8位二进制乘法器设计报告

合集下载

基于时序电路的移位相加型8位硬件乘法器设计

基于时序电路的移位相加型8位硬件乘法器设计

基于时序电路的移位相加型8位硬件乘法器设计硬件乘法器是计算机中十分重要的一个组成部分,其作用是实现两个二进制数的乘法运算。

在硬件乘法器中,采取“移位相加”的方式进行计算,这种方式就是将一个数乘以另一个数时,将其中一个数的每一位与另一个数相乘,然后相加得到最终结果。

基于此,本文将围绕“基于时序电路的移位相加型8位硬件乘法器设计”进行详细阐述。

第一步,进行原理分析。

在8位硬件乘法器中,两个二进制数各占8位,分别是A、B。

在移位相加的计算方式中,B中的每一位都与A 中相应的位相乘,然后将所得到的结果进行相加即可。

第二步,进行电路设计。

在设计时,需要采用时序电路进行控制,即将所有需要的操作按照一定的步骤进行排列,并确保每一步操作的正确性。

具体来说,需要设计如下模块:1. 寄存器模块:用于存储A、B两个数以及计算时需要用到的中间结果。

将A、B送入寄存器中后,通过移位操作,将B中的各个二进制位与A中对应的位进行相乘,然后得到中间结果。

2. 加法器模块:用于将中间结果进行相加,并将最终结果存储在寄存器中。

3. 控制器模块:用于控制寄存器和加法器的操作顺序,确保计算的正确性。

第三步,进行仿真测试。

在设计完成后,需要进行仿真测试,以确保电路的正确性和稳定性。

在测试时,可以利用Verilog HDL进行仿真,对各个模块进行单独测试,并最终汇总验证。

第四步,进行综合与分析。

在仿真测试完成后,需要进行综合分析。

综合分析的目的是将Verilog代码转化为门电路级别的实现,以便进行电路布局和物理设计。

在综合分析中,需要考虑电路的功耗、时序、面积等因素,以确保电路的可行性和优化性。

总之,基于时序电路的移位相加型8位硬件乘法器设计,是一项复杂且关键的工作。

只有通过对原理的深入了解和对电路的细致设计,才能最终得到稳定、可靠的硬件乘法器。

8位乘法器设计

8位乘法器设计

8位乘法器设计一、摘要纯组合逻辑构成的乘法器虽然工作速度比较快,但过于占用硬件资源,难以实现宽位乘法器,基于PLD器件外接ROM九九表的乘法器则无法构成单片系统,也不实用。

这里介绍由八位加法器构成的以时序逻辑方式设计的八位乘法器,具有一定的实用价值,而且由FPGA构成实验系统后,可以很容易的用ASIC大型集成芯片来完成,性价比高,可操作性强。

其乘法原理是:乘法通过逐项移位相加原理来实现,从被乘数的最低位开始,若为1,则乘数左移后与上一次的和相加;若为0,左移后以全零相加,直至被乘数的最高位。

此设计是由八位加法器构成的以时序逻辑方式设计的八位乘法器,它的核心器件是八加法器,所以关键是设计好八位加法器。

二、综述ARICTL是乘法运算控制电路,它的START信号上的上跳沿与高电平有2个功能,即16位寄存器清零和被乘数A[7...0]]向移位寄存器SREG8B加载;它的低电平则作为乘法使能信号,乘法时钟信号从ARICTL的CLK输入。

当被乘数被加载于8位右移寄存器SREG8B后,随着每一时钟节拍,最低位在前,由低位至高位逐位移出。

当为1时,一位乘法器ANDARITH打开,8位乘数B[7..0]在同一节拍进入8位加法器,与上一次锁存在16位锁存器REG16B中的高8位进行相加,其和在下一时钟节拍的上升沿被锁进此锁存器。

而当被乘数的移出位为0时,一位乘法器全零输出。

如此往复,直至8个时钟脉冲后,由ARICTL的控制,乘法运算过程自动中止,ARIEND输出高电平,乘法结束。

此时REG16B的输出即为最后的乘积。

三、方案设计与分析方案一:八位直接宽位加法器,它的速度较快,但十分耗费硬件资源,对于工业化设计是不合理的。

方案二:由两个四位加法器组合八位加法器,其中四位加法器是四位二进制并行加法器,它的原理简单,资源利用率和进位速度等方面较好,综合各方面的考虑,决定采用第二种方案。

3.1程序清单1.library ieee; ----四位二进制并行加法器use ieee.std_logic_1164.all;use ieee.std_logic_unsigned.all;entity add4b isport( cin:in std_logic;a,b:in std_logic_vector(3 downto 0);s:out std_logic_vector(3 downto 0);cout:out std_logic);end;architecture one of add4b issignal sint,aa,bb:std_logic_vector(4 downto 0);beginaa<='0' & a;bb<='0' & b;sint<=aa+bb+cin;s<=sint(3 downto 0);cout<=sint(4);end;2.library ieee; --由两个四位二进制并行加法器级联而成的八位二进制加法器;use ieee.std_logic_1164.all;use ieee.std_logic_unsigned.all;entity adder8b isport( cin:in std_logic;a,b:in std_logic_vector(7 downto 0);s:out std_logic_vector(7 downto 0);cout:out std_logic);end;architecture one of adder8b iscomponent add4b --对要调用的元件add4b的端口进行说明port( cin:in std_logic;a,b:in std_logic_vector(3 downto 0);s:out std_logic_vector(3 downto 0);cout:out std_logic);end component;signal carryout: std_logic;beginu1:add4b port map(cin,a(3 downto 0),b(3 downto 0),s(3 downto 0),carryout);u2:add4b port map(carryout,a(7 downto 4),b(7 downto 4),s(7 downto 4),cout);end;3.library ieee; --一位乘法器;use ieee.std_logic_1164.all;use ieee.std_logic_unsigned.all;entity andarith isport( abin:in std_logic;din:in std_logic_vector(7 downto 0);dout:out std_logic_vector(7 downto 0));end;architecture one of andarith isbeginprocess(abin,din)beginfor i in 0 to 7 loopdout(i)<=din(i) and abin;end loop;end process;end;4.library ieee; --乘法运算控制器use ieee.std_logic_1164.all;use ieee.std_logic_unsigned.all;entity arictl isport( clk,start:in std_logic;clkout,rstall,ariend:out std_logic);end;architecture one of arictl issignal cnt4b:std_logic_vector(3 downto 0);beginrstall<=start;process(clk,start)beginif start='1' then cnt4b<="0000";elsif clk'event and clk='1' thenif cnt4b<8 then --小于8则计数,等于8则表明乘法运算已经结束cnt4b<=cnt4b+1;end if;end if;end process;process(clk,cnt4b,start)beginif start='0' thenif cnt4b<8 thenclkout<=clk; ariend<='0';else clkout<='0'; ariend<='1';end if;else clkout<=clk; ariend<='0';end if;end process;end;5.library ieee; --16位锁存器use ieee.std_logic_1164.all;use ieee.std_logic_unsigned.all;entity reg16b isport( clk,clr:in std_logic;d:in std_logic_vector(8 downto 0);q:out std_logic_vector(15 downto 0)); end;architecture one of reg16b issignal r16s:std_logic_vector(15 downto 0); beginprocess(clk,clr)beginif clr='1' then r16s<="0000000000000000";elsif clk'event and clk='1' thenr16s(6 downto 0)<=r16s(7 downto 1);r16s(15 downto 7)<=d;end if;end process;q<=r16s;end;6.library ieee; --8位右移寄存器use ieee.std_logic_1164.all;use ieee.std_logic_unsigned.all;entity sreg8b isport( clk,load:in std_logic;din:in std_logic_vector(7 downto 0);qb:out std_logic);end;architecture one of sreg8b issignal reg8:std_logic_vector(7 downto 0);beginprocess(clk,load)beginif clk'event and clk='1' thenif load='1' then reg8<=din;else reg8(6 downto 0)<=reg8(7 downto 1);end if;end if;end process;qb<=reg8(0);end;7.library ieee;--8位乘法器顶层设计use ieee.std_logic_1164.all;use ieee.std_logic_unsigned.all;entity mult8x8 isport( clk:in std_logic;start:in std_logic;a,b:in std_logic_vector(7 downto 0);dout:out std_logic_vector(15 downto 0);ariend:out std_logic);end;architecture struc of mult8x8 iscomponent adder8b isport( cin:in std_logic;a,b:in std_logic_vector(7 downto 0);s:out std_logic_vector(7 downto 0);cout:out std_logic);end component;component andarith isport( abin:in std_logic;din:in std_logic_vector(7 downto 0);dout:out std_logic_vector(7 downto 0)); end component;component arictl isport( clk,start:in std_logic;clkout,rstall,ariend:out std_logic);end component;component reg16b isport( clk,clr:in std_logic;d:in std_logic_vector(8 downto 0);q:out std_logic_vector(15 downto 0)); end component;component sreg8b isport( clk,load:in std_logic;din:in std_logic_vector(7 downto 0);qb:out std_logic);end component;signal gndint :std_logic;signal intclk :std_logic;signal rstall :std_logic;signal qb :std_logic;signal andsd :std_logic_vector(7 downto 0);signal dtbin :std_logic_vector(8 downto 0);signal dtbout :std_logic_vector(15 downto 0);begindout<=dtbout; gndint<='0';u1:arictl port map( clk,start,intclk,rstall,ariend);u2:sreg8b port map(intclk,rstall,b,qb);u3:andarith port map(qb,a,andsd);u4:adder8b port map(gndint,dtbout(15 downto 8),andsd,dtbin(7 downto 0),dtbin(8));u5:reg16b port map(intclk,rstall,dtbin,dtbout);end;3.2仿真结果(1)输入波形图(2)输出波形图3.3工作原理图cin a[7..0]b[7..0]s[7..0]coutadder8binst1abin din[7..0]dout[7..0]andarithinst2clkstart clkout rstallariend arictl inst3clk clr d[8..0]q[15..0]reg16b inst5clk loaddin[7..0]qbsreg8b inst6dout[15..0]OUTPUTVCCB[7..0]INPUT VCCA[7..0]INPUT dout5[15..0]OUTPUT二、方案综合评价与结论它由两个四位加法器组合八位加法器,其中四位加法器是四位二进制并行加法器,它的原理简单,资源利用率和进位速度方面都比较好,电路原理简单,连线很少,制作起来方便易行,总体来说还是很成功的。

8位乘法器的设计

8位乘法器的设计

本科生毕业论文(设计)8位乘法器的设计姓名:指导教师:院系:信息工程学院专业:计算机科学与技术提交日期: 2010/4/30目录中文摘要 (2)外文摘要 (3)1.绪论 (4)1.1概述 (4)1.2 VHDL和MAX+PIUS简介 (5)1.3 实验平台 (6)2.乘法器初步设计 (7)2.1 设计思想 (7)2.2乘法器原理 (7)2.3乘法器设计流程 (8)3. 乘法器具体设计 (9)3.1右移寄存器的设计 (9)3.2 加法器模块的设计 (10)3.2.1 4位加法器的设计 (10)3.2.2 8位加法器的设计 (11)3.3 乘1模块设计 (13)3.4锁存器模块设计 (14)4. 乘法器仿真 (17)4.1 8位加法器仿真 (17)4.2 乘1模块仿真 (17)4.3 锁存器模块仿真 (18)4.4 8位乘法器仿真 (18)结束语 (19)参考文献 (20)致谢 (21)8位乘法器的设计摘要:在微处理器芯片中,乘法器是进行数字信号处理的核心,同时也是微处理器中进行数据处理的关键部件,它已经是现代计算机必不可少的一部分。

本文主要是在于如何运用标准硬件描述语言(VHDL)完成八位乘法器,以及如何做二进制位相乘的运算过程。

该乘法器是由八位加法器构成的以时序方式设计八位乘法器,通过逐项移位相加来实现乘法功能,并以MAX+Plus II 软件工具进行模拟,仿真并予以显示。

关键字:乘法器;标准硬件描述语言(VHDL);移位相加;MAX+Plu s II8-bit multiplier designAbstract:In the microprocessor chip, the multiplier is a digital signal processing core microprocessor is also a key component of data processing, it is already an essential part of the modern computer. This article is on how to use standard hardware description language (VHDL) to complete eight multipliers, as well as how to make the process of a binary bit multiplication operation. The multiplier is composed of eight adder to timing approach in designing eight multiplier, achieved by adding the multiplication-by-shift function, and in MAX + Plus II software tools for simulation, emulation and be displayed.Keywords: multiplier; standard hardware description language (VHDL); shift sum; MAX + Plus II1.绪论1.1概述本课题的设计来源是基于标准硬件描述语言(Very High Speed Integrated Circuit Hardware Description Language,VHDL)及MAX + Plus II(Multiple Array Matrix Programmable Logic User System)软件开发工具的进行模拟仿真的8位乘法器,用于实现8位移位相加乘法器的乘法运算功能。

8位2进制乘法器电路设计.docx

8位2进制乘法器电路设计.docx

8位二进制乘法电路选题目的:学会使用quarter 软件设计电路及仿真,实现8位二进制乘法电路。

设计目的:学习应用移位相加原理设计8位乘法器实现方案:由于其原理是利用8位二进制乘法采用移位相加的方法。

即用乘数的 各位数码,从低位开始依次与被乘数相乘,毎相乘一次得到的积称为部分积,将 第一次(由乘数最低位与被乘数相乘)得到的部分积右移一位并与第二次得到的 部分积相加,将加得的和右移一位再与第三次得到的部分积相加,再将相加的结 果右移一位与第四次得到的部分积相加。

直到所有的部分积都被加过一次。

例如:被乘数(M7M6M5M4M3M2M1M0 )和乘数(N7N6N5N4N3N2N1N0)分别为 11010101 和 10010011,其计算过程如下:N0与被乘数相乘的部分积,部分积右移一位 N1与被乘数相乘的部分积两个部分积Z 和,部分积Z 和右移一位 N2与被乘数相乘的部分积与前面部分积之和相加,部分积之和右移一 N4与被乘数相乘的部分积N7与被乘数相乘的部分积 与前面部分积Z 和相加 右移一位得到最后的积设计过程:从逻辑图及其乘法操作时序图图(示例中的相乘数为9FH 和FDH )上可以清楚地看出此乘法器的工作原理。

逻辑波形图中, START 信号的上跳沿及其高电平有两个功能,即16位寄存器清零和 被乘数A[7..O]向移位寄存器SREG8B 加载;它的低电平则作为乘法 使能信号。

CLK 为乘法时钟信号。

当被乘数被加载于8位右移寄存 器SREG8B 后,110 10 10 1 X 1 0 0 1 0 0 1 1110 10 10 1 110 10 10 1 + 110 10 10 1 10 0 1111111 10 0 1111111 + 000000000 10 0 1111111 0 10 0 1111111 + 000000000 10 10 10 01 10 10 0 10 0随着每一时钟节拍,最低位在前,由低位至高位逐位移出。

8位乘法器设计

8位乘法器设计

EDA大作业基于VHDL的8位乘法器设计1.乘法器原理8位乘法器可用移位和加法来实现,两个8位数相乘,总共需要执行8次加法运算和8次移位运算,由乘数的末位值确定被乘数是否与原部分积相加,从乘数的最低位开始,若乘数为1,加被乘数,然后右移一位,形成新的部分积,乘数同时右移一位;若乘数为0,加上零值,然后右移一位,形成新的部分积,乘数同时右移一位,直到乘数的最高位为止,从而得出最终的乘积结果。

实现原码一位乘法的硬件逻辑结构图如下图所示。

用寄存器R0存放部分积;R0存放乘数Y,并且最低位Yn作判断为;R0和R1都具有右移功能并且是连通的;寄存器R2存放被乘数X,加法器完成部分积与位积求和,计数器记录相加移位的操作次数。

8位乘法器的顶层设计主要分成四大功能模块,并可根据分解的层次进行设计,各个功能模块作用介绍如下:1)右移寄存器模块:是指寄存器中所存的代码能够在移位脉冲的作用下依次左移或右移,本设计采用的一个8位寄存器,能存放8位二进制代码,需用8个触发器来构成,它可将乘法运算中的被乘数加载于其中,同时进行乘法运算的移位操作。

2)加法器:本设计用到一个8位加法器,主要进行操作数的加法运算。

3)乘1模块:主要实现8位与1位的乘法运算。

4)锁存器:它所实现的功能是把当前的状态锁存起来,使CPU送出的数据在接口电路的输出端保持一段时间锁存后状态不再发生变化,直到解除锁定。

本次设计采用16位锁存器,同时也是一个右移寄存器,在时钟信号作用下,进行输入值的移位与锁存。

2.乘法器设计流程本设计采用移位和加法来实现两个8位二进制数相乘。

由乘数的末尾值来确定被乘数是否与原部分积相加,然后右移一位,形成新的部分积;同时,乘数也右移一位,由次低位作新的末位,空出最高位放部分积的最高位。

例如被乘数为00000101,乘数为01101111,初始条件下,部分积为0,乘数最低位为1,加被乘数,和为00000101,使其右移一位,形成新的部分积为00000010,乘数同时右移一位,原和最低位1被放到乘数的最高位,此时,乘数最低位为1,加00000101,和为00000111,使其右移一位,形成新的部分积为0000011,依次类推,循环8次,总共需要进行8次相加和8次移位操作,最终得出乘积结果。

8位乘法器设计范文

8位乘法器设计范文

8位乘法器设计范文1.乘法器的基本原理乘法器的基本原理是通过将两个数中的每一位进行相乘,得到部分乘积,然后将所有部分乘积相加得到最终的乘积。

以两个8位数A和B相乘为例,可以将A的每一位与B的每一位相乘,然后将部分乘积相加,得到一个16位的结果。

2.乘法器的电路结构一种常见的8位乘法器电路结构是使用一位乘法器和8位加法器组合而成。

这种结构可以将乘法操作分解为多个阶段,简化电路设计。

首先,使用一个一位乘法器对A的每一位分别与B的所有位进行相乘,得到8个部分乘积。

然后,使用8位加法器将这些部分乘积相加,得到最终的乘积。

3.一位乘法器的设计一位乘法器是8位乘法器的基本组成部分。

它是一个计算两个单独位的乘法结果的电路。

常见的一位乘法器实现方法包括使用门电路、Karnaugh图和有限状态机等。

3.1使用门电路的一位乘法器设计一位乘法器可以通过使用与门、或门和非门来实现。

基本原理是将两个输入位相与得到部分乘积的低位,然后使用或门和非门对部分乘积和进位进行处理,得到最终的乘积位和进位位。

3.2 使用Karnaugh图的一位乘法器设计Karnaugh图是一种按照二进制输入和输出函数绘制的图表。

它可以帮助分析和简化布尔代数函数。

使用Karnaugh图可以快速绘制并简化一位乘法器的逻辑电路。

3.3使用有限状态机的一位乘法器设计有限状态机是一种具有有限个状态和状态转移规则的模型。

可以使用有限状态机模型来描述和实现一位乘法器的行为。

这种设计方法可以更好地描述一位乘法器的状态转移关系,但也需要更复杂的控制电路。

4.8位乘法器的实现使用一位乘法器的设计方法,可以将乘法器分为两个阶段:部分乘积生成和部分乘积相加。

首先,使用8个一位乘法器对A的每一位与B的每一位进行相乘,得到8个部分乘积。

然后,使用8位加法器将这些部分乘积相加,得到最终的乘积。

这个设计方法的优点是每个一位乘法器可以独立并行地进行计算,提高了计算效率。

而且,部分乘积生成和部分乘积相加可以分别设计和优化,使得整个乘法器的电路结构更清晰。

ASIC系统设计实验报告八位乘法器

ASIC系统设计实验报告八位乘法器

八位乘法器的设计汪明 2080130204 信号与信息处理 乘法是算术运算中经常用到的一个运算单元,所以在算法实现中会经常用到乘法。

由于乘法器具有一定的复杂性,考虑到面积等因素,很多传统的处理器中都不包含乘法器单元,乘法则是通过算法换算成加法和移位在处理器中进行实现,针对这些处理器编写程序的时候应尽量少的应用乘法运算。

随着DSP 技术的逐步发展,目前大多数高性能的处理器中都包含了乘法器运算单元,但仍有很多小型的控制型处理器不包含这一单元,所以设计面积小、速度快、性能稳定的乘法器模块仍然很有意义。

本实验的目的是选用一种设计方案设计一个八位乘法器,利用XINLINX ISE 软件进行VHDL 程序的编写,然后对程序进行仿真验证,并对所设计的乘法器进行评价。

1 原理分析与方案选择乘法器的设计有多种方案,有模拟乘法器、数字乘法器两种类型,前者主要是利用模拟器件对模拟信号进行乘法的设计,复杂度较高,后者则是通过数字器件来实现数字信号的乘法。

本实验利用FPGA 设计数字乘法器件,根据数字信号的乘法运算准则,又有串行和并行两种设计方法,串行设计时被乘数从低位到高位串行输入,乘法结果从低位到高位串行输出,其常用的结构(四位乘法器)如下图(1)所示;并行乘法器的输入/输出采用并行的方式,通常情况下计算性能比串行的好。

图1 四位串行乘法器结构本文采用并行输入/输出方式来进行乘法器的设计。

下面以4位二进制数的乘法为例,对二进制乘法运算的过程(图2示)进行说明。

由图2可知,如果对中间部分一行一行的处理,则乘法部分由一个个的2输入与门与二输入全加器组成,将这些结构联合在一起组成如图3所示的结构。

)0()1()2()3()4()5()6()7(0313233302122232011121310010203001230123pro pro pro pro pro pro pro pro b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a a a a a b b b b ----------------------------------------+••••+••••+••••••••⨯K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K 图2 四位二进制乘法过程图3 四位二进制乘法结构图从图3可以看出,上述结构中顶层、底层、中间层分别采用不同的结构,而且中间层的三个层结构完全相同。

8bit booth乘法器

8bit booth乘法器

8bit booth乘法器8位乘法器是一种能够完成两个8位二进制数的乘法运算的电子器件。

在数字电路和计算机学中,乘法器是实现算术运算的重要组件之一。

由于乘法涉及到多位数的运算,所以乘法器的设计将会比加法器复杂一些,但因为其实现是数字逻辑的原理之一,所以乘法器仍然是非常常见且广泛应用的电路。

8位乘法器由多个基本的逻辑门组成,这些逻辑门能够根据一个简单的算法将两个输入的数相乘得出一个结果。

下面将会详细介绍8位乘法器的工作原理、设计方法和优缺点。

1. 工作原理8位乘法器的工作原理是通过模拟手算乘法的过程来实现:将其中一个乘数按照二进制数的位数将其分为多个数字,然后逐位与另一个乘数相乘;然后将相乘所得的结果相加,得到最终的积。

8位乘法器通常采用Booth乘法算法。

Booth乘法算法是一种数值优化的乘法算法,其基本思想是在乘法过程中尽量减少加法器的使用次数。

Booth乘法使用了“移位-加/减”操作,通过每次将操作数向右移一位,从而将相乘的过程分解成一系列的加/减运算。

具体来讲,假设我们要将A和B两个8位二进制数相乘,现在以A=00101011和B=00011101为例说明Booth乘法的具体流程:1) 将A和B扩展为9位宽,即A=000101011和B=000011101;2) 将B的最低位和次低位相连,得到"01",将其作为操作码,表示下一步的移位和加/减操作的类型;3) 将A向左移一位,再加上操作码;4) 根据操作码,选择加法或减法,得到一个结果,存储在寄存器中;5) 将寄存器向右移一位,得到下一步的操作码;6) 重复3)到5)的步骤,共进行8次,即完成了整个乘法的计算。

Booth乘法的关键就在于它的“加减优化”机制。

当操作码为“01”时,表示需要对寄存器进行减法操作,而这个减法实际上是通过加上B 的补码来实现的;同样,当操作码为“10”时,表示需要对寄存器进行加法操作,但实际上是通过减去B的补码来实现的。

八位“Booth二位乘算法”乘法器

八位“Booth二位乘算法”乘法器

⼋位“Booth⼆位乘算法”乘法器⽬录⼋位“Booth⼆位乘算法”乘法器原理补码乘法器之前介绍了⼏篇⽆符号乘法器或加法器的写法,当然,稍作修改也就可以改成符合有符号数的乘法器或加法器。

但是呢,我们之前写的乘法器或加法器,其实都是默认是正数来写的,⽽且是以正数的原码来写的,所以上⾯说稍作修改也就可以成为有符号数的乘法器或加法器,其实就是对我们以为的原码进⾏取补码,再进⾏乘法或加法的运算。

随着计算机硬件部件的升级,处理器技术的发展,现代处理器中的定点数(⼩数点位置固定)都是按照补码形式来存储的。

所以在之前写的⽆符号加法器中,只要利⽤:X_补+Y_补=[X+Y]_补就可以轻易将原先的加法器改写成有符号加法器——只要对结果再取⼀次补码即可。

但是乘法器呢?稍作学习可以知道,补码的乘法是这样的:X*Y_补=[X*Y]_补我们再考虑⼀下之前所说的:在现代处理器中的定点数都是按照补码形式来存储的。

所以我们要想得到两个数的乘法结果,⾸先应该知道被乘数的原码和补码,再对最终结果取补码,即可得到我们期望的乘法结果。

那么如何求“X*Y补”呢?在处理器中,⼀个⼆进制数Y补形如y7y6y5y4y3y2y1y0,也就是表⽰⼀个数的补码,那么它的原码是多少呢?补码的计算⽅法,除了“⾸位不变,余位取反再加⼀”的⽅式,还有⼀种就是“⽤溢出条件来减这个数”,在我们之前第⼀节课说⼆进制的时候,以钟表为例——“⼗⼆进制”,得到结论——“4是-8的补码”。

我们⽤第⼆种取补码的⽅式:-8的补码=12-8=4(这⾥没有考虑符号问题,只是求了补码的值)所以考虑⼀下符号的话,-8的补码=8-12=-4同理:⼗进制下,-4的补码=4-10=-6⼆进制下,-101补码=1101补码=101-1000=-011=1011这样解决求补码的⽅式在接下来的计算⽅⾯就更⽅便了,⾄于正数嘛,不变就好了。

回到上⾯的问题,⼀个⼆进制数Y补形如y7y6y5y4y3y2y1y0,它的原码是多少呢?根据:[X_补]_补=XY补的原码Y应该为:Y=(y_7*2^7+y_6*2^6+y_5*2^5+……+y_0*2^0)-1*2^8稍微化简⼀下:Y=-y_7*2^7+(y_6*2^6+y_5*2^5+……+y_0*2^0)所以我们如果想求X*Y,可以先求其补码:[X*Y]_补=[X*(-y_7*2^7)+X*(y_6*2^6+y_5*2^5+……+y_0*2^0)]_补根据补码加法“X补+Y补=[X+Y]补”再稍微化简⼀下:[X*Y]_补=-y_7*[X*2^7]_补+y_6*[X*2^6]_补+y_5*[X*2^5]_补+……+y_0*[X*2^0]_补再引⼊⼀个定理:[X*2^n]_补=X_补*2^n所以上式⼜可以换⼀种写法:[X*Y]_补=X_补*(-y_7*2^7+(y_6*2^6+y_5*2^5+……+y_0*2^0))=Y*X_补哦这不就是上⾯介绍过的补码乘法嘛:[X*Y]_补=Y*X_补=X*Y_补如果令⼀个数Y1补=y6y6y5y4y3y2y1y0,去掉了⾸位,那么上式是不是可以理解为:[X*Y]_补=X_补*Y1_补-y_7*X_补*2^7其中的Y1补不就刚好是Y补的后7位嘛?也就是说⼀个乘法可以分为两部分理解:⾸位的乘法和其他位的乘法。

EDA移位相加8位硬件乘法器电路设计

EDA移位相加8位硬件乘法器电路设计

CHANGZHOU UNIVERSITY课程名称:______________ F PGA设计_______________________________________ 题目:________________ 移位相加8位硬件乘法器电路设计 ____________________ 学生姓名:_______________________________________________________学院(系):信息科学与工程学院专业班级:_产品设计需求说明本产品实现的功能:比较方便地实现两个8位二进制数的乘法运算。

设计参数使用的芯片/硬件平台GW48实验系统软件平台W ind owsXP+Muxplu sll 10.1二、方案设计及实现1、系统实现原理和总体框图该乘法器是由8位加法器构成的以时序方式设计的8位乘法器。

其乘法原理是:乘法通过逐项移位相加原理來实现,从被乘数的最低位开始,若为1,则乘数左移后与上一次的和相加;若为0,左移后以全零相加,直至被乘数的最高位。

从下图可以清楚地看出此乘法器的工作原理。

在下图中,START信号的上跳沿及其高电平有两个功能,即16位寄存器清零和被乘数A[7..O]向移位寄存器SREG8B加载;它的低电平则作为乘法使能信号。

CLK为乘法时钟信号。

当被乘数被加载于8位右移寄存器SREG8B 后,随着每一时钟节拍,最低位在前,由低位至高位逐位移出。

当为1时,与门ANDARITH打开,8位乘数B[7..O]在同一节拍进入8位加法器,与上一次锁存在16位锁存器REG16B 中的高8位进行相加,其和在下一时钟节拍的上升沿被锁进此锁存器。

而当被乘数的移出位为0时,与门全零输出。

如此往复,直至8个时钟脉冲后,乘法运算过程中止。

此时REG16B的输出值即为最后的乘积。

此乘法器的优点是节省芯片资源,它的核心元件只是一个8位加法器,其运算速度取决于输入的时钟频率。

本设计采用层次描述方式,且用原理图输入和文本输入混合方式建立描述文件。

8位乘法器的设计

8位乘法器的设计

8位乘法器的设计1.实验目的1)学习MAX+plus II软件的基本使用方法。

2)了解VHDL程序的基本逻辑电路的综合设计。

2.实验内容设计并调试好一个8位乘法器,并用MAX+plus II实验开发系统进行系统仿真。

这里的设计思路是由8位加法器构成的以时序逻辑方式设计的8位乘法器。

乘法通过逐位相加原理来实现,从被乘数的最低为开始,若为1,则被乘数左移后与上一次和相加;若为0,左移后与全零相加,直至被乘数的最高位。

8为乘法器有乘法运算控制电路ARICTL、8位右移寄存器SREG8B、16为锁存器REG16B、选通与门ANDARITH、和8位加法器的ADDER8B逻辑构成。

3.实验条件1)开发软件:MAX+plus II。

2)实验设备:装有VISTA系统电脑一台。

4.实验设计1)系统的原理框图2)VHDL源程序--选通与门模块的源程序ANDARITH.VHDLIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY ANDARITH ISPORT(ABIN: IN STD_LOGIC;DIN: IN STD_LOGIC_VECTOR(7 DOWNTO 0); DOUT: OUT STD_LOGIC_vector(7 DOWNTO 0)); END ENTITY ANDARITH;ARCHITECTURE ART OF ANDARITH ISBEGINPROCESS(ABIN,DIN)ISBEGINFOR I IN 0 TO 7 LOOPDOUT(I)<=DIN(I)AND ABIN;END LOOP;END PROCESS;END ARCHITECTURE ART;--4位二进制并行加法器的源程序ADDER4B.VHD LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY ADDER4B ISPORT(C4: IN STD_LOGIC;A4: IN STD_LOGIC_VECTOR(3 DOWNTO 0);B4: IN STD_LOGIC_VECTOR(3 DOWNTO 0);S4: OUT STD_LOGIC_VECTOR(3 DOWNTO 0);CO4: OUT STD_LOGIC);END ENTITY ADDER4B;ARCHITECTURE ART OF ADDER4B ISSIGNAL S5: STD_LOGIC_VECTOR(4 DOWNTO 0); SIGNAL A5,B5: STD_LOGIC_VECTOR(4 DOWNTO 0); BEGINA5<='0'&A4;B5<='0'&B4;S5<=A5+B5+C4;S4<=S5(3 DOWNTO 0);CO4<=S5(4);END ARCHITECTURE ART;--8位二进制加法器的源程序ADDER8B.VHD LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY ADDER8B ISPORT(CIN: IN STD_LOGIC;A: IN STD_LOGIC_VECTOR(7 DOWNTO 0);B: IN STD_LOGIC_VECTOR(7 DOWNTO 0);S: OUT STD_LOGIC_VECTOR(7 DOWNTO 0);COUT: OUT STD_LOGIC);END ENTITY ADDER8B;ARCHITECTURE ART OF ADDER8B ISCOMPONENT ADDER4B ISPORT(C4: IN STD_LOGIC;A4: IN STD_LOGIC_VECTOR(3 DOWNTO 0);B4: IN STD_LOGIC_VECTOR(3 DOWNTO 0);S4: OUT STD_LOGIC_VECTOR(3 DOWNTO 0);CO4: OUT STD_LOGIC);END COMPONENT ADDER4B;SIGNAL SC: STD_LOGIC;BEGINU1: ADDER4BPORT MAP(C4=>CIN,A4=>A(3 DOWNTO 0),B4=>B(3 DOWNTO 0), S4=>S(3 DOWNTO 0),CO4=>SC);U2: ADDER4BPORT MAP(C4=>SC,A4=>A(7 DOWNTO 4),B4=>B(7 DOWNTO 4), S4=>S(7 DOWNTO 4),CO4=>COUT);END ARCHITECTURE ART;--6位锁存器的源程序REG16B.VHDLIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY REG16B ISPORT (CLK: IN STD_LOGIC;CLR: IN STD_LOGIC;D: IN STD_LOGIC_VECTOR(8 DOWNTO 0);Q: OUT STD_LOGIC_VECTOR(15 DOWNTO 0));END ENTITY REG16B;ARCHITECTURE ART OF REG16B ISSIGNAL R16S: STD_LOGIC_VECTOR(15 DOWNTO 0);BEGINPROCESS(CLK,CLR)ISBEGINIF CLR='1' THEN R16S<="0000000000000000";ELSIF CLK'EVENT AND CLK= '1' THENR16S(6 DOWNTO 0)<=R16S(7 DOWNTO 1);R16S(15 DOWNTO 7)<=D;END IF;END PROCESS;Q<=R16S;END ARCHITECTURE ART;--8位右移寄存器的源程序SREG8B.VHDLIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY SREG8B ISPORT(CLK: IN STD_LOGIC;LOAD: IN STD_LOGIC;DIN: IN STD_LOGIC_VECTOR(7 DOWNTO 0);QB: OUT STD_LOGIC);END ENTITY SREG8B;ARCHITECTURE ART OF SREG8B ISSIGNAL REG8B: STD_LOGIC_VECTOR(7 DOWNTO 0); BEGINPROCESS(CLK,LOAD)ISBEGINIF CLK'EVENT AND CLK='1' THENIF LOAD='1' THEN REG8B<=DIN;ELSE REG8B(6 downto 0)<=REG8B(7 DOWNTO 1);END IF;END IF;END PROCESS;QB<=REG8B(0);END ARCHITECTURE ART;--乘法运算控制器的源程序ARICTL.VHDLIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY ARICTL ISPORT(CLK:IN STD_LOGIC; START:IN STD_LOGIC;ARIEND:OUT STD_LOGIC;CLKOUT: OUT STD_LOGIC;RSTALL: OUT STD_LOGIC);END ENTITY ARICTL;ARCHITECTURE ART OF ARICTL ISSIGNAL CNT4B: STD_LOGIC_VECTOR(3 DOWNTO 0);BEGINRSTALL<=START;PROCESS(CLK,START)ISBEGINIF START='1'THEN CNT4B<="0000";ELSIF CLK'EVENT AND CLK='1'THENIF CNT4B<8 THENCNT4B <=CNT4B+1;END IF;END IF;END PROCESS;PROCESS(CLK,CNT4B,START)ISBEGINIF START='0' THENIF CNT4B<8 THENCLKOUT <=CLK;ARIEND<='0';ELSE CLKOUT<='0';ARIEND<='1';END IF;ELSE CLKOUT<=CLK;ARIEND<='0';END IF;END PROCESS;END ARCHITECTURE ART;--8位乘法器的源程序MULTI8X8.VHDLIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY MULTI8X8 ISPORT(CLK:IN STD_LOGIC;START:IN STD_LOGIC;A:IN STD_LOGIC_VECTOR(7 DOWNTO 0);B:IN STD_LOGIC_VECTOR(7 DOWNTO 0);ARIEND:OUT STD_LOGIC;DOUT:OUT STD_LOGIC_VECTOR(15 DOWNTO 0)); END ENTITY MULTI8X8;ARCHITECTURE ART OF MULTI8X8 ISCOMPONENT ARICTL ISPORT(CLK:IN STD_LOGIC;START:IN STD_LOGIC;CLKOUT:OUT STD_LOGIC; RSTALL:OUT STD_LOGIC;ARIEND: OUT STD_LOGIC);END COMPONENT ARICTL;COMPONENT ANDARITH ISPORT(ABIN:IN STD_LOGIC;DIN:IN STD_LOGIC_VECTOR(7 DOWNTO 0);DOUT: OUT STD_LOGIC_VECTOR(7 DOWNTO 0));END COMPONENT ANDARITH;COMPONENT ADDER8B ISPORT(CIN: IN STD_LOGIC;A: IN STD_LOGIC_VECTOR(7 DOWNTO 0);B: IN STD_LOGIC_VECTOR(7 DOWNTO 0);S: OUT STD_LOGIC_VECTOR(7 DOWNTO 0);COUT: OUT STD_LOGIC);END COMPONENT ADDER8B ;COMPONENT SREG8B ISPORT(CLK: IN STD_LOGIC;LOAD: IN STD_LOGIC;DIN: IN STD_LOGIC_VECTOR(7 DOWNTO 0);QB: OUT STD_LOGIC);END COMPONENT SREG8B ;COMPONENT REG16B ISPORT (CLK: IN STD_LOGIC;CLR: IN STD_LOGIC;D: IN STD_LOGIC_VECTOR(8 DOWNTO 0);Q: OUT STD_LOGIC_VECTOR(15 DOWNTO 0));END COMPONENT REG16B ;SIGNAL S1: STD_LOGIC;SIGNAL S2: STD_LOGIC;SIGNAL S3: STD_LOGIC;SIGNAL S4: STD_LOGIC;SIGNAL S5: STD_LOGIC_VECTOR(7 DOWNTO 0);SIGNAL S6: STD_LOGIC_VECTOR(8 DOWNTO 0);SIGNAL S7: STD_LOGIC_VECTOR(15 DOWNTO 0);BEGINDOUT<=S7; S1<='0';U1:ARICTL PORT MAP(CLK=>CLK,START=>START,CLKOUT=>S2,RSTALL=>S3,ARIEND=>ARIEND);U2:SREG8B PORT MAP(CLK=>S2,LOAD=>S3,DIN=>A,QB=>S4);U3:ANDARITH PORT MAP(ABIN=>S4,DIN=>B,DOUT=>S5);U4:ADDER8B PORT MAP(CIN=>S1,A=>S7(15 DOWNTO 8),B=>S5,S=>S6(7 DOWNTO 0),COUT=>S6(8));U5:REG16B PORT MAP(CLK=>S2,CLR=>S3,D=>S6(8 DOWNTO 0),Q=>S7(7 DOWNTO 0));END ARCHITECTURE ART;5.实验结果及总结1)系统仿真情况输入值A=0AH、B=0CH,结果DOUT=0078H;输入值A=0CH、B=0AH,结果DOUT=0078H;输入值A=02H、B=03H,结果DOUT=0006H;仿真图如下:2)仿真分析当START输入信号为“1”,REG16B清零和被乘数A[7..0]向移位寄存器加载。

8位乘法器设计范文

8位乘法器设计范文

8位乘法器设计范文乘法器是计算机中常见的一种算术逻辑单元(ALU),用于执行两个数相乘的操作。

在计算机体系结构中,乘法器的设计是非常重要的,因为它对计算机的性能和功耗有很大的影响。

本文将介绍一种设计8位乘法器的方法,包括乘法器的原理、设计要点和优化技术等。

以下是本文的详细内容。

乘法器的原理:乘法操作可以通过多次的加法和移位操作来实现。

具体来说,乘法操作可以分解为一系列的部分积相加。

例如,8位二进制数A和B的乘积可以通过以下步骤计算得到:1.取出乘数A的最低位,判断该位是否为1,若为1,则将被乘数B加到一个累加器中;2.将乘数A向右移位一位,将被乘数B向左移位一位;3.重复以上两步,直到乘数A的所有位都被处理完。

设计要点:在设计8位乘法器时,需要考虑以下几个关键要点:1.输入和输出:8位乘法器的输入包括两个8位的二进制数A和B,输出为一个16位的二进制数,表示A和B的乘积;2.延迟:乘法器的延迟是指执行完一次乘法操作所需要的时钟周期数。

延迟越短,计算速度越快;3.精度:乘法器应能够正确计算任意两个8位数的乘积,所以输出的位数应足够表示结果;4.功耗:乘法器的功耗是指在执行乘法操作时消耗的能量,应尽量减小功耗以提高系统的能效。

优化技术:为了提高8位乘法器的性能和功耗,可以采用以下几种优化技术:1.并行计算:将乘法操作拆分成多个部分积相加的过程,并行计算可以显著减小乘法器的延迟;2.压缩编码:利用矩阵乘积的性质,对部分积进行压缩编码,减少中间结果的位数,从而减小乘法器的面积和功耗;3.位分块技术:将输入的位数按照一定的规则分成多个块,对每个块进行乘法操作,然后将部分积相加得到最终结果;4.低功耗技术:采用节能的电路设计和优化布局,例如使用低阈值电平、降低电压和电流等。

总结:本文介绍了8位乘法器的设计原理、设计要点和优化技术。

乘法器是计算机中常用的算术逻辑单元,对计算机的性能和功耗有很大的影响。

通过采用并行计算、压缩编码、位分块和低功耗技术等优化技术,可以提高乘法器的性能和功耗效率。

8位乘法器实验报告

8位乘法器实验报告

6.2 8位乘法器的设计1.实验目的(1)熟悉isEXPERT/MAX+plusisEXPERT/MAX+plus II/Foudation Series 软件的基本使用方法。

(2)熟悉GW48-CK EDA实验开发系统的基本使用方法。

(3)学习VHDL基本逻辑电路的综合设计。

2.实验内容设计并调试好由8位加法器构成的以时序逻辑方式设计的8位乘法器。

此乘法器通过判断被乘数的位值为1还是零,并通过乘数的左移与上一次和相加的方法,实现了8位乘法的运算,并用GW48-CK EDA实验开发系统进行硬件验证。

3.实验条件(1)开发设备:Lattice ispEXPERT。

(2)实验设备:GW48-CK EDA实验开发系统。

(3)拟用芯片:ispLSI1032E PLCC-84或EPF10K10LC84-3或XCS05/XL PLCC84以及运算控制电路和外部时钟。

4.实验设计1)系统的原理框图2)VHDL源程序(1)选通与门模块的源程序ANDARITH.VHDLIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY ANDARITH ISPORT(ABIN: IN STD_LOGIC;DIN: IN STD_LOGIC_VECTOR(7 DOWNTO 0); DOUT: OUT STD_LOGIC_vector(7 DOWNTO 0)); END ENTITY ANDARITH;ARCHITECTURE ART OF ANDARITH ISBEGINPROCESS(ABIN,DIN)ISBEGINFOR I IN 0 TO 7 LOOPDOUT(I)<=DIN(I)AND ABIN;END LOOP;END PROCESS;END ARCHITECTURE ART;(2)16位锁存器的源程序REG16B.VHD LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY REG16B ISPORT (CLK: IN STD_LOGIC;CLR: IN STD_LOGIC;D: IN STD_LOGIC_VECTOR(8 DOWNTO 0); Q: OUT STD_LOGIC_VECTOR(15 DOWNTO 0)); END ENTITY REG16B;ARCHITECTURE ART OF REG16B ISSIGNAL R16S: STD_LOGIC_VECTOR(15 DOWNTO 0); BEGINPROCESS(CLK,CLR)ISBEGINIF CLR='1' THEN R16S<="0000000000000000"; ELSIF CLK'EVENT AND CLK= '1' THENR16S(6 DOWNTO 0)<=R16S(7 DOWNTO 1);R16S(15 DOWNTO 7)<=D;END IF;END PROCESS;Q<=R16S;END ARCHITECTURE ART;(3)8位右移寄存器的源程序SREG8B.VHDLIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY SREG8B ISPORT(CLK:IN STD_LOGIC; LOAD:IN STD_LOGIC; DIN:IN STD_LOGIC_VECTOR(7 DOWNTO 0); QB: OUT STD_LOGIC);END ENTITY SREG8B;ARCHITECTURE ART OF SREG8B ISSIGNAL REG8B :STD_LOGIC_VECTOR(7 DOWNTO 0); BEGINPROCESS(CLK, LOAD)ISBEGINIF CLK'EVENT AND CLK='1'THENIF LOAD='1'THEN REG8B<=DIN;ELSE REG8B(6 DOWNTO 0)<=REG8B(7 DOWNTO 1); END IF;END IF;END PROCESS;QB<=REG8B(0);END ARCHITECTURE ART;(4)乘法运算控制器的源程序ARICTL.VHDLIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY ARICTL ISPORT(CLK:IN STD_LOGIC; START:IN STD_LOGIC; ARIEND:OUT STD_LOGIC;CLKOUT: OUT STD_LOGIC;RSTALL: OUT STD_LOGIC);END ENTITY ARICTL;ARCHITECTURE ART OF ARICTL ISSIGNAL CNT4B: STD_LOGIC_VECTOR(3 DOWNTO 0); BEGINRSTALL<=START;PROCESS(CLK,START)ISBEGINIF START='1'THEN CNT4B<="0000";ELSIF CLK'EVENT AND CLK='1'THENIF CNT4B<8 THENCNT4B <=CNT4B+1;END IF;END IF;END PROCESS;PROCESS(CLK,CNT4B,START)ISBEGINIF START='0' THENIF CNT4B<8 THENCLKOUT <=CLK;ARIEND<='0';ELSE CLKOUT<='0';ARIEND<='1';END IF;ELSE CLKOUT<=CLK;ARIEND<='0';END IF;END PROCESS;END ARCHITECTURE ART;(5)8位乘法器的源程序MULTI8X8.VHDLIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY MULTI8X8 ISPORT(CLK:IN STD_LOGIC;START:IN STD_LOGIC;A:IN STD_LOGIC_VECTOR(7 DOWNTO 0);B:IN STD_LOGIC_VECTOR(7 DOWNTO 0);ARIEND:OUT STD_LOGIC;DOUT:OUT STD_LOGIC_VECTOR(15 DOWNTO 0)); END ENTITY MULTI8X8;ARCHITECTURE ART OF MULTI8X8 ISCOMPONENT ARICTL ISPORT(CLK:IN STD_LOGIC;START:IN STD_LOGIC;CLKOUT:OUT STD_LOGIC; RSTALL:OUT STD_LOGIC; ARIEND: OUT STD_LOGIC);END COMPONENT ARICTL;COMPONENT ANDARITH ISPORT(ABIN:IN STD_LOGIC;DIN:IN STD_LOGIC_VECTOR(7 DOWNTO 0);DOUT: OUT STD_LOGIC_VECTOR(7 DOWNTO 0)); END COMPONENT ANDARITH;COMPONENT ADDER8B ISPORT(CIN: IN STD_LOGIC;A: IN STD_LOGIC_VECTOR(7 DOWNTO 0);B: IN STD_LOGIC_VECTOR(7 DOWNTO 0);S: OUT STD_LOGIC_VECTOR(7 DOWNTO 0);COUT: OUT STD_LOGIC);END COMPONENT ADDER8B ;COMPONENT SREG8B ISPORT(CLK: IN STD_LOGIC;LOAD: IN STD_LOGIC;DIN: IN STD_LOGIC_VECTOR(7 DOWNTO 0);QB: OUT STD_LOGIC);END COMPONENT SREG8B ;COMPONENT REG16B ISPORT (CLK: IN STD_LOGIC;CLR: IN STD_LOGIC;D: IN STD_LOGIC_VECTOR(8 DOWNTO 0);Q: OUT STD_LOGIC_VECTOR(15 DOWNTO 0)); END COMPONENT REG16B ;SIGNAL S1: STD_LOGIC;SIGNAL S2: STD_LOGIC;SIGNAL S3: STD_LOGIC;SIGNAL S4: STD_LOGIC;SIGNAL S5: STD_LOGIC_VECTOR(7 DOWNTO 0);SIGNAL S6: STD_LOGIC_VECTOR(8 DOWNTO 0);SIGNAL S7: STD_LOGIC_VECTOR(15 DOWNTO 0);BEGINDOUT<=S7; S1<='0';U1:ARICTL PORT MAP(CLK=>CLK,START=>START,CLKOUT=>S2,RSTALL=>S3,ARIEND=>ARIEND);U2:SREG8B PORT MAP(CLK=>S2,LOAD=>S3,DIN=>A,QB=>S4);U3:ANDARITH PORT MAP(ABIN=>S4,DIN=>B,DOUT=>S5);U4:ADDER8B PORT MAP(CIN=>S1,A=>S7(15 DOWNTO 8)),B=>S5(7 DOWNTO 0),S=>S6(7 DOWNTO 0),COUT=>S6(8); U5:REG16B PORT MAP(CLK=>S2,CLR=>S3,D=>S6(8 DOWNTO 0),Q=>S7(7 DOWNTO 0));END ARCHITECTURE ART;5.系统仿真文件当ATRRT为高电平时,将16位寄存器清零,当START为低电平时,在CLK为1时进行乘法运算,通过8次移位和加法操作,运算进行8个CLK为1的时钟,之后得到输出结果,且ARIEND为1,乘法运算结束。

八位串 并行乘法器设计

八位串 并行乘法器设计

八位串并行乘法器设计作品功能如下:1、输入方式:通过八位拨码开关输入相乘的八位二进制数,按键1和按键2控制乘法器锁存输入的八位二进制数,通过按键3来启动乘法运算。

2、LCD直接显示之前运算的结果。

3、系统时钟采用实验板上提供的50MHz时钟信号源提供时钟的测频基准时间信号。

4、设计成同步电路模式。

一、设计目的:1)熟悉EDA环境下的复杂逻辑模块的设计方法、设计过程及其注意事项;2)学习EDA软件Quartus-II的使用;3)学习硬件描述语言VHDL/Verilog HDL并进行编程;4)学习串并-行乘法器的基本原理和LCD显示的基本原理、控制流程。

二、设计要求:1、采用硬件描述语言VHDL/Verilog HDL设计八位串并行乘法器模块及LCD显示控制模块,并在Quartus-II环境下编译;2、在Quartus-II环境下编辑仿真激励波形,并模拟;3、在MAX-II实验板下载调试;4、撰写设计报告。

三、设计方案:VerilogHDL设计流程:注:1.总体方案是芯片级的2.软件仿真用来检测程序上的逻辑错误3.硬件仿真要根据需要搭成硬件电路,检查逻辑和时序上的错误设计八位串-并行乘法器分为以下三个模块:锁存(按键控制),乘法器(移位相加),LCD显示模块。

拨码开关控制输入数据,key1和key2键进行输入锁存,key1键锁存数据data1,key2键锁存数据data2,等待执行乘法运算,key3键实现乘法的开始运算,结果锁存到数据overcome。

最后,将data1,data2,overcome结果显示到LCD屏幕上。

四、设计过程:1、锁存器模块设计:(参见文件中的reg_bbit.v)module reg_bbit(clk,rst,dain,en,data_reg);input clk,rst,en;input[8:1]dain;output[8:1]data_reg;reg[8:1]data_reg=0;always@(posedge clk or negedge rst)if(!rst)data_reg=8'b 00000000;else if(!en)data_reg=dain;else data_reg=data_reg;endmodule逻辑关系表:仿真图如下:(参见文件中的reg_bbit.vwf)电路图实现:2、乘法运算模块:(参见文件中的mult_8gate.v)module mult_8gate(clk,rst,en,a,b,overcome);parameter size=8;input clk,rst,en;input[8:1]a,b;output[16:1]overcome;reg[16:1]overcome=0;reg[16:1]overcome1=0;integer i=1;always@(posedge clk or negedge rst)begin if(~rst)begin i=1;overcome1=16'b 0000000000000000;end else begin if(i==1)overcome1=16'b 0000000000000000;if(b[i]&&i=8&&!en)begin overcome1=overcome1+(a(i-1));i=i+1;end if(~b[i]&&!en&&i=8)begin overcome1=overcome1;i=i+1;end if(i=8&&en)begin i=1;end if(i 8&&!en)begin overcome1=overcome1;end if(en)begin i=1;overcome1=overcome1;end end end always@(posedge en) begin overcome=overcome1;i=1;end/*always@(negedge en)begin overcome1=0;for(i=1;i=size;i=i+1)if(b[i])overcome1=overcome1+(a(i-1));else overcome1=overcome1;end always@(posedge en)overcome=overcome1;*/endmodule仿真图如下:(参见文件中的mult_8gate.vwf)3、乘法运算和锁存器综合模块:(参见文件中的mul.v)电路实现图Verilog HDL语言编程:module mul(clk,rst,start,en1,en2,daina,dainb,overcome,a,b);input clk,rst;input en1,en2,start;output[8:1]a,b;wire[8:1]a,b;input[8:1]daina,dainb;output[16:1]overcome;reg_bbit u0(clk,rst,daina,en1,a);reg_bbit u1(clk,rst,dainb,en2,b);mult_8gate u2(clk,rst,start,a,b,overcome);endmodule仿真图如下:(参见文件中的mul.vwf)en1是key1键,en2是key2键,start是key3键。

EDA_8位乘法器_实验报告

EDA_8位乘法器_实验报告

南华大学船山学院实验报告(2009 ~2010 学年度第二学期)课程名称EDA实验名称8位乘法器姓名学号专业计算机科学与班级01技术地点8-212 教师一、实验目的:学习和了解八位乘法的原理和过程二、设计思路:纯组合逻辑构成的乘法器虽然工作速度比较快,但过于占用硬件资源,难以实现宽位乘法器,基于PLD 器件外接ROM 九九表的乘法器则无法构成单片系统,也不实用。

这里介绍由八位加法器构成的以时序逻辑方式设计的八位乘法器,具有一定的实用价值,而且由FPGA 构成实验系统后,可以很容易的用ASIC 大型集成芯片来完成,性价比高,可操作性强。

其乘法原理是:乘法通过逐项移位相加原理来实现,从被乘数的最低位开始,若为1,则乘数左移后与上一次的和相加;若为0,左移后以全零相加,直至被乘数的最高位。

三、实验逻辑图:四、实验代码:1) 选通与门模块的源程序ANDARITH.VHD LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL; ENTITY ANDARITH IS PORT (ABIN:IN STD_LOGIC;DIN:IN STD_LOGIC_VECTOR (7 DOWNTO 0) DOUT:OUT STD_LOGIC_VECTOR (7 DOWNTO 0)); END ANDARITH;ARCHITECTURE ART OF ANDARITH IS BEGINPROCESS (ABIN ,DIN) BEGINFOR I IN 0 TO 7 LOOPDOUT (I)<=DIN (I)AND ABIN; END LOOP;ARICTLCLKEND PROCESS;END ART;2) 16位锁存器的源程序REG16B.VHDLIBRARY IEEE; USE IEEE.STD_LOGIC_1164.ALL;ENTITY REG16B IS PORT (CLK:IN STD_LOGIC;CLR:IN STD_LOGIC;D:IN STD_LOGIC_VECTOR (8 DOWNTO 0)Q:OUT STD_LOGIC_VECTOR(15 DOWNTO 0));END REG16B;ARCHITECTURE ART OF REG16B ISSIGNAL R16S:STD_LOGIC_VECTOR(15 DOWNTO 0);BEGIN PROCESS (CLK,CLR)BEGINIF CLR = '1' THEN R16S<= "0000000000000000";ELSIF CLK'EVENT AND CLK = '1'THENR16S(6 DOWNTO 0)<=R16S(7 DOWNTO 1);R16S(15 DOWNTO 7)<=D;END IF;END PROCESS;Q<=R16S;END ART;3) 8位右移寄存器的源程序SREG8B.VHDLIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY SREG8B ISPORT (CLK:IN STD_LOGIC; LOAD :IN STD _LOGIC; BIN:IN STD_LOGIC_VECTOR(7DOWNTO 0);QB:OUT STD_LOGIC );END SREG8B;ARCHITECTURE ART OF SREG8B ISSIGNAL REG8B:STD_LOGIC_VECTOR(7 DOWNTO 0); BEGINPROCESS (CLK,LOAD)BEGINIF CLK'EVENT AND CLK= '1' THENIF LOAD = '1' THEN REG8<=DIN;ELSE REG8(6 DOWNTO0)<=REG8(7 DOWNTO 1); END IF;END IF;END PROCESS;QB<= REG8 (0);END ART;4) 乘法运算控制器的源程序ARICTL.VHD LIBRARYUSE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY ARICTL ISPORT ( CLK:IN STD_LOGIC; START:INSTD_LOGIC;CLKOUT:OUT STD_LOGIC; RSTALL:OUTSTD_LOGIC;ARIEND:OUT STD_LOGIC );END ARICTL;ARCHITECTURE ART OF ARICTL IS SIGNAL CNT4B:STD_LOGIC_VECTOR(3 DOWNTO 0);BEGINRSTALL<=START;PROCESS (CLK,START)BEGINIF START = '1' THEN CNT4B<= "0000";ELSIF CLK'EVENT AND CLK = '1' THENIF CNT4B<8 THENCNT4B=CNT4B+1;END IF;END IF;END PROCESS;PROCESS (CLK,CNT4B,START)BEGINIF START = '0' THENIF CNT4B<8 THENCLKOUT <=CLK; ARIEND<= '0';ELSE CLKOUT <= '0'; ARIEND<= '1';END IF;ELSE CLKOUT <=CLK; ARIEND<= '0';END IF;END PROCESS;END ART;5) 8位乘法器的源程序MULTI8X8.VHDLIBRARYIEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY MULTI8X8 ISPORT(CLK:IN STD_LOGIC;START:IN STD_LOGIC;A:IN STD_LOGIC_VECTOR(7 DOWNTO 0);B:IN STD_LOGIC_VECTOR(7 DOWNTO 0);ARIEND:OUT STD_LOGIC;DOUT:OUT STD_LOGIC_VECTOR(15 DOWNTO 0)); END MULTI8X8;ARCHITECTURE ART OF MULTI8X8 ISCOMPONENT ARICTLPORT(CLK:IN STD_LOGIC;START:IN STD_LOGIC; CLKOUT:OUT STD_LOGIC;RSTALL:OUT STD_LOGIC; ARIEND:OUT STD_LOGIC);END COMPONENT;COMPONENT ANDARITHPORT(ABIN:IN STD_LOGIC;DIN:IN STD_LOGIC_VECTOR(7 DOWNTO 0); DOUT:OUT_STD_LOGIC_VECTOR( 7 DOWNTO 0) ); END COMPONENT;COMPONENT ADDER8B...COMPONENT SREG8B...COMPONENT REG16B...SIGNAL GNDINT:STD_LOGIC;SIGNALINTCLK:STD_LOGIC;SIGNAL RSTALL:STD_LOGIC;SIGNAL QB:STD_LOGIC;SIGNAL ANDSD:STD_LOGIC_VECTOR(7 DOWNTO 0); SIGNAL DTBIN:STD_LOGIC_VECTOR(8 DOWNTO 0); SIGNAL DTBOUT:STD_LOGIC_VECTOR(15 DOWNTO 0); BEGINDOUT<=DTBOUT;GNDINT<= '0';U1:ARICTL PORT MAP(CLK=>CLK,START=>START,CLKOUT=>INTCLK,RSTALL=>RSTALL,ARIEND=>ARIEND); U2:SREG8B PORT MAP(CLK=>INTCLK,LOAD=>RSTALL.DIN=>B,QB=>QB);U3:ANDARITH PORT MAP(ABIN=>QB,DIN=>A,DOUT=>ANDSD);U4:ADDER8B PORTMAP(CIN=>GNDINT,A=>DTBOUT(15 DOWNTO 8),B=>ANDSD,S=>DTBIN(7 DOWNTO 0),COUT=>DTBIN(8));U5:REG16B PORT MAP(CLK =>INTCLK,CLR=>RSTALL,D=>DTBIN,Q=>DTBOUT);END ART;五、实验结果:六、实验心得:通过本实验基本上了解了八位乘法的工作原理:乘法通过逐项移位相加原理来实现,从被乘数的最低位开始,若为1,则乘数左移后与上一次的和相加;若为0,左移后以全零相加,直至被乘数的最高位。

8位二进制乘法器设计报告

8位二进制乘法器设计报告

EDA课程设计报告------8位二进制乘法器设计班级:学号:姓名:目录一.八位乘法器的设计要求与设计思路••2.1 设计目的••2.2 设计要求••二.八位乘法器的综合设计••3.1 八位乘法器功能••3.2 八位乘法器设计方案••3.3 八位乘法器各功能模块VHDL描述及仿真图形••3.4 八位乘法器顶层模块VHDL设计及下载验证••心得体会••参考文献••一、八位乘法器的设计要求与设计思路1.1实验目的学习并掌握应用8位二进制乘法器的原理、设计、分析和测试方法1.2实验内容利用移位相加原理设计一个8位二进制乘法器。

1.3实验要求用VHDL编写代码,下载验证,并用8段数码管显示乘数和乘积。

二、八位乘法器的综合设计2.1 八位乘法器功能通过调节实验板,输入8位二进制的A和B,八位乘法器能实现其乘积,并在数码管上面显示出来其结果。

2.2乘法器设计方案该乘法器是有由8 位加法器构成的以时序方式设计的8 位乘法器,采用逐项移位相加的方法来实现相乘。

用乘数的各位数码,从低位开始依次与被乘数相乘,每相乘一次得到的积称为部分积,将第一次(由乘数最低位与被乘数相乘)得到的部分积右移一位并与第二次得到的部分积相加,将加得的和右移一位再与第三次得到的部分积相加,再将相加的结果右移一位与第四次得到的部分积相加。

直到所有的部分积都被加过一次。

例如:被乘数(M7M6M5M4M3M2M1M0)和乘数(N7N6N5N4N3N2N1N0)分别为11010101和10010011,其计算过程如下图(a)下面分解8 位乘法器的层次结构,分为以下4 个模块:①右移寄存器模块:这是一个8 位右移寄存器,可将乘法运算中的被乘数加载于其中,同时进行乘法运算的移位操作。

②加法器模块:这是一个8 位加法器,进行操作数的加法运算。

③1 位乘法器模块:完成8 位与1 位的乘法运算。

④锁存器模块:这是一个16 位锁存器,同时也是一个右移寄存器,在时钟信号的控制下完成输入数值的锁存与移位。

8位二进制乘法器

8位二进制乘法器

8位二进制乘EDA实验法器学号:********[2013.12.15] 班级:021151姓名:***指导老师:***一.设计要求8位二进制乘法采用移位相加的方法。

即用乘数的各位数码,从低位开始依次与被乘数相乘,每相乘一次得到的积称为部分积,将第一次(由乘数最低位与被乘数相乘)得到的部分积右移一位并与第二次得到的部分积相加,将加得的和右移一位再与第三次得到的部分积相加,再将相加的结果右移一位与第四次得到的部分积相加,直到所有的部分积都被加过一次。

例如:11010101和10010011相乘,计算过程如下:二.设计方法按照这种算法,可以得到下图所示之框图和简单流程图。

按照这种算法,可以得到下图所示之框图和简单流程图。

图中Y寄存器存放被乘数M,B寄存器存放乘数N,A累加器存放部分积。

A和Y中的数据在加法器中相加后送入A 中,而A和B相级联又构成了一个16bit的移位寄存器,当它工作于移位模式时,可以实现数据的右移。

由于乘数的每一位不是0就是1 ,对应的部分积不是0就是被乘数本身,所以实际作部分积相加这一步时,只要根据乘数的对应位判断:如该位为1 ,则将累加器中的数据加上被乘数再移位;如该位为0时,就不加被乘数而直接移位。

运算时首先将累加器A清零,并将被乘数M和乘数N分别存入寄存器Y和B,然后依据寄存器B中最右一位B0(数据N0)确定第一个部分积。

将此部分积送入A累加器以后,将A连同寄存器B右移一位,部分积的最低位被移进寄存器B的最左位,乘数的最低位N0被移出寄存器B,而乘数的次低位N1被移至寄存器B的B0位。

第二次仍然依据B0位的数据(N1)来确定第二个部分积,将部分积与累加器中的数据相加后右移一位,N1又被移出寄存器,数据N2被移到B0位置。

这样,经过8次部分积相加位的操作,完成1次乘法运算,乘数N恰好被移出寄存器B,寄存器B中保存的就是运算积的低8位数据。

移位相加的次数应用一个计数器来控制,每移位一次,计数器计一个数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

EDA课程设计报告------8位二进制乘法器设计班级:学号:姓名:目录一.八位乘法器的设计要求与设计思路••2.1 设计目的••2.2 设计要求••二.八位乘法器的综合设计••3.1 八位乘法器功能••3.2 八位乘法器设计方案••3.3 八位乘法器各功能模块VHDL描述及仿真图形••3.4 八位乘法器顶层模块VHDL设计及下载验证••心得体会••参考文献••一、八位乘法器的设计要求与设计思路1.1实验目的学习并掌握应用8位二进制乘法器的原理、设计、分析和测试方法1.2实验内容利用移位相加原理设计一个8位二进制乘法器。

1.3实验要求用VHDL编写代码,下载验证,并用8段数码管显示乘数和乘积。

二、八位乘法器的综合设计2.1 八位乘法器功能通过调节实验板,输入8位二进制的A和B,八位乘法器能实现其乘积,并在数码管上面显示出来其结果。

2.2乘法器设计方案该乘法器是有由8 位加法器构成的以时序方式设计的8 位乘法器,采用逐项移位相加的方法来实现相乘。

用乘数的各位数码,从低位开始依次与被乘数相乘,每相乘一次得到的积称为部分积,将第一次(由乘数最低位与被乘数相乘)得到的部分积右移一位并与第二次得到的部分积相加,将加得的和右移一位再与第三次得到的部分积相加,再将相加的结果右移一位与第四次得到的部分积相加。

直到所有的部分积都被加过一次。

例如:被乘数(M7M6M5M4M3M2M1M0)和乘数(N7N6N5N4N3N2N1N0)分别为11010101和10010011,其计算过程如下图(a)下面分解8 位乘法器的层次结构,分为以下4 个模块:①右移寄存器模块:这是一个8 位右移寄存器,可将乘法运算中的被乘数加载于其中,同时进行乘法运算的移位操作。

②加法器模块:这是一个8 位加法器,进行操作数的加法运算。

③1 位乘法器模块:完成8 位与1 位的乘法运算。

④锁存器模块:这是一个16 位锁存器,同时也是一个右移寄存器,在时钟信号的控制下完成输入数值的锁存与移位。

按照上述算法,可以得到下图所示之框图和简单流程图。

图中8 位移位寄存器reg_8 存放乘数a,从a 的最低位开始,每次从reg_8 中移出一位,送至1×8 位乘法器multi_1 中,同时将被乘数加至multi_1 中,进行乘法运算,运算的结果再送至8 位加法器adder_8 中,同时取出16 位移位寄存器reg_16 的高8 位与之进行相加,相加后结果即部分积存入reg_16 中,进行移位后并保存。

这样经过8 次对乘数a 的移位操作,所以的部分积已全加至reg_16 中,此时锁存器reg_16 存放的值即所要求的积。

图(a )简单流程图(1)8位寄存器reg_8 的设计8 位移位寄存器是在时钟(r8_clk'event and r8_clk='1')信号作用下,当r8_clr='1'时,将8 位乘数加载进入;而当r8_clr='0'时,对数据进行移位操作,同时定义一个信号reg8 用来装载新数据及移位后的操作数,完成这些操作后,寄存器的最低位r8_in(0)传送给r8_out 输出。

该模块元件的程序如下:library ieee;use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all; use ieee.std_logic_arith.all; entity reg_8 isport(r8_clk,r8_clr:in std_logic;r8_in:in std_logic_vector(7 downto 0); r8_out:out std_logic);end entity reg_8;architecture reg8a of reg_8 issignal r8:std_logic_vector(7 downto 0); beginprocess(r8_clk,r8_clr) isbeginif(r8_clk'event and r8_clk='1') thenif(r8_clr='1') thenr8<=r8_in;elser8(7)<=r8_in(0);r8(6 downto 0)<=r8(7 downto 1);end if;end if;end process;r8_out<=r8(0);end architecture reg8a;(2)8 位加法器adder_8 的设计1.该加法器由两个四位二进制加法器组成。

其中设计四位二进制加法器时,为了避免加法运算时产生溢出,故定义了三个信号量ss,aa,bb,将加数a4,b4分别与0 连接后赋值给aa4,bb4,形成5 位二进制数,然后aa4,bb4 与进位位 cin4相加赋值给sel,最后将sel 的低四位赋值给和s4,同时将sel 的最高位送给cout4 输出。

该模块程序如下:library ieee;use ieee.std_logic_unsigned.all;use ieee.std_logic_arith.all;entity adder_4 isport(a4,b4:in std_logic_vector(3 downto 0);cin4:in std_logic;s4:out std_logic_vector(3 downto 0);cout4:out std_logic);end entity adder_4;architecture adder4a of adder_4 issignal aa4,bb4,s5:std_logic_vector(4 downto 0);signal ccin4:std_logic_vector(4 downto 0);beginprocess(a4,b4,cin4) isbeginaa4<='0' & a4;bb4<='0' & b4;ccin4<="0000" & cin4;s5<=aa4+bb4+ccin4;s4<=s5(3 downto 0);cout4<=s5(4);end process;end architecture adder4a;2.设计8 位加法器时,采用例化语句,定义信号量sel,将4位加法器U1的s4 赋给sel ,再将sel 的值给4 位加法器U2 的进位位cin4,8 位加法器的高四位和低四位分别来自四位加法器U1 和U2。

其连接电路图如下sel s8(7 to 4) cout8其程序如下: library ieee;use ieee.std_logic_1164.all;use ieee.std_logic_unsigned.all;use ieee.std_logic_arith.all;entity adder_8 iscin8:in std_logic;s8:out std_logic_vector(7 downto 0); cout8:out std_logic ); end entity adder_8;architecture adder8 of adder_8 is component adder_4 isport(a4,b4:in std_logic_vector(3 downto 0); cin4:in std_logic;s4:out std_logic_vector(3 downto 0); cout4:out std_logic); end component;signal sel:std_logic; beginu1:adder_4 port map(a8(3 downto 0),b8(3 downto 0),cin8,s8(3 downto 0),sel); u2:adder_4 port map(a8(7 downto 4),b8(7 downto 4),sel,s8(7 downto 4),cout8); end architecture adder8;(3)1位乘法器 chengfaqi 的设计利用循环语句FOR-LOOP 完成8 位二进制数与1 位二进制的乘法运算,将8 位二进制数b 从最低位到最高位与1 位二进制a 分别做与运算,最后将结果依次送到outa 输出。

即当a 为1 时,outa 输出为b ;当a 为0 时,outa 输出全为零。

其程序如下:library ieee;use ieee.std_logic_1164.all;use ieee.std_logic_arith.all;entity chengfaqi isport(a:in std_logic;b:in std_logic_vector(7 downto 0);outa:out std_logic_vector(7 downto 0));end entity chengfaqi;architecture cheng of chengfaqi isbeginprocess(a,b) isbeginfor i in 0 to 7 loopouta(i)<=a and b(i);end loop;end process;end architecture cheng;(4)16位移位寄存器reg_16的设计当清零信号(reg16_clr='1')到来时,定义信号变量sel清零;否则在时钟信号reg16_clk 上升沿到来时,将sel 的低8位进行移位操作,同时将8位的数据输入reg16_in 锁存到sel的高8位,最后赋值给reg16_out 输出。

输出前八个数据。

library ieee;use ieee.std_logic_1164.all;use ieee.std_logic_unsigned.all;use ieee.std_logic_arith.all;entity reg16 isport(reg16_clk,reg16_clr:in std_logic;reg16_in:in std_logic_vector(8 downto 0);reg16_out:out std_logic_vector(15 downto 0));end entity reg16;architecture reg16a of reg16 issignal sel:std_logic_vector(15 downto 0);signal k:integer;beginprocess(reg16_clk,reg16_clr) isbeginif(reg16_clr='1') thensel<="0000000000000000";k<=0;elsif(reg16_clk'event and reg16_clk='1') thenif(k<8) thensel(6 downto 0)<=sel(7 downto 1);sel(15 downto 7)<=reg16_in(8 downto 0);k<=k+1;else sel<=sel;end if;end if;end process;reg16_out<=sel;end architecture reg16a;(5)8 位乘法器的顶层设计其顶层电路如图如上图所示,当start上升沿到来,将乘数a锁存到reg_8 中,同时将16 位的移位寄存器reg_16 清零,然后随着时钟clk上升沿的到来,对reg_8 中的乘数进行移位操作,最低位在前,由低到高逐位输出。

相关文档
最新文档