 因为 201220142[2,3)a a q =∈,所以 20122223qa >≥, 所以 2012213q<<,即 120122()13q <<. ……………… 8分 (Ⅲ)证明:(充分性)因为 1a N *Î,q N *Î,所以 11n n a a qN -*=?,所以 []n n n b a a == 对一切正整数n 都成立. 因为 12n n S a a a =+++L ,12n n T b b b =+++L ,所以 n n S T =. ……………… 9分(必要性)因为对于任意的n N *Î,n n S T =,当1n =时,由1111,a S b T ==,得11a b =;当2n ≥时,由1n n n a S S -=-,1n n n b T T -=-,得n n a b =.所以对一切正整数n 都有n n a b =.由 n b Z Î,0n a >,得对一切正整数n 都有n a N *Î, ………………10分 所以公比21a q a =为正有理数. ………………11分 假设 q N *Ï,令p q r=,其中,,1p r r N *?,且p 与r 的最大公约数为1.因为1a 是一个有限整数,所以必然存在一个整数()k k N Î,使得1a 能被kr 整除,而不能被1k r +整除.又因为111211k k k k a p a a qr++++==,且p 与r 的最大公约数为1.所以2k a Z +Ï,这与n a N *Î(n N *Î)矛盾.所以q *∈N .因此1a N *Î,q *∈N . ……………13分。
北京市西城区2013一摸文科数学习题和答案
北京市西城区2013年高三一模试卷高三数学(理科) 2013.4一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知全集U=R ,集合{|02}A x x =<<,2{|10}B x x =->,那么U AB =ð(A ){|01}x x <<(B ){|01}x x <≤ (C ){|12}x x << (D ){|12}x x ≤<2.若复数i2ia +的实部与虚部相等,则实数a = (A )1- (B )1(C )2-(D )23.执行如图所示的程序框图.若输出y =角=θ(A )π6 (B )π6-(C )π3(D )π3-4.从甲、乙等5名志愿者中选出4名,分别从事A ,B ,C ,D 四项不同的工作,每人承担一项.若甲、乙二人均不能从事A 工作,则不同的工作分配方案共有(A )60种 (B )72种(C )84种(D )96种5.某正三棱柱的三视图如图所示,其中正(主)视图是边长为2的正方形,该正三棱柱的表面积是 (A)6 (B)12+(C)12+ (D)24+6.等比数列{}n a 中,10a >,则“13a a <”是“36a a <”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件7.已知函数22()log 2log ()f x x x c =-+,其中0c >.若对于任意的(0,)x ∈+∞,都有()1f x ≤,则c 的取值范围是 (A )1(0,]4(B )1[,)4+∞ (C )1(0,]8(D )1[,)8+∞8.如图,正方体1111ABCD A B C D -中,P 为底面ABCD上的动点,1PE A C ⊥于E ,且PA PE =,则点P 的轨迹是 (A )线段 (B )圆弧(C )椭圆的一部分(D )抛物线的一部分第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.9.已知曲线C 的参数方程为2cos 12sin x y =⎧⎨=+⎩αα(α为参数),则曲线C 的直角坐标方程为 .10.设等差数列{}n a 的公差不为0,其前n 项和是n S .若23S S =,0k S =,则k =______.11.如图,正六边形ABCDEF 的边长为1,则AC DB ⋅=______. 12.如图,已知AB 是圆O 的直径,P 在AB 的延长线上,PC切圆O 于点C ,CD OP ⊥于D .若6CD =,10CP =, 则圆O 的半径长为______;BP =______. 13.在直角坐标系xOy 中,点B 与点(1,0)A -关于原点O 对称.点00(,)P x y 在抛物线24y x =上,且直线AP 与BP 的斜率之积等于2,则0x =______.14.记实数12,,,n x x x 中的最大数为12max{,,,}n x x x ,最小数为12min{,,,}n x x x .设△ABC的三边边长分别为,,a b c ,且a b c ≤≤,定义△ABC 的倾斜度为max{,,}min{,a b c at b c a b=⋅,}b cc a. (ⅰ)若△ABC 为等腰三角形,则t =______;(ⅱ)设1a =,则t 的取值范围是______.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数()sin cos f x x a x =-的一个零点是π4. (Ⅰ)求实数a 的值;(Ⅱ)设()()()cos g x f x f x x x =⋅-+,求()g x 的单调递增区间.16.(本小题满分13分)某班有甲、乙两个学习小组,两组的人数如下:现采用分层抽样的方法(层内采用简单随机抽样)从甲、乙两组中共抽取3名同学进行学业检测. (Ⅰ)求从甲组抽取的同学中恰有1名女同学的概率; (Ⅱ)记X 为抽取的3名同学中男同学的人数,求随机变量X的分布列和数学期望.17.(本小题满分14分)在如图所示的几何体中,面CDEF 为正方形,面ABCD 为等腰梯形,AB //CD ,BC AB 2=,60ABC ︒∠=,AC FB ⊥.(Ⅰ)求证:⊥AC 平面FBC ;(Ⅱ)求BC 与平面EAC 所成角的正弦值;(Ⅲ)线段ED 上是否存在点Q ,使平面EAC ⊥平面QBC ? 证明你的结论.18.(本小题满分13分)已知函数()ln f x ax x =-,()e 3axg x x =+,其中a ∈R .(Ⅰ)求)(x f 的极值;(Ⅱ)若存在区间M ,使)(x f 和()g x 在区间M 上具有相同的单调性,求a 的取值范围.19.(本小题满分14分)如图,椭圆22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线交椭圆于A ,B 两点.当直线AB 经过椭圆的一个顶点时,其倾斜角恰为60︒.(Ⅰ)求该椭圆的离心率; (Ⅱ)设线段AB 的中点为G ,AB 的中垂线与x 轴和y 轴分别交于,D E 两点.记△GFD 的面积为1S ,△OED (O 为原点)的面积为2S ,求12S S 的取值范围.20.(本小题满分13分)已知集合*12{|(,,,),,1,2,,}(2)n n i S X X x x x x i n n ==∈=≥N .对于12(,,,)n A a a a =,12(,,,)n nB b b b S =∈,定义1122(,,,)nnAB b a b a b a =---; 1212(,,,)(,,,)()n n a a a a a a =∈R λλλλλ;A 与B 之间的距离为1(,)||ni i i d A B a b ==-∑.(Ⅰ)当5n =时,设5(1,2,1,2,)A a =,(2,4,2,1,3)B =.若(,)7d A B =,求5a ;(Ⅱ)(ⅰ)证明:若,,n A B C S ∈,且0∃>λ,使A B B C λ=,则(,)(,)(d A B d B C d A C+=; (ⅱ)设,,n A B C S ∈,且(,)(,)(,d A B d B C d A C +=.是否一定0∃>λ,使A B B C λ=?说明理由;(Ⅲ)记(1,1,,1)n I S =∈.若A ,n B S ∈,且(,)(,)d I A d I B p ==,求(,)d A B 的最大值.北京市西城区2013年高三一模试卷高三数学(理科)参考答案及评分标准2013.4一、选择题:本大题共8小题,每小题5分,共40分.1. B ; 2.A ; 3.D ; 4.B ; 5.C ; 6.B ; 7.D ; 8.A .二、填空题:本大题共6小题,每小题5分,共30分.9.22230xy y +--=; 10.5; 11.32-12.152,5; 13.1+ 14.1,. 注:12、14题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分.若考生的解法与本解答不同,正确者可参照评分标准给分. 15.(本小题满分13分) (Ⅰ)解:依题意,得π()04f =, ………………1分 即ππsincos 04422a -=-=, ………………3分 解得1a =. ………………5分(Ⅱ)解:由(Ⅰ)得()sin cos f x x x =-. ………………6分()()()cos g x f x f x x x =⋅-+(sin cos )(sin cos )2x x x x x =--- (7)分22(cos sin )2x x x =-+ ………………8分cos 22x x =+ ………………9分π2sin(2)6x =+. ………………10分由 πππ2π22π262k x k -≤+≤+,得 ππππ36k x k -≤≤+,k ∈Z . ………………12分所以 ()g x 的单调递增区间为ππ[π,π]36k k -+,k ∈Z . ………………13分16.(本小题满分13分)(Ⅰ)解:依题意,甲、乙两组的学生人数之比为 (35):(22)2:1++=, ……………1分所以,从甲组抽取的学生人数为2323⨯=;从乙组抽取的学生人数为1313⨯=.………2分 设“从甲组抽取的同学中恰有1名女同学”为事件A , ………………3分则 113528C C 15()C 28P A ⋅==,故从甲组抽取的同学中恰有1名女同学的概率为1528. ………………5分 (Ⅱ)解:随机变量X 的所有取值为0,1,2,3. ………………6分21522184C C 5(0)C C 28P X ⋅===⋅, 111213525221218484C C C C C 25(1)C C C C 56P X ⋅⋅⋅==+=⋅⋅, 211113235221218484C C C C C 9(2)C C C C 28P X ⋅⋅⋅==+=⋅⋅, 21322184C C 3(3)C C 56P X ⋅===⋅.……………10分所以,随机变量X的分布列为:………………11分5259350123285628564EX =⨯+⨯+⨯+⨯=. ………………13分17.(本小题满分14分) (Ⅰ)证明:因为BC AB 2=,60ABC ︒∠=,在△ABC 中,由余弦定理可得 BC AC 3=, 所以BC AC ⊥. ………………2分 又因为 AC FB ⊥,所以⊥AC 平面FBC . ………………4分(Ⅱ)解:因为⊥AC 平面FBC ,所以FC AC ⊥.因为FC CD⊥,所以⊥FC 平面ABCD. ………………5分所以,,CA CF CB 两两互相垂直,如图建立的空间直角坐标系xyz C -. (6)分在等腰梯形ABCD 中,可得 CB CD =.设1BC =,所以11(0,0,0),(0,1,0),(,,0),(,,1)2222C A BDE --.所以)1,21,23(-=,)0,0,3(=,)0,1,0(=. 设平面EAC 的法向量为=()x,y,z n ,则有0,0.CE CA ⎧⋅=⎪⎨⋅=⎪⎩n n所以10,20.x y z -+=⎨= 取1z =,得=n (0,2,1). ………………8分 设BC 与平面EAC 所成的角为θ,则||sin |cos ,|5||||CB CB CB ⋅=〈〉==θn n n , 所以BC 与平面EAC 所成角的正弦值为552. ………………9分(Ⅲ)解:线段ED 上不存在点Q ,使平面EAC ⊥平面QBC .证明如下: ………………10分假设线段ED 上存在点Q ,设 ),21,23(t Q - )10(≤≤t ,所以),21,23(t -=. 设平面QBC 的法向量为=m ),,(c b a ,则有0,0.CB CQ ⎧⋅=⎪⎨⋅=⎪⎩m m所以0,10.22b a b tc =⎧-+=⎪⎩ 取 1=c ,得=m )1,0,32(t -. ………………12分 要使平面EAC ⊥平面QBC ,只需0=⋅n m ,………………13分即 002110⨯+⨯+⨯=, 此方程无解. 所以线段ED 上不存在点Q ,使平面EAC ⊥平面QBC . ………………14分18.(本小题满分13分) (Ⅰ)解:()f x 的定义域为(0,)+∞, ………………1分且11()ax f x a x x -'=-=. ………………2分 ① 当0a ≤时,()0f x '<,故()f x 在(0,)+∞上单调递减.从而)(x f 没有极大值,也没有极小值. ………………3分② 当0a >时,令()0f x '=,得1x a=. ()f x 和()f x '的情况如下:故()f x 的单调减区间为(0,)a ;单调增区间为(,)a +∞.从而)(x f 的极小值为1()1ln f a a=+;没有极大值. ………………5分(Ⅱ)解:()g x 的定义域为R ,且 ()e 3ax g x a '=+. ………………6分③ 当0a>时,显然 ()0g x '>,从而()g x 在R 上单调递增.由(Ⅰ)得,此时()f x 在1(,)a+∞上单调递增,符合题意. ………………8分④ 当0a=时,()g x 在R 上单调递增,()f x 在(0,)+∞上单调递减,不合题意.……9分⑤ 当0a <时,令()0g x '=,得013ln()x a a=-. ()g x 和()g x '的情况如下表:当30a -≤<时,00x ≤,此时()g x 在0(,)x +∞上单调递增,由于()f x 在(0,)+∞上单调递减,不合题意. ………………11分当3a <-时,00x >,此时()g x 在0(,)x -∞上单调递减,由于()f x 在(0,)+∞上单调递减,符合题意.综上,a 的取值范围是(,3)(0,)-∞-+∞. ………………13分19.(本小题满分14分) (Ⅰ)解:依题意,当直线AB 经过椭圆的顶点(0,)b 时,其倾斜角为60︒. ………………1分设(,0)F c -,则tan 60bc︒== ………………2分 将b = 代入 222a bc =+,解得2a c =. ………………3分所以椭圆的离心率为12c e a ==. ………………4分 (Ⅱ)解:由(Ⅰ),椭圆的方程可设为2222143x y c c +=. ………………5分 设11(,)A x y ,22(,)B x y .依题意,直线AB 不能与,x y 轴垂直,故设直线AB 的方程为()y k x c =+,将其代入2223412x y c +=,整理得 222222(43)84120k x ck x k c c +++-=. (7)分则2122843ck x x k -+=+,121226(2)43cky y k x x c k +=++=+,22243(,)4343ck ck G k k -++. ………………8分 因为GD AB ⊥,所以2223431443Dckk k ck x k +⨯=---+,2243Dck x k -=+. ………………9分因为 △GFD ∽△OED ,所以2222222212222243()()||434343||()43ck ck ck S GD k k k ck S OD k ---++++==-+ (11)分222242222242(3)(3)99999()ck ck c k c k ck c k k++===+>. ………………13分所以12S S 的取值范围是(9,)+∞. ………………14分20.(本小题满分13分)(Ⅰ)解:当5n =时,由51(,)||7i i i d A B a b ==-=∑,得 5|12||24||12||21||3|7a -+-+-+-+-=,即 5|3|2a -=.由*5a ∈N ,得 51a =,或55a =. ………………3分(Ⅱ)(ⅰ)证明:设12(,,,)n A a a a =,12(,,,)n B b b b =,12(,,,)n C c c c =.因为 0∃>λ,使 AB BC λ=,所以 0∃>λ,使得 11221122(,,)((,,)n n n n b a b a b a c b c b c b ---=---λ,,,即0∃>λ,使得 ()i i i i b a c b λ-=-,其中1,2,,i n =.所以i i b a -与(1,2,,)i i c b i n -=同为非负数或同为负数. ………………5分所以 11(,)(,)||||nni i i i i i d A B d B C a b b c ==+=-+-∑∑1(||||)ni i i i i b a c b ==-+-∑1||(,)ni i i c a d A C ==-=∑. (6)分(ⅱ)解:设,,n A B C S ∈,且(,)(,)(,)d A B d B C d A C +=,此时不一定0∃>λ,使得AB BC λ=. ………………7分反例如下:取(1,1,1,,1)A =,(1,2,1,1,,1)B =,(2,2,2,1,1,,1)C ,则(,)1d A B =,(,)2d B C =,(,)3d A C =,显然(,)(,)(,)d A B d B C d A C +=. 因为(0,1,0,0,,0)AB =,(1,0,1,0,0,,0)BC =,所以不存在>0λ,使得AB BC λ=. ………………8分 (Ⅲ)解法一:因为1(,)||ni i i d A B b a ==-∑,设(1,2,,)ii b a i n -=中有()m m n ≤项为非负数,n m -项为负数.不妨设1,2,,i m=时0ii b a -≥;1,2,,i m m n =++时,0i i b a -<.所以 1(,)||ni i i d A B b a ==-∑12121212[()()][()()]m m m m n m m n b b b a a a a a a b b b ++++=+++-+++++++-+++因为 (,)(,)d I A d I B p ==,所以11(1)(1)nniii i a b ==-=-∑∑, 整理得 11nniii i a b ===∑∑.所以 12121(,)||2[()]ni i m m i d A B b a b b b a a a ==-=+++-+++∑. (10)分因为 121212()()m n m m n b b b b b b b b b +++++=+++-+++()()1p n n m p m ≤+--⨯=+;又 121m a a a m m +++≥⨯=, 所以 1212(,)2[()]m m d A B b b b a a a =+++-+++2[()]2p m m p ≤+-=.即 (,)2d A B p ≤. ……………12分 对于(1,1,,1,1)A p =+,(1,1,1,,1)B p =+,有A,nB S ∈,且(,)(,)d I A d I B p==,(,)2d A B p =.综上,(,)d A B 的最大值为2p . ……………13分 解法二:首先证明如下引理:设,x y ∈R ,则有 ||||||x y x y +≤+.证明:因为 ||||x x x -≤≤,||||y y y -≤≤,所以 (||||)||||x y x y x y -+≤+≤+,即||||||x y x y +≤+.所以 11(,)|||(1)(1)|n ni i i i i i d A B b a b a ===-=-+-∑∑1(|1||1|)ni i i b a =≤-+-∑11|1||1|2n ni i i i a b p ===-+-=∑∑. (11)分上式等号成立的条件为1ia =,或1ib =,所以 (,)2d A B p ≤. ……………12分对于(1,1,,1,1)A p =+,(1,1,1,,1)B p =+,有A,nB S ∈,且(,)(,)d I A d I B p==,(,)2.d A B pd A B的最大值为2p.……………13分综上,(,)。
北京市2013届高三数学理试题分类汇编(含9区一模及上学期期末试题)专题:圆锥曲线(含答案)
北京2013届高三最新模拟试题分类汇编(含9区一模及上学期期末试题精选)专题:圆锥曲线一、选择题1 .(2013届北京大兴区一模理科)双曲线221x m y -=的实轴长是虚轴长的2倍,则m 等于 ( )A .14B .12C .2D .42 .(2013届北京海滨一模理科)抛物线24y x =的焦点为F ,点(,)P x y 为该抛物线上的动点,又点(1,0)A -,则||||P F P A 的最小值是( )A .12 B .2 C .2D .33 .(2013届北京市延庆县一模数学理)已知双曲线)0,0(12222>>=-b a by ax 的离心率为2,一个焦点与抛物线x y 162=的焦点相同,则双曲线的渐近线方程为( )A .x y 23±= B .x y 23±= C .x y 33±= D .x y 3±=4 .(2013届东城区一模理科)已知1(,0)F c -,2(,0)F c 分别是双曲线1C :22221x y ab-=(0,0)a b >>的两个焦点,双曲线1C 和圆2C :222x y c +=的一个交点为P ,且12212P F F P F F ∠=∠,那么双曲线1C 的离心率为 ( )A 2B C .2D 15 .(2013届门头沟区一模理科)已知P (,)x y 是中心在原点,焦距为10的双曲线上一点,且y x的取值范围为33(,)44-,则该双曲线方程是 A .221916x y -=B .221916yx-=C .221169x y -= D .221169y x -=6 .(北京市东城区2013届高三上学期期末考试数学理科试题)已知抛物线22y p x =的焦点F 与双曲线22179xy-=的右焦点重合,抛物线的准线与x 轴的交点为K ,点A 在抛物线上且|||A K A F =,则△A F K 的面积为 ( )A .4B .8C .16D .327 .(北京市海淀区北师特学校2013届高三第四次月考理科数学)方程2x xy x +=的曲线是 ( )A .一个点B .一条直线C .两条直线D .一个点和一条直线8 .(北京市海淀区北师特学校2013届高三第四次月考理科数学)已知双曲线22221(0,0)x y a b ab-=>>,过其右焦点且垂直于实轴的直线与双曲线交于,M N 两点,O 为坐标原点.若O M O N ⊥,则双曲线的离心率为 ( )A .12-+B .12+ C .12-+D .12+9 .(北京市通州区2013届高三上学期期末考试理科数学试题 )已知直线1:4360l x y -+=和直线2:1l x =-,抛物线24y x =上一动点P 到直线1l 和直线2l 的距离之和的最小值是( )A .5B .2C .115D .310.(【解析】北京市朝阳区2013届高三上学期期末考试数学理试题 )已知双曲线的中心在原点,一个焦点为)0,5(1-F ,点P 在双曲线上,且线段PF 1的中点坐标为(0,2),则此双曲线的方程是 ( )A .1422=-yxB .1422=-yx C .13222=-yxD .12322=-yx11.(【解析】北京市海淀区2013届高三上学期期末考试数学理试题 )椭圆2222:1(0)x y C a b ab+=>>的左右焦点分别为12,F F ,若椭圆C 上恰好有6个不同的点P ,使得12F F P ∆为等腰三角形,则椭圆C 的离心率的取值范围是( )A .12(,)33B .1(,1)2 C .2(,1)3D .111(,)(,1)322二、填空题12.(2013届北京西城区一模理科)在直角坐标系xO y 中,点B 与点(1,0)A -关于原点O 对称.点00(,)P x y 在抛物线24y x =上,且直线A P 与B P 的斜率之积等于2,则0x =______.13.(2013届房山区一模理科数学)已知双曲线2222:1(0,0)x y C a b ab-=>>的焦距为4,且过点(2,3),则它的渐近线方程为 .14.(北京市东城区普通高中示范校2013届高三3月联考综合练习(二)数学(理)试题 )若双曲线22221(0,0)x y a b ab-=>>与直线y =无交点,则离心率e 的取值范围是 .15.(北京市东城区普通高中示范校2013届高三3月联考综合练习(二)数学(理)试题 )已知直线:1(R )l y a x a a =+-∈,若存在实数a使得一条曲线与直线l 有两个不同的交点,且以这两个交点为端点的线段的长度恰好等于a ,则称此曲线为直线l 的“绝对曲线”.下面给出的三条曲线方程:①21y x =--;②22(1)(1)1xy -+-=;③2234x y +=.其中直线l 的“绝对曲线”有_____.(填写全部正确选项的序号)如图,16.(北京市东城区普通校2013届高三3月联考数学(理)试题 )1F 和2F 分别是双曲线22221(00)x y a b ab-=>>,的两个焦点,A和B 是以O 为圆心,以1OF 为半径的圆与 该双曲线左支的两个交点,且2F AB △是等边三角形,则双 曲线的离心率为 .17.(北京市西城区2013届高三上学期期末考试数学理科试题)已知椭圆22142xy+=的两个焦点是1F ,2F ,点P在该椭圆上.若12||||2P F P F -=,则△12P F F 的面积是______.18.(北京市顺义区2013届高三第一次统练数学理科试卷(解析))在平面直角坐标系xOy 中,设抛物线x y 42=的焦点为F ,准线为P l ,为抛物线上一点,l PA ⊥,A 为垂足.如果直线AF 的倾斜角为 120,那么=PF _______.19.(北京市昌平区2013届高三上学期期末考试数学理试题 )以双曲线221916xy-=的右焦点为圆心,并与其渐近线相切的圆的标准方程是 _____.20.(【解析】北京市海淀区2013届高三上学期期末考试数学理试题 )以y x =±为渐近线且经过点(2,0)的双曲线方程为______.21.(【解析】北京市石景山区2013届高三上学期期末考试数学理试题 )已知定点A 的坐标为(1,4),点F 是双曲线221412xy-=的左焦点,点P 是双曲线右支上的动点,则P F P A +的最小值为 .三、解答题22.(2013届北京大兴区一模理科)已知动点P 到点A (-2,0)与点B (2,0)的斜率之积为14-,点P 的轨迹为曲线C 。
北京市西城区2013届高三上学期期末考试数学理科试题
北京市西城区2013届高三上学期期末考试数学理科试题一、选择题(共8小题;共40分)1. 已知集合,,则 ______A. B.C. D.2. 在复平面内,复数的对应点位于______A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 在极坐标系中,已知点,则过点且平行于极轴的直线的方程是______A. B. C. D.4. 执行如图所示的程序框图.若输出,则框图中①处可以填入______A. B. C. D.5. 已知函数,其中为常数.那么“ ”是“ 为奇函数”的______A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件6. 已知,是非负数,且满足.那么的取值范围是______A. B. C. D.7. 某四面体的三视图如图所示.该四面体的六条棱的长度中,最大的是______A. B. C. D.8. 将正整数,,,,,,随机分成两组,使得每组至少有一个数,则两组中各数之和相等的概率是______A. B. C. D.二、填空题(共6小题;共30分)9. 已知向量,,那么 ______.10. 如图,中,,,.以为直径的圆交于点,则______; ______.11. 设等比数列的各项均为正数,其前项和为.若,,,则______.12. 已知椭圆的两个焦点是,,点在该椭圆上.若,则的面积是______.13. 已知函数,其中.当时,的值域是______;若的值域是,则的取值范围是______.14. 已知函数的定义域为.若常数,对,有,则称函数具有性质.给定下列三个函数:①;②;③.其中,具有性质的函数的序号是______.三、解答题(共6小题;共78分)15. 在中,已知.(1)求角的值;(2)若,,求的面积.16. 如图,四棱锥中,底面为正方形,,平面,为棱的中点.(1)求证: 平面;(2)求证:平面平面;(3)求二面角的余弦值.17. 生产,两种元件,其质量按测试指标划分为:指标大于或等于为正品,小于为次品.现随机抽取这两种元件各件进行检测,检测结果统计如下:测试指标元件元件(1)试分别估计元件,元件为正品的概率;(2)生产一件元件,若是正品可盈利元,若是次品则亏损元;生产一件元件,若是正品可盈利元,若是次品则亏损元.在(1)的前提下,(i)记为生产件元件和件元件所得的总利润,求随机变量的分布列和数学期望;(ii)求生产件元件所获得的利润不少于元的概率.18. 已知函数,其中.(1)求的单调区间;(2)设.若,使,求的取值范围.19. 如图,已知抛物线的焦点为.过点的直线交抛物线于,两点,直线,分别与抛物线交于点,.(1)求的值;(2)记直线的斜率为,直线的斜率为.证明:为定值.20. 如图,设是由个实数组成的行列的数表,其中表示位于第行第列的实数,且.记为所有这样的数表构成的集合.对于,记为的第行各数之积,为的第列各数之积.令.(1)请写出一个,使得;(2)是否存在,使得 ?说明理由;(3)给定正整数,对于所有的,求的取值集合.答案第一部分1. D2. B3. A4. C5. C6. B7. C8. B第二部分9.10. ;11.12.13. ;14. ①③第三部分15. (1)解法一:因为,所以.因为,所以,从而,所以.解法二:依题意得,所以,即.因为,所以,所以,所以.(2)解法一:因为,,根据正弦定理得,所以.因为,所以,所以的面积.解法二:因为,,根据正弦定理得,所以.根据余弦定理得,化简为,解得.所以的面积为.16. (1)如图,连接,与相交于点,连接.为正方形,所以为中点.因为为棱中点.所以.因为平面,平面,所以直线 平面.(2)因为平面,所以.因为四边形为正方形,所以,而,所以平面.又因为平面,所以平面平面.(3)解法一:如图,在平面内过作直线.因为平面平面,所以平面.由两两垂直,建立如图所示的空间直角坐标系.,则,,,,.所以,.设平面的法向量为,则有所以取,得.易知平面的法向量为.所以,,由图可知二面角的平面角是钝角,所以二面角的余弦值为.解法二:如图,取中点,中点,连接,.为正方形,所以.由(2)可得平面.因为,所以.由,,两两垂直,建立如图所示的空间直角坐标系.设,则,,,,,.所以,.设平面的法向量为,则有所以取,得.易知平面的法向量为.所以,,由图可知二面角的平面角是钝角,所以二面角的余弦值为.17. (1)元件为正品的概率约为.元件为正品的概率约为.(2)(i)随机变量的所有取值为,,,.;;;.所以,随机变量的分布列为:.(ii)设生产的件元件中正品有件,则次品有件.依题意,得,解得.所以,或.设“生产件元件所获得的利润不少于元”为事件,则.18. (1)(i)当时,.故的单调减区间为,;无单调增区间.(ii)当时,.令,得,.和的情况如下:极小值极大值故的单调减区间为,;单调增区间为.(iii)当时,的定义域为.因为在上恒成立,故的单调减区间为,,;无单调增区间.(2)因为,,所以等价于,其中.设,在区间上的最大值为.则“ ,使得”等价于.所以,的取值范围是.19. (1)依题意,设直线的方程为.将其代入,消去,整理得.从而.(2)设,.则.设直线的方程为,将其代入,消去,整理得.所以.同理可得.故.由(1)得,为定值.20. (1)答案不唯一,如图所示数表符合要求.(2)不存在,使得.证明如下:假设存在,使得.因为,,所以,,,,,,,这个数中有个,个.令.一方面,由于这个数中有个,个,从而另一方面,表示数表中所有元素之积(记这个实数之积为),也表示,从而相矛盾,从而不存在,使得.(3)记这个实数之积为.一方面,从“行”的角度看,有;另一方面,从“列”的角度看,有.从而有注意到.下面考虑,,,,,,,中的个数:由知,上述个实数中,的个数一定为偶数,该偶数记为;则的个数为,所以.对数表:,显然.将数表中的由变为,得到数表,显然.将数表中的由变为,得到数表,显然.依此类推,将数表中的由变为,得到数表.即数表满足:,其余.所以,.所以.由的任意性知,的取值集合为.。
2013年西城一模高三数学试题(理)含答案
北京市西城区2013年高三一模试卷高三数学 (理科) 2013.4一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知全集U =R ,集合{|02}A x x =<<,2{|10}B x x =->,那么U A B = ð (A ){|01}x x << (B ){|01}x x <≤(C ){|12}x x <<(D ){|12}x x ≤<2.若复数i2ia +的实部与虚部相等,则实数a = (A )1- (B )1(C )2-(D )23.执行如图所示的程序框图.若输出y =,则输入角=θ (A )π6 (B )π6-(C )π3(D )π3-4.从甲、乙等5名志愿者中选出4名,分别从事A ,B ,C ,D 四项不同的工作,每人承担一项.若甲、乙二人均不能从事A 工作,则不同的工作分配方案共有 (A )60种 (B )72种(C )84种(D )96种5.某正三棱柱的三视图如图所示,其中正(主)视 图是边长为2的正方形,该正三棱柱的表面积是 (A)6+ (B)12+(C)12+(D)24+6.等比数列{}n a 中,10a >,则“13a a <”是“36a a <”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件7.已知函数22()log 2log ()f x x x c =-+,其中0c >.若对于任意的(0,)x ∈+∞,都有()1f x ≤,则c 的取值范围是(A )1(0,]4(B )1[,)4+∞(C )1(0,]8(D )1[,)8+∞8.如图,正方体1111ABCD A B C D -中,P 为底面ABCD 上的动点,1PE AC ⊥于E ,且PA PE =,则点P 的 轨迹是(A )线段 (B )圆弧(C )椭圆的一部分(D )抛物线的一部分第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.9.已知曲线C 的参数方程为2cos 12sin x y =⎧⎨=+⎩αα(α为参数),则曲线C 的直角坐标方程为 .10.设等差数列{}n a 的公差不为0,其前n 项和是n S .若23S S =,0S =,则k =______.11.如图,正六边形ABCDEF 的边长为1,则AC DB ⋅=______.12.如图,已知AB 是圆O 的直径,P 在AB 的延长线上,PC切圆O 于点C ,CD OP ⊥于D .若6CD =,10CP =, 则圆O 的半径长为______;BP =______.13.在直角坐标系xOy 中,点B 与点(1,0)A -关于原点O 对称.点00(,)P x y 在抛物线24y x =上,且直线AP 与BP 的斜率之积等于2,则0x =______. 14.记实数12,,,n x x x 中的最大数为12max{,,,}n x x x ,最小数为12min{,,,}n x x x .设△ABC的三边边长分别为,,a b c ,且a b c ≤≤,定义△ABC 的倾斜度为max{,,}min{,a b ca tbc a b=⋅,}b cc a. (ⅰ)若△ABC 为等腰三角形,则t =______; (ⅱ)设1a =,则t 的取值范围是______.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数()sin cos f x x a x =-的一个零点是π4. (Ⅰ)求实数a 的值;(Ⅱ)设()()()cos g x f x f x x x =⋅-+,求()g x 的单调递增区间.16.(本小题满分13分)某班有甲、乙两个学习小组,两组的人数如下:现采用分层抽样的方法(层内采用简单随机抽样)从甲、乙两组中共抽取3名同学进行学业检测.(Ⅰ)求从甲组抽取的同学中恰有1名女同学的概率;(Ⅱ)记X 为抽取的3名同学中男同学的人数,求随机变量X 的分布列和数学期望.17.(本小题满分14分)在如图所示的几何体中,面CDEF 为正方形,面ABCD 为等腰梯形,AB //CD ,BC AB 2=,60ABC ︒∠=,AC FB ⊥.(Ⅰ)求证:⊥AC 平面FBC ;(Ⅱ)求BC 与平面EAC 所成角的正弦值;(Ⅲ)线段ED 上是否存在点Q ,使平面EAC ⊥平面QBC ? 证明你的结论.18.(本小题满分13分)已知函数()ln f x ax x =-,()e 3axg x x =+,其中a ∈R . (Ⅰ)求)(x f 的极值;(Ⅱ)若存在区间M ,使)(x f 和()g x 在区间M 上具有相同的单调性,求a 的取值范围.19.(本小题满分14分)如图,椭圆22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线交椭圆于A ,B 两点.当直线AB 经过椭圆的一个顶点时,其倾斜角恰为60︒. (Ⅰ)求该椭圆的离心率;(Ⅱ)设线段AB 的中点为G ,AB 的中垂线与x 轴和y 轴分别交于,D E 两点.记△GFD 的面积为1S ,△OED (O 为原点)的面积为2S ,求12S S20.(本小题满分13分)已知集合*12{|(,,,),,1,2,,}(2)n n i S X X x x x x i n n ==∈=≥N .对于12(,,,)n A a a a = ,12(,,,)n n B b b b S =∈ ,定义1122(,,,)n n AB b a b a b a =---;1212(,,,)(,,,)()n n a a a a a a =∈R λλλλλ;A 与B 之间的距离为1(,)||ni i i d A B a b ==-∑.(Ⅰ)当5n =时,设5(1,2,1,2,)A a =,(2,4,2,1,3)B =.若(,)7d A B =,求5a ;(Ⅱ)(ⅰ)证明:若,,n A B C S ∈,且0∃>λ,使A B B C λ= ,则(,)(,)(,)d AB d BC d AC +=; (ⅱ)设,,n A B C S ∈,且(,)(,)(,)d AB dBC d AC +=.是否一定0∃>λ,使A B B C λ= ?说明理由;(Ⅲ)记(1,1,,1)n I S =∈ .若A ,n B S ∈,且(,)(,)d I A d I B p ==,求(,)d A B 的最大值.北京市西城区2013年高三一模试卷高三数学(理科)参考答案及评分标准2013.4一、选择题:本大题共8小题,每小题5分,共40分.1. B ; 2.A ; 3.D ; 4.B ; 5.C ; 6.B ; 7.D ; 8.A .二、填空题:本大题共6小题,每小题5分,共30分.9.22230x y y +--=; 10.5; 11.32-12.152,5; 13.1+ 14.1,. 注:12、14题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分.若考生的解法与本解答不同,正确者可参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:依题意,得π()04f =, ………………1分即 ππsincos 044a -==, ………………3分 解得 1a =. ………………5分 (Ⅱ)解:由(Ⅰ)得 ()sin cos f x x x =-. ………………6分()()()cos g x f x f x x x =⋅-+(sin cos )(sin cos )2x x x x x =--- ………………7分22(cos sin )2x x x =- ………………8分cos 22x x =+ ………………9分π2sin(2)6x =+. ………………10分由 πππ2π22π262k x k -≤+≤+,得 ππππ36k x k -≤≤+,k ∈Z . ………………12分所以 ()g x 的单调递增区间为ππ[π,π]36k k -+,k ∈Z . ………………13分 16.(本小题满分13分)(Ⅰ)解:依题意,甲、乙两组的学生人数之比为 (35):(22)2:1++=, ……………1分所以,从甲组抽取的学生人数为2323⨯=;从乙组抽取的学生人数为1313⨯=.………2分 设“从甲组抽取的同学中恰有1名女同学”为事件A , ………………3分则 113528C C 15()C 28P A ⋅==,故从甲组抽取的同学中恰有1名女同学的概率为1528. ………………5分 (Ⅱ)解:随机变量X 的所有取值为0,1,2,3. ………………6分21522184C C 5(0)C C 28P X ⋅===⋅, 111213525221218484C C C C C 25(1)C C C C 56P X ⋅⋅⋅==+=⋅⋅, 211113235221218484C C C C C 9(2)C C C C 28P X ⋅⋅⋅==+=⋅⋅, 21322184C C 3(3)C C 56P X ⋅===⋅.……………10分 所以,随机变量X 的分布列为:………………11分5259350123285628564EX =⨯+⨯+⨯+⨯=. ………………13分17.(本小题满分14分)(Ⅰ)证明:因为BC AB 2=,60ABC ︒∠=,在△ABC 中,由余弦定理可得 BC AC 3=, 所以 BC AC ⊥. ………………2分 又因为 AC FB ⊥,所以⊥AC 平面FBC . ………………4分(Ⅱ)解:因为⊥AC 平面FBC ,所以FC AC ⊥.因为FC CD ⊥,所以⊥FC 平面ABCD . ………………5分 所以,,CA CF CB 两两互相垂直,如图建立的空间直角坐标系xyz C -. ………………6分在等腰梯形ABCD 中,可得 CB CD =.设1BC =,所以11(0,0,0),(0,1,0),(,0),(,1)22C A B DE --. 所以 )1,21,23(-=,)0,0,3(=,)0,1,0(=. 设平面EAC 的法向量为=()x,y,z n ,则有0,0.CE CA ⎧⋅=⎪⎨⋅=⎪⎩n n 所以10,20.x y z -+== 取1z =,得=n (0,2,1). ………………8分 设BC 与平面EAC 所成的角为θ,则||sin |cos ,|||||CB CB CB ⋅=〈〉==θn n n所以 BC 与平面EAC 所成角的正弦值为552. ………………9分 (Ⅲ)解:线段ED 上不存在点Q ,使平面EAC ⊥平面QBC .证明如下: ………………10分假设线段ED 上存在点Q ,设 ),21,23(t Q - )10(≤≤t ,所以),21,23(t -=. 设平面QBC 的法向量为=m ),,(c b a ,则有0,0.CB CQ ⎧⋅=⎪⎨⋅=⎪⎩m m 所以0,10.2b b tc =⎧-+= 取 1=c ,得=m )1,0,32(t -. ………………12分 要使平面EAC ⊥平面QBC ,只需0=⋅n m , ………………13分即002110⨯+⨯+⨯=, 此方程无解. 所以线段ED 上不存在点Q ,使平面EAC ⊥平面QBC . ………………14分18.(本小题满分13分)(Ⅰ)解:()f x 的定义域为(0,)+∞, ………………1分且 11()ax f x a x x-'=-=. ………………2分 ① 当0a ≤时,()0f x '<,故()f x 在(0,)+∞上单调递减.从而)(x f 没有极大值,也没有极小值. ………………3分② 当0a >时,令()0f x '=,得1x a=. ()f x 和()f x '的情况如下:故()f x 的单调减区间为(0,)a ;单调增区间为(,)a+∞. 从而)(x f 的极小值为1()1ln f a a=+;没有极大值. ………………5分 (Ⅱ)解:()g x 的定义域为R ,且 ()e 3axg x a '=+. ………………6分 ③ 当0a >时,显然 ()0g x '>,从而()g x 在R 上单调递增.由(Ⅰ)得,此时()f x 在1(,)a+∞上单调递增,符合题意. ………………8分 ④ 当0a =时,()g x 在R 上单调递增,()f x 在(0,)+∞上单调递减,不合题意.……9分⑤ 当0a <时,令()0g x '=,得013ln()x a a=-. ()g x 和()g x '的情况如下表:当30a -≤<时,00x ≤,此时()g x 在0(,)x +∞上单调递增,由于()f x 在(0,)+∞上单调递减,不合题意. ………………11分当3a <-时,00x >,此时()g x 在0(,)x -∞上单调递减,由于()f x 在(0,)+∞上单调递减,符合题意.综上,a 的取值范围是(,3)(0,)-∞-+∞ . ………………13分 19.(本小题满分14分)(Ⅰ)解:依题意,当直线AB 经过椭圆的顶点(0,)b 时,其倾斜角为60︒. ………………1分设 (,0)F c -, 则tan 60bc︒==………………2分 将 b =代入 222a b c =+,解得 2a c =. ………………3分 所以椭圆的离心率为 12c e a ==. ………………4分 (Ⅱ)解:由(Ⅰ),椭圆的方程可设为2222143x y c c+=. ………………5分设11(,)A x y ,22(,)B x y .依题意,直线AB 不能与,x y 轴垂直,故设直线AB 的方程为()y k x c =+,将其代入2223412x y c +=,整理得 222222(43)84120k x ck x k c c +++-=. ………………7分则 2122843ck x x k -+=+,121226(2)43cky y k x x c k +=++=+,22243(,)4343ck ck G k k -++. ………………8分 因为 GD AB ⊥,所以 2223431443Dckk k ck x k +⨯=---+,2243D ck x k -=+. ………………9分 因为 △GFD ∽△OED ,所以 2222222212222243()()||434343||()43ck ck ck S GD k k k ck S OD k ---++++==-+ ………………11分222242222242(3)(3)99999()ck ck c k c k ck c k k ++===+>. ………………13分所以12S S 的取值范围是(9,)+∞. ………………14分 20.(本小题满分13分)(Ⅰ)解:当5n =时,由51(,)||7iii d A B a b ==-=∑,得 5|12||24||12||21||3|7a -+-+-+-+-=,即 5|3|2a -=.由 *5a ∈N ,得 51a =,或55a =. ………………3分 (Ⅱ)(ⅰ)证明:设12(,,,)n A a a a = ,12(,,,)n B b b b = ,12(,,,)n C c c c = .因为 0∃>λ,使 AB BC λ=,所以 0∃>λ,使得 11221122(,,)((,,)n n n n b a b a b a c b c b c b ---=--- λ,,, 即 0∃>λ,使得 ()i i i i b a c b λ-=-,其中1,2,,i n = .所以 i i b a -与(1,2,,)i i c b i n -= 同为非负数或同为负数. ………………5分 所以 11(,)(,)||||n niiiii i d A B d B C a b b c ==+=-+-∑∑1(||||)ni i i i i b a c b ==-+-∑1||(,)ni i i c a d A C ==-=∑. ………………6分(ⅱ)解:设,,n A B C S ∈,且(,)(,)(,)d A B d B C d A C +=,此时不一定0∃>λ,使得AB BC λ=. ………………7分反例如下:取(1,1,1,,1)A = ,(1,2,1,1,,1)B = ,(2,2,2,1,1,,1)C ,则 (,)1d A B =,(,)2d B C =,(,)3d A C =,显然(,)(,)(,)d A B d B C d A C +=.因为(0,1,0,0,,0)AB = ,(1,0,1,0,0,,0)BC =,所以不存在>0λ,使得AB BC λ=. ………………8分(Ⅲ)解法一:因为 1(,)||niii d A B b a ==-∑,设(1,2,,)i i b a i n -= 中有()m m n ≤项为非负数,n m -项为负数.不妨设1,2,,i m = 时0i i b a -≥;1,2,,i m m n =++ 时,0i i b a -<.所以 1(,)||niii d A B b a ==-∑12121212[()()][()()]m m m m n m m n b b b a a a a a a b b b ++++=+++-+++++++-+++因为 (,)(,)d I A d I B p ==, 所以11(1)(1)n n iii i a b ==-=-∑∑, 整理得 11n niii i a b ===∑∑.所以 12121(,)||2[()]niim m i d A B b a b bb a a a ==-=+++-+++∑ .……………10分因为 121212()()m n m m n b b b b b b b b b +++++=+++-+++ ()()1p n n m p m ≤+--⨯=+; 又 121m a a a m m +++≥⨯= ,所以 1212(,)2[()]m m d A B b b b a a a =+++-+++ 2[()]2p m m p ≤+-=.即 (,)2d A B p ≤. ……………12分 对于 (1,1,,1,1)A p =+ ,(1,1,1,,1)B p =+ ,有 A ,n B S ∈,且(,)(,)d I A d I B p ==, (,)2d A B p =.综上,(,)d A B 的最大值为2p . ……………13分 解法二:首先证明如下引理:设,x y ∈R ,则有 ||||||x y x y +≤+. 证明:因为 ||||x x x -≤≤,||||y y y -≤≤, 所以 (||||)||||x y x y x y -+≤+≤+,即 ||||||x y x y +≤+. 所以 11(,)|||(1)(1)|n niiiii i d A B b a b a ===-=-+-∑∑1(|1||1|)ni i i b a =≤-+-∑11|1||1|2nni i i i a b p ===-+-=∑∑. ……………11分上式等号成立的条件为1i a =,或1i b =,所以 (,)2d A B p ≤. ……………12分对于 (1,1,,1,1)A p =+ ,(1,1,1,,1)B p =+ ,有 A ,n B S ∈,且(,)(,)d I A d I B p ==, (,)2d A B p =.综上,(,)d A B 的最大值为2p . ……………13分。
北京市西城区高三数学一模试题 理
北京市西城区2013年高三一模试卷高三数学(理科) 2013.4第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知全集U =R ,集合{|02}A x x =<<,2{|10}B x x =->,那么U A B =ð(A ){|01}x x << (B ){|01}x x <≤(C ){|12}x x <<(D ){|12}x x ≤<2.若复数i2ia +的实部与虚部相等,则实数a = (A )1- (B )1(C )2-(D )23.执行如图所示的程序框图.若输出y =角=θ (A )π6 (B )π6-(C )π3(D )π3-4.从甲、乙等5名志愿者中选出4名,分别从事A ,B ,C ,D 四项不同的工作,每人承担一项.若甲、乙二人均不能从事A 工作,则不同的工作分配方案共有 (A )60种 (B )72种(C )84种(D )96种5.某正三棱柱的三视图如图所示,其中正(主)视图是边长为2的正方形,该正三棱柱的表面积是(A )6(B )12(C )12+(D )24+6.等比数列{}n a 中,10a >,则“13a a <”是“36a a <”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件7.已知函数22()log 2log ()f x x x c =-+,其中0c >.若对于任意的(0,)x ∈+∞,都有()1f x ≤,则c 的取值范围是(A )1(0,]4(B )1[,)4+∞(C )1(0,]8(D )1[,)8+∞8.如图,正方体1111ABCD A BC D -中,P 为底面ABCD 上的动点,1PE AC ⊥于E ,且PA PE =,则点P 的 轨迹是 (A )线段 (B )圆弧(C )椭圆的一部分 (D )抛物线的一部分第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.已知曲线C 的参数方程为2cos 12sin x y =⎧⎨=+⎩αα(α为参数),则曲线C 的直角坐标方程为 .10.设等差数列{}n a 的公差不为0,其前n 项和是n S .若23S S =,0k S =,则k =______.11.如图,正六边形ABCDEF 的边长为1,则AC DB ⋅=______.12.如图,已知AB 是圆O 的直径,P 在AB 的延长线上,PC切圆O 于点C ,CD OP ⊥于D .若6CD =,10CP =, 则圆O 的半径长为______;BP =______.13.在直角坐标系xOy 中,点B 与点(1,0)A -关于原点O 对称.点00(,)P x y 在抛物线24y x =上,且直线AP 与BP 的斜率之积等于2,则0x =______.14.记实数12,,,n x x x 中的最大数为12max{,,,}n x x x ,最小数为12min{,,,}n x x x .设△ABC的三边边长分别为,,a b c ,且a b c ≤≤,定义△ABC 的倾斜度为max{,,}min{,a b ca tbc ab=⋅,}b cc a. (ⅰ)若△ABC 为等腰三角形,则t =______; (ⅱ)设1a =,则t 的取值范围是______.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数()sin cos f x x a x =-的一个零点是π4. (Ⅰ)求实数a 的值;(Ⅱ)设()()()cos g x f x f x x x =⋅-+,求()g x 的单调递增区间.16.(本小题满分13分)某班有甲、乙两个学习小组,两组的人数如下:现采用分层抽样的方法(层内采用简单随机抽样)从甲、乙两组中共抽取3名同学进行学业检测.(Ⅰ)求从甲组抽取的同学中恰有1名女同学的概率;(Ⅱ)记X 为抽取的3名同学中男同学的人数,求随机变量X 的分布列和数学期望.17.(本小题满分14分)在如图所示的几何体中,面CDEF 为正方形,面ABCD 为等腰梯形,AB //CD ,BC AB 2=,60ABC ︒∠=,AC FB ⊥.(Ⅰ)求证:⊥AC 平面FBC ;(Ⅱ)求BC 与平面EAC 所成角的正弦值;(Ⅲ)线段ED 上是否存在点Q ,使平面EAC ⊥平面QBC ? 证明你的结论.18.(本小题满分13分)已知函数()ln f x ax x =-,()e 3ax g x x =+,其中a ∈R . (Ⅰ)求)(x f 的极值;(Ⅱ)若存在区间M ,使)(x f 和()g x 在区间M 上具有相同的单调性,求a 的取值范围. 19.(本小题满分14分)如图,椭圆22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线交椭圆于A ,B 两点.当直线AB 经过椭圆的一个顶点时,其倾斜角恰为60︒. (Ⅰ)求该椭圆的离心率;(Ⅱ)设线段AB 的中点为G ,AB 的中垂线与x 轴和y 轴分别交于,D E 两点.记△GFD 的面积为1S ,△OED (O 为原点)的面积为2S ,求12S S20.(本小题满分13分)已知集合*12{|(,,,),,1,2,,}(2)n n i S X X x x x x i n n ==∈=≥N .对于12(,,,)n A a a a =,12(,,,)n n B b b b S =∈,定义1122(,,,)n n AB b a b a b a =---;1212(,,,)(,,,)()n n a a a a a a =∈R λλλλλ;A 与B 之间的距离为1(,)||ni i i d A B a b ==-∑.(Ⅰ)当5n =时,设5(1,2,1,2,)A a =,(2,4,2,1,3)B =.若(,)7d A B =,求5a ;(Ⅱ)(ⅰ)证明:若,,n A B C S ∈,且0∃>λ,使AB BC λ=,则(,)(,)(,)d ABd BC d AC +=; (ⅱ)设,,n A B C S ∈,且(,)(,)(,)d AB dBC d AC +=.是否一定0∃>λ,使AB BC λ=?说明理由;(Ⅲ)记(1,1,,1)n I S =∈.若A ,n B S ∈,且(,)(,)d I A d I B p ==,求(,)d A B 的最大值.北京市西城区2013年高三一模试卷高三数学(理科)参考答案及评分标准2013.4一、选择题:本大题共8小题,每小题5分,共40分.1. B ; 2.A ; 3.D ; 4.B ; 5.C ; 6.B ; 7.D ; 8.A .二、填空题:本大题共6小题,每小题5分,共30分.9.22230x y y +--=; 10.5; 11.32-12.152,5; 13.1 14.1,. 注:12、14题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分.若考生的解法与本解答不同,正确者可参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:依题意,得π()04f =, ………………1分即 ππsincos 044a -==, ………………3分 解得 1a =. ………………5分 (Ⅱ)解:由(Ⅰ)得 ()sin cos f x x x =-. ………………6分()()()cos g x f x f x x x =⋅-+(sin cos )(sin cos )2x x x x x =--- ………………7分22(cos sin )2x x x =- ………………8分cos22x x = ………………9分π2sin(2)6x =+. ………………10分由 πππ2π22π262k x k -≤+≤+,得 ππππ36k x k -≤≤+,k ∈Z . ………………12分所以 ()g x 的单调递增区间为ππ[π,π]36k k -+,k ∈Z . ………………13分16.(本小题满分13分)(Ⅰ)解:依题意,甲、乙两组的学生人数之比为 (35):(22)2:1++=, ……………1分所以,从甲组抽取的学生人数为2323⨯=;从乙组抽取的学生人数为1313⨯=.………2分 设“从甲组抽取的同学中恰有1名女同学”为事件A , ………………3分则 113528C C 15()C 28P A ⋅==, 故从甲组抽取的同学中恰有1名女同学的概率为1528. ………………5分 (Ⅱ)解:随机变量X 的所有取值为0,1,2,3. ………………6分21522184C C 5(0)C C 28P X ⋅===⋅, 111213525221218484C C C C C 25(1)C C C C 56P X ⋅⋅⋅==+=⋅⋅, 211113235221218484C C C C C 9(2)C C C C 28P X ⋅⋅⋅==+=⋅⋅, 21322184C C 3(3)C C 56P X ⋅===⋅.……………10分 所以,随机变量X 的分布列为:………………11分5259350123285628564EX =⨯+⨯+⨯+⨯=. ………………13分17.(本小题满分14分)(Ⅰ)证明:因为BC AB 2=,60ABC ︒∠=,在△ABC 中,由余弦定理可得 BC AC 3=, 所以 BC AC ⊥. ………………2分 又因为 AC FB ⊥,所以⊥AC 平面FBC . ………………4分 (Ⅱ)解:因为⊥AC 平面FBC ,所以FC AC ⊥.因为FC CD ⊥,所以⊥FC 平面ABCD . ………………5分 所以,,CA CF CB 两两互相垂直,如图建立的空间直角坐标系xyz C -. ………………6分在等腰梯形ABCD 中,可得 CB CD =. 设1BC =,所以11(0,0,0),(0,1,0),(,,0),(,,1)2222C A BDE --. 所以 )1,21,23(-=,)0,0,3(=CA ,)0,1,0(=CB . 设平面EAC 的法向量为=()x,y,z n ,则有0,0.CE CA ⎧⋅=⎪⎨⋅=⎪⎩n n所以10,20.x y z -+=⎨= 取1z =,得=n (0,2,1). ………………8分 设BC 与平面EAC 所成的角为θ,则||sin |cos ,|||||CB CB CB ⋅=〈〉==θn n n 所以 BC 与平面EAC 所成角的正弦值为552. ………………9分 (Ⅲ)解:线段ED 上不存在点Q ,使平面EAC ⊥平面QBC .证明如下: ………………10分假设线段ED 上存在点Q ,设 ),21,23(t Q - )10(≤≤t ,所以),21,23(t CQ -=. 设平面QBC 的法向量为=m ),,(c b a ,则有0,0.CB CQ ⎧⋅=⎪⎨⋅=⎪⎩m m所以 0,10.2b b tc =⎧-+= 取 1=c ,得=m )1,0,32(t -. ………………12分要使平面EAC ⊥平面QBC ,只需0=⋅n m , ………………13分即 002110⨯+⨯+⨯=, 此方程无解. 所以线段ED 上不存在点Q ,使平面EAC ⊥平面QBC . ………………14分18.(本小题满分13分)(Ⅰ)解:()f x 的定义域为(0,)+∞, ………………1分且 11()ax f x a x x-'=-=. ………………2分 ① 当0a ≤时,()0f x '<,故()f x 在(0,)+∞上单调递减.从而)(x f 没有极大值,也没有极小值. ………………3分② 当0a >时,令()0f x '=,得1x a=. ()f x 和()f x '的情况如下:故()f x 的单调减区间为(0,)a ;单调增区间为(,)a+∞. 从而)(x f 的极小值为1()1ln f a a=+;没有极大值. ………………5分 (Ⅱ)解:()g x 的定义域为R ,且 ()e 3axg x a '=+. ………………6分 ③ 当0a >时,显然 ()0g x '>,从而()g x 在R 上单调递增.由(Ⅰ)得,此时()f x 在1(,)a+∞上单调递增,符合题意. ………………8分 ④ 当0a =时,()g x 在R 上单调递增,()f x 在(0,)+∞上单调递减,不合题意.……9分⑤ 当0a <时,令()0g x '=,得013ln()x a a=-. ()g x 和()g x '的情况如下表:当30a -≤<时,00x ≤,此时()g x 在0(,)x +∞上单调递增,由于()f x 在(0,)+∞上单调递减,不合题意. ………………11分当3a <-时,00x >,此时()g x 在0(,)x -∞上单调递减,由于()f x 在(0,)+∞上单调递减,符合题意.综上,a 的取值范围是(,3)(0,)-∞-+∞. ………………13分19.(本小题满分14分)(Ⅰ)解:依题意,当直线AB 经过椭圆的顶点(0,)b 时,其倾斜角为60︒. ………………1分设 (,0)F c -, 则tan 60bc︒==.………………2分 将 b = 代入 222a b c =+,解得 2a c =.………………3分 所以椭圆的离心率为 12c e a ==. ………………4分 (Ⅱ)解:由(Ⅰ),椭圆的方程可设为2222143x y c c+=. ………………5分设11(,)A x y ,22(,)B x y .依题意,直线AB 不能与,x y 轴垂直,故设直线AB 的方程为()y k x c =+,将其代入2223412x y c +=,整理得 222222(43)84120k x ck x k c c +++-=. ………………7分则 2122843ck x x k -+=+,121226(2)43ck y y k x x c k +=++=+,22243(,)4343ck ckG k k -++. ………………8分 因为 GD AB ⊥,所以 2223431443Dckk k ck x k +⨯=---+,2243D ck x k -=+. ………………9分 因为 △GFD ∽△OED ,所以 222222221222243()()||434343||()43ck ck ck S GD k k k ck S OD k ---++++==-+ ………………11分 222242222242(3)(3)99999()ck ck c k c k ck c k k ++===+>. ………………13分所以12S S 的取值范围是(9,)+∞. ………………14分20.(本小题满分13分)(Ⅰ)解:当5n =时,由51(,)||7i ii d A B a b ==-=∑, 得 5|12||24||12||21||3|7a -+-+-+-+-=,即 5|3|2a -=.由 *5a ∈N ,得 51a =,或55a =. ………………3分 (Ⅱ)(ⅰ)证明:设12(,,,)n A a a a =,12(,,,)n B b b b =,12(,,,)n C c c c =.因为 0∃>λ,使 AB BC λ=,所以 0∃>λ,使得 11221122(,,)((,,)n n n n b a b a b a c b c b c b ---=---λ,,, 即 0∃>λ,使得 ()i i i i b a c b λ-=-,其中1,2,,i n =. 所以 i i b a -与(1,2,,)i i c b i n -=同为非负数或同为负数. ………………5分 所以 11(,)(,)||||n ni i i i i i d A B d B C a b b c ==+=-+-∑∑1(||||)n i i i i i b a c b ==-+-∑1||(,)n i i i c a d A C ==-=∑. ………………6分(ⅱ)解:设,,n A B C S ∈,且(,)(,)(,)d A B d B C d A C +=,此时不一定0∃>λ,使得 AB BC λ=. ………………7分反例如下:取(1,1,1,,1)A =,(1,2,1,1,,1)B =,(2,2,2,1,1,,1)C ,则 (,)1d A B =,(,)2d B C =,(,)3d A C =,显然(,)(,)(,)d A B d B C d A C +=. 因为(0,1,0,0,,0)AB =,(1,0,1,0,0,,0)BC =,所以不存在>0λ,使得AB BC λ=. ………………8分 (Ⅲ)解法一:因为 1(,)||n i i i d A B b a ==-∑, 设(1,2,,)i i b a i n -=中有()m m n ≤项为非负数,n m -项为负数.不妨设1,2,,i m =时0i i b a -≥;1,2,,i m m n =++时,0i i b a -<.所以 1(,)||n i i i d A B b a ==-∑ 12121212[()()][()()]m m m m n m m n b b b a a a a a a b b b ++++=+++-+++++++-+++因为 (,)(,)d I A d I B p ==,所以 11(1)(1)n n i i i i a b ==-=-∑∑, 整理得 11n ni ii i a b ===∑∑. 所以 12121(,)||2[()]n i i m m i d A B b a b b b a a a ==-=+++-+++∑.……………10分 因为 121212()()m n m m n b b b b b b b b b +++++=+++-+++()()1p n n m p m ≤+--⨯=+;又 121m a a a m m +++≥⨯=,所以 1212(,)2[()]m m d A B b b b a a a =+++-+++2[()]2p m m p ≤+-=.即 (,)2d A B p ≤. ……………12分 对于 (1,1,,1,1)A p =+,(1,1,1,,1)B p =+,有 A ,n B S ∈,且(,)(,)d I A d I B p ==, (,)2d A B p =.综上,(,)d A B 的最大值为2p . ……………13分 解法二:首先证明如下引理:设,x y ∈R ,则有 ||||||x y x y +≤+.证明:因为 ||||x x x -≤≤,||||y y y -≤≤,所以 (||||)||||x y x y x y -+≤+≤+,即 ||||||x y x y +≤+.所以 11(,)|||(1)(1)|n ni i i ii i d A B b a b a ===-=-+-∑∑ 1(|1||1|)n i i i b a =≤-+-∑11|1||1|2nni i i i a b p ===-+-=∑∑. ……………11分上式等号成立的条件为1i a =,或1i b =,所以 (,)2d A B p ≤. ……………12分对于 (1,1,,1,1)A p =+,(1,1,1,,1)B p =+,有 A ,n B S ∈,且(,)(,)d I A d I B p ==, (,)2d A B p =.d A B的最大值为2p.……………13分综上,(,)。
北京市西城区2013届高三第二次模拟考试数学理试题(Word解析版)
北京市西城区2013年高三二模试卷高三数学(理科) 2013.5第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知全集{0,1,2,3,4}U =,集合{0,1,2,3}A =,{2,3,4}B =,那么()U A B = ð (A ){0,1} (B ){2,3} (C ){0,1,4} (D ){0,1,2,3,4}【答案】C【解析】因为{0,1,2,3}A =,{2,3,4}B =,所以{2,3}A B = ,(){0,1,4}U A B = ð,选C.2.在复平面内,复数1z 的对应点是1(1,1)Z ,2z 的对应点是2(1,1)Z -,则12z z ⋅= (A )1 (B )2(C )i -(D )i【答案】B【解析】11z i =+,21z i =-,所以2212(1)(1)12z z i i i ⋅=-+=-=,选B. 3.在极坐标系中,圆心为(1,)2π,且过极点的圆的方程是 (A )2sin =ρθ (B )2sin =-ρθ(C )2cos =ρθ(D )2cos =-ρθ【答案】A【解析】在圆心(1,)2π中,1,2πρθ==,所以圆心的坐标为cos 0sin 1x y ρθρθ==⎧⎨==⎩,即圆心的坐标为(0,1),圆心到极点的距离为1,即圆的半径为 1.所以圆的标准方程为22(1)1x y +-=,即2220x y y +-=,即22sin 0ρρθ-=,解得2sin =ρθ,选A.4.如图所示的程序框图表示求算式“235917⨯⨯⨯⨯” 之值, 则判断框内可以填入 (A )10k ≤ (B )16k ≤ (C )22k ≤ (D )34k ≤ 【答案】C【解析】第一次循环,满足条件,2,3S k ==;第二次循环,满足条件,23,5S k =⨯=;第三次循环,满足条件,235,9S k =⨯⨯=;第四次循环,满足条件,2359,17S k =⨯⨯⨯=;第五次循环,满足条件,235917,33S k =⨯⨯⨯⨯=,此时不满足条件输出。
西城高三期末理科数学含答案
北京市西城区2012 — 2013学年度第一学期期末试卷高三数学(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|01}A x x =∈<<R ,{|(21)(1)0}B x x x =∈-+>R ,则AB =( )(A )1(0,)2 (B )(1,1)- (C )1(,1)(,)2-∞-+∞ (D )(,1)(0,)-∞-+∞ 2.在复平面内,复数5i2i-的对应点位于( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限3.在极坐标系中,已知点(2,)6P π,则过点P 且平行于极轴的直线的方程是( )(A )sin 1=ρθ (B )sin =ρθ(C )cos 1=ρθ (D )cos =ρθ4.执行如图所示的程序框图.若输出15S =, 则框图中① 处可以填入( ) (A )2k < (B )3k < (C )4k < (D )5k <5.已知函数()cos f x x b x =+,其中b 为常数.那么“0b =”是“()f x 为奇函数”的( ) (A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件 6.已知,a b 是正数,且满足224a b <+<.那么22a b +的取值范围是( )(A )416(,)55 (B )4(,16)5 (C )(1,16) (D )16(,4)57.某四面体的三视图如图所示.该四面体的六条棱的长度中,最大的是( )(A )(B )(C )(D )8.将正整数1,2,3,4,5,6,7随机分成两组,使得每组至少有一个数,则两组中各数之和相等的概率是( )(A )221 (B )463 (C )121 (D )263二、填空题:本大题共6小题,每小题5分,共30分.9. 已知向量(1,3)=a ,(2,1)=-b ,(3,2)=c .若向量c 与向量k +a b 共线,则实数k = _____ 10.如图,Rt △ABC 中,90ACB ︒∠=,3AC =,4BC =.以AC 为直径的圆交AB 于点D ,则BD = ;CD =______.11.设等比数列{}n a 的各项均为正数,其前n 项和为n S . 若11a =,34a =,63k S =,则k =______.12.已知椭圆 22142x y +=的两个焦点是1F ,2F ,点P 在该椭圆上. 若12||||2PF PF -=,则△12PF F 的面积是______. 13.已知函数π()sin(2)6f x x =+,其中π[,]6x a ∈-.当3a π=时,()f x 的值域是______;若()f x 的值域是1[,1]2-,则a 的取值范围是______. 14.已知函数()f x 的定义域为R .若∃常数0c >,对x ∀∈R ,有()()f x c f x c +>-,则称函数()f x 具有性质P .给定下列三个函数:①()2xf x =; ②()sin f x x =; ③3()f x x x =-.其中,具有性质P 的函数的序号是______.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)在△ABC 21cos 2B B =-. (Ⅰ)求角B 的值; (Ⅱ)若2BC =,4A π=,求△ABC 的面积.16.(本小题满分14分)如图,四棱锥ABCD P -中,底面ABCD 为正方形,PD PA =,⊥PA 平面PDC ,E 为棱PD 的中点.(Ⅰ)求证:PB EAC PAD ⊥ABCD B AC E --8282100(Ⅰ)的前提下,(ⅰ)记X 为生产1件元件A 和1件元件B 所得的总利润,求随机变量X 的分布列和数学期望; (ⅱ)求生产5件元件B 所获得的利润不少于140元的概率. 18.(本小题满分13分)已知函数2()xf x x b=+,其中b ∈R . (Ⅰ)求)(x f 的单调区间;(Ⅱ)设0b >.若13[,]44x ∃∈,使()1f x ≥,求b 的取值范围.19.(本小题满分14分)如图,已知抛物线24y x =的焦点为F .过点(2,0)P 的直线交抛物线于11(,)A x y ,22(,)B x y 两点,直线AF ,BF 分别与抛物线交于点M ,N .(Ⅰ)求12y y 的值;(Ⅱ)记直线MN 的斜率为1k ,直线AB 的斜率为2k .证明:12k k 为定值. 20.(本小题满分13分)如图,设A 是由n n ⨯个实数组成的n 行n 列的数表,其中ij a (,1,2,3,,)i j n =表示位于第i 行第j 列的实数,且{1,1}ij a ∈-.记(,)S n n 为所有这样的数表构成的集合.对于(,)A S n n ∈,记()i r A 为A 的第i 行各数之积,()j c A 为A 的第j 列各数之积.令11()()()n ni j i j l A r A c A ===+∑∑.(Ⅰ)请写出一个(4,4)A S ∈,使得()0l A =; (Ⅱ)是否存在(9,9)A S ∈,使得()0l A =?说明理由;(Ⅲ)给定正整数n ,对于所有的(,)A S n n ∈,求()l A 的取值集合.北京市西城区2012 — 2013学年度第一学期期末 高三数学(理科)参考答案及评分标准一、选择题:本大题共8小题,每小题5分,共40分.1.D ; 2.B ; 3.A ; 4.C ; 5.C ; 6.B ; 7.C ; 8.B . 二、填空题:本大题共6小题,每小题5分,共30分.9.1-; 10.165,125; 11.6; 12; 13.1[,1]2-,[,]62ππ; 14.①③. 注:10、13题第一问2分,第二问3分;14题结论完全正确才给分.三、解答题:本大题共6小题,共80分.若考生的解法与本解答不同,正确者可参照评分标准给分. 15.(本小题满分13分)21cos 2B B =-, 所以 2cos 2sin B B B =. (3)分 因为 0B <<π, 所以 sin 0B >, 从而 tan B =,………………5分所以 π3B =. ………………6分 解法二: 依题意得2cos 21B B +=,所以 2sin(2)16B π+=,即 1sin(2)62B π+=. ………………3分因为 0B <<π, 所以 132666B πππ<+<,所以 5266B ππ+=.………………5分所以 π3B =. ………………6分(Ⅱ)解法一:因为 4A π=,π3B=, 根据正弦定理得 sin sin AC BCB A =, ……………7分 所以 sin sin BC BAC A⋅==. ………………8分因为512C A Bπ=π--=, ………………9分所以 5sin sinsin()12464C πππ==+=, ………………11分 所以 △ABC 的面积13sin 22S AC BC C =⋅=. ………………13分 解法二:因为 4A π=,π3B=, 根据正弦定理得 sin sin AC BC B A =, ……………7分 所以 sin sin BC BAC A⋅==. ………………8分根据余弦定理得 2222cos AC AB BC AB BC B =+-⋅⋅, ………………9分化简为 2220AB AB --=,解得1AB =+ ………………11分所以 △ABC 的面积1sin 2S AB BC B =⋅=. ………………13分 16.(本小题满分14分)(Ⅰ)证明:连接BD 与AC 相交于点O ,连结EO .因为四边形ABCD 为正方形,所以O 为BD 中点.因为 E 为棱PD 中点.所以 EO PB //. ………………3分 因为 ⊄PB 平面EAC ,⊂EO 平面EAC , 所以线PB EAC ⊥PA PDC CD PA ⊥ABCD CD AD ⊥CD ⊥ABCD Dz ⊥ABCD4(0,0,0),(4,0,0),(4,4,0),(0,4,0),(2,0,2),(1,0,1)D A B C P E )1,0,3(-=)0,4,4(-=EAC=()x,y,z n 0,0.EA AC ⎧⋅=⎪⎨⋅=⎪⎩n n ⎩⎨⎧=+-=-.044,03y x z x 1=x (1,1,3)=n ABCD (0,0,1)=v |||cos ,|||||11⋅==〈〉n v n v n v B AC E --B AC E --11113-AD M BC N PM MN ABCDCDMN //⊥MN PAD PD PA =⊥PM AD ,,MP MA MN xyz M -4=AB (2,0,0),(2,4,0),(2,4,0),(2,0,0),(0,0,2),(1,0,1)A B C D P E ---)1,0,3(-=)0,4,4(-=EAC=()x,y,z n 0,0.EA AC ⎧⋅=⎪⎨⋅=⎪⎩n n ⎩⎨⎧=+-=-.044,03y x z x 1=x =n )3,1,1(ABCD=v )1,0,0(|||cos ,|||||11⋅==〈〉n v n v n v B AC E --B AC E --11113-4032841005++=4029631004++=X90,45,30,15-433(90)545P X ==⨯=133(45)5420P X ==⨯=411(30)545P X ==⨯=111(15)P X =-=⨯=X1904530(15)66520520EX =⨯+⨯+⨯+-⨯=n 5n -依题意,得 5010(5)140n n --≥, 解得 196n ≥.所以 4n =,或5n =. ………………11分 设“生产5件元件B 所获得的利润不少于140元”为事件A , 则 445531381()C ()()444128P A =⨯+=.………………13分18.(本小题满分13分) (Ⅰ)解:① 当0b =时,1()f x x=. 故()f x 的单调减区间为(,0)-∞,(0,)+∞;无单调增区间. ………………1分② 当0b >时,222()()b x f x x b -'=+. ………………3分令()0f x '=,得1x =2x =()f x 和()f x '的情况如下:故()f x 的单调减区间为(,-∞,)+∞;单调增区间为(.………………5分③ 当0b <时,()f x 的定义域为{|D x x =∈≠R .因为222()0()b x f x x b -'=<+在D 上恒成立,故()f x 的单调减区间为(,-∞,(,)+∞;无单调增区间.………………7分(Ⅱ)解:因为0b >,13[,]44x ∈,所以 ()1f x ≥ 等价于 2b x x ≤-+,其中13[,]44x ∈. ………………9分 设2()g x x x =-+,()g x 在区间13[,]44上的最大值为11()24g =.………………11分 则“13[,]44x ∃∈,使得 2b x x ≤-+”等价于14b ≤. 所以,b 的取值范围是1(0,]4. ………………13分 19.(本小题满分14分)(Ⅰ)解:依题意,设直线AB 的方程为2x my =+. ………………1分将其代入24y x =,消去x ,整理得 2480y my --=. ………………4分 从而128y y =-. ………………5分 (Ⅱ)证明:设33(,)M x y ,44(,)N x y .则221234341121222234123123444444y y y y y y k x x y y k x x y y y y y y y y ----+=⨯=⨯=---+-. ………………7分 设直线AM 的方程为1x ny =+,将其代入24y x =,消去x , 整理得 2440y ny --=. ………………9分所以 134y y =-. ………………10分 同理可得 244y y =-. ………………11分 故112121223412444k y y y y y yk y y y y ++===--+-+. ………………13分 由(Ⅰ)得122k k =,为定值. ………………14分 20.(本小题满分13分)(Ⅰ)解:答案不唯一,如图所示数表符合要求.………………3分 (Ⅱ)解:不存在(9,9)A S ∈,使得()0l A =. ………………4分 证明如下:假设存在(9,9)A S ∈,使得()0l A =.因为(){1,1}i r A ∈-,(){1,1}j c A ∈- (19,19)i j ≤≤≤≤, 所以1()r A ,2()r A ,,9()r A ,1()c A ,2()c A ,,9()c A 这18个数中有9个1,9个1-.令129129()()()()()()M r A r A r A c A c A c A =⋅⋅⋅⋅⋅⋅⋅.一方面,由于这18个数中有9个1,9个1-,从而9(1)1M =-=-. ① 另一方面,129()()()r A r A r A ⋅⋅⋅表示数表中所有元素之积(记这81个实数之积为m );129()()()c A c A c A ⋅⋅⋅也表示m , 从而21M m ==. ②①、②相矛盾,从而不存在(9,9)A S ∈,使得()0l A =. ………………8分(Ⅲ)解:记这2n 个实数之积为p .一方面,从“行”的角度看,有12()()()n p r A r A r A =⋅⋅⋅; 另一方面,从“列”的角度看,有12()()()n p c A c A c A =⋅⋅⋅.从而有1212()()()()()()n n r A r A r A c A c A c A ⋅⋅⋅=⋅⋅⋅. ③ ………………10分注意到(){1,1}i r A ∈-,(){1,1}j c A ∈- (1,1)i n j n ≤≤≤≤. 下面考虑1()r A ,2()r A ,,()n r A ,1()c A ,2()c A ,,()n c A 中1-的个数:由③知,上述2n 个实数中,1-的个数一定为偶数,该偶数记为2(0)k k n ≤≤;则1的个数为22n k -, 所以()(1)21(22)2(2)l A k n k n k =-⨯+⨯-=-. ………………12分 对数表0A :1ij a =(,1,2,3,,)i j n =,显然0()2l A n =.将数表0A 中的11a 由1变为1-,得到数表1A ,显然1()24l A n =-. 将数表1A 中的22a 由1变为1-,得到数表2A ,显然2()28l A n =-. 依此类推,将数表1k A -中的kk a 由1变为1-,得到数表k A . 即数表k A 满足:11221(1)kk a a a k n ====-≤≤,其余1ij a =.所以 12()()()1k r A r A r A ====-,12()()()1k c A c A c A ====-.所以()2[(1)()]24k l A k n k n k =-⨯+-=-.由k 的任意性知,()l A 的取值集合为{2(2)|0,1,2,,}n k k n -=.……………13分。
2012-2013北京西城高三毕业班第一学期期末数学测试卷及答案
2012-2013北京西城高三毕业班第一学期期末数学测试卷及答案北京市西城区2012 — 2013学年度第一学期期末试卷高三数学(理科) 2013.1第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|01}A x x =∈<<R ,{|(21)(1)0}B x x x =∈-+>R ,则A B =( )(A )1(0,)2 (B )(1,1)-(C )1(,1)(,)2-∞-+∞(D )(,1)(0,)-∞-+∞2.在复平面内,复数5i 2i-的对应点位于( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限3.在极坐标系中,已知点(2,)6P π,则过点P 且平行于极轴的直线的方程是( )(A )sin 1=ρθ (B )sin 3=ρθ(C )cos 1=ρθ (D )cos 3=ρθ4.执行如图所示的程序框图.若输出15S =, 则框图中①处可以填入( )(A )2k < (B )3k < (C )4k < (D )5k <5.已知函数()cos f x x b x =+,其中b 为常数.那么“0b =”是“()f x 为奇函数”的( )(A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.9. 已知向量(1,3)=a ,(2,1)=-b ,(3,2)=c .若向量c 与向量k +a b 共线,则实数k = _____.10.如图,Rt △ABC 中,90ACB ︒∠=,3AC =, 4BC =.以AC 为直径的圆交AB 于点D,则BD =;CD =______.11.设等比数列{}na 的各项均为正数,其前n 项和为nS .若11a=,34a=,63kS=,则k =______.12.已知椭圆22142x y +=的两个焦点是1F ,2F ,点P 在该椭圆上.若12||||2PF PF -=,则△12PF F 的面积是______.13.已知函数π()sin(2)6f x x =+,其中π[,]6x a ∈-.当3a π=时,()f x 的值域是______;若()f x 的值域是1[,1]2-,则a 的取值范围是______.14.已知函数()f x 的定义域为R .若∃常数0c >,对x ∀∈R,有()()f x c f x c +>-,则称函数()f x 具有性质P.给定下列三个函数:①()2xf x =; ②()sin f x x =; ③3()f x xx=-.其中,具有性质P 的函数的序号是______.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)在△ABC 321cos 2B B=-.(Ⅰ)求角B 的值;(Ⅱ)若2BC =,4A π=,求△ABC 的面积.16.(本小题满分14分)如图,四棱锥ABCD P -中,底面ABCD 为正方形,PDPA =,⊥PA 平面PDC ,E为棱PD 的中点.(Ⅰ)求证:PB // 平面EAC ; (Ⅱ)求证:平面PAD ⊥平面ABCD ;(Ⅲ)求二面角B AC E --的余弦值.17.(本小题满分13分)生产A ,B 两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品.现随机抽取这两种元件各100件进行检测,检测结果统计如下: 测试指标 [70,76)[76,82)[82,88)[88,94)[94,100]元件A 8 12 40 32 8 元件B71840296(Ⅰ)试分别估计元件A ,元件B 为正品的概率; (Ⅱ)生产一件元件A ,若是正品可盈利40元,若是次品则亏损5元;生产一件元件B ,若是正品可盈利50元,若是次品则亏损10元 .在(Ⅰ)的前提下,(ⅰ)记X 为生产1件元件A 和1件元件B 所得的总利润,求随机变量X 的分布列和数学期望;(ⅱ)求生产5件元件B 所获得的利润不少于140元的概率.18.(本小题满分13分)已知函数2()x f x x b =+,其中b ∈R .(Ⅰ)求)(x f 的单调区间;(Ⅱ)设0b >.若13[,]44x ∃∈,使()1f x ≥,求b 的取值范围.19.(本小题满分14分)如图,已知抛物线24yx=的焦点为F .过点(2,0)P 的直线交抛物线于11(,)A x y , 22(,)B x y 两点,直线AF ,BF 分别与抛物线交于点M ,N . (Ⅰ)求12y y 的值;(Ⅱ)记直线MN 的斜率为1k ,直线AB 的斜率为2k .证明:12k k 为定值.20.(本小题满分13分)如图,设A 是由n n ⨯个实数组成的n 行n 列的数表,其中ija (,1,2,3,,)i j n =表示位于第i 行第j 列的实数,且{1,1}ija∈-.记(,)S n n 为所有这样的数表构成的集合.对于(,)A S n n ∈,记()ir A 为A 的第i 行各数之积,()jc A 为A 的第j 列各数之积.令11()()()n ni ji j l A r A c A ===+∑∑.(Ⅰ)请写出一个(4,4)A S ∈,使得()0l A =;(Ⅱ)是否存在(9,9)A S ∈,使得()0l A =?说明理由; (Ⅲ)给定正整数n ,对于所有的(,)A S n n ∈,求()l A 的取值集合.北京市西城区2012 — 2013学年度第一学期期末高三数学(理科)参考答案及评分标准2013.1一、选择题:本大题共8小题,每小题5分,共40分.1.D ; 2.B ; 3.A ; 4.C ; 5.C ; 6.B ; 7.C ; 8.B .二、填空题:本大题共6小题,每小题5分,共30分.9.1-; 10.165,125; 11.6;122;13.1[,1]2-,[,]62ππ; 14.①③.注:10、13题第一问2分,第二问3分;14题结论完全正确才给分.三、解答题:本大题共6小题,共80分.若考生的解法与本解答不同,正确者可参照评分标准给分.15.(本小题满分13分) (Ⅰ)解法一321cos 2B B=-,所以 223cos 2sin B B B=.………………3分因为 0B <<π, 所以sin 0B >,从而 tan 3B =,………………5分所以 π3B =.………………6分解法二: 依题意得 32cos 21B B +=,所以 2sin(2)16B π+=, 即1sin(2)62B π+=.………………3分因为 0B <<π, 所以132666B πππ<+<,所以 5266B ππ+=.………………5分所以 π3B =.………………6分(Ⅱ)解法一:因为 4A π=,π3B =, 根据正弦定理得sin sin AC BCB A=, ………………7分所以 sin 6sin BC BAC A⋅==.………………8分因为 512C A B π=π--=,………………9分所以562sin sinsin()12464C πππ==+=, ………………11分所以 △ABC的面积133sin 22S AC BC C =⋅=.………………13分解法二:因为 4A π=,π3B =, 根据正弦定理得sin sin AC BCB A=, …y z OEPCBADx ……………7分所以 sin 6sin BC BAC A⋅==.………………8分根据余弦定理得2222cos AC AB BC AB BC B=+-⋅⋅, (9)分化简为2220AB AB --=,解得 13AB = ………………11分 所以△ABC的面积133sin 22S AB BC B =⋅=.………………13分16.(本小题满分14分)(Ⅰ)证明:连接BD 与AC 相交于点O ,连结EO .因为四边形ABCD 为正方形,所以O 为BD 中点.因为 E 为棱PD 中点. 所以EOPB //. (3)分因为⊄PB 平面EAC ,⊂EO 平面EAC ,所以直线PB //平面EAC . (4)分(Ⅱ)证明:因为⊥PA 平面PDC,所以CDPA ⊥.………………5分 因为四边形ABCD 为正方形,所以CD AD ⊥, 所以⊥CD 平面PAD.………………7分所以平面PAD⊥平面ABCD. ………………8分 (Ⅲ)解法一:在平面PAD 内过D 作直线Dz AD ⊥.因为平面PAD ⊥平面ABCD ,所以Dz ⊥平面ABCD.由,,Dz DA DC 两两垂直,建立如图所示的空间直角坐标系xyz D -. …………9分设4AB =,则(0,0,0),(4,0,0),(4,4,0),(0,4,0),(2,0,2),(1,0,1)D A B C PE .所以)1,0,3(-=EA ,)0,4,4(-=AC .设平面EAC 的法向量为=()x,y,z n ,则有0,0.EA AC ⎧⋅=⎪⎨⋅=⎪⎩n n所以⎩⎨⎧=+-=-.044,03y x z x 取1=x ,得(1,1,3)=n . ………………11分zNMOE P CBAD x 易知平面ABCD的法向量为(0,0,1)=v . ………………12分所以||311|cos ,|||||11⋅==〈〉n v n v n v .………………13分由图可知二面角B AC E --的平面角是钝角, 所以二面角BAC E --的余弦值为11113-. ………………14分 解法二:取AD 中点M ,BC 中点N ,连结PM ,MN.因为ABCD 为正方形,所以CD MN //. 由(Ⅱ)可得⊥MN 平面PAD . 因为PD PA =,所以PM AD . 由,,MP MA MN 两两垂直,建立如图所示的空间直角坐标系xyzM -.………………9分设4=AB ,则(2,0,0),(2,4,0),(2,4,0),(2,0,0),(0,0,2),(1,0,1)A B C D P E ---.所以)1,0,3(-=EA ,)0,4,4(-=AC .设平面EAC 的法向量为=()x,y,z n ,则有0,0.EA AC ⎧⋅=⎪⎨⋅=⎪⎩n n所以⎩⎨⎧=+-=-.044,03y x z x 取1=x ,得=n )3,1,1(. ………………11分 易知平面ABCD的法向量为=v )1,0,0(. ………………12分所以||311|cos ,|||||11⋅==〈〉n v n v n v .………………13分由图可知二面角B AC E --的平面角是钝角, 所以二面角BAC E --的余弦值为11113-.………………14分17.(本小题满分13分)(Ⅰ)解:元件A 为正品的概率约为4032841005++=. ………………1分 元件B 为正品的概率约为4029631004++=. ………………2分(Ⅱ)解:(ⅰ)随机变量X 的所有取值为90,45,30,15-. ………………3分433(90)545P X ==⨯=; 133(45)5420P X ==⨯=; 411(30)545P X ==⨯=;111(15)5420P X =-=⨯=. ………………7分所以,随机变量X 的分布列为:X 90 4530 15- P3532015120……………8分3311904530(15)66520520EX =⨯+⨯+⨯+-⨯=. ………………9分(ⅱ)设生产的5件元件B 中正品有n 件,则次品有5n -件.依题意,得 5010(5)140n n --≥, 解得 196n ≥. 所以4n =,或5n =.………………11分设“生产5件元件B 所获得的利润不少于140元”为事件A ,则445531381()C ()()444128P A =⨯+=. ………………13分18.(本小题满分13分) (Ⅰ)解:① 当0b =时,1()f x x=. 故()f x 的单调减区间为(,0)-∞,(0,)+∞;无单调增区间. ………………1分②当b >时,222()()b x f x x b -'=+. ………………3分令()0f x '=,得1x b =,2x b =- ()f x 和()f x '的情况如下:x(,)b -∞-b- (,)b b -b(,)b +∞()f x ' -0 +-()f x↘↗↘故()f x 的单调减区间为(,)b -∞,(,)b +∞;单调增区间为(,)b b .……………5分③ 当b <时,()f x 的定义域为{|}D x x b =∈≠-R .因为222()0()b x f x x b -'=<+在D 上恒成立,故()f x 的单调减区间为(,b -∞-,(,)b b --,,)b -+∞;无单调增区间.……………7分(Ⅱ)解:因为0b >,13[,]44x ∈, 所以()1f x ≥ 等价于2b x x≤-+,其中13[,]44x ∈. ………………9分 设2()g x xx=-+,()g x 在区间13[,]44上的最大值为11()24g =.………………11分则“13[,]44x ∃∈,使得 2b x x≤-+”等价于14b ≤. 所以,b的取值范围是1(0,]4.………………13分19.(本小题满分14分) (Ⅰ)解:依题意,设直线AB的方程为2x my =+. ………………1分 将其代入24y x=,消去x,整理得2480y my --=. ………………4分从而128y y =-.………………5分(Ⅱ)证明:设33(,)M x y ,44(,)N x y .则221234341121222234123123444444y y y y y y k x x y y k x x y y y y y y y y ----+=⨯=⨯=---+-. ………………7分设直线AM 的方程为1x ny =+,将其代入24y x=,消去x ,整理得2440y ny --=. ………………9分所以134y y =-. (10)分同理可得244y y =-.………………11分 故112121223412444k y y y y y y k y y y y ++===--+-+.………………13分由(Ⅰ)得122k k =,为定值. ………………14分20.(本小题满分13分)(Ⅰ)解:答案不唯一,如图所示数表符合要求.1- 1- 1- 1- 1 1 1 1 1 1 1 1 1 1 1 1………………3分(Ⅱ)解:不存在(9,9)A S ∈,使得()0l A =. (4)分证明如下:假设存在(9,9)A S ∈,使得()0l A =.因为(){1,1}ir A ∈-,(){1,1}jc A ∈-(19,19)i j ≤≤≤≤,所以1()r A ,2()r A ,,9()r A ,1()c A ,2()c A ,,9()c A 这18个数中有9个1,9个1-. 令129129()()()()()()M r A r A r A c A c A c A =⋅⋅⋅⋅⋅⋅⋅.一方面,由于这18个数中有9个1,9个1-,从而9(1)1M =-=-. ①另一方面,129()()()r A r A r A ⋅⋅⋅表示数表中所有元素之积(记这81个实数之积为m );129()()()c A c A c A ⋅⋅⋅也表示m , 从而21M m==. ②①、②相矛盾,从而不存在(9,9)A S ∈,使得()0l A =. ………………8分(Ⅲ)解:记这2n 个实数之积为p .一方面,从“行”的角度看,有12()()()n p r A r A r A =⋅⋅⋅; 另一方面,从“列”的角度看,有12()()()n p c A c A c A =⋅⋅⋅.从而有1212()()()()()()n n r A r A r A c A c A c A ⋅⋅⋅=⋅⋅⋅. ③ ………………10分注意到(){1,1}ir A ∈-,(){1,1}jc A ∈-(1,1)i n j n ≤≤≤≤.下面考虑1()r A ,2()r A ,,()nr A ,1()c A ,2()c A ,,()nc A 中1-的个数:由③知,上述2n 个实数中,1-的个数一定为偶数,该偶数记为2(0)k k n ≤≤;则1的个数为22n k -,所以()(1)21(22)2(2)l A k n k n k =-⨯+⨯-=-. ………………12分对数表0A :1ija=(,1,2,3,,)i j n =,显然0()2l A n =.将数表0A 中的11a 由1变为1-,得到数表1A ,显然1()24l A n =-.将数表1A 中的22a 由1变为1-,得到数表2A ,显然2()28l A n =-.依此类推,将数表1k A -中的kka 由1变为1-,得到数表kA .即数表kA 满足:11221(1)kk aa a k n ====-≤≤,其余1ij a =. 所以12()()()1k r A r A r A ====-,12()()()1k c A c A c A ====-.所以()2[(1)()]24kl A k n k n k =-⨯+-=-.由k 的任意性知,()l A 的取值集合为{2(2)|0,1,2,,}n k k n -=.……………13分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市西城区2013年高三一模试卷高三数学(理科)2013.4第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知全集U =R ,集合{|02}A x x =<<,2{|10}B x x =->,那么U A B = ð(A ){|01}x x << (B ){|01}x x <≤ (C ){|12}x x << (D ){|12}x x ≤<2.若复数i2ia +的实部与虚部相等,则实数a = (A )1- (B )1(C )2-(D )23.执行如图所示的程序框图.若输出y =角=θ (A )π6 (B )π6-(C )π3(D )π3-4.从甲、乙等5名志愿者中选出4名,分别从事A ,B ,C ,D 四项不同的工作,每人承担一项.若甲、乙二人均不能从事A 工作,则不同的工作分配方案共有 (A )60种 (B )72种 (C )84种 (D )96种5.某正三棱柱的三视图如图所示,其中正(主)视图是边长为2的正方形,该正三棱柱的表面积是(A )6(B )12(C )12+(D )24+6.等比数列{}n a 中,10a >,则“13a a <”是“36a a <”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件7.已知函数22()log 2log ()f x x x c =-+,其中0c >.若对于任意的(0,)x ∈+∞,都有()1f x ≤,则c 的取值范围是(A )1(0,]4(B )1[,)4+∞(C )1(0,]8(D )1[,)8+∞8.如图,正方体1111ABCD A BC D -中,P 为底面ABCD 上的动点,1PE AC ⊥于E ,且PA PE =,则点P 的 轨迹是(A )线段 (B )圆弧(C )椭圆的一部分 (D )抛物线的一部分第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.已知曲线C 的参数方程为2cos 12sin x y =⎧⎨=+⎩αα(α为参数),则曲线C 的直角坐标方程为 .10.设等差数列{}n a 的公差不为0,其前n 项和是n S .若23S S =,0k S =,则k =______.11.如图,正六边形ABCDEF 的边长为1,则AC DB ⋅=______.12.如图,已知AB 是圆O 的直径,P 在AB 的延长线上,PC切圆O 于点C ,CD OP ⊥于D .若6CD =,10CP =, 则圆O 的半径长为______;BP =______.13.在直角坐标系xOy 中,点B 与点(1,0)A -关于原点O 对称.点00(,)P x y 在抛物线24y x =上,且直线AP 与BP 的斜率之积等于2,则0x =______.14.记实数12,,,n x x x 中的最大数为12max{,,,}n x x x ,最小数为12min{,,,}n x x x .设△ABC的三边边长分别为,,a b c ,且a b c ≤≤,定义△ABC 的倾斜度为max{,,}min{,a b ca tbc a b=⋅,}b cc a. (ⅰ)若△ABC 为等腰三角形,则t =______; (ⅱ)设1a =,则t 的取值范围是______.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13分)已知函数()sin cos f x x a x =-的一个零点是π4. (Ⅰ)求实数a 的值;(Ⅱ)设()()()cos g x f x f x x x =⋅-+,求()g x 的单调递增区间.16.(本小题满分13分)某班有甲、乙两个学习小组,两组的人数如下:现采用分层抽样的方法(层内采用简单随机抽样)从甲、乙两组中共抽取3名同学进行学业检测.(Ⅰ)求从甲组抽取的同学中恰有1名女同学的概率;(Ⅱ)记X 为抽取的3名同学中男同学的人数,求随机变量X 的分布列和数学期望.17.(本小题满分14分)在如图所示的几何体中,面CDEF 为正方形,面ABCD 为等腰梯形,AB //CD ,BC AB 2=,60ABC ︒∠=,AC FB ⊥.(Ⅰ)求证:⊥AC 平面FBC ;(Ⅱ)求BC 与平面EAC 所成角的正弦值;(Ⅲ)线段ED 上是否存在点Q ,使平面EAC ⊥平面QBC ? 证明你的结论.18.(本小题满分13分)已知函数()ln f x ax x =-,()e 3ax g x x =+,其中a ∈R . (Ⅰ)求)(x f 的极值;(Ⅱ)若存在区间M ,使)(x f 和()g x 在区间M 上具有相同的单调性,求a 的取值范围. 19.(本小题满分14分)如图,椭圆22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线交椭圆于A ,B 两点.当直线AB 经过椭圆的一个顶点时,其倾斜角恰为60︒. (Ⅰ)求该椭圆的离心率;(Ⅱ)设线段AB 的中点为G ,AB 的中垂线与x 轴和y 轴分别交于,D E 两点.记△GFD 的面积为1S ,△OED (O 为原点)的面积为2S ,求12S S20.(本小题满分13分)已知集合*12{|(,,,),,1,2,,}(2)n n i S X X x x x x i n n ==∈=≥N .对于12(,,,)n A a a a = ,12(,,,)n n B b b b S =∈ ,定义1122(,,,)n n AB b a b a b a =---;1212(,,,)(,,,)()n n a a a a a a =∈R λλλλλ;A 与B 之间的距离为1(,)||ni i i d A B a b ==-∑.(Ⅰ)当5n =时,设5(1,2,1,2,)A a =,(2,4,2,1,3)B =.若(,)7d A B =,求5a ;(Ⅱ)(ⅰ)证明:若,,n A B C S ∈,且0∃>λ,使A B B C λ=,则(,)(,)(,)d AB dBC d AC +=;(ⅱ)设,,n A B C S ∈,且(,)(,)(,d A B d B C d A C +=.是否一定0∃>λ,使A B B C λ= ?说明理由;(Ⅲ)记(1,1,,1)n I S =∈ .若A ,n B S ∈,且(,)(,)d I A d I B p ==,求(,)d A B 的最大值.北京市西城区2013年高三一模试卷高三数学(理科)参考答案及评分标准2013.4 一、选择题:本大题共8小题,每小题5分,共40分.1.B;2.A;3.D;4.B;5.C;6.B;7.D;8.A.二、填空题:本大题共6小题,每小题5分,共30分.9.22230x y y+--=;10.5;11.32-12.152,5;13.114.1,.注:12、14题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分.若考生的解法与本解答不同,正确者可参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:依题意,得π()04f =, (1)分即ππsincos 044a -==, ………………3分解得 1a =. ………………5分 (Ⅱ)解:由(Ⅰ)得 ()sin cos f x x x =-. ………………6分()()()cos g x f x f x x x =⋅-+(sin cos )(sin cos )2x x x x x =--- ………………7分22(cos sin )2x x x =- ………………8分cos22x x = ………………9分π2sin(2)6x =+. ………………10分 由πππ2π22π262k x k -≤+≤+,得ππππ36k x k -≤≤+,k ∈Z . ………………12分所以 ()g x 的单调递增区间为ππ[π,π]36k k -+,k ∈Z . ………………13分 16.(本小题满分13分)(Ⅰ)解:依题意,甲、乙两组的学生人数之比为 (35):(22)2:1++=, ……………1分所以,从甲组抽取的学生人数为2323⨯=;从乙组抽取的学生人数为1313⨯=.………2分设“从甲组抽取的同学中恰有1名女同学”为事件A , ………………3分则113528C C 15()C 28P A ⋅==, 故从甲组抽取的同学中恰有1名女同学的概率为1528. ………………5分(Ⅱ)解:随机变量X 的所有取值为0,1,2,3. ………………6分21522184C C 5(0)C C 28P X ⋅===⋅, 111213525221218484C C C C C 25(1)C C C C 56P X ⋅⋅⋅==+=⋅⋅, 211113235221218484C C C C C 9(2)C C C C 28P X ⋅⋅⋅==+=⋅⋅,21322184C C 3(3)C C 56P X ⋅===⋅.……………10分 所以,随机变量X 的分布列为:………………11分5259350123285628564EX =⨯+⨯+⨯+⨯=. ………………13分17.(本小题满分14分)(Ⅰ)证明:因为BC AB 2=,60ABC ︒∠=,在△ABC 中,由余弦定理可得 BC AC 3=, 所以 BC AC ⊥. ………………2分 又因为 AC FB ⊥,所以⊥AC 平面FBC . ………………4分 (Ⅱ)解:因为⊥AC 平面FBC ,所以FC AC ⊥.因为FC CD ⊥,所以⊥FC 平面ABCD . ………………5分 所以,,CA CF CB 两两互相垂直,如图建立的空间直角坐标系xyz C -. ………………6分在等腰梯形ABCD 中,可得 CB CD =.设1BC =,所以11(0,0,0),(0,1,0),(,0),(,1)2222C A B D E --.所以)1,21,23(-=CE ,)0,0,3(=CA ,)0,1,0(=CB . 设平面EAC 的法向量为=()x,y,z n ,则有0,0.CE CA ⎧⋅=⎪⎨⋅=⎪⎩n n 所以10,20.x y z -+=⎨= 取1z =,得=n (0,2,1). ………………8分设BC 与平面EAC 所成的角为θ,则||sin |cos ,|5||||CB CB CB ⋅=〈〉==θn n n , 所以 BC 与平面EAC 所成角的正弦值为552. ………………9分(Ⅲ)解:线段ED 上不存在点Q ,使平面EAC ⊥平面QBC .证明如下: ………………10分假设线段ED 上存在点Q ,设),21,23(t Q - )10(≤≤t ,所以),21,23(t CQ -=. 设平面QBC 的法向量为=m ),,(c b a ,则有0,0.CB CQ ⎧⋅=⎪⎨⋅=⎪⎩m m 所以0,10.2b b tc =⎧-+= 取 1=c ,得=m )1,0,32(t -. ………………12分要使平面EAC ⊥平面QBC ,只需0=⋅n m , ………………13分即002110⨯+⨯+⨯=, 此方程无解.所以线段ED 上不存在点Q ,使平面EAC ⊥平面QBC . ………………14分18.(本小题满分13分)(Ⅰ)解:()f x 的定义域为(0,)+∞, ………………1分且11()ax f x a x x -'=-=. ………………2分① 当0a ≤时,()0f x '<,故()f x 在(0,)+∞上单调递减.从而)(x f 没有极大值,也没有极小值. ………………3分② 当0a >时,令()0f x '=,得1x a =.()f x 和()f x '的情况如下:故()f x 的单调减区间为1(0,)a ;单调增区间为1(,)a +∞.从而)(x f 的极小值为1()1ln f aa =+;没有极大值. ………………5分(Ⅱ)解:()g x 的定义域为R ,且()e 3axg x a '=+. ………………6分③ 当0a >时,显然 ()0g x '>,从而()g x 在R 上单调递增.由(Ⅰ)得,此时()f x 在1(,)a +∞上单调递增,符合题意. (8)分④ 当0a =时,()g x 在R 上单调递增,()f x 在(0,)+∞上单调递减,不合题意.……9分⑤ 当0a <时,令()0g x '=,得013ln()x a a =-.()g x 和()g x '的情况如下表:当30a -≤<时,00x ≤,此时()g x 在0(,)x +∞上单调递增,由于()f x 在(0,)+∞上单调递减,不合题意. ………………11分 当3a <-时,00x >,此时()g x 在0(,)x -∞上单调递减,由于()f x 在(0,)+∞上单调递减,符合题意.综上,a 的取值范围是(,3)(0,)-∞-+∞ . ………………13分 19.(本小题满分14分)(Ⅰ)解:依题意,当直线AB 经过椭圆的顶点(0,)b 时,其倾斜角为60︒. (1)分设 (,0)F c -,则 tan 60bc ︒==.2分将 b = 代入 222a b c =+,解得 2a c =. 3分所以椭圆的离心率为12c e a ==. ………………4分(Ⅱ)解:由(Ⅰ),椭圆的方程可设为2222143x y c c +=. (5)分 设11(,)A x y ,22(,)B x y .依题意,直线AB 不能与,x y 轴垂直,故设直线AB 的方程为()y k x c =+,将其代入2223412x y c +=,整理得 222222(43)84120k x ck x k c c +++-=. (7)分则2122843ck x x k -+=+,121226(2)43ck y y k x x c k +=++=+,22243(,)4343ck ckG k k -++. ………………8分 因为 GD AB ⊥,所以 2223431443Dckk k ck x k +⨯=---+,2243D ck x k -=+. ………………9分 因为 △GFD ∽△OED ,所以 2222222212222243()()||434343||()43ck ck ckS GD k k k ck S OD k ---++++==-+ ………………11分 222242222242(3)(3)99999()ck ck c k c k ck c k k ++===+>. ………………13分所以12S S 的取值范围是(9,)+∞. ………………14分20.(本小题满分13分)(Ⅰ)解:当5n =时,由51(,)||7i i i d A B a b ==-=∑,得5|12||24||12||21||3|7a -+-+-+-+-=,即 5|3|2a -=.由 *5a ∈N ,得 51a =,或55a =. ………………3分 (Ⅱ)(ⅰ)证明:设12(,,,)n A a a a = ,12(,,,)n B b b b = ,12(,,,)n C c c c = .因为 0∃>λ,使 AB BC λ=,所以 0∃>λ,使得 11221122(,,)((,,)n n n n b a b a b a c b c b c b ---=--- λ,,,即 0∃>λ,使得 ()ii i i b a c b λ-=-,其中1,2,,i n = .所以i i b a -与(1,2,,)i i c b i n -= 同为非负数或同为负数. ………………5分所以11(,)(,)||||nni i i i i i d A B d B C a b b c ==+=-+-∑∑1(||||)ni i i i i b a c b ==-+-∑1||(,)ni i i c a d A C ==-=∑. ………………6分(ⅱ)解:设,,n A B C S ∈,且(,)(,)(,)d A B d B C d A C +=,此时不一定0∃>λ,使得AB BC λ=. (7)分反例如下:取(1,1,1,,1)A = ,(1,2,1,1,,1)B = ,(2,2,2,1,1,,1)C ,则 (,)1d A B =,(,)2d B C =,(,)3d A C =,显然(,)(,)(,)d A B d B C d A C +=.因为(0,1,0,0,,0)AB = ,(1,0,1,0,0,,0)BC =,所以不存在>0λ,使得AB BC λ=. ………………8分(Ⅲ)解法一:因为 1(,)||ni i i d A B b a ==-∑,设(1,2,,)i i b a i n -= 中有()m m n ≤项为非负数,n m -项为负数.不妨设1,2,,i m = 时0i i b a -≥;1,2,,i m m n =++ 时,0i i b a -<.所以 1(,)||ni i i d A B b a ==-∑12121212[()()][()()]m mm mnm mn b b b a a a a a a bb b ++++=+++-+++++++-+++因为 (,)(,)d I A d I B p ==,所以11(1)(1)n niii i a b ==-=-∑∑, 整理得11n ni ii i a b===∑∑.所以 12121(,)||2[()]ni i m m i d A B b a b b b a a a ==-=+++-+++∑ .……………10分因为121212()()m n m m n b b b b b b b b b +++++=+++-+++()()1p n n m p m ≤+--⨯=+; 又121m a a a m m +++≥⨯= ,所以1212(,)2[()]m m d A B b b b a a a =+++-+++2[()]2p m m p ≤+-=. 即(,)2d A B p ≤. ……………12分对于 (1,1,,1,1)A p =+ ,(1,1,1,,1)B p =+ ,有 A ,n B S ∈,且(,)(,)d I A d I B p ==,(,)2d A B p =.综上,(,)d A B 的最大值为2p . ……………13分 解法二:首先证明如下引理:设,x y ∈R ,则有 ||||||x y x y +≤+. 证明:因为 ||||x x x -≤≤,||||y y y -≤≤, 所以 (||||)||||x y x y x y -+≤+≤+,即 ||||||x y x y +≤+.所以11(,)|||(1)(1)|n ni i i i i i d A B b a b a ===-=-+-∑∑1(|1||1|)ni i i b a =≤-+-∑11|1||1|2nni i i i a b p===-+-=∑∑. ……………11分上式等号成立的条件为1i a =,或1i b =,所以 (,)2d A B p ≤. (12)分对于 (1,1,,1,1)A p =+ ,(1,1,1,,1)B p =+ ,有 A ,n B S ∈,且(,)(,)d I A d I B p ==,(,)2d A B p =.综上,(,)d A B 的最大值为2p . ……………13分。