数三线性代数必考知识点

合集下载

线性代数知识点全归纳

线性代数知识点全归纳

线性代数知识点全归纳线性代数是数学的一个重要分支,研究向量空间及其上的线性映射。

它广泛应用于物理、工程、计算机科学等领域。

下面将对线性代数的主要知识点进行全面归纳。

1.矩阵及其运算:矩阵是线性代数的基本概念之一,由若干行和列组成的方阵。

常见的矩阵运算有加法、减法、数乘、矩阵乘法和转置等。

2.向量及其运算:向量是一个有序数组,具有大小和方向。

常见的向量运算有加法、减法、数乘、点乘和叉乘等。

3.线性方程组:线性方程组是线性代数的核心内容之一、包括齐次线性方程组和非齐次线性方程组。

解线性方程组的方法有高斯消元法、克莱姆法则和矩阵求逆等。

4.向量空间与线性变换:向量空间是线性代数的基本概念之一,包含零向量、加法和数乘运算。

线性变换是一种保持向量空间结构的映射。

5.基与维度:基是向量空间的一组线性无关向量,可以由基线性组合得到向量空间中的任意向量。

维度是向量空间中基的数量。

6.线性相关与线性无关:向量组中的向量线性相关指存在非零的线性组合,其系数不全为零。

如果向量组中的向量线性无关,则任何线性组合的系数都为零。

7.线性变换与矩阵:线性变换可以用矩阵表示,矩阵的列向量表示线性变换作用于基向量上后的结果。

矩阵乘法可以将多个线性变换组合为一个线性变换。

8.特征值与特征向量:对于一个线性变换,如果存在一个非零向量,使得它在该线性变换下只发生伸缩而不发生旋转,那么这个向量称为该线性变换的特征向量,对应的伸缩比例为特征值。

9.二次型与正定矩阵:二次型是线性代数中的重要概念,是一个关于变量的二次函数。

正定矩阵是指二次型在所有非零向量上的取值都大于零。

10.内积与正交性:内积是向量空间中的一种运算,它满足线性性、对称性和正定性。

正交性是指两个向量的内积为零,表示两个向量互相垂直。

11.正交变换与正交矩阵:正交变换是指保持向量长度和向量之间夹角的变换。

正交矩阵是一种特殊的方阵,它的行向量和列向量两两正交,并且长度为112.奇异值分解与特征值分解:奇异值分解将一个矩阵分解为三个矩阵的乘积,其中一个是正交矩阵,另外两个是对角矩阵。

《线性代数》知识点-归纳整理

《线性代数》知识点-归纳整理

《线性代数》知识点归纳整理诚毅学生编01、余子式与代数余子式 .................................................................. 2-02、主对角线............................................................................ 2-03、转置行列式.......................................................................... 2-04、行列式的性质........................................................................ 3-05、计算行列式.......................................................................... 3-06、矩阵中未写出的元素 .................................................................. 4-07、几类特殊的方阵...................................................................... 4-08、矩阵的运算规则...................................................................... 4-09、矩阵多项式.......................................................................... 6-10、对称矩阵............................................................................ 6-11、矩阵的分块.......................................................................... 6-12、矩阵的初等变换...................................................................... 6-13、矩阵等价............................................................................ 6-14、初等矩阵............................................................................ 7-15、行阶梯形矩阵与行最简形矩阵......................................................... 7-16、逆矩阵 ............................................................................. 7-17、充分性与必要性的证明题 .............................................................. 8-18、伴随矩阵............................................................................ 8-19、矩阵的标准形:........................................................................ 9-20、矩阵的秩:........................................................................... 9-21、矩阵的秩的一些定理、推论............................................................. 9-22、线性方程组概念..................................................................... 10-23、齐次线性方程组与非齐次线性方程组(不含向量) .......................................... 10-24、行向量、列向量、零向量、负向量的概念................................................ 11-25、线性方程组的向量形式 ............................................................... 11-26、线性相关与线性无关的概念......................................................... 12-27、向量个数大于向量维数的向量组必然线性相关 ........................................... 12-28、线性相关、线性无关;齐次线性方程组的解;矩阵的秩这三者的关系及其例题................. 12-29、线性表示与线性组合的概念......................................................... 12-30、线性表示;非齐次线性方程组的解;矩阵的秩这三者的关系其例题........................... 12-31、线性相关(无关)与线性表示的3个定理................................................ 12-32、最大线性无关组与向量组的秩.......................................................... 12-33、线性方程组解的结构…………………………………………………………………………………………12-01、余子式与代数余子式(1)设三阶行列式, 则①元素an,ai,au的余子式分别为:对Mi的解释:划掉第1行、第1列,剩下的就是一个二阶行列式,这个行列式即元素au的余子式Mi。

考研数学三必背知识点:线性代数

考研数学三必背知识点:线性代数

线性代数必考知识点一、行列式1、逆序数一个排列n i i i i ,,,321若有类似21i i 时,我们称21i i 组成一个逆序。

一个排列中逆序总的个数之和称为逆序数,记为)(21n i i i 2、行列式性质(1) 行列式行列互换,其值不变,即T A A(2) 行列式两行或两列互换,其值反号。

(3) 行列式某行或某列乘以k 等于行列式乘以k 。

(4) 行列式某行货某列乘以k 加到另一行或列上,行列式值不变。

(5) 行列式两行或两列对应成比例,则行列式为零。

(6) 行列式某行或某列元素为零,则行列式为零。

(7) 上、下三角行列式其值为主对角线上元素乘积。

(8) 行列式值等于对应矩阵所有特征值的乘积,即n A 21 (9) 齐次线性方程组0 Ax 有非零解n A r A )(0 3、行列式行列展开定理(1) 余子式ij j i ij A M )1( (2) 代数余子式ij j i ij M A )1( 4、三阶行列式展开公式332112322311312213322113312312332211333231232221131211a a a a a a a a a a a a a a a a a a a a a a a a a a a 二、矩阵1、矩阵运算(1) 矩阵加减法即是将对应元素进行加减。

(2) 矩阵乘法是将对应行与对应列元素相乘再相加。

(3) 矩阵除法是乘以逆矩阵。

(4) 矩阵加减法满足交换律、结合律,乘法满足结合律、分配率。

(5) n 阶方阵一般可以有1*,,, A A A A T 四大基本矩阵运算 2、矩阵的行列式(1) A k kA A A n T , (2) A B B A BA AB 3、矩阵转置(1) T T T T T T T T T T A B AB kA kA B A B A A A )(,)(,)(,)( (2) **11)()(,)()(T T T T A A A A4、伴随矩阵(1) *1*****11*2****1*)(,)(,)()(,)(,,A k kA A B AB A A A AA E A A A AA A A A n n(2) 1)(0)(1)(1)()()(*** n A r A r n A r A r nA r n A r5、逆矩阵 (1) 1111*111111*1)(,1)(,,)(,,1A B AB A AA A A A A E A A AA A A A (2) 分块矩阵的逆矩阵① 111A O A O OB OB (主对角分块)② 111O A O B B O AO(副对角分块) ③ 11111A C A A CB O B OB(拉普拉斯)④ 11111A O A O C B B CA B(拉普拉斯) 6、矩阵初等变换(1) 交换矩阵两行或两列 (2) 矩阵某行或某列乘以k(3) 矩阵某行或某列乘以k 并加到另一行或列 (4) 矩阵初等变换的实质是矩阵与初等矩阵相乘 ① 矩阵初等行变换=矩阵左乘初等矩阵 ② 矩阵初等列变换=矩阵右乘初等矩阵 7、矩阵其他考点(1) 行列矩阵相乘: 为行矩阵),,(21n a a a , 为列矩阵),,(21n b b b , 则 1)()()()())(()( k k(2) 矩阵n A 的求法:若A 可对角化,则有 AP P 1,于是1 P P A n n (3) 若n B r m A r )(,)(,则有m A r B A r )()(且n B r B A r )()(三、向量1、向量运算: k k k )(),()(,2、线性表示对于向量组s ,,21和向量 ,若存在一组数s k k k ,,21使得s s k k k 2211 (1) 若s s k k k 2211有唯一解,则 能由向量组s ,,21唯一线性表示。

大学数学易考知识点线性代数与概率论

大学数学易考知识点线性代数与概率论

大学数学易考知识点线性代数与概率论大学数学易考知识点:线性代数与概率论线性代数是大学数学中非常重要且基础的一门学科,它涉及到向量空间、矩阵、行列式、线性方程组等内容。

概率论则是研究随机事件发生的概率及其规律性的数学学科。

在大学数学考试中,线性代数与概率论是比较易于考察且知识点较为独立的部分。

本文将介绍大学数学考试中线性代数与概率论的一些常见易考知识点。

一、线性代数1. 向量空间与线性变换向量空间是线性代数的核心概念之一,在考试中常涉及到向量空间的基本性质、子空间、线性组合、线性相关性、线性无关性等内容。

此外,线性变换也是考察的重点,包括线性变换的定义、性质、矩阵表示及其相关定理等。

2. 矩阵与行列式矩阵是线性代数的重要工具,考试中经常涉及到矩阵的基本运算、特殊矩阵、矩阵的秩与逆等知识点。

行列式也是考试的常见题型,包括行列式的定义、性质、展开及其应用等内容。

3. 线性方程组与解空间线性方程组是线性代数的基本问题之一,考试中常涉及到线性方程组的求解、解的结构、解的个数等知识点。

此外,解空间也是考查的重点,包括零空间、列空间、行空间等相关概念及其性质。

4. 特征值与特征向量特征值与特征向量是线性代数中重要的概念,考试中常涉及到特征值与特征向量的定义、性质、求解、对角化等知识点。

矩阵的对角化定理也是考查的重点,需掌握其条件与应用。

二、概率论1. 随机变量与概率分布随机变量是概率论的基础,考试中常涉及到随机变量的定义、分类、概率分布、期望、方差等知识点。

常见的离散型随机变量包括二项分布、泊松分布等;常见的连续型随机变量包括均匀分布、正态分布等。

2. 大数定律与中心极限定理大数定律与中心极限定理是概率论的重要定理,考试中常涉及到大数定律的弱/强收敛形式、伯努利大数定律、切比雪夫大数定律等;中心极限定理的常见形式包括林德伯格-列维中心极限定理、中心极限定理的矩形式等。

3. 随机过程与马尔可夫链随机过程是概率论的重要内容,考试中常涉及到随机过程的定义、分类、马尔可夫性质等知识点。

考研数学线性代数重点整理

考研数学线性代数重点整理

考研数学线性代数重点整理一、矢量空间矢量空间是线性代数的基础概念,它描述了一组对象(称为矢量)的性质及其之间的运算规则。

以下是矢量空间的一些重要性质和定义:1. 定义:矢量空间是满足以下8个条件的集合V,其中两个运算(加法和乘法)满足特定的性质。

2. 加法:对于任意的矢量u和v,它们的和u+v也是V中的一个矢量。

3. 加法交换律:对于任意的矢量u和v,有u+v = v+u。

4. 加法结合律:对于任意的矢量u、v和w,有(u+v)+w = u+(v+w)。

5. 加法单位元:存在一个称为零矢量的特殊矢量0,对于任意的矢量v,有v+0 = 0+v = v。

6. 加法逆元:对于任意的矢量v,存在一个称为负矢量的特殊矢量-u,使得v+(-u) = (-u)+v = 0。

7. 乘法定义:对于任意的矢量v和实数c,cv也是V中的一个矢量。

8. 乘法分配律:对于任意的矢量v和实数c和d,有c(dv) = (cd)v。

9. 乘法单位元:对于任意的矢量v,有1v = v。

二、矩阵与线性方程组矩阵是线性代数中另一个重要的概念,它可以用来表示线性方程组和线性变换。

以下是与矩阵和线性方程组相关的一些重要内容:1. 矩阵定义:将数按矩形排列成的矩形数表称为矩阵,其中行数和列数分别称为矩阵的行数和列数。

2. 矩阵运算:矩阵之间可以进行加法和乘法的运算,具体规则如下:- 矩阵加法:对应位置元素相加。

- 矩阵乘法:设A是一个m×n矩阵,B是一个n×p矩阵,那么它们的乘积AB是一个m×p矩阵,乘法规则为A的行乘以B的列。

3. 线性方程组:线性方程组是一组线性方程的集合,矩阵可以用来表示和求解线性方程组。

对于一个m×n矩阵A、一个n×1矩阵X和一个m×1矩阵B,线性方程组可以表示为AX=B。

4. 线性方程组的解:根据矩阵的性质,可以通过高斯消元法、矩阵求逆等方法求解线性方程组。

线性代数考研知识点总结

线性代数考研知识点总结

线性代数考研知识点总结线性代数是数学的一个重要分支,它研究向量空间及其上的线性变换。

在计算机科学、物理学、工程学等领域中,线性代数都有着广泛的应用。

在考研中,线性代数是一个必考的科目,以下是线性代数考研的一些重要知识点总结。

1. 向量空间:向量空间是线性代数的基础概念,它包括一组向量和一些满足特定条件的运算规则。

向量空间中的向量可以进行加法和数乘运算,满足交换律、结合律和分配律。

2. 向量的线性相关性和线性无关性:如果向量可以通过线性组合表示为另一组向量的形式,那么这组向量就是线性相关的;如果向量不满足线性相关的条件,那么它们就是线性无关的。

3. 矩阵:矩阵是线性代数中的另一个重要概念,它是一个由数字排列成的矩形阵列。

矩阵可以用于表示线性变换、解线性方程组等。

常见的矩阵类型有方阵、对称矩阵、对角矩阵、单位矩阵等。

4. 行列式:行列式是一个用于刻画矩阵性质的重要工具。

行列式可以用来计算线性变换的缩放因子,判断矩阵是否可逆,以及计算矩阵的逆等。

5. 矩阵的相似和对角化:两个矩阵A和B,如果存在一个非奇异矩阵P,使得PAP^(-1)=B,那么矩阵A和B就是相似的。

相似的矩阵有着相同的特征值和特征向量。

对角化是指将一个矩阵通过相似变换变成对角矩阵的过程。

6. 线性变换:线性变换是指一个向量空间到另一个向量空间的映射,它满足线性性质。

线性变换可以用矩阵表示,相应的矩阵称为线性变换的矩阵表示。

线性变换可以进行合成、求逆等操作。

7. 内积空间:内积空间是一个带有内积运算的向量空间。

内积运算满足对称性、线性性、正定性等性质。

内积空间可以用来定义向量的长度、夹角、正交性等概念。

8. 特征值和特征向量:对于一个线性变换,如果存在一个非零向量使得线性变换作用在该向量上等于该向量的某个常数倍,那么这个常数就是该线性变换的特征值,而对应的非零向量就是特征向量。

特征值和特征向量可以用来分析矩阵的性质,求解线性方程组等。

9. 奇异值分解:奇异值分解是矩阵分解的一种常用方法,它将一个矩阵分解为三个矩阵的乘积,其中一个矩阵是正交矩阵,另两个矩阵是对角矩阵。

线性代数知识点总结

线性代数知识点总结

线性代数知识点总结1 行列式(一)行列式概念和性质1、逆序数:所有的逆序的总数2、行列式定义:不同行不同列元素乘积代数和3、行列式性质:(用于化简行列式)(1)行列互换(转置),行列式的值不变(2)两行(列)互换,行列式变号(3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k 乘此行列式(4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。

(5)一行(列)乘k加到另一行(列),行列式的值不变。

(6)两行成比例,行列式的值为0。

(二)重要行列式4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积5、副对角线行列式的值等于副对角线元素的乘积乘6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则7、n阶(n≥2)范德蒙德行列式数学归纳法证明★8、对角线的元素为a,其余元素为b的行列式的值:(三)按行(列)展开9、按行展开定理:(1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0(四)行列式公式10、行列式七大公式:(1)|kA|=k n|A|(2)|AB|=|A|·|B|(3)|A T|=|A|(4)|A-1|=|A|-1(5)|A*|=|A|n-1(6)若A的特征值λ1、λ2、……λn,则(7)若A与B相似,则|A|=|B|(五)克莱姆法则11、克莱姆法则:(1)非齐次线性方程组的系数行列式不为0,那么方程为唯一解(2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0(3)若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0。

2 矩阵(一)矩阵的运算1、矩阵乘法注意事项:(1)矩阵乘法要求前列后行一致;(2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A*,f(A)时,可以用交换律)(3)AB=O不能推出A=O或B=O。

考研数学线性代数重点知识

考研数学线性代数重点知识

考研数学线性代数重点知识线性代数是考研数学中非常重要的一部分,对于许多考生来说,掌握好线性代数的重点知识是取得高分的关键。

下面我们就来详细梳理一下线性代数中的重点知识。

一、行列式行列式是线性代数中的基本概念之一,它有着多种计算方法和重要的性质。

计算行列式的方法包括:按行(列)展开法、三角化法、利用行列式的性质化简等。

其中,利用行列式的性质将其化为上三角或下三角行列式是比较常用且有效的方法。

行列式的性质包括:行列式与其转置行列式相等;对换两行(列),行列式变号;某行(列)元素乘以 k,等于用 k 乘以此行列式;若某行(列)元素是两数之和,则行列式可拆分为两个行列式之和等。

行列式在求解线性方程组、判断矩阵可逆性等方面有着重要的应用。

二、矩阵矩阵是线性代数的核心概念,包括矩阵的运算、逆矩阵、矩阵的秩等内容。

矩阵的运算有加、减、乘、数乘。

矩阵乘法需要注意其规则,不满足交换律。

逆矩阵是一个重要概念,如果矩阵 A 可逆,则存在 A 的逆矩阵A⁻¹,使得 AA⁻¹= A⁻¹A = E(单位矩阵)。

求逆矩阵的方法有伴随矩阵法和初等变换法。

矩阵的秩反映了矩阵的“有效信息”量,通过初等变换可以求出矩阵的秩。

三、向量向量部分包括向量组的线性相关性、极大线性无关组、向量组的秩等。

判断向量组的线性相关性有定义法、行列式法、矩阵秩法等。

极大线性无关组是向量组中“最核心”的部分,它不唯一,但所含向量个数是确定的。

向量组的秩等于其极大线性无关组所含向量的个数。

四、线性方程组线性方程组是线性代数的重点应用之一。

齐次线性方程组,当系数矩阵的秩等于未知数个数时,只有零解;当系数矩阵的秩小于未知数个数时,有非零解。

非齐次线性方程组,当增广矩阵的秩等于系数矩阵的秩时,有解;当增广矩阵的秩大于系数矩阵的秩时,无解。

求解线性方程组可以使用高斯消元法。

五、特征值与特征向量特征值和特征向量反映了矩阵的某种特性。

求特征值就是求解特征方程|λE A| = 0 的根,求特征向量则是通过解齐次线性方程组(λE A)X = 0 得到。

数三线性代数必考知识点

数三线性代数必考知识点

线性代数必考知识点1、行列式1. 行列式共有个元素,展开后有项,可分解为行列式;2. 代数余子式的性质:①、和的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0;③、某行(列)的元素乘以该行(列)元素的代数余子式为;3. 代数余子式和余子式的关系:4. 设行列式:将上、下翻转或左右翻转,所得行列式为,则;将顺时针或逆时针旋转,所得行列式为,则;将主对角线翻转后(转置),所得行列式为,则;将主副角线翻转后,所得行列式为,则;5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积;③、上、下三角行列式():主对角元素的乘积;④、和:副对角元素的乘积;⑤、拉普拉斯展开式:、⑥、范德蒙行列式:大指标减小指标的连乘积;⑦、特征值;6. 对于阶行列式,恒有:,其中为阶主子式;7. 证明的方法:①、;②、反证法;③、构造齐次方程组,证明其有非零解;④、利用秩,证明;⑤、证明0是其特征值;2、矩阵1. 是阶可逆矩阵:(是非奇异矩阵);(是满秩矩阵)的行(列)向量组线性无关;齐次方程组有非零解;,总有唯一解;与等价;可表示成若干个初等矩阵的乘积;的特征值全不为0;是正定矩阵;的行(列)向量组是的一组基;是中某两组基的过渡矩阵;2. 对于阶矩阵:无条件恒成立;3.4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均、可逆:若,则:Ⅰ、;Ⅱ、;②、;(主对角分块)③、;(副对角分块)④、;(拉普拉斯)⑤、;(拉普拉斯)3、矩阵的初等变换与线性方程组1. 一个矩阵,总可经过初等变换化为标准形,其标准形是唯一确定的:;等价类:所有与等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵、,若;2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若,则可逆,且;②、对矩阵做初等行变化,当变为时,就变成,即:;③、求解线形方程组:对于个未知数个方程,如果,则可逆,且;4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、,左乘矩阵,乘的各行元素;右乘,乘的各列元素;③、对调两行或两列,符号,且,例如:;④、倍乘某行或某列,符号,且,例如:;⑤、倍加某行或某列,符号,且,如:;5. 矩阵秩的基本性质:①、;②、;③、若,则;④、若、可逆,则;(可逆矩阵不影响矩阵的秩)⑤、;(※)⑥、;(※)⑦、;(※)⑧、如果是矩阵,是矩阵,且,则:(※)Ⅰ、的列向量全部是齐次方程组解(转置运算后的结论);Ⅱ、⑨、若、均为阶方阵,则;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)行矩阵(向量)的形式,再采用结合律;②、型如的矩阵:利用二项展开式;二项展开式:;注:Ⅰ、展开后有项;Ⅱ、Ⅲ、组合的性质:;③、利用特征值和相似对角化:7. 伴随矩阵:①、伴随矩阵的秩:;②、伴随矩阵的特征值:;③、、8. 关于矩阵秩的描述:①、,中有阶子式不为0,阶子式全部为0;(两句话)②、,中有阶子式全部为0;③、,中有阶子式不为0;线性方程组:,其中为矩阵,则:①、与方程的个数相同,即方程组有个方程;②、与方程组得未知数个数相同,方程组为元方程;10. 线性方程组的求解:①、对增广矩阵进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解;③、特解:自由变量赋初值后求得;11. 由个未知数个方程的方程组构成元线性方程:①、;②、(向量方程,为矩阵,个方程,个未知数)③、(全部按列分块,其中);④、(线性表出)⑤、有解的充要条件:(为未知数的个数或维数)4、向量组的线性相关性1. 个维列向量所组成的向量组:构成矩阵;个维行向量所组成的向量组:构成矩阵;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关有、无非零解;(齐次线性方程组)②、向量的线性表出是否有解;(线性方程组)③、向量组的相互线性表示是否有解;(矩阵方程)3. 矩阵与行向量组等价的充分必要条件是:齐次方程组和同解;( 例14)4. ;( 例15)5. 维向量线性相关的几何意义:①、线性相关;②、线性相关坐标成比例或共线(平行);③、线性相关共面;6. 线性相关与无关的两套定理:若线性相关,则必线性相关;若线性无关,则必线性无关;(向量的个数加加减减,二者为对偶)若维向量组的每个向量上添上个分量,构成维向量组:若线性无关,则也线性无关;反之若线性相关,则也线性相关;(向量组的维数加加减减)简言之:无关组延长后仍无关,反之,不确定;7. 向量组(个数为)能由向量组(个数为)线性表示,且线性无关,则;向量组能由向量组线性表示,则;向量组能由向量组线性表示有解;向量组能由向量组等价8. 方阵可逆存在有限个初等矩阵,使;①、矩阵行等价:(左乘,可逆)与同解②、矩阵列等价:(右乘,可逆);③、矩阵等价:(、可逆);9. 对于矩阵与:①、若与行等价,则与的行秩相等;②、若与行等价,则与同解,且与的任何对应的列向量组具有相同的线性相关性;③、矩阵的初等变换不改变矩阵的秩;④、矩阵的行秩等于列秩;10. 若,则:①、的列向量组能由的列向量组线性表示,为系数矩阵;②、的行向量组能由的行向量组线性表示,为系数矩阵;(转置)11. 齐次方程组的解一定是的解,考试中可以直接作为定理使用,而无需证明;①、只有零解只有零解;②、有非零解一定存在非零解;12. 设向量组可由向量组线性表示为:()其中为,且线性无关,则组线性无关;(与的列向量组具有相同线性相关性)(必要性:;充分性:反证法)注:当时,为方阵,可当作定理使用;13. ①、对矩阵,存在,、的列向量线性无关;②、对矩阵,存在,、的行向量线性无关;线性相关存在一组不全为0的数,使得成立;(定义)有非零解,即有非零解;,系数矩阵的秩小于未知数的个数;15. 设的矩阵的秩为,则元齐次线性方程组的解集的秩为:;16. 若为的一个解,为的一个基础解系,则线性无关;5、相似矩阵和二次型1. 正交矩阵或(定义),性质:①、的列向量都是单位向量,且两两正交,即;②、若为正交矩阵,则也为正交阵,且;③、若、正交阵,则也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化;2. 施密特正交化:;;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交;4. ①、与等价经过初等变换得到;,、可逆;,、同型;②、与合同,其中可逆;与有相同的正、负惯性指数;③、与相似;5. 相似一定合同、合同未必相似;若为正交矩阵,则,(合同、相似的约束条件不同,相似的更严格);6. 为对称阵,则为二次型矩阵;7. 元二次型为正定:的正惯性指数为;与合同,即存在可逆矩阵,使;的所有特征值均为正数;的各阶顺序主子式均大于0;;(必要条件)。

数三线性代数考试大纲

数三线性代数考试大纲

数三线性代数考试大纲一、线性空间与线性变换1. 线性空间的定义与性质- 向量空间的公理化定义- 子空间的概念与性质- 线性空间的维数和基2. 线性映射与线性变换- 线性映射的定义- 线性变换的矩阵表示- 线性变换的核与像3. 线性空间的直和与直积- 直和的定义与性质- 直积的定义与应用4. 线性空间的同构与同态- 同构映射的定义与性质- 同态映射的概念二、矩阵理论1. 矩阵的基本概念- 矩阵的表示与运算- 矩阵的转置与共轭2. 矩阵的秩与行列式- 矩阵秩的定义与性质- 行列式的概念与计算方法3. 矩阵的逆与伪逆- 可逆矩阵的条件- 伪逆矩阵的定义与性质4. 特殊矩阵与矩阵分解- 对角矩阵、单位矩阵、零矩阵 - 矩阵的三角分解- 矩阵的奇异值分解三、线性方程组1. 线性方程组的解法- 高斯消元法- 矩阵形式的线性方程组解法2. 线性方程组的解的结构- 唯一解、无穷多解、无解的条件 - 齐次线性方程组的解空间3. 线性方程组的几何解释- 方程组的解集与线性变换的像四、特征值与特征向量1. 特征值与特征向量的定义- 特征值问题的提出- 特征向量的性质2. 特征多项式与特征空间- 特征多项式的计算- 特征空间的概念3. 矩阵的对角化- 对角化的条件- 对角化的应用五、二次型与正定性1. 二次型的定义与性质- 二次型的表示- 二次型的秩2. 正定二次型- 正定性的定义与判别- 正定矩阵的性质3. 惯性定理与正定矩阵的判定 - 惯性定理的内容- 正定矩阵的判定方法六、向量空间的内积与范数1. 内积空间的定义与性质- 内积的定义- 内积空间的正交性2. 范数与度量空间- 范数的定义- 度量空间的概念3. 范数的性质与应用- 范数的性质- 范数在优化问题中的应用七、线性代数的应用1. 在物理学中的应用- 力学系统中的线性代数- 量子力学中的线性代数2. 在工程学中的应用- 控制理论中的线性代数- 信号处理中的线性代数3. 在计算机科学中的应用- 图像处理中的线性代数- 机器学习中的线性代数本考试大纲旨在为学生提供一个全面的线性代数知识体系,帮助学生掌握线性代数的基本概念、理论及其应用。

数三线性代数必考知识点

数三线性代数必考知识点

线性代数必考知识点1、行列式1. 行列式共有个元素,展开后有项,可分解为行列式;2. 代数余子式的性质:①、和的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0;③、某行(列)的元素乘以该行(列)元素的代数余子式为;3. 代数余子式和余子式的关系:4. 设行列式:将上、下翻转或左右翻转,所得行列式为,则;将顺时针或逆时针旋转,所得行列式为,则;将主对角线翻转后(转置),所得行列式为,则;将主副角线翻转后,所得行列式为,则;5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积;③、上、下三角行列式():主对角元素的乘积;④、和:副对角元素的乘积;⑤、拉普拉斯展开式:、⑥、范德蒙行列式:大指标减小指标的连乘积;⑦、特征值;6. 对于阶行列式,恒有:,其中为阶主子式;7. 证明的方法:①、;②、反证法;③、构造齐次方程组,证明其有非零解;④、利用秩,证明;⑤、证明0是其特征值;2、矩阵1. 是阶可逆矩阵:(是非奇异矩阵);(是满秩矩阵)的行(列)向量组线性无关;齐次方程组有非零解;,总有唯一解;与等价;可表示成若干个初等矩阵的乘积;的特征值全不为0;是正定矩阵;的行(列)向量组是的一组基;是中某两组基的过渡矩阵;2. 对于阶矩阵:无条件恒成立;3.4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均、可逆:若,则:Ⅰ、;Ⅱ、;②、;(主对角分块)③、;(副对角分块)④、;(拉普拉斯)⑤、;(拉普拉斯)3、矩阵的初等变换与线性方程组1. 一个矩阵,总可经过初等变换化为标准形,其标准形是唯一确定的:;等价类:所有与等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵、,若;2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若,则可逆,且;②、对矩阵做初等行变化,当变为时,就变成,即:;③、求解线形方程组:对于个未知数个方程,如果,则可逆,且;4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、,左乘矩阵,乘的各行元素;右乘,乘的各列元素;③、对调两行或两列,符号,且,例如:;④、倍乘某行或某列,符号,且,例如:;⑤、倍加某行或某列,符号,且,如:;5. 矩阵秩的基本性质:①、;②、;③、若,则;④、若、可逆,则;(可逆矩阵不影响矩阵的秩)⑤、;(※)⑥、;(※)⑦、;(※)⑧、如果是矩阵,是矩阵,且,则:(※)Ⅰ、的列向量全部是齐次方程组解(转置运算后的结论);Ⅱ、⑨、若、均为阶方阵,则;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)行矩阵(向量)的形式,再采用结合律;②、型如的矩阵:利用二项展开式;二项展开式:;注:Ⅰ、展开后有项;Ⅱ、Ⅲ、组合的性质:;③、利用特征值和相似对角化:7. 伴随矩阵:①、伴随矩阵的秩:;②、伴随矩阵的特征值:;③、、8. 关于矩阵秩的描述:①、,中有阶子式不为0,阶子式全部为0;(两句话)②、,中有阶子式全部为0;③、,中有阶子式不为0;线性方程组:,其中为矩阵,则:①、与方程的个数相同,即方程组有个方程;②、与方程组得未知数个数相同,方程组为元方程;10. 线性方程组的求解:①、对增广矩阵进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解;③、特解:自由变量赋初值后求得;11. 由个未知数个方程的方程组构成元线性方程:①、;②、(向量方程,为矩阵,个方程,个未知数)③、(全部按列分块,其中);④、(线性表出)⑤、有解的充要条件:(为未知数的个数或维数)4、向量组的线性相关性1. 个维列向量所组成的向量组:构成矩阵;个维行向量所组成的向量组:构成矩阵;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关有、无非零解;(齐次线性方程组)②、向量的线性表出是否有解;(线性方程组)③、向量组的相互线性表示是否有解;(矩阵方程)3. 矩阵与行向量组等价的充分必要条件是:齐次方程组和同解;( 例14)4. ;( 例15)5. 维向量线性相关的几何意义:①、线性相关;②、线性相关坐标成比例或共线(平行);③、线性相关共面;6. 线性相关与无关的两套定理:若线性相关,则必线性相关;若线性无关,则必线性无关;(向量的个数加加减减,二者为对偶)若维向量组的每个向量上添上个分量,构成维向量组:若线性无关,则也线性无关;反之若线性相关,则也线性相关;(向量组的维数加加减减)简言之:无关组延长后仍无关,反之,不确定;7. 向量组(个数为)能由向量组(个数为)线性表示,且线性无关,则;向量组能由向量组线性表示,则;向量组能由向量组线性表示有解;向量组能由向量组等价8. 方阵可逆存在有限个初等矩阵,使;①、矩阵行等价:(左乘,可逆)与同解②、矩阵列等价:(右乘,可逆);③、矩阵等价:(、可逆);9. 对于矩阵与:①、若与行等价,则与的行秩相等;②、若与行等价,则与同解,且与的任何对应的列向量组具有相同的线性相关性;③、矩阵的初等变换不改变矩阵的秩;④、矩阵的行秩等于列秩;10. 若,则:①、的列向量组能由的列向量组线性表示,为系数矩阵;②、的行向量组能由的行向量组线性表示,为系数矩阵;(转置)11. 齐次方程组的解一定是的解,考试中可以直接作为定理使用,而无需证明;①、只有零解只有零解;②、有非零解一定存在非零解;12. 设向量组可由向量组线性表示为:()其中为,且线性无关,则组线性无关;(与的列向量组具有相同线性相关性)(必要性:;充分性:反证法)注:当时,为方阵,可当作定理使用;13. ①、对矩阵,存在,、的列向量线性无关;②、对矩阵,存在,、的行向量线性无关;线性相关存在一组不全为0的数,使得成立;(定义)有非零解,即有非零解;,系数矩阵的秩小于未知数的个数;15. 设的矩阵的秩为,则元齐次线性方程组的解集的秩为:;16. 若为的一个解,为的一个基础解系,则线性无关;5、相似矩阵和二次型1. 正交矩阵或(定义),性质:①、的列向量都是单位向量,且两两正交,即;②、若为正交矩阵,则也为正交阵,且;③、若、正交阵,则也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化;2. 施密特正交化:;;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交;4. ①、与等价经过初等变换得到;,、可逆;,、同型;②、与合同,其中可逆;与有相同的正、负惯性指数;③、与相似;5. 相似一定合同、合同未必相似;若为正交矩阵,则,(合同、相似的约束条件不同,相似的更严格);6. 为对称阵,则为二次型矩阵;7. 元二次型为正定:的正惯性指数为;与合同,即存在可逆矩阵,使;的所有特征值均为正数;的各阶顺序主子式均大于0;;(必要条件)。

数学线性代数的重点考点

数学线性代数的重点考点

数学线性代数的重点考点数学线性代数是大学数学课程的重要组成部分,它的研究对象是向量空间及其上的线性变换。

对于学习线性代数的学生来说,理解和掌握其中的重点考点是非常重要的。

本文将围绕数学线性代数的重点考点展开讨论,帮助读者加深对这些内容的理解。

一、向量空间的定义和性质1. 向量空间的定义:向量空间是指满足一系列要求的非空集合,包括封闭性、加法运算和数乘运算。

了解向量空间的定义对于理解线性代数的其他内容至关重要。

2. 向量空间的性质:包括零向量、加法逆元、交换律、结合律、分配律等。

掌握这些性质有助于进行向量的运算和推导。

3. 子空间:子空间是指向量空间中满足向量空间的定义和性质的子集。

了解子空间的定义和性质,包括判断一个子集是否为子空间的方法,对于解题和证明相关问题非常有帮助。

二、线性变换和矩阵表示1. 线性变换的定义:线性变换是指保持向量空间加法运算和数乘运算性质的映射。

了解线性变换的定义和性质对于后续的矩阵表示和线性方程组的求解非常重要。

2. 矩阵表示:线性变换可以通过矩阵来表示,其中矩阵的列向量是线性变换后的基向量坐标。

矩阵相乘的运算规则和性质也是线性代数的重点内容。

3. 线性方程组:线性方程组是线性代数的一个重要应用领域,通过矩阵运算的方法可以求解线性方程组。

理解线性方程组的求解过程和相关的概念,如齐次线性方程组和非齐次线性方程组等,对于解决实际问题具有指导意义。

三、特征值和特征向量1. 特征值和特征向量的定义:对于线性变换,存在一些非零向量,当这些向量经过线性变换后,只改变其长度而不改变其方向,这些向量被称为特征向量,而对应的长度比例被称为特征值。

2. 特征值和特征向量的求解:计算特征值和特征向量是求解线性变换的重要方法。

通过特征值和特征向量可以了解线性变换的一些性质,如对角化、相似变换等。

3. 特征多项式和最小多项式:特征多项式是一个和特征值有关的多项式,最小多项式是一个和线性变换的性质有关的最小阶多项式。

(完整版)线性代数重要知识点及典型例题答案

(完整版)线性代数重要知识点及典型例题答案

线性代数知识点总结第一章 行列式二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和n nn nj j j j j j j j j nij a a a a ...)1(21212121)..(∑-=τ(奇偶)排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变。

(转置行列式TD D =) ②行列式中某两行(列)互换,行列式变号。

推论:若行列式中某两行(列)对应元素相等,则行列式等于零。

③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。

推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。

④行列式具有分行(列)可加性⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1(定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。

克莱姆法则:非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j DD x j j ⋯⋯==、齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a =③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零④三线性行列式:333122211312110a a a a a a a 方法:用221a k 把21a 化为零,。

化为三角形行列式 ⑤上(下)三角形行列式:行列式运算常用方法(主要)行列式定义法(二三阶或零元素多的) 化零法(比例)化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵n (零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵) ---------交换、结合律 数乘n m ij ka kA *)(=---------分配、结合律乘法nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑==注意什么时候有意义一般AB=BA ,不满足消去律;由AB=0,不能得A=0或B=0 转置A A T T =)( TT T B A B A +=+)( T T kA kA =)( TT T A B AB =)((反序定理) 方幂:2121k k k kA AA +=2121)(k k k k A A +=对角矩阵:若AB 都是N 阶对角阵,k 是数,则kA 、A+B 、 数量矩阵:相当于一个数(若……)单位矩阵、上(下)三角形矩阵(若……) 对称矩阵 反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 注:把分出来的小块矩阵看成是元素N 阶方阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的,|A|=0、伴随矩阵)2.、非零k 乘某一行(列)3、将某行(列)的K 初等变换不改变矩阵的可逆性 初等矩阵都可逆倍乘阵 倍加阵) ⎪⎪⎭⎫ ⎝⎛=O OO I D rr矩阵的秩r(A):满秩矩阵 降秩矩阵 若A 可逆,则满秩 若A 是非奇异矩阵,则r (AB )=r (B ) 初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵n ij n ij a k ka )()(=,行列式nij n n ij a k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆; ③不是所有的方阵都存在逆矩阵;④若A 可逆,则其逆矩阵是唯一的。

考研数学线性代数每年必考的知识点

考研数学线性代数每年必考的知识点

考研数学线性代数每年必考的知识点考研数学线性代数每年必考的知识点线性代数是考研数学中比较重要的一部分内容,考生要认真复习,尤其注意对重点知识的理解和应用。

店铺为大家精心准备了考研数学线性代数每年必考的难点,欢迎大家前来阅读。

考研数学线性代数每年必考的重点一、行列式与矩阵第一章《行列式》、第二章《矩阵》是线性代数中的基础章节,有必要熟练掌握。

行列式的核心内容是求行列式,包括具体行列式的计算和抽象行列式的计算二、向量与线性方程组向量与线性方程组是整个线性代数部分的核心内容。

相比之下,行列式和矩阵可视作是为了讨论向量和线性方程组部分的问题而做铺垫的基础性章节。

向量与线性方程组的内容联系很密切,很多知识点相互之间都有或明或暗的相关性。

复习这两部分内容最有效的方法就是彻底理顺诸多知识点之间的内在联系,因为这样做首先能够保证做到真正意义上的理解,同时也是熟练掌握和灵活运用的前提。

三、特征值与特征向量相对于前两章来说,本章不是线性代数这门课的理论重点,但却是一个考试重点。

其原因是解决相关题目要用到线代中的大量内容——既有行列式、矩阵又有线性方程组和线性相关,“牵一发而动全身”。

四、二次型本章所讲的内容从根本上讲是第五章《特征值和特征向量》的一个延伸,因为化二次型为标准型的核心知识为“对于实对称矩阵A存在正交矩阵Q使得A可以相似对角化”,其过程就是上一章相似对角化在为实对称矩阵时的应用。

考研数学拿高分的技巧1、认真思考数学问题的习惯思考对于数学的学习是最核心的,对做题更甚。

不坚持去思考,不仔细去联想,类比,总结只相当于背书,是学不到数学的本质的,想考高分是不可能的。

举一个例子:中值定理那块的证明题,一开始不会证,我就忍住不去看答案,自己去思考,有时候一晚上都在思考一个题。

这样思考,我会想到很多知识点并加以整合,会慢慢提炼出思路。

以后解这一类题就会顺畅很多。

考研的题肯定是自己没见过的,平常做题时不会就去看答案,考场上可没有现成的答案看啊。

线性代数自考知识点汇总各章重点

线性代数自考知识点汇总各章重点

行列式1. 行列式的性质性质1 行列式与它的转置行列式相等T D D =.性质2 互换行列式的两行〔列〕,行列式变号.推论1 如果行列式有两行〔列〕的对应元素完全相同,则此行列式的值为零.如a b ca b c 0a b c'''= 性质3 行列式的某一行〔列〕中全部的元素都乘以同一数k ,等于用数k 乘此行列式.如111213111213212223212223313233313233a a a a a a ka ka ka k a a a a a a a a a = 推论2 如果行列式中有两行〔列〕元素成比例,则此行列式的值为零.如a b ca b c 0ka kb kc'''= 性质4 假设行列式的某一行〔列〕的元素都是两数之和,则这个行列式等于两个行列式之和.如111213111213111213212122222323212223212223313233313233313233a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a ''''''+++=+ 性质5 把行列式的某一行〔列〕的各元素乘以同一数然后加到另一行(列)对应的元素上去,行列式的值不变.如111213111213212223212223313233311132123313a a a a a a a a a a a a a a a a ka a ka a ka =+++2. 余子式与代数余子式在n 阶行列式中,把元素ij a 所在的第i 行和第j 列划去后,留下来的n-1阶行列式叫做元素ij a 的余子式,记作ij M ,i jij ij A (1)M +=-叫做元素ij a 的代数余子式.如111213212223313233a a a a a a a a a ,元素23a 的余子式为1112233132a a M a a =,元素23a 的代数余子式为11122323233132a a A (1)M a a +=-=-.3. 行列式按行〔列〕展开法则定理1 行列式的值等于它的任一行〔列〕的各元素与其对应的代数余子式乘积之和,即1122i i i i in in D a A a A a A =+++或 1122j j j j nj nj D a A a A a A =+++如111213212223313233a a a a a a a a a 111112121313a A a A a A =++ 定理2 行列式任一行〔列〕的元素与另一行〔列〕的对应元素的代数余子式乘积之和等于零,即12120,j j i i jn i n a A a A a A +++=或,11220.j j j j nj nj a A a A a A i j +++=≠4. 行列式的计算〔1〕二阶行列式1112112212212122a a a a a a a a =- 〔2〕三阶行列式〔3〕对角行列式1212n nλλλλλλ=,n(m 1)21212n n(1)λλλλλλ-=-〔4〕三角行列式1111121n 2122222n 1122nn n1n2nnnna a a a a a a a a a a a a a a ==〔5〕消元法:利用行列式的性质,将行列式化成三角行列式,从而求出行列式的值.〔6〕降阶法:利用行列式的性质,化某行〔列〕只有一个非零元素,再按该行〔列〕展开,通过降低行列式的阶数求出行列式的值.〔7〕加边法:行列式每行〔列〕全部元素的和相等,将各行〔列〕元素加到第一列〔行〕,再提出公因式,进而求出行列式的值.矩阵1. 常见矩阵1〕对角矩阵:主对角线以外的元素全为0的方阵,称为对角矩阵.记作Λ. 2〕单位矩阵:主对角线上的元素全为1的对角矩阵,称为单位矩阵.记作 E.3〕上三角矩阵:对角线以下的元素全为0的方阵.如11121n 222n nn a a a a a a ⎛⎫⎪⎪⎪ ⎪⎝⎭4〕下三角矩阵:对角线以上的元素全为0的方阵.如112122n1n2nn a a a a a a ⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭5〕对称矩阵:设A 为n阶方阵,假设T A A =,即ij ji a a =,则称A 为对称矩阵. 6〕反对称矩阵:设A 为n阶方阵,假设T A A =-,即ij ji a a =- ,则称A 为反对称矩阵. 7〕正交矩阵:设A 为n阶方阵,如果T AA E =或T A A E =,则称A 为正交矩阵. 2. 矩阵的加法、数乘、乘法运算 〔1〕矩阵的加法 如a b c a b c a a b b c c d e f d e f d d e e f f ''''''+++⎛⎫⎛⎫⎛⎫+=⎪⎪⎪''''''+++⎝⎭⎝⎭⎝⎭注:① 只有同型矩阵才能进行加减运算;② 矩阵相加减就是对应元素相加减. 〔2〕数乘矩阵如a b c ka kb kc k d e f kd ke kf ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭注:数乘矩阵就是数乘矩阵中的每个元素.〔3〕矩阵的乘法:设ij m ij n s s A (a ),B (b )⨯⨯==,规定ij m n AB C (c ),⨯== 其中sij i11j i22j is sj ik kj k 1c a b a b a b a b ==+++=∑(i 1,2,,m,j 1,2,,n.)==注:①左矩阵A 的列数等于右矩阵B 的行数;②左矩阵A 的第i 行与右矩阵B 的第j 列对应元素乘积的和是矩阵乘积C 的元素ij c . ③左矩阵A 的行数为乘积C 的行数,右矩阵B 的列数为乘积C 的列数. 如行矩阵乘列矩阵是一阶方阵〔即一个数〕,即 列矩阵乘行矩阵是s 阶方阵,即 3. 逆矩阵设n 阶方阵A 、B ,假设AB=E 或BA=E ,则A ,B 都可逆,且11AB,B A --==.〔1〕二阶方阵求逆,设a b A c d ⎛⎫= ⎪⎝⎭,则1*d b 11A A c a A ad bc --⎛⎫== ⎪--⎝⎭〔两调一除法〕.〔2〕对角矩阵的逆11111221n n a a a a a a ----⎛⎫⎛⎫⎪⎪⎪⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭, 111n 2121n1a a a a a a ----⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭.〔3〕分块对角阵的逆11111221s s A A A A ;A A ----⎛⎫⎛⎫⎪⎪⎪⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭111s 2121s1A A A A A A ----⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭. 〔4〕一般矩阵求逆,初等行变换的方法:()()ERT1A E E A -−−−→.4. 方阵的行列式由n阶方阵A 的元素所构成的行列式〔各元素的位置不变〕叫做方阵A 的行列式.记作A 或det 〔A 〕. 5. 矩阵的初等变换下面三种变换称为矩阵的初等行〔列〕变换: 〔1〕互换两行〔列〕;〔2〕数乘某行〔列〕;〔3〕某行〔列〕的倍数加到另一行〔列〕. 6. 初等矩阵单位矩阵经过一次初等变换得到的矩阵,称为初等矩阵.如001100100010,0k 0,010100001k 01⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭都是初等矩阵. 7. 矩阵的秩矩阵A 的非零子式的最高阶数,称为矩阵A 的秩.记作R 〔A 〕或r 〔A 〕. 求矩阵的秩的方法:〔1〕定义法:找出A 中最高阶的非零子式, 它的阶数即为A 的秩.〔2〕初等行变换法:ERTA −−−→行阶梯形矩阵,R 〔A 〕=R 〔行阶梯形矩阵〕=非零行的行数. 8. 重要公式及结论〔1〕矩阵运算的公式及结论矩阵乘法不满足交换律,即一般地A B ≠AB;矩阵乘法不满足消去律,即一般地假设AB=AC ,无B=C ;只有当A 可逆时,有B=C.一般地假设AB=O ,则无A=O 或B=O.()222A B ?A 2AB B +++.〔2〕逆矩阵的公式及定理A 可逆⇔|A |≠0⇔A ~E 〔即A 与单位矩阵E 等价〕 〔3〕矩阵秩的公式及结论R ( AB ) ≤R ( A ), R ( AB ) ≤R ( B ).特别地,当A 可逆时,R(AB)=R(B);当B 可逆时,R(AB)=R(A).()()ET A B A ~B R A R B −−→⇔⇒= 即等价矩阵的秩相等或初等变换不改变矩阵的秩.9. 矩阵方程〔1〕设 A 为n 阶可逆矩阵,B 为n ×m 矩阵,则矩阵方程AX=B 的解为1X A B -=;解法:① 求出1A -,再计算1A B -; ② ()()ERTAB E X −−−→ .〔2〕设 A 为n 阶可逆矩阵,B 为m ×n 矩阵,则矩阵方程XA=B 的解为1X BA -=;解法:① 求出1A -,再计算1BA -; ② ECT A E B X ⎛⎫⎛⎫−−−→⎪ ⎪⎝⎭⎝⎭. 10. 矩阵间的关系〔1〕等价矩阵:如果矩阵A 经过有限次初等变换变成矩阵B ,那么称矩阵A 与B 等价.即存在可逆矩阵P ,Q ,使得PAQ=B.性质:等价矩阵的秩相等.〔2〕相似矩阵:如果存在可逆矩阵P ,使得1P AP B -=,那么称A 与B 相似. 性质:相似矩阵有相同的特征多项式,相同的特征值,相同的行列式,相同的迹. 〔3〕合约矩阵:如果存在可逆矩阵P ,使得T P AP B =,那么称A 与B 合约. 性质:合约矩阵的秩相等.向量空间1. 线性组合〔1〕假设α=k β,则称向量α与β成比例. 〔2〕零向量O是任一向量组的线性组合.〔3〕向量组中每一向量都可由该向量组线性表示. 2. 线性相关与线性无关〔1〕 单独一个向量线性相关当且仅当它是零向量. 〔2〕 单独一个向量线性无关当且仅当它是非零向量. 〔3〕 两向量线性相关当且仅当两向量对应成比例.〔4〕 两向量线性无关当且仅当两向量不对应成比例. 〔5〕 含有O向量的向量组肯定线性相关. 〔6〕 向量组12m ,,,ααα线性相关的充分必要条件是① 齐次线性方程组22m m 11k k 0k ααα+++=有非零解.② 以向量组为列作的矩阵()12m ,,,ααα的秩<向量的个数m.〔7〕n 个n 维向量12n ,,,ααα线性相关的充分必要条件是以向量组为列作的行列式的值()12n ,,,ααα=0.〔8〕 向量组12m ,,,ααα线性无关的充分必要条件是① 齐次线性方程组22m m 11k k 0k ααα+++=只有零解.② 以向量组为列作的矩阵()12m ,,,ααα的秩=向量的个数m.〔9〕 n 个n 维向量12n ,,,ααα线性无关的充分必要条件是以向量组为列作的行列式的值()12n ,,,ααα≠0.〔10〕当m>n 时,m 个n 维向量肯定线性相关.定理1:向量组 a 1 , a 2 ,……, a m 〔m ≥2〕线性相关的充分必要条件是向量组中至少有一个向量可由其余m-1个向量线性表示.向量组线性无关的充分必要条件是向量组中任何一个向量都不能由其余向量线性表示. 定理2:如果向量组A :a 1 , a 2 ,……, a r 线性无关,而向量组 a 1 , a 2 ,……, a r ,α线性相关,则α可由A 线性表示,且表示式唯一.定理3:设向量组2r 1A :,,,ααα,12r r 1m B :,,,,,,ααααα+假设A 线性相关,则向量组B 也线性相关;反之,假设向量组B 线性无关,则向量组A 也线性无关.〔即局部相关,则整体相关;整体无关,则局部无关〕. 定理4:无关组的截短组无关,相关组的接长组相关. 3. 极大无关组与向量组的秩定义1 如果在向量组 T 中有 r 个向量 a 1 , a 2 ,……, a r ,满足条件: ⑴ 向量组 a 1 , a 2 ,……, a r 线性无关, ⑵ T α∀∈,2r 1,,,,αααα线性相关.那么称向量 a 1 , a 2 ,……, a r 是向量组 T 的一个极大无关组.定义2 向量组的极大无关组中所含向量的个数,称为向量组的秩.定义3 矩阵的行向量组的秩称为矩阵的行秩;矩阵的列向量组的秩称为矩阵的列秩。

线性代数知识点总结

线性代数知识点总结

线性代数知识点总结一、向量空间向量空间是线性代数的核心概念,描述了向量的运算规则和性质。

一个向量空间必须满足以下条件:1. 封闭性:对于任意向量u、v属于向量空间V和标量c,有u+v和cu也属于向量空间V。

2. 相容性:向量空间中的向量和标量运算符必须相容,即对于任意u和v属于向量空间V和标量c,满足c(u+v) = cu + cv。

3.存在零向量:向量空间V中存在一个零向量0,满足对于任何向量v属于向量空间V,有v+0=v。

4.存在相反向量:对于任意向量v属于向量空间V,存在一个相反向量-w,满足v+(-w) = 0。

5.结合律:对于u、v、w属于向量空间V和标量c,满足(u+v)+w = u+(v+w)。

6.分配律:对于向量u和v属于向量空间V和标量a、b,满足(a+b)u = au+bu 和 a(u+v) = au+av。

二、矩阵与线性方程组1.矩阵的定义:矩阵是一个由m行n列元素组成的矩形数表。

一个m×n的矩阵有m行和n列,记作A=(aij)。

其中,i表示行索引,j表示列索引,aij表示矩阵A中第i行第j列的元素。

2.矩阵的运算:(1) 矩阵加法:对于两个具有相同维度的矩阵A和B,它们的和C记作C=A+B,定义为C的每个元素等于A和B对应位置元素的和。

(2) 矩阵乘法:对于两个矩阵A和B,如果A的列数等于B的行数,则矩阵A和B的乘积C记作C=AB,定义为C的第i行第j列的元素等于矩阵A的第i行元素与矩阵B的第j列元素的内积。

3.线性方程组:线性方程组是以线性方程为元素的方程组,其中每个未知数的最高次数为1。

(1)增广矩阵:线性方程组可以表示为增广矩阵的形式,增广矩阵是将系数矩阵与常数矩阵相连接而成的矩阵。

(2)矩阵的初等行变换:矩阵的初等行变换包括将矩阵的某一行乘以一个非零常数、将矩阵的某两行互换、将矩阵的某一行加上另一行的若干倍。

(3)矩阵的行阶梯形和行最简形:通过矩阵的初等行变换,可以将矩阵变成行阶梯形和行最简形。

线性代数背诵要点(全)

线性代数背诵要点(全)

第一章 行列式一、行列式的概念、展开公式及其性质 (一)行列式的概念nnn n n n a a a a a a a a a A .. (2)12222111211=(二)行列式按行(列)展开公式公式为关于副对角线,其计算角线上元素的乘积三角行列式等于其主对下上的代数余子式为的余子式,而阶行列式,称之为列元素后的行及第中去掉第是其中.2......)(.1)1(1)1( (221122)11221122112211nnnn nn ij ij j i ij ij ijj i ij nj nj j j j j in in i i i i a a a a a a a a a a M a n j i A M M A A a A a A a A a A a A a A ⋅⋅⋅=******=******---=+++=+++=++11212)1(11211121)1(......n n n n n n n nn n na a a a a a a a a ⋅⋅⋅-=******=******---- B A OB A BA OB A B OA B O A n B m A mn ⋅-=*=*⋅=*=*)1(.3阶矩阵,则是阶矩阵,是开式,设两种特殊的拉普拉斯展(三)行列式的性质1.经转置的行列式的值不变,即T A A =2.行列式中某一行各元素如有公因数k ,则k 可以提到行列式符号外,若行列式某行元素全是零,则行列式的值为零3.如果行列式中某行的每个原色都是两个的和,则这个行列式可以拆成两个行列式的和mlb b a a 2121++=mlb a 11+mlb a 224对换行列中某两行的位置,行列式的值只改变正负号;若两行元素对应相对(成比例),则行列式的值为零 5.把某行的k 倍加至另一行,行列式的值不变(四)关于代数余子式的求和...0...)()(.2,.122112211=+++=+++nk nj k j k j jn in j i j i ij ij ij ij A a A a A a A a A a A a a A A a 乘积之和必为零对应元素的代数余子式列元素与另一行列行列式一行的取值无关与式值并不影响其代数余子所在行或列中的元素的只改变二、有关行列式的几个重要公式A k kA n A n =阶矩阵,则是若.1B A B A n B A •=阶矩阵,则是,若.211-1.3--*==AA n A AA n A n 阶可逆矩阵,则是若阶矩阵,则是若∏≤≤----==ni j j i n nn n n nx x A x x x x x x x x x A n A 1112112222121)( (1)...11.4,则阶范德蒙矩阵是若 ∏==ni i i A A n A 1.5λλ的特征值,则是阶矩阵,是若B A B A =,则若~.6三、关于克莱姆法则的系数换成常数项中的是把其中则方程组有唯一解方程组,如果系行列式个未知数的非齐次线性个方程对于j j n n x D D DDx D D x D D x A D n n ,,...,,,02211===≠=则方程组只有零解程组,系数行列式个未知数的齐次线性方个方程对于,0≠=A D n n 0==A D n n 数行列式程组,有非零解,则系个未知数的齐次线性方个方程对于逆序数的计算,从左至右,看每个数后面比它小的数的个数 经初等变换矩阵的秩不变第二章 矩阵及其运算一、矩阵的概念与几类特殊方阵 (一)矩阵及相关概念 1.矩阵阶方阵阶矩阵或是,则称若或矩阵,简记称为列的表格行排成的个数n n A n m a A n m a a a a a a a a a n m a n m n m ij mn m m n n ij =⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⨯⨯,)( (21)2222111211 2.0矩阵00,则称为零矩阵,记作中所有元素而都是如果矩阵A 3.同型矩阵是同型矩阵与则称中如果,矩阵B A t n s m b B a A t s ij n m ij ,,,)(,)(====⨯⨯4.矩阵相等即对应的元素都相等同型矩阵),,(j i b a B A ij ij ∀=⇔= 1. 方阵的行列式 阶行列式其元素可构造对于方阵n a A ij )(=B A B A a a a a a a a a a A nnn n nn≠≠=得不到由,.............. (2)12222111211(二)几类特殊方阵1.单位矩阵 主对角线上的运算全是1,其余元素均为0的n 阶段方阵,称为n 阶单位矩阵, 记为E E A A AE EA ===0;2.对称矩阵),(,j i a a A A n A ji ij T ∀==即阶矩阵,如是设3.反对称矩阵对称矩阵反不一定是对称矩阵,但反也是对称矩阵,则反是同阶的若,即阶矩阵,如是设)()(,,)(,0),(-,-AB A B A B A B A a j i a a A A n A ii ji ij T λ-+=∀==4.对角矩阵、积仍然是对角矩阵同阶的对角矩阵的和差,对角矩阵记为阶矩阵,如是设Λ≠∀≡)(0j i a n A ij5.逆矩阵1,-==AA AB A E BA AB B n n A 记为的逆矩阵唯一的逆矩阵,是是可逆矩阵,,则称使阶矩阵阶矩阵,如存在是设6.正交矩阵T T T A A A E A A AA n A ===-1,是正交矩阵,则称阶矩阵,如是设 7.伴随矩阵*=A A A A A A A A A A A n A a A n a A nnnnn n ij ij ij 的伴随矩阵,记为,称为阶矩阵所构成的的代数余子式的各元素阶矩阵,则由行列式是设....................)(212221212111二、矩阵的运算(一)矩阵的线性运算 1.矩阵的加法C B A B A b a c C n m n m b B a A ij ij ij ij ij =++==⨯⨯==的和称为矩阵矩阵矩阵,则是两个设,)()()(),(2.矩阵的数乘kAA k b a ka n m k n m a A ij ij ij ij 记为的数乘,与矩阵称为数矩阵是一个常数,则矩阵,是设)()()(+=⨯⨯=3.矩阵的乘法nb r A r B Ax B AB A E A A A A B AB BA AB B A BA AB ABC B A b a b a b a b a c c C s m s n b B a A nk kj ik nj in j i j i ij ij ij ij ≤+≠======≠==≠==+++==⨯⨯==∑=)()(,00,0;0,;00,0)2(,)1(,...)()(),(212211则齐次方程组有非零解的解,若程中的每一列都是其次方应联想到或不能堆出,不能退出时,才能运算可交换即与只有换律矩阵的乘法一般没有交的乘积,记为与称为其中矩阵矩阵,则是两个设,命题成立矩阵,秩序是若不能退出的列数,则,且若可逆,则,且矩阵若立:以下两种情况消去率成,对于矩阵乘以不具有消去律n A r n m A C B A AC AB B A A r AB B A AB A AB =⨯=≠======≠=)(,,0,)3(0)(000),0(0(二)关于逆矩阵的运算规律A A =--11))(1( 111))(2(--=A kkA 111))(3(---=A B AB 11)())(4(--=T T A A 11)5(--=A A n n A A )())(6(11--=(三)关于矩阵转置的运算规律A A T T =))(1( T T kA kA =))(2( T T T AB AB =))(3( T T T B A B A +=+))(4((四)关于伴随矩阵的运算规律E A AA A A ==**)1( )2()2(1≥=-*n AA n )2())(3(2≥=-**n A AA n*-*=A k kA n 1))(4( **=)())(5(T T A A1)(,0)(;1)(,1)(;)(,)()6(-=-====***n A r A r n A r A r n A r n A r111-1-,)()(,1)()7(-**-**===A A A A A A AA A 可逆,则若(五)关于分块矩阵的运算法则⎥⎦⎤⎢⎣⎡++++=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡4433221143214321)1(B A B A B A B A B B B B A A A A ⎥⎦⎤⎢⎣⎡++++=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡DW CY DZ CX BW AY BZ AX W Z Y X D C B A )2( ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡T TT T TD B C A D C B A )3( ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡n n n C OO B C O O B )4( ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--O B C O O C B O C O O B C O O B 111-1-1-1-)4(,三、矩阵可逆的充分必要条件.8,.70.6)(.5,.4)(.30.2.121的特征值全不为总有唯一解非齐次方程组只有零解齐次方程组向量线性无关行的列是初等矩阵其中,有阶方阵存在可逆,等价于阶方阵A b Ax b Ax A P P P P A nA r A E BA AB B n A n i s =∀=⋅⋅⋅==≠==四、矩阵的初等变换与初等矩阵 (一)矩阵的初等变换及相关概念 1.矩阵的初等变换下述三种对矩阵的行列实施的变换称为矩阵的初等行列变换 (1) 对调矩阵的两行列(2) 用非零常数k 乘以某行列中所有元素(3) 把矩阵某行列所有元素的k 倍加至另一行列对应的元素上去 (4) 求秩(行列变换可混用);求逆矩阵(只用行或只用列);求线性方程组的解(只用行变换) (5) 不要混淆矩阵的运算2.行阶梯形矩阵与行最简形矩阵(1)具体如下特征的矩阵称为行阶梯形矩阵①零行(即元素全为零的行)全都位于非零行的下方②各非零行坐起第一个非零元素的列指标由上至下是严格增大(2)如果其非零行的第一个非零元素为1,并且这些非零元素所在列的其他元素均为零,这个行阶梯形矩阵称为行最简形矩阵对于任何矩阵A ,总可以经过有限次初等行变换把它化为行阶梯形矩阵和行最简形矩阵(二)初等矩阵的概念单位矩阵经过一次初等变换所得到的矩阵称为初等矩阵(三)初等矩阵的性质逆是同类型的初等矩阵初等矩阵均可逆,且其同样的行列初等变换做了一次与就是对矩阵,所得乘右左用初等矩阵.2)()(.1P A AP PA A P)()(100013-001100013001)1()(100021000110002000100101010000101010011-11-11-k E k E kE k E EE ij ij i i ij ij -=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---主对角线以外;主对角线;副对角线五、矩阵的等价(一)矩阵等价的概念的秩是矩阵阶单位矩阵是的等价标准形,其中后者是则称若等价,记作与则称矩阵矩阵经有限次初等变换变成矩阵A r r E A EA B A B A B A r r,,000~.~,⎥⎦⎤⎢⎣⎡ (二)矩阵等价的充分必要条件价向量组等价必有矩阵等向量可以互相线性表示;向量组等价是指两个等价是两个不同的概念矩阵的等价与向量组的使得阶可逆矩阵,阶可逆矩阵矩阵,则存在时设,使和存在可逆矩阵秩是同型矩阵且有相同的,等价于⎥⎦⎤⎢⎣⎡=⨯=000,.2.1~rE PAQ Q n P m n m A BPAQ Q P B A B A⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=====----*-O BC O O C B O C O O B C O O B AE E A A EE A A AA E BA E AB B 111-1-1-1-111)()();()(1,分块矩阵法初等变换法伴随矩阵法或使定义法,找出为阶梯形方程组列方程用高斯消元法化不可逆,则可设未知数,若方法可以先求出可逆,则若方法解题思路的列向量表出的每列可由有解等价于A AB A X A AB r A r A B B Ax 2,,1)()(.2.111--===的主对角线元素之和是矩阵T T αββα 若11,--==P PB A PBP A n n 则1-)(,P P A P A n n n Λ=Λ,令与先求特征值与特征向量求 行列变换与单位矩阵、初等矩阵运算的关系第三章 n 维向量一、n 维向量的概念与运算 (一)n 维向量的概念个分量称为向量的第的矩阵,数或维列向量,也就是维行向量或分别称为或维向量,记作构成的有序数组称为个数i a n n n n a a a a a a n a a a n i T n n n 11,),...,,(),...,,(,...,,212121⨯⨯(二)n 维向量的运算0),(......),(,0),(.4...),(.3),...,,(.2),...,,(.1),...,,(,),...,,(222212222122112122112121=⇔==+++=+++=====+++==+++=+==ααααααααααβαβααββαβααβαβαT n nT TT n n Tn T n n T n T n a a a a a a b a b a b a ka ka ka k b a b a b a b b b a a a 正交,,则若内积数乘加法如果二、线性组合与线性表出 1.线性组合若干个同维数的列向量(或同维数的行向量)所组成的集合叫做向量组称为组合系数的一个线性组合,其中称为向量组所构成的向量个常数及维向量个由s s s s s s k k k k k k k k k s n s ,...,,,...,,...,...,,,...,,212122112121ααααααααα+++ 2.线性表出的线性组合是线性表出,或说可由则称的线性组合能表示成向量维向量如αααβαααββααααααβ,...,,,...,,...,...,,2121221121s s s s k k k n =+++3.向量组等价,则称两个向量等价量组可以互相线性表出线性表出;如果两个向可由向量组线性表出,则称向量组量组的每个向量都可以由向如过向量组)2()1(,...,,)2(,...,,)1(2121t s βββααα等价、则线性表出,可由向量组如果向量组不一定等价秩,但秩相同的向量组等价的向量具有相同的相同向量组所含向量的个数两个等价的线性无关的无关组等价向量组的任意两个极大无关组等价任一向量组和它的极大样,线性相关也可以不一但向量个数可以不一样、对称性、及反身性,等价向量组具有传递性)2()1(),2()1()2()1(.6.5.4.3.21r r =三、向量组的线性相关与线性无关 (一)线性相关与线性无关的概念 1.线性相关线性相关则称此向量组使得的数,如存在一组不全为维向量对于s s s s s k k k k k k n ααααααααα,...,,0...,...,,0,...,,2122112121=+++2.线性无关线性无关称此向量组,,必有不全为或者说如存在一组数线性无关则称此向量组,必有,如果维向量对于s s s s s s s s s k k k k k k k k k k k k n ααααααααααααααα,...,,0...0,...,,,...,,,0...0...,...,,212211212121221121≠+++=====+++(二)线性相关与线性无关的充分必要条件 1.线性相关的充分必要条件位向量一定线性相关个维向量线性相关个个向量线性表出可由其他存在某向量的个数有非零解齐次方程组线性相关,向量组n n n n s s r x x x s i s s s s 10,...,,1)(),...,,(0...),...,,(,...,,2121212121+=⇔-⇔⇔=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⇔ααααααααααααα2.线性无关的充分必要条件个向量线性表出都不能用其他存在某向量的个数只有零解齐次方程组线性无关,向量组1)(),...,,(0...),...,,(,...,,21212121-⇔=⇔=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⇔s s r x x x i s s s s αααααααααα3.几个重要结论组必然线性无关两两正交、非零的向量必然线性无关,,,延伸组线性无关,则它的任一若向量组必然线性无关个部分分组线性无关,则它的任一若向量组无关阶梯形向量组一定线性)4(...,...,,)3(,...,,,...,,)2()1(2211212121⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡s s s i i i s t βαβαβαααααααααα四、线性相关性与线性表出的关系ts t s s s t s s t s i i i s s s s s t ≤-线性无关,则线性表出,且可由向量组若向量组线性相关则线性表出,且可由向量组若向量组必然线性无关则它的任一个部分分组一线性表出,且表示法唯可由线性相关,则,线性无关,而向量组若向量组个向量线性表出可以用其余是线性相关,的充要条件向量组αααβββααααααβββαααααααααββαααααααααα,...,,,...,,,...,,)4(,...,,,,...,,,...,,)3(,...,,,...,,,...,,,...,,)2(1,...,,)1(2121212121212121212121五、向量组的秩与矩阵的秩(一)向量组的秩与矩阵的秩的概念 1.极大线性无关组是由原向量唯一确定的即个数都是关组中所含向量的个数个极大线性无关组是等价的,从而每的。

线性代数知识点归纳

线性代数知识点归纳

第一部分 行列式1. 排列的逆序数2. 行列式按行(列)展开法则3. 行列式的性质及行列式的计算1. 行列式的计算:① (定义法)1212121112121222()1212()n nnn n j j j nj j nj j j j n n nna a a a a a D a a a a a a τ==-∑1②(降阶法)行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和.推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零. ③ (化为三角型行列式)上三角、下三角、主对角行列式等于主对角线上元素的乘积.④ 若A B 与都是方阵(不必同阶),则==()mn A OA A O A BO BO BBO A AA B B O B O*==**=-1⑤ 关于副对角线:(1)211212112111()n n nnn n n n n n n a O a a a a a a a Oa O ---*==-1⑥ 范德蒙德行列式:()1222212111112n ijnj i nn n n nx x x x x x x x x x x ≤<≤---=-∏111⑦ a b -型公式:1[(1)]()n a b b b b a bban b a b b b a b b b ba-=+-- ⑧ (升阶法)在原行列式中增加一行一列,保持原行列式不变的方法.⑨ (递推公式法) 对n 阶行列式n D 找出n D 与1n D -或1n D -,2n D -之间的一种关系——称为递推公式,其中 n D ,1n D -,2n D -等结构相同,再由递推公式求出n D 的方法称为递推公式法.(拆分法) 把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和, 使问题简化以例计算.⑩ (数学归纳法)2. 对于n 阶行列式A ,恒有:1(1)nn k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;3. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值.4. 代数余子式和余子式的关系:(1)(1)i j i j ij ijij ij M A A M ++=-=-第二部分 矩阵1. 矩阵的运算性质2. 矩阵求逆3. 矩阵的秩的性质4. 矩阵方程的求解1. 矩阵的定义 由m n ⨯个数排成的m 行n 列的表111212122212n n m m mn a a a a a a A a a a ⎛⎫⎪ ⎪= ⎪⎪⎝⎭称为m n ⨯矩阵. 记作:()ij m n A a ⨯=或m n A ⨯① 同型矩阵:两个矩阵的行数相等、列数也相等. ② 矩阵相等: 两个矩阵同型,且对应元素相等. ③ 矩阵运算a. 矩阵加(减)法:两个同型矩阵,对应元素相加(减).b. 数与矩阵相乘:数λ与矩阵A 的乘积记作A λ 或A λ,规定为()ij A a λλ=.c. 矩阵与矩阵相乘:设()ij m s A a ⨯=, ()ij s n B b ⨯=,则()ij m n C AB c ⨯==, 其中注:矩阵乘法不满足:交换律、消去律, 即公式00AB BAAB A ==⇒=或B=0不成立.a. 分块对角阵相乘:11112222,A B A B A B ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭⇒11112222A B AB A B ⎛⎫= ⎪⎝⎭,1122nn n A A A ⎛⎫= ⎪⎝⎭b. 用对角矩阵Λ○左乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的○行向量; c. 用对角矩阵Λ○右乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的○列向量. d. 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘. ④ 方阵的幂的性质:mn m n AA A +=, ()()m n mn A A =⑤ 矩阵的转置:把矩阵A 的行换成同序数的列得到的新矩阵,叫做A 的转置矩阵,记作TA . a. 对称矩阵和反对称矩阵: A 是对称矩阵T A =.A 是反对称矩阵T A =-.b. 分块矩阵的转置矩阵:TTT TT A B A C C D BD ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭⑥ 伴随矩阵: ()1121112222*12n Tn ij nnnn A A A A A A AA A A A ⎛⎫ ⎪ ⎪== ⎪ ⎪⎝⎭,ij A 为A 中各个元素的代数余子式. **AAA A A E ==,1*n A A -=, 11A A --=.分块对角阵的伴随矩阵:***A BA B AB ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭ *(1)(1)mn mn A A B B B A**⎛⎫-⎛⎫= ⎪ ⎪⎪-⎝⎭⎝⎭2. 逆矩阵的求法 方阵A 可逆 0A ≠.①伴随矩阵法 1A A A *-= ○注: 1a b d b c d c a ad bc --⎛⎫⎛⎫= ⎪ ⎪--⎝⎭⎝⎭1 主换位副变号② 初等变换法 1()()A E E A -−−−−→初等行变换③ 分块矩阵的逆矩阵:111A A B B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭ 111A B BA---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭④1231111213a a a a a a -⎛⎫⎛⎫ ⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 3211111213a a a a a a -⎛⎫⎛⎫⎪⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⑤ 配方法或者待定系数法 (逆矩阵的定义1A B B A E A B-==⇒=) 3.可画出一条阶梯线,线的下方全为0;每个台阶只有一行,台阶数即是非零行的行数,阶梯线的竖 线后面的第一个元素非零. 当非零行的第一个非零元为1,且这些非零元所在列的其他元素都是0时, 4. 初等变换与初等矩阵 对换变换、倍乘变换、倍加(或消法)变换☻矩阵的初等变换和初等矩阵的关系:①对A施行一次初等○行变换得到的矩阵,等于用相应的初等矩阵○左乘A;②对A施行一次初等○列变换得到的矩阵,等于用相应的初等矩阵○右乘A.注意:初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵.5.关于A矩阵秩的描述:①、()=r A r,A中有r阶子式不为0,1+r阶子式(存在的话) 全部为0;②、()<r A r,A的r阶子式全部为0;③、()≥r A r,A中存在r阶子式不为0;☻矩阵的秩的性质:①()A O r A≠⇔≥1; ()0A O r A=⇔=;0≤()m nr A⨯≤min(,)m n②()()()T Tr A r A r A A==③()()r kA r A k=≠其中0④()(),,()m n n sr A r B nA B r ABB Ax⨯⨯+≤⎧=⇒⎨=⎩若若0的列向量全部是的解⑤()r AB≤{}min(),()r A r B⑥若P、Q可逆,则()()()()r A r PA r AQ r PAQ===;即:可逆矩阵不影响矩阵的秩.⑦若()()()m nAxr AB r Br A nAB O B OAAB AC B Cο⨯⇔=⎧⎪=⎧⎪=⎨⎪⇒=⇒=⎧⎨⎪⎨⎪⎪=⇒=⎩⎩⎩只有零解在矩阵乘法中有左消去律;若()()()n sr AB r Br B nB⨯=⎧=⇒⎨⎩在矩阵乘法中有右消去律.⑧()r rE O E Or A r A AO O O O⎛⎫⎛⎫=⇒ ⎪ ⎪⎝⎭⎝⎭若与唯一的等价,称为矩阵的等价标准型.⑨()r A B±≤()()r A r B+, {}max(),()r A r B≤(,)r A B≤()()r A r B+⑩()()A O O Ar r A r BO B B O⎛⎫⎛⎫==+⎪ ⎪⎝⎭⎝⎭, ()()A Cr r A r BO B⎛⎫≠+⎪⎝⎭☻求矩阵的秩:定义法和行阶梯形阵方法 6 矩阵方程的解法(0A ≠):设法化成AX B XA B ==(I) 或 (II)第三部分 线性方程组1. 向量组的线性表示2. 向量组的线性相关性3. 向量组的秩4. 向量空间5.线性方程组的解的判定6. 线性方程组的解的结构(通解)(1)齐次线性方程组的解的结构(基础解系与通解的关系) (2)非齐次线性方程组的解的结构(通解) 1.线性表示:对于给定向量组12,,,,n βααα,若存在一组数12,,,n k k k 使得1122n n k k k βααα=+++,则称β是12,,,n ααα的线性组合,或称称β可由12,,,n ααα的线性表示.线性表示的判别定理:β可由12,,,n ααα的线性表示由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n na x a x a xb a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩有解 ②、1112111212222212⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭n n m m mn m m a a a x b a a a x b Ax a a a x b β③、()1212n n x x aa a x β⎛⎫⎪ ⎪= ⎪⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭); ④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)2. 设,,m n n s A B ⨯⨯A 的列向量为12,,,n ααα⋅⋅⋅,B 的列向量为12,,,s βββ⋅⋅⋅,则m sAB C ⨯=⇔()()1112121222121212,,,,,,s s n s n n ns b b b b bb c c c b b b ααα⎛⎫ ⎪ ⎪⋅⋅⋅= ⎪⎪⎝⎭⇔i i A c β= ,(,,)i s =1,2⇔i β为i Ax c =的解 ⇔12,,,s c c c 可由12,,,n ααα⋅⋅⋅线性表示.即:C 的列向量能由A 的列向量线性表示,B 为系数矩阵. 同理:C 的行向量能由B 的行向量线性表示,A 为系数矩阵.即: 1112111212222212n n n n mn n m a a a c a a a c a a a c βββ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪⎪ ⎪= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⇔111122*********22211222n n m m mn ma a a c a a a c a a a c βββββββββ+++=⎧⎪+++=⎪⎨⎪⎪+++=⎩3. 线性相关性判别方法:法1法2法3 推论♣ 线性相关性判别法(归纳)♣ 线性相关性的性质① 零向量是任何向量的线性组合,零向量与任何同维实向量正交. ② 单个零向量线性相关;单个非零向量线性无关.③ 部分相关,整体必相关;整体无关,部分必无关. (向量个数变动)④ 原向量组无关,接长向量组无关;接长向量组相关,原向量组相关. (向量维数变动) ⑤ 两个向量线性相关⇔对应元素成比例;两两正交的非零向量组线性无关. ⑥ 向量组12,,,n ααα⋅⋅⋅中任一向量i α(1≤i ≤)n 都是此向量组的线性组合.⑦ 若12,,,n ααα⋅⋅⋅线性无关,而12,,,,n αααβ⋅⋅⋅线性相关,则β可由12,,,n ααα⋅⋅⋅线性表示,且表示法唯一 4. 最大无关组相关知识向量组12,,,n ααα的极大无关组所含向量的个数,称为这个向量组的秩.记作12(,,,)n r αααA 经过有限次初等变换化为B .12,,,n ααα⋅⋅⋅和12,,,n βββ⋅⋅⋅可以相互线性表示. 记作:()()1212,,,,,,n n αααβββ⋅⋅⋅=⋅⋅⋅① 矩阵的行向量组的秩=列向量组的秩=矩阵的秩. 行阶梯形矩阵的秩等于它的非零行的个数.② 矩阵的初等变换不改变矩阵的秩,且不改变行(列)向量间的线性关系③ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且s n >,则12,,,s βββ⋅⋅⋅线性相关.向量组12,,,s βββ⋅⋅⋅线性无关,且可由12,,,n ααα⋅⋅⋅线性表示,则s ≤n .④ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且12(,,,)s r βββ⋅⋅⋅12(,,,)n r ααα=⋅⋅⋅,则两向量组等价; ⑤ 任一向量组和它的极大无关组等价.向量组的任意两个极大无关组等价. ⑥ 向量组的极大无关组不唯一,但极大无关组所含向量个数唯一确定. ⑦ 若两个线性无关的向量组等价,则它们包含的向量个数相等. ⑧ 设A 是m n ⨯矩阵,若()r A m =,A 的行向量线性无关; 5. 线性方程组理论Ax β=1122n n x x x αααβ+++=1112111212222212,,n n m m mn n m a a a x b a a a x b A x a a a x b β⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 其中 12,,2,,j j j mj j n αααα⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪⎝⎭1(1)解得判别定理(2)线性方程组解的性质:1212121211221212(1),,(2),,(3),,,,,,,,(4),,(5),,(6k k k k Ax Ax k k Ax k Ax Ax Ax Ax Ax ηηοηηηοηηηηολλλληληληγβηογηβηηβηηο=+⎫⎪=⎪⎬=⎪⎪++⎭==+==-= 是的解也是它的解 是的解对任意也是它的解齐次方程组 是的解对任意个常数 也是它的解 是的解是其导出组的解是的解 是的两个解是其导出组的解211212112212112212),(7),,,,100k k k k k k k Ax Ax Ax Ax Ax ηβηηηοηηηβληληληβλλλληληληλλλ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪=⇔-=⎪=⎪⎪+++=⇔+++=⎪⎪+++=⇔+++=⎩ 是的解则也是它的解是其导出组的解 是的解则也是的解 是的解(3) 判断12,,,s ηηη是Ax ο=的基础解系的条件:① 12,,,s ηηη线性无关; ② 12,,,s ηηη都是Ax ο=的解;③ ()s n r A =-=每个解向量中自由未知量的个数. (4) 求非齐次线性方程组Ax = b 的通解的步骤 (5)其他性质一个齐次线性方程组的基础解系不唯一. √ 若η*是Ax β=的一个解,1,,,s ξξξ是Ax ο=的一个解⇒1,,,,s ξξξη*线性无关√ Ax ο=与Bx ο=同解(,A B 列向量个数相同)⇔()()A r r A r B B ⎛⎫== ⎪⎝⎭, 且有结果: ① 它们的极大无关组相对应,从而秩相等;② 它们对应的部分组有一样的线性相关性; ③ 它们有相同的内在线性关系.√ 矩阵m n A ⨯与l n B ⨯的行向量组等价⇔齐次方程组Ax ο=与Bx ο=同解⇔PA B =(左乘可逆矩阵P );矩阵m n A ⨯与l n B ⨯的列向量组等价⇔AQ B =(右乘可逆矩阵Q ).第四部分 方阵的特征值及特征向量1. 施密特正交化过程2. 特征值、特征向量的性质及计算3. 矩阵的相似对角化,尤其是对称阵的相似对角化1.①n 个n 维线性无关的向量,两两正交,每个向量长度为1.②1(,)ni i i a b αβ===∑③(,)0αβ=. 记为:αβ⊥④21ni i a α====∑⑤(,1ααα==. 即长度为1的向量.2. 内积的性质: ① 正定性:(,)0,(,)0αααααο≥=⇔=且 ② 对称性:(,)(,)αββα=③ 线性性:1212(,)(,)(,)ααβαβαβ+=+3. ① 设A 是一个n 阶方阵, 若存在数λ和n 维非零列向量x , 使得 Ax x λ=,则称λ是方阵A 的一个特征值,x 为方阵A 的对应于特征值λ的一个特征向量.②0E A λ-=(或0A E λ-=).③()E A λϕλ-=(或()A E λϕλ-=).④ ()ϕλ是矩阵A 的特征多项式⇒()A O ϕ=⑤12n A λλλ= 1ni A λ=∑tr ,A tr 称为矩阵A⑥ 上三角阵、下三角阵、对角阵的特征值就是主对角线上的n 各元素. ⑦ 若0A =,则λ=0为A 的特征值,且Ax ο=的基础解系即为属于λ=0的线性无关的特征向量.⑧ ()1r A =⇔A 一定可分解为A =()1212,,,n n a a b b b a ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭、21122()n n A a b a b a b A =+++,从而A 的特征值为:11122n n A a b a b a b λ==+++tr , 23n λλλ====0.○注()12,,,Tn a a a 为A 各行的公比,()12,,,n b b b 为A 各列的公比.⑨ 若A 的全部特征值12,,,n λλλ,()f A 是多项式,则:① 若A 满足()f A O=⇒A 的任何一个特征值必满足()i f λ=0②()f A 的全部特征值为12(),(),,()n f f f λλλ;12()()()()n f A f f f λλλ=.⑩ A 与TA 有相同的特征值,但特征向量不一定相同. 4. 特征值与特征向量的求法 (1) 写出矩阵A 的特征方程0A E λ-=,求出特征值i λ.(2) 根据()0i A E x λ-=得到 A 对应于特征值i λ的特征向量. 设()0i A E x λ-=的基础解系为 12,,,in r ξξξ- 其中()i i r r A E λ=-.则A 对应于特征值i λ的全部特征向量为1122,i i n r n r k k k ξξξ--+++其中12,,,i n r k k k -为任意不全为零的数.5. ①1P AP B -= (P 为可逆矩阵) ②1P AP B -= (P 为正交矩阵)③A 与对角阵Λ相似.(称Λ是A6. 相似矩阵的性质: ①E A E B λλ-=-,从而,A B 有相同的特征值,但特征向量不一定相同.○注α是A 关于0λ的特征向量,1P α-是B 关于0λ的特征向量.②A B =tr tr ③A B = 从而,A B 同时可逆或不可逆④ ()()r A r B =⑤若A 与B 相似, 则A 的多项式()f A 与B 的多项式()f A 相似. 7. 矩阵对角化的判定方法① n 阶矩阵A 可对角化 (即相似于对角阵) 的充分必要条件是A 有n 个线性无关的特征向量. 这时,P 为A 的特征向量拼成的矩阵,1PAP -为对角阵,主对角线上的元素为A 的特征值.设i α为对应于i λ的线性无关的特征向量,则有:121n P AP λλλ-⎛⎫⎪ ⎪=⎪ ⎪⎝⎭. ② A 可相似对角化⇔()i i n r E A k λ--=,其中i k 为i λ的重数⇔A 恰有n 个线性无关的特征向量.○注:当iλ=0为A 的重的特征值时,A 可相似对角化⇔i λ的重数()n r A =-=Ax ο=基础解系的个数.③ 若n 阶矩阵A 有n 个互异的特征值⇒A 可相似对角化.8. 实对称矩阵的性质:① 特征值全是实数,特征向量是实向量; ② 不同特征值对应的特征向量必定正交;○注:对于普通方阵,不同特征值对应的特征向量线性无关; ③ 一定有n 个线性无关的特征向量. 若A 有重的特征值,该特征值i λ的重数=()i n r E A λ--; ④ 必可用正交矩阵相似对角化,即:任一实二次型可经正交变换化为标准形;⑤ 与对角矩阵合同,即:任一实二次型可经可逆线性变换化为标准形; ⑥ 两个实对称矩阵相似⇔有相同的特征值. 9. 正交矩阵 TAAE =正交矩阵的性质:① 1TAA -=;② TT AAA A E ==;③ 正交阵的行列式等于1或-1;④ A 是正交阵,则TA ,1A -也是正交阵; ⑤ 两个正交阵之积仍是正交阵;⑥ A 的行(列)向量都是单位正交向量组.10. 11.123,,ααα线性无关,单位化:111βηβ=222βηβ=333βηβ=技巧:取正交的基础解系,跳过施密特正交化。

线性代数公式必背_完整归纳清晰版

线性代数公式必背_完整归纳清晰版

线性代数必背公式(完全整理版)2010.41、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质: ①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C AB CB O B==、(1)m n CA OA AB B OB C==-⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵);⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关; ⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解;⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----=== ***111()()()T T TAB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12s A A A A =;Ⅱ、111121s A A A A ----⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B O B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CA B -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯) 3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=; 4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k -=,例如:1111(0)11k k k -⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =; ③、若AB ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C a b C ab Ca bC b C a b -----=+=++++++=∑;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-m n n n n n n n m n C C C m m n mⅢ、组合的性质:111102---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ;③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩; ②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩;②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数) ③、()1212n n x x a a a x β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭); ④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα构成n m ⨯矩阵12(,,,)m A =ααα;m 个n 维行向量所组成的向量组B :12,,,T TTmβββ构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭; 含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程) 3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14) 4. ()()T r A A r A =;(101P 例15) 5.n 维向量线性相关的几何意义:①、α线性相关⇔0α=; ②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα线性相关,则121,,,,s s αααα+必线性相关;若12,,,s ααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3) 向量组A 能由向量组B 线性表示AX B ⇔=有解; ()(,)r A r A B ⇔=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==(85P 定理2推论)8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P =;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9.对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10.若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵; ②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11.齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明; ①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯可由向量组12:,,,n s s A a a a ⨯线性表示为:(110P 题19结论)1212(,,,)(,,,)r s b b b a a a K =(B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性) (必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;(87P ) ②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关; 14. 12,,,s ααα线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++=成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Ax b =的一个解,12,,,n r ξξξ-为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-线性无关;(111P 题33结论)5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i j a a i j n i j=⎧==⎨≠⎩;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±;③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆; ⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7. n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数; A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)。

解密考点河北省考研数学三复习资料线性代数与解析几何重要考点总结

解密考点河北省考研数学三复习资料线性代数与解析几何重要考点总结

解密考点河北省考研数学三复习资料线性代数与解析几何重要考点总结解密考点:河北省考研数学三复习资料线性代数与解析几何重要考点总结一、线性代数重要考点总结线性代数是数学的一个重要分支,也是考研数学三中的一大重点内容。

在河北省考研数学三的复习资料中,线性代数占有相当大的比重。

下面是一些线性代数的重要考点总结。

1. 向量和矩阵向量和矩阵是线性代数的基础,是考研数学三中最为基本的概念。

需要掌握向量的加法、数乘、点乘等运算法则,以及矩阵的加法、数乘、乘法、转置等运算法则。

2. 行列式行列式是线性代数的一个重要概念,也是考研数学三中必考的考点之一。

需要熟练掌握行列式的定义、性质和计算方法。

特别是高阶行列式的计算,需要掌握常见的计算方法,如按行、按列展开等。

3. 矩阵的特征值与特征向量矩阵的特征值与特征向量是矩阵理论中的重要内容。

需要掌握特征值与特征向量的定义、性质,以及计算特征值与特征向量的方法。

还需要了解特征值的几何意义和应用。

4. 线性方程组线性方程组是线性代数中的一个重要概念,也是考研数学三中必考的考点之一。

需要掌握线性方程组的基本概念、解的存在性和唯一性,以及解的表示形式和求解方法。

还需要掌握线性方程组的矩阵表示形式和求解方法。

5. 线性空间与线性变换线性空间是线性代数的一个重要概念,需要掌握线性空间的定义、性质和基本运算法则。

线性变换是线性代数中的一个重要概念,需要掌握线性变换的定义、性质和基本运算法则。

二、解析几何重要考点总结解析几何是数学的一个分支,也是考研数学三的一大考点。

在河北省考研数学三的复习资料中,解析几何也是占有相当比重的内容。

下面是一些解析几何的重要考点总结。

1. 平面与直线的方程平面与直线的方程是解析几何的基础,是考研数学三中最为基本的概念。

需要掌握平面与直线的标准方程、一般方程和截距式方程。

需要熟悉平面与直线的位置关系,如平行、垂直等。

2. 空间中的点、直线与平面空间中的点、直线与平面是解析几何中的重要概念。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.伴随矩阵:
①、伴随矩阵的秩:;
②、伴随矩阵的特征值:;
③、、
8.关于矩阵秩的描述:
①、,中有阶子式不为0,阶子式全部为0;(两句话)
②、,中有阶子式全部为0;
③、,中有阶子式不为0;
线性方程组:,其中为矩阵,则:
①、与方程的个数相同,即方程组有个方程;
②、与方程组得未知数个数相同,方程组为元方程;
10.线性方程组的求解:
①、对增广矩阵进行初等行变换(只能使用初等行变换);
②、齐次解为对应齐次方程组的解;
③、特解:自由变量赋初值后求得;
11.由个未知数个方程的方程组构成元线性方程:
①、;
②、(向量方程,为矩阵,个方程,个未知数)
③、(全部按列分块,其中);
④、(线性表出)
⑤、有解的充要条件:(为未知数的个数或维数)
②、对矩阵,存在,、的行向量线性无关;
线性相关
存在一组不全为0的数,使得成立;(定义)
有非零解,即有非零解;
,系数矩阵的秩小于未知数的个数;
15.设的矩阵的秩为,则元齐次线性方程组的解集的秩为:;
简言之:无关组延长后仍无关,反之,不确定;
7.向量组(个数为)能由向量组(个数为)线性表示,且线性无关,则;
向量组能由向量组线性表示,则;
向量组能由向量组线性表示
有解;
向量组能由向量组等价
8.方阵可逆存在有限个初等矩阵,使;
①、矩阵行等价:(左乘,可逆)与同解
②、矩阵列等价:(右乘,可逆);
③、矩阵等价:(、可逆);
将顺时针或逆时针旋转,所得行列式为,则;
将主对角线翻转后(转置),所得行列式为,则;
将主副角线翻转后,所得行列式为,则;
5.行列式的重要公式:
①、主对角行列式:主对角元素的乘积;
②、副对角行列式:副对角元素的乘积;
③、上、下三角行列式():主对角元素的乘积;
④、和:副对角元素的乘积;
⑤、拉普拉斯展开式:、
⑥、范德蒙行列式:大指标减小指标的连乘积;
⑦、特征值;
6.对于阶行列式,恒有:,其中为阶主子式;
7.证明的方法:
①、;
②、反证法;③、构造齐次方程组,Fra bibliotek明其有非零解;
④、利用秩,证明;
⑤、证明0是其特征值;
2、矩阵
1.是阶可逆矩阵:
(是非奇异矩阵);
(是满秩矩阵)
的行(列)向量组线性无关;
齐次方程组有非零解;
11.齐次方程组的解一定是的解,考试中可以直接作为定理使用,而无需证明;
①、只有零解只有零解;
②、有非零解一定存在非零解;
12.设向量组可由向量组线性表示为:
()
其中为,且线性无关,则组线性无关;(与的列向量组具有相同线性相关性)
(必要性:;充分性:反证法)
注:当时,为方阵,可当作定理使用;
13.①、对矩阵,存在,、的列向量线性无关;
,总有唯一解;
与等价;
可表示成若干个初等矩阵的乘积;
的特征值全不为0;
是正定矩阵;
的行(列)向量组是的一组基;
是中某两组基的过渡矩阵;
2.对于阶矩阵:无条件恒成立;
3.
4.矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;
5.关于分块矩阵的重要结论,其中均、可逆:
若,则:
Ⅰ、;
Ⅱ、;
②、;(主对角分块)
4、向量组的线性相关性
1.个维列向量所组成的向量组:构成矩阵;
个维行向量所组成的向量组:构成矩阵;
含有有限个向量的有序向量组与矩阵一一对应;
2.①、向量组的线性相关、无关有、无非零解;(齐次线性方程组)
②、向量的线性表出是否有解;(线性方程组)
③、向量组的相互线性表示是否有解;(矩阵方程)
3.矩阵与行向量组等价的充分必要条件是:齐次方程组和同解;(例14)
线性代数必考知识点
1、行列式
1.行列式共有个元素,展开后有项,可分解为行列式;
2.代数余子式的性质:
①、和的大小无关;
②、某行(列)的元素乘以其它行(列)元素的代数余子式为0;
③、某行(列)的元素乘以该行(列)元素的代数余子式为;
3.代数余子式和余子式的关系:
4.设行列式:
将上、下翻转或左右翻转,所得行列式为,则;
③、;(副对角分块)
④、;(拉普拉斯)
⑤、;(拉普拉斯)
3、矩阵的初等变换与线性方程组
1.一个矩阵,总可经过初等变换化为标准形,其标准形是唯一确定的:;
等价类:所有与等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;
对于同型矩阵、,若;
2.行最简形矩阵:
①、只能通过初等行变换获得;
9.对于矩阵与:
①、若与行等价,则与的行秩相等;
②、若与行等价,则与同解,且与的任何对应的列向量组具有相同的线性相关性;
③、矩阵的初等变换不改变矩阵的秩;
④、矩阵的行秩等于列秩;
10.若,则:
①、的列向量组能由的列向量组线性表示,为系数矩阵;
②、的行向量组能由的行向量组线性表示,为系数矩阵;(转置)
②、每行首个非0元素必须为1;
③、每行首个非0元素所在列的其他元素必须为0;
3.初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)
①、若,则可逆,且;
②、对矩阵做初等行变化,当变为时,就变成,即:;
③、求解线形方程组:对于个未知数个方程,如果,则可逆,且;
4.初等矩阵和对角矩阵的概念:
①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;
4.;(例15)
5.维向量线性相关的几何意义:
①、线性相关;
②、线性相关坐标成比例或共线(平行);
③、线性相关共面;
6.线性相关与无关的两套定理:
若线性相关,则必线性相关;
若线性无关,则必线性无关;(向量的个数加加减减,二者为对偶)
若维向量组的每个向量上添上个分量,构成维向量组:
若线性无关,则也线性无关;反之若线性相关,则也线性相关;(向量组的维数加加减减)
Ⅰ、的列向量全部是齐次方程组解(转置运算后的结论);
Ⅱ、
⑨、若、均为阶方阵,则;
6.三种特殊矩阵的方幂:
①、秩为1的矩阵:一定可以分解为列矩阵(向量)行矩阵(向量)的形式,再采用结合律;
②、型如的矩阵:利用二项展开式;
二项展开式:;
注:Ⅰ、展开后有项;
Ⅱ、
Ⅲ、组合的性质:;
③、利用特征值和相似对角化:
②、,左乘矩阵,乘的各行元素;右乘,乘的各列元素;
③、对调两行或两列,符号,且,例如:;
④、倍乘某行或某列,符号,且,例如:;
⑤、倍加某行或某列,符号,且,如:;
5.矩阵秩的基本性质:
①、;
②、;
③、若,则;
④、若、可逆,则;(可逆矩阵不影响矩阵的秩)
⑤、;(※)
⑥、;(※)
⑦、;(※)
⑧、如果是矩阵,是矩阵,且,则:(※)
相关文档
最新文档