实数全章复习与巩固基础知识讲解

合集下载

2024八年级数学上册第二章实数全章热门考点整合专训习题课件新版北师大版

2024八年级数学上册第二章实数全章热门考点整合专训习题课件新版北师大版

20
21
22
23
实数的运算
16. 【新考法·程序计算法】如图是一个简单的数值运算程
序,当输入 x 的值为16时,输出的数值为
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
3
18
19
.

20
21
22
23

17. 计算: +(-1)2 024+|- |- .
解:原式=3+1+ -4= .
( b2-2 bc + c2)+( a2-2 ac + c2)=( a - b )2+( b - c )2+
( a - c )2=( + )2+( - )2+(2 )2=5+2
+5-2 +12=22.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
3

5
6
7
)
B.





4
D






D.

8
9
10
11
12
13





14
15
16
17
18
19
20
21
22
23
考点4三种运算
估算
15. 估计 -4的值在(

新版北师大版八年级数学上册第二章实数全章课件

新版北师大版八年级数学上册第二章实数全章课件

所以BD DC,则BD AB
由勾股定理得 : h

h
h不可能是整数;
B
D
C
h也不可能是分数.
四、强化训练
2、长,宽分别是3,2的长方形,它的对角线的长可能是整数 吗?可能是分数吗?
3 2
四、强化训练
3、如图是16个边长为1的小正方形拼成的,任意连接这些 小正方形的若干个顶点,可得到一些线段,试分别找出两 条长度是有理数的线段和两条长度不是有理数的线段.
, 3 3 9 ..... . 2 2 4,
a
结果都为分数,所以a不可能是以2为分母的
分数.
二、新课讲解
, ,
...... , ,
a
(3)(9)2 的算术平方根等于 3 .
四、强化训练
2.求下列各数的值
(1) 64
8
(3) (5)
21 4
3 2
32 42
5
(2) 0.81
0.9
(4) 0
0
(6)
1.44
1.2
四、强化训练
3.求下列各式中的正数x的值:
二、新课讲解
例 下列各数中,哪些是有理数?哪些是无理数?
解:有理数有: 无理数有:
三、归纳小结
1.任何有限小数或无限循环小数也都是有理数. 2.无限不循环小数称为无理数.
四、强化训练
1.选择题
(1)、正三角形的边长为4,高h是( D ) A.整数 B.分数 C.有理数 D.无理数
(2)、如果一个圆的半径是2,那么该圆的周长与直径的和 是( B ) A.有理数 B.无理数 C.分数 D.整数

实数(全章复习与巩固)(巩固篇)(专项练习)-七年级数学下册基础知识专项讲练(沪科版)

实数(全章复习与巩固)(巩固篇)(专项练习)-七年级数学下册基础知识专项讲练(沪科版)

专题6.12 实数(全章复习与巩固)(巩固篇)(专项练习)一、单选题1.在下列各数中,无理数是( ) A .237B 38-C 916D .4π 2.下列说法正确的是( ) A .117是无理数 B 5 C .π2是无理数D .22是有理数 3.下列等式正确的是( ) A .()255-- B 93=± C 382±D 3355--4.一个长、宽,高分别为50cm 、8cm 、20cm 的长方体铁块锻造成一个立方体铁块,则锻造成的立方体铁块的棱长是( )A .20cmB .200cmC .40cmD 80cm5.若32x =-( ) A .32x =-B .32x =-C .(-x)3=-2D .x=(-2)36.已知x ,y 为实数,且22994y x x --,则x y -=( ) A .﹣1B .﹣7C .﹣1或﹣7D .1或﹣77.若24,a =31b =-,则a b +的值是( ) A .1B .-3C .1或-3D .-1或38.已知x ,y 两个实数在数轴上位置如图所示,则化简()2y x x y --( )A .2xB .2yC .22x y -D .22y x -9.如图,在数轴上点A 表示的实数是( )A 5B 51C 31D 310.如图,数轴上表示12A 、B ,点B 关于点A 的对称点是C ,设C 点表示的数为x ,则2x )A .12B .1+2C 21D .2二、填空题1149的算术平方根是______64______. 128x -3x ____________.13()2460x y -+=,那么2x y -的平方根为_______. 14.已知:23+m ,小数部分为n ,则2m n -=_____.15.已知实数a 、b 在数轴上的对应点如图,化简||a a b c b -++-=_________.16101-89.(填“>”或“<”)17.设 a 、b 是有理数,且满足等式2322152a b b ++=-则a+b=___________. 18.对于能使式子有意义的有理数,a b ,定义新运算:a △b 22a ba b+=-.如果1230x y xz -++=则x △(y △z )= _____ .三、解答题19.在数轴上表示下列各数,并将这些数按从小到大的顺序用“<”连接起来. 2,52,038-π-.20.求下列各式中x 的值: (1) 240x -=;(2) 3(1)8x +=.21.化简求值:(1) 已知a 1713b =54ab +(2) 已知:实数a ,b 323(1)2(1)||a b a b -----.22.计算:(1) 2338125(2)---(2) 2722(7)π-(3) 331631270.1251464--(4) 233416(3)22--.23.如图,每个小正方形的边长均为1.(1) 图中阴影部分的面积是______;阴影部分正方形的边长a 是______. (2) 估计边长a 的值在两个相邻整数______与______之间.(3) 我们知道π是无理数,而无理数是无限不循环小数,因此π的小数部分我们不可能全部写出来,我们可以用3来表示它的整数部分,用()3π-表示它的小数部分.设边长a 的整数部分为x ,小数部分为y ,求()x y -的相反数.24.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.小白在草稿纸上画了一条数轴进行操作探究:操作一:(1)折叠纸面,若使表示的点1与﹣1表示的点重合,则﹣2表示的点与表示的点重合;操作二:(2)折叠纸面,若使1表示的点与﹣3表示的点重合,回答以下问题:3表示的点与数表示的点重合;②若数轴上A、B两点之间距离为8(A在B的左侧),且A、B两点经折叠后重合,则A、B两点表示的数分别是__________________;操作三:(3)在数轴上剪下9个单位长度(从﹣1到8)的一条线段,并把这条线段沿某点折叠,然后在重叠部分某处剪一刀得到三条线段(如图). 若这三条线段的长度之比为1:1:2,则折痕处对应的点所表示的数可能是_________________________.参考答案1.D【分析】先对个选项进行化简,再由无理数的概念进行判断即可. 解:237是有理数,故选项A 不符合题意; 382--是有理数,故选项B 不符合题意;93164=是有理数,故选项C 不符合题意; 4π符合无理数的概念,故选项D 符合题意;. 故选:D .【点拨】此题考查的是算术平方根、立方根及无理数的概念,能够根据算术平方根的概念及立方根进行正确化简是解决此题关键.2.C【分析】根据有理数和无理数的定义,逐一判定即可,有理数包括整数和分数,无理数是无限不循环小数.解:A. 117是有理数,故A 选项说法错误; B. 5B 选项说法错误;C. π2是无理数,故C 选项说法正确; D.2D 选项说法错误. 故选:C .【点拨】本题主要考查了有理数和无理数,解决问题的关键是熟练掌握有理数和无理数的定义.3.D【分析】利用平方根与立方根的定义,逐个计算得结论.解: A 、()22555---,故选项错误,不符合题意;B 9=3,故选项错误,不符合题意;C 38=2,故选项错误,不符合题意;D 335=5--,故选项正确,符合题意. 故选:D .【点拨】本题考查了平方根、算术平方根和立方根的性质与化简,掌握平方根和立方根的定义解决本题的关键.4.A【分析】先求出体积,再求立方根即可. 解:∵铁块体积是3508208000(cm )⨯⨯=∴3800020(cm), 故选:A .【点拨】本题考查立方根的应用,会求立方根是解题的关键. 5.B【分析】利用立方根的定义分析得出答案. 解:∵3-2, ∴x 3=-2, 故选B .【点拨】本题考查立方根的定义,正确把握定义是解题关键. 6.C直接利用二次根式的性质得出x ,y 的值,然后讨论进而得出答案. 解:∵22994y x x --, ∴229090x x -≥-≥, ∴290x∴y =4, ∴3x =±,当3,4x y ==时,341x y -=-=-; 当3,4=-=x y 时,347x y -=--=-; ∴1x y -=-或7x y -=-, 故选:C .【点拨】本题考查了二次根式有意义的条件.解答本题的关键由二次根式有意义的条件求出x 、y 的值.7.C【分析】根据题意,利用平方根,立方根的定义求出a ,b 的值,再代入求解即可. 解:24,a =31,b =-2,a ∴=±1b,∴当2,a =-1b时,213a b +=--=-; ∴当2,a =1b 时,211a b +=-=.故选:C .【点拨】本题考查的知识点是平方根以及立方根的定义,根据定义求出a ,b 的值是解此题的关键.8.D【分析】根据点在数轴的位置判断式子的正负,然后化简. 解:根据图示可知:0x y <<∴0y x∴()2y x x y -+-y x y x 22y x =-故选:D .【点拨】此题的考查了数轴,绝对值的性质,合并同类项法则,解题的关键是根据点在数轴的位置判断式子的正负.9.B【分析】先根据勾股定理求出PQ 的长,即可求出点A 所表示的数. 解:如图,22125PQ =+由图可知5PA PQ ==, 所以点A 51, 故点A 51. 故选:B【点拨】本题考查勾股定理以及数轴表示数的意义和方法,掌握解答的方法是关键.。

(完整版)《实数》复习课教案

(完整版)《实数》复习课教案

《实数》复习课教案一、教学目标1.理解平方根、算术平方根、立方根的概念,能用平方或立方运算求某些数的平方根或立方根;2.会用计算器进行数的加、减、乘、除、乘方及开方运算;3.了解无理数的意义,会对实数进行分类,了解实数的相反数和绝对值的意义;4.了解实数与数轴上的点一一对应,了解有理数的运算律适用于实数范围.会按结果所要求的精确度用近似的有限小数代替无理数进行实数的四则运算.二、教学重难点1.平方根和算术平方根的概念、性质,无理数与实数的意义;2.算术平方根的意义及实数的性质.三、教学准备课件、计算器.四、教学过程一、知识疏理,形成体系(课前要求学生对本章知识进行总结)师:本章的主要内容是开方运算.从定义出发解题是解本章有关题目的基本方法,我们注意掌握用计算器进行数的计算的方法的同时,还必须注意区分清楚有理数与无理数的概念,掌握实数的四则运算.下面,我们以组为单位小结一下本章的知识点.生:我们认为这一章主要学习了一种新的运算——开方,开方与乘方是互为逆运算的关系.开方包括开平方与开立方.通过开平方可求一个非负实数的平方根;通过开立方可求一个实数的立方根.依据这一思路,我们画出的知识结构图是:()⎩⎨⎧−−−−−→←立方根开立方算术平方根平方根开平方开方乘方互为逆运算________ 师:好!他们组是以运算为线索总结的,侧重总结了开方运算,还有补充吗? 生:我们认为平方根、算术平方根、立方根的定义、性质也都非常重要.因此我们是这样总结的:⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧−−−−−→←.00;;___00;.;00:,的立方根是方根负数有一个负的立方根正数有一个正的立性质定义立方根开立方的算术平方根是的正的平方根正数性质定义算术平方根负数没有平方根的平方根是们互为相反数根一个正数有两个平方性质定义平方根开平方开方乘方互为逆运算a 师:当求一个非负数的平方根时,可能会出现无理数,使得数的范围从有理数扩大到实数,所以实数的意义、分类以及相关的内容也需总结.生:我们是这样总结的:1.分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负无理数正无理数无理数负有理数正有理数有理数实数02.每一个实数都可以用数轴上的一个点来表示,反之,数轴上的每一个点又都可以表示成一个实数,它们之间是一一对应的.师:有理数都可以表示成有限小数或无限循环小数.无理数是无限不循环小数,它不能表示成分数形式,任何一个无理数,都可以用给定精确度的有理数来近似地表示.二、强化基础,巩固拓展.(也可以由学生提出典型薄弱题型进行讲解) 1.求下列各数的平方根:(1)972;(2)25;(3)252⎪⎭⎫ ⎝⎛-. 师:本题要审清是求哪个实数的平方根,只有非负实数才有平方根. 生:(1)是求925的平方根;(2)是求5的平方根;(3)是求254的平方根. 由学生独立完成.2.x 取何值时,下列各式有意义.(1)x -2; (2)12+x .师:a 在什么情况下有意义?生:对于a ,必须满足a ≥0,它才有意义,所以被开方数必须是非负数. (1)2-x ≥0;(2)x 2+1≥0.师:如何求出x 的范围呢?生:我们讨论后,得出如下结论:(1)x ≤2;(2)不论x 取什么实数,x 2≥0,x 2+1>0,即x 的取值范围是:x 为全体实数.3.求下列各数的值:(1)()23π-;(2)122+-x x (x ≥1).师:如何化简2a 呢?生:我们认为首先应考虑2a 中a 的范围.(1)当a ≥0时,2a =a ;(2)当a <0时,2a =-a .师:求下列各数的值,必须先确定a 的范围.生:因为3-π<0,所以()23π-=-(3-π)=π-3.师:如何化简122+-x x 呢?生:将122+-x x 化为2a 的形式,即()22112-=+-x x x再考虑x -1的范围,由学生独立完成.4.已知:|x -2|+3-y =0,求:x +y 的值.师:认真审题,考虑一下所给的这些数有什么特点.生:|x -2|和3-y 都是非负数.师:两个非负数的和可能是0吗?生:只有当两个非负数都取0时,其和才为0,其他情况下,都大于0. 由学生独立完成.师:哪些数为非负数呢?生:实数a 的绝对值,表示为|a |,|a |是非负数;实数a 的平方,表示为a 2,a 2是非负数;非负实数a 的算术平方根表示为a ,a 是非负数.师:非负数有什么特点?生:(1)几个非负数的和仍为非负数;(2)若几个非负数的和为0,则每一个非负数都必须为0.师:绝对值、平方数、算术平方根都是非负数,解题时要注意这一隐含条件,不可把0漏掉.5.计算:32725-+(精确到0.01). 师:无理数是开方开不尽的数,那么如何计算呢?生:在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似有限小数去代替无理数,再进行计算.因为精确到0.01,所以在计算过程中可用2.236代替、5,1.732代替3. 由学生独立完成.6.在实数2-、13.0 、3π、71、0.80108中,无理数的个数为_______个. 师:如何判断一个数是无理数?生:一个无理数不能表示成分数形式,或者说成数位无限,且不循环. 7.|x |<2π,x 为整数,求x师:|x |=2π,x 的值是多少?生:当x =2π,x =-2π时,|x |=2π,所以|x |<2π时,x =±2π.师:|x |=2π的含义?生:实数x在数轴上所对应点到原点的距离等于2π.师:|x|<2π的含义呢?生:实数x在数轴上所对应点到原点的距离小于2π.师:结合数轴,你能说出满足|x|<2π这一条件的点在数轴的什么位置上吗?生:→在如图所示的范围内,因为x为整数,所以x=6、5、4、3、2、1、0、-1、-2、-3、-4、-5、-6.师:非常好!三、查缺补漏,归纳提升.1.通过今天的探究学习,你们有哪些收获?2.非负数的和等于零的条件是:当且仅当每个非负数的值都等于零.此性质在解题时经常会被用到.3.对于本章的内容你还有那些疑问?四、作业1.教科书第19页复习题A组五、板书设计第6章实数1.知识疏理2.巩固训练3.归纳提升六、教学反思(略)七、课堂小卷(1)填一填:1.16的平方根记作_______,等于________.16________.3.31-2-3(1)_______.55.两个无理数的和为有理数,这两个无理数可以是______和_______.6.若│x 2-则x=_______,y=_______.7.已知x 的平方根是±8,则x 的立方根是________.(2)选一选:8.4的平方根是( )A.2B.-2C.±29.下列各式中,无意义的是( )B. 10.下列各组数中,互为相反数的一组是( )A.-2与B.-2C.-2与-12D.│-2│与2 11. 下列说法正确的是 ( )A.1的平方根是1;B.1的算术平方根是1;C.-2是2的平方根;D.-1的平方根是-1(3)做一做:12. 求下列各数的平方根:(1)81;(2)1625;(3)1.44;(4)214; (513. 求下列各式中的x:①x 2=1.21; ②27(x+1)3+64=0.14. a≥0a 的算术平方根.由此你会求下列各式有意义时x 的取值范围吗?试试看:(1 (2; (3 (415.已知2a-1的平方根是±3,3a+b-1的平方根是±4,求a+2b 的平方根.。

实数(全章复习与巩固)(基础篇)-2022-2023学年七年级数学下册基础知识专项讲练(人教版)

实数(全章复习与巩固)(基础篇)-2022-2023学年七年级数学下册基础知识专项讲练(人教版)

专题6.11 实数(全章复习与巩固)(基础篇)(专项练习)一、单选题1.4的算术平方根是( ) A .2±B .2C .2D 22.下列实数是无理数的是( ) A 327-B .13C .3.14159D 63.下列说法不正确的是( ) A .0的平方根是0 B .一个负数的立方根是一个负数 C .﹣8的立方根是﹣2D .8的算术平方根是24.若3m x y -和35n x y 的和是单项式,则()3m n +的平方根是( ) A .8B .8-C .4±D .8±5.估计463 ) A .3与4之间B .4与5之间C .5与6之间D .6与7之间6.有一个数值转换器,原理如下:当输入的x 为64时,输出的y 是( )A .22B .32C .23D .87.如图,长方形内有两个相邻的正方形,面积分别为2和4,则阴影部分的面积为( )A .22-2B .2+2C .2D .28.若320a =10b =3c =,则a b c 、、的大小关系为( ) A .a c b <<B .a b c <<C .c<a<bD .c b a <<9.若a 、b 为实数,则下列说法正确的是( )A aB .有理数与无理数的积一定是无理数C .若a 、b 均为无理数,则a b +一定为无理数D .若a 为无理数,且()()220a b ++=,则2b =-10.下面是李华同学做的练习题,他最后的得分是( )姓名 李华 得分______填空题(评分标准,每道题5分) (1)16的平方根是4±(2)立方根等于它本身的数有0和1(3)38-的相反数是2(4)3=3--ππA .5分B .10分C .15分D .20分二、填空题11.16的平方根是___________. 12.计算327________.1321的相反数是__________,3.14π-=____________ 14.若实数a 、b 满足:2a b +,32a b.则()()a b a b +-的值是_____________.15.四个实数2-,023中,最小的实数是______. 16.实数a 在数轴上的位置如图,则|3a =_________.171032(填“>”,“<”或“=”)18.找规律填空:02,262103…,______(第n 个数).三、解答题19.求下列各式中的x : (1) 2481x =(2) ()3227x +=-20.计算(1) 20223113274-+-(2) 223(3)(3)1664---21.已知:9的平方根是3和5x +,y 13 (1) 求x y +的值;(2) 求22x y +的算术平方根.22.如图,长方形ABCD 的长为2cm ,宽为1cm .(1)将长方形ABCD 进行适当的分割(画出分割线),使分割后的图形能拼成一个正方形,并画出所拼的正方形;(标出关键点和数据)(2)求所拼正方形的边长.23.【观察】请你观察下列式子. 第111.第2132+=. 第31353++. 第413574+++=. 第5135795++++. 【发现】根据你的阅读回答下列问题: (1) 写出第7个等式 .(2) 135(21)n +++++= .(3) 利用(241220284452++++++24.阅读材料,完成下列任务:因为无理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来比如:π2等,而常用的“…”或者“≈”的表示方法都不够百分百准确.材料一:479<273<<, ∵1712<. 71的整数部分为1. 7172.材料二:我们还可以用以下方法求一个无理数的近似值.我们知道面积是2221>21x =+,可画出如图示意图.由图中面积计算,2211S x x =+⨯⋅+正方形,另一方面由题意知2S =正方形,所以22112x x +⨯⋅+=.略去2x ,得方程212x +=,解得0.5x =2 1.5. 解决问题:(1) 85(2) 5(画出示意图,标明数据,并写出求解过程)参考答案1.C【分析】根据平方与开平方互为逆运算,可得一个正数的算术平方根. 解:∵22=4, ∵4的算术平方根是2;故选:C .【点拨】本题考查了求一个数的算术平方根,平方与开平方互为逆运算是求一个正数的算术平方根的关键.2.D【分析】无理数即为无限不循环小数,初中阶段接触的无理数的表现形式主要有:∵开方开不尽的数;∵含有π的数;∵0.010010001...(每两个1之间依次多个0)这样的数;据此解答即可.解:A 3273--,属于整数,不是无理数,不符合题意; B 、13为分数,不是无理数,不符合题意;C 、3.14159为有限小数,不是无理数,不符合题意;D 6 故选:D .【点拨】本题考查了无理数的定义以及求一个数的立方根,熟练掌握初中阶段无理数的主要表现形式是解本题的关键.3.D【分析】直接利用算术平方根、平方根、立方根的定义分析得出答案. 解:A 、0的平方根是0,原说法正确,故此选项不符合题意;B 、一个负数的立方根是一个负数,原说法正确,故此选项不符合题意;C 、﹣8的立方根是﹣2,原说法正确,故此选项不符合题意;D 、8的算术平方根是2 故选:D .【点拨】此题主要考查了算术平方根、平方根、立方根,熟练掌握算术平方根、平方根、立方根的定义是解题的关键.4.D【分析】根据题意可得3m x y -和35n x y 是同类项,从而得到3,1m n ==,再代入,即可求解.解:∵3m x y -和35n x y 的和是单项式, ∵3m x y -和35n x y 是同类项,∵3,1m n ==,∵()()333164m n +=+=, ∵()3m n +的平方根是8±. 故选:D .【点拨】本题主要考查了合并同类项,求一个数的平方根,熟练掌握根据题意得到3m x y -和35n x y 是同类项是解题的关键.5.C【分析】先把46332“夹逼法”即可求解. 解:463232== ∵253236<<, ∵5326<<, 故选:C【点拨】本题考查了无理数的估值问题,“夹逼法”的应用是解题的关键. 6.A解:由题中所给的程序可知:把64取算术平方根,结果为8, ∵8是有理数, ∵8 ∵y 82 故选A . 7.A2,2,再根据阴影部分的面积等于矩形的面积减去两个正方形的面积进行计算.解:∵矩形内有两个相邻的正方形面积分别为 4 和 2, ∵2,2,∵阴影部分的面积(22224222=⨯--=. 故选A .【点拨】本题主要考查了算术平方根的应用,解题的关键在于能够准确根据正方形的面积求出边长.8.C10320的值的范围,再进行比较即可得出答案. 解:82027<<, 32203∴<<,3104<<,320310<故选:A .【点拨】本题考查了实数大小比较,估算无理数的大小,熟练掌握估算无理数的大小是解题的关键.9.D【分析】A a B 、有理数与无理数的积不一定是无理数,举例说明; C 、a 、b 均为无理数,a b +不一定还是无理数,举例说明;D 、利用两数相乘积为0,两因式中至少有一个为0求出b 的值,即可做出判断. 解:A a 42=,错误;B 、有理数与无理数的积不一定是无理数,例如:020,错误;C 、a 、b 均为无理数,a b +不一定还是无理数,,例如:220-=,错误;D 、若a 为无理数,且()()220a b ++=,得到20a +≠,20b +=,解得:2b =-,正确,故选:D .【点拨】此题考查了实数的运算,熟练掌握运算法则是解本题的关键. 10.B【分析】直接利用平方根、立方根、绝对值、相反数的性质分别判断得出答案. 解:(1164=的平方根是2±,故此选项错误;(2)立方根等于它本身的数有0和1、 1-,故此选项错误;(3382--的相反数是2,故此选项正确;(4)()3=3=3----πππ,故此选项正确. 李华最后得分为10分, 故选:B .【点拨】此题主要考查了实数的性质,绝对值的性质,平方根和立方根概念,正确化简各数是解题关键.11.4±【分析】根据平方根的定义即可求解. 解:即:16的平方根是16=4± 故填:4±【点拨】此题主要考查平方根,解题的关键是熟知平方根的定义. 12.-3【分析】根据立方根的性质计算即可. 解:327--3, 故答案为:-3.【点拨】本题考查了立方根的性质,正数的立方根为正数,负数的立方根为负数,0的立方根为0,熟记立方根的性质是解题的关键.13. 12- 3.14π-【分析】根据相反数的定义及去绝对值符合号法则,即可求得. 21的相反数是)2112-=>3.14π,3.14<0π∴-,()3.14 3.14 3.14πππ∴-=--=-,故答案为:12 3.14π-.【点拨】本题考查了相反数的定义及去绝对值符合号法则,掌握和灵活运用相反数的定义及去绝对值符合号法则是解决本题的关键.14.32【分析】根据算术平方根和立方根的性质得到a +b =4,a -b =8,进而直接代入求解即可.解:∵实数a 、b 2a b +=32a b ,∵a +b =4,a -b =8, ∵()()a b a b +-=4×8=32, 故答案为:32.【点拨】本题考查了算式平方根、立方根、代数式求值,理解算式平方根和立方根的性质是解答的关键.15.-2【分析】根据实数大小比较的方法解答即可. 解:∵2-2<3, ∵最小的实数是-2 故答案为:-2.【点拨】本题考查了实数的大小比较,正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小.163a【分析】根据数轴上点的位置判断出3a 利用绝对值的代数意义化简即可得到结果.解:∵a <0,∵30a <,则原式3a , 3a 17.>103>,进而即可求解. 解:∵109>, 103>, 1032>, 故答案为:>.10 18()21n -【分析】除第一个数外,其他数变成二次根式后,根号下面的数都是2的倍数,第二个数为2的1倍,第三个数为2的2倍,依此类推,第n 个数为2的()1n -倍,从而得出答案.解:由题意得:由题意得: 第一项:00200==⨯=; 2212⨯ 第三项:24224=⨯= 6236=⨯……第n ()()2121n n ⨯-=-()21n -【点拨】本题考查了算术平方根,解题的关键是发现题目中数据的变化规律,要熟练掌握.19.(1)92x =± (2)5x =-【分析】(1)利用平方根解方程即可;(2)利用立方根解方程.(1)解:2481x =,∵2814x =, ∵81942x =±=±; (2)解:()3227x +=-,∵3227x +=-23x,解得:5x =-.【点拨】本题考查开方法解方程.熟练掌握平方根和立方根的定义,是解题的关键. 20.33 (2)8-【分析】(1)先计算乘方与开方,并去绝对值符号,再计算加减即可.(2)先计算开方与乘方,再计算加减即可.(1)解:原式13132=-+++33;(2)解:原式3344=---8=-.【点拨】本题考查实数的混合运算,求绝对值,平方根和立方根,熟练掌握实数运算法则是解题的关键.21.(1)5- 73【分析】(1)先根据平方根的意义可得350x ++=,从而求出x 的值,13值的范围,从而求出y 的值,然后代入式子中进行计算即可解答;(2)把x ,y 的值代入式子中求出22xy +的值,然后再利用算术平方根的意义,进行计算即可解答.(1)解:9的平方根是3和5x +, 350x ∴++=,解得:8x =-,91316<<,3134∴<<,y 133y ∴=,835x y ∴+=-+=-,x y ∴+的值为5-;(2)当8x =-,3y =时,2222(8)364973x y +=-+=+=,22x y ∴+73【点拨】本题考查了估算无理数的大小,平方根,熟练掌握估算无理数的大小是解题的关键.22.(1)分割方法不唯一,如图,见分析;(22cm .【分析】(1)根据AB=2AD ,可找到CD 的中点,即可分成两个正方形,再沿对角线分割一次,即可补全成一个新的正方形;(2)设拼成的正方形边长为cm x ,根据面积相等得到方程,即可求解.解:(1)如图,∵AB=2AD ,找到CD,AB 的中点,如图所示,可把矩形分割成4个等腰直角三角形,再拼成一个新的正方形;(2)设拼成的正方形边长为cm x ,根据题意得2122x =⨯=,∵2x2cm .【点拨】此题主要考查实数性质的应用,解题的关键是根据图形的特点进行分割. 23.135791113++++++7 (2)n +1(3)14 【分析】(1)根据规律直接写出式子即可;(2135(21)n +++++n +1个式子,根据规律即可得; (3)41220283644524(1357891113)+++++++++++++利用规律即可得.(1)解:根据材料可知,第七个式子的被开方数为1+3+5+7+9+11+13, ∵第7135711137+++++,135711137+++++=; (2(21)1135(21)12n n n +++++++=+,故答案为:1n +;(3)解:根据(2)中的规律知, 11341220283644524(1357891113)4142++++++++++++++=. 【点拨】本题考查了数字变化规律类,解题的关键是掌握是式子的规律.24.859 (2)2.25【分析】(1)根据材料一中的方法求解即可;(2)利用材料二中的方法画出图形,写出过程即可.(1)解:8185100<98510<<,859. 85859.(2)解:我们知道面积是5552>,52x =+,可画出如图示意图.由图中面积计算,2224S x x =+⨯+正方形,另一方面由题意知5S =正方形,所以2445x x ++=.略去2x ,得方程410x -=,解得0.25x =5 2.25.【点拨】本题考查了无理数的估算,解题关键是准确理解题目给出的方法,熟练进行计算.。

第六章 实数复习一-教师用卷

第六章 实数复习一-教师用卷

第六章实数复习一班级: 姓名: 学号:一、全章知识梳理1. 算术平方根、平方根和立方根: 算术平方根平方根立方根定义 x 2=a (x >0), x 叫a 的算术平方根x 2=a, x 叫a 的平方根x 3=a, x 叫a 的立方根符号性质正数有两个平方根,它们互为相反数 0的平方根是0 负数没有平方根为任意数正数的立方根是正数.负数的立方根为负数. 0的立方根是0.2. 开方与乘方互为逆运算3. 被开方数的小数点向右或者向左移动2n (3n )位,它的算术平方根(立方根)的小数点就相应地向右或者向左移动n 位.4.实数 (1) 分类①按符号分类 ⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正实数正无理数实数零负有理数负实数负无理数①按属性分类⎧⎧⎫⎪⎪⎪⎨⎬⎪⎪⎪⎪⎨⎩⎭⎪⎧⎫⎪⎨⎬⎪⎩⎭⎩正有理数有理数零有限小数或无限循环小数负有理数实数正无理数无理数无限不循环小数负无理数 (2)实数的连续性.实数和数轴上的点是一一对应关系. (3 实数的有序性任何两个实数都可以比较大小,常用方法:估算法、平方法、作差比较法等(4)实数的稠密性任何两个实数之间,都有无数多个实数. (5)实数四则运算的封闭性任何两个实数进行加、减、乘、除的结果都是实数. 数系扩充后原有的运算法则、运算律仍然成立. 二、全章知识结构三、典型习题1. 下列说法中,正确的有( )①只有正数才有平方根;②a 一定有立方根;③√−a 没有意义;④√−a 3=−√a 3;⑤只有正数才有立方根.A. 1个B. 2个C. 3个D. 4个【答案】B 【解析】 【分析】本题考查平方根和立方根的性质.利用平方根与立方根的性质,对各个选项一一判断即可. 【解答】解:非负数都有平方根,所以①是错误的; 任何数的立方根都只有一个,所以②是正确的; a >0时,√−a 没意义,所以所以③是错误的;√−a 3=−√a 3,所以④是正确的.所以正确的有2个. 故选B .2. 下列各式成立的是A. √(−2)2=−2B. √52=−5C. √x 2=xD. √(−6)2=6【答案】D 【解析】 【分析】本题主要考查算术平方根,根据算术平方根的性质可逐项计算,进而判断求解.【解答】解:A.√(−2)2=2,故错误;B.√52=5,故错误;C.√x2=x(x≥0),故错误;D.√(−6)2=6,故正确;故选D.3.在以下数0.3,0,π−3,π,0.123456…(小数部分由相继的正整数组成),20.1001001001…中,其中无理数的个数是()A. 2B. 3C. 4D. 5【答案】B【解析】【分析】本题考查无理数的概念.无理数就是无限不循环小数.根据无理数的定义求解即可.【解答】解:无理数有:π−3,,0.123456…(小数部分由相继的正整数组成),共有3个.故选B.4.如图所示,数轴上表示2,√5的点分别为C,B,点C是AB的中点,则点A表示的数是()A. −√5B. 2−√5C. 4−√5D. √5−2【答案】C【解析】【分析】本题主要考查了数轴上两点之间中点的计算方法.首先可以求出线段BC的长度,然后利用中点的性质即可解答.【解答】解:∵表示2,√5的对应点分别为C,B,∴CB=√5−2,∵点C是AB的中点,则设点A表示的数是x,则x=4−√5,∴点A表示的数是4−√5.故选C.5.有资料表明,一粒废旧的纽扣电池大约会污染60万升水.某校七年级(1)班有50名学生,若每名学生都丢弃一粒纽扣电池,污染的水大约为A. 3×103万升B. 3×102万升C. 6×105万升D. 3×107万升【答案】A【解析】【分析】本题主要考查了科学计数法的应用,根据题意,一个纽扣电池会污染60万升水,则50个学生会每人丢弃一颗纽扣电池会污染50×60万升水,再用科学技术法表示即可,属于基础题;【解答】解:根据题意50个学生会每人丢弃一颗纽扣电池会污染50×60万升水,50×60=3000=3×103(万升),故选A.6.①倒数等于本身的数为1;②若a、b互为相反数,那么a、b的商必定等于−1;③对于任意实数x,|x|+x一定是非负数;④一个数前面带有“−”号,则这个数是负数;⑤整数和小数统称为有理数;⑥数轴上的点都表示有理数;⑦绝对值等于自身的数为0和1;⑧平方等于自身的数为0和1;其中正确的个数是()A. 0个B. 1个C. 2个D. 3个【答案】C【解析】【分析】本题考查了相反数,绝对值,非负数的性质:绝对值,倒数,掌握相反数,绝对值,非负数的性质:绝对值,倒数的定义是解决问题的关键.直接利用倒数以及绝对值和相反数的性质分别分析得出答案。

第六章《实数》复习课教学设计

第六章《实数》复习课教学设计
(1)0.25(求算术平方根)(2)16(求平加)⑶8
(求立方根)
教与学的策

让学生去展示、让学生去纠正错误。基本上是以学生为主,老师做指导。
反馈评价
学生都可以完成自己的任务,除了个别的还需要辅导外都可以掌握了。
教学活动2:加强理解
活动目标
通过计算,加深学生对几个概念的理性认识,逐步形成技能。
解决问题
(二)、加强理解
技术资源
教学平台、投影仪
常规资源
试卷
活动概述练片

(1
例1.计算
(1)>/144-^/169+V8(2)x2-24=25
1:
才算
)石-2+向(2)几一7(^67+石-1
、:
(1)
求x的值
一2一一2一
8x2=125(2)(x-2)=25
教与学的策

都是让学生去评价学生,老师指导。
反馈评价
(填>、<或=)0
、才"1」各数分别填在相应的集合中。
2233.14159265,",-8,0.6,0,通,[,衰
属于整数集合的:,
属于小数集合的:,
属于有理数集合的:,
属于无理数集合
的:。
4、数轴上的点与实数构成了关系。
5、不用计算器,估算出45的算术平方根在那两个整数之
问:0
6、分别求下列各数的算术平方根、平方根和立方根
力服活动概述法解
(五)、归纳小结
注意理解好乘方、开方的互逆运算美系,重点掌握平方根、算术平:和立方根的概念与运用,懂得实数的混合运算,会使用各种思想方;题:类比思想、转化思想、数形结合思想、逐步逼近思想等等。

浙教版初一上册数学实数全章复习与巩固(基础)重点题型巩固练习

浙教版初一上册数学实数全章复习与巩固(基础)重点题型巩固练习

浙教版七年级上册初中数学知识点梳理及重点题型巩固练习【巩固练习】一.选择题1. 下列说法正确的是( )A .数轴上任一点表示唯一的有理数B .数轴上任一点表示唯一的无理数C .两个无理数之和一定是无理数D .数轴上任意两点之间都有无数个点2.(2015•日照)的算术平方根是( )A .2B .±2C .D .±3.已知a 、b 是实数,下列命题结论正确的是( )A .若a >b ,则2a >2bB .若a >|b |,则2a >2bC .若|a |>b ,则2a >2bD .若3a >3b ,则2a >2b 4. 3387=-a ,则a 的值是( ) A. 87 B. 87- C. 87± D. 512343- 5. 若式子3112x x -+-有意义,则x 的取值范围是 ( ). A.21≥x B. 1≤x C.121≤≤x D. 以上答案都不对. 6. 下列说法中错误的是( ) A.3a 中的a 可以是正数、负数或零. B.a 中的a 不可能是负数.C. 数a 的平方根有两个.D.数a 的立方根有一个.7. 数轴上A ,B 两点表示实数a ,b ,则下列选择正确的是( )A.0>+b aB. 0ab >C.0a b ->D.||||0a b ->8. 估算219+的值在 ( )A. 5和6之间B.6和7之间C.7和8之间D.8和9之间二.填空题9. a ,则其小数部分用a 表示为 .10.当x 时,32-x 有意义. 11. =--32)125.0( .12. 若12-x 是225的算术平方根,则x 的立方根是 . 13. 3343的平方根是 .14.(2015春•罗山县期末)﹣64的立方根与的平方根之和是 .15. 1- ,-22 , 33 16. 数轴上离原点距离是5的点表示的数是 .三.解答题17. 一个正数x 的平方根是32-a 与a -5,则a 是多少?18.(2015春•桃园县校级期末)已知x ﹣2的平方根是±2,2x+y+7的立方根是3,求x 2+y2的平方根. 19. 已知:表示a 、b 两个实数的点在数轴上的位置如图所示,请你化简()2b a b a ++-20. 阅读题:阅读下面的文字,解答问题. 大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来,于是小明用2-1表示2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分.请解答:已知:10+3=y x +,其中x 是整数,且10<<y ,求y x -的相反数.【答案与解析】一.选择题1. 【答案】D ;【解析】数轴上任一点都表示唯一的实数.2. 【答案】C3. 【答案】B ;【解析】B 答案表明,||||a b a b >>且,故2a >2b .4. 【答案】B ;【解析】==. 5. 【答案】A ;6. 【答案】C ;【解析】数a 不确定正负,负数没有平方根.7. 【答案】C ;8. 【答案】B ;【解析】45<<,627<<.二.填空题9. a ;10.【答案】为任意实数 ;【解析】任何实数都有立方根.11.【答案】25.0-;【解析】0.25==-.12.【答案】3;【解析】x -12=15, x =3=.13.【答案】7± ;【解析】 3343=7,7的平方根是7±. 14.【答案】﹣2或﹣6.【解析】∵﹣64的立方根是﹣4,=4,∵4的平方根是±2,∵﹣4+2=﹣2,﹣4+(﹣2)=﹣6,∴﹣64的立方根与的平方根之和是﹣2或﹣6.15.【答案】>;<;>;16.【答案】【解析】数轴上离原点距离是5的点有两个,分别在原点的左右两边.三.解答题17.【解析】解:∵一个正数x 的平方根是32-a 与a -5,∴32-a 与a -5互为相反数,即32-a +a -5=0,解得2a =-.18.【解析】解:∵x ﹣2的平方根是±2,2x+y+7的立方根是3,∴x ﹣2=22,2x+y+7=27,解得x=6,y=8,∴x 2+y 2=62+82=100,∴x 2+y 2的平方根是±10.19.【解析】解:∵b <a <0 ∴()2b a b a ++-()||2a b a b a b a b b=-++=--+=-20.【解析】解:∵11<10+3<12∴x =11,y =10+3-111∴()11112x y y x --=-=-=.。

第六章 实数 全章复习

第六章  实数 全章复习

第六章 实数 全章复习一:知识梳理(磨刀不误砍柴工)1.平方根及算术平方根如果a x =2 ()0≥a 则称x 是a 的________;可以表示为________,其中______表示a 的算术平方根 注意:①正数有____个算术平方根;有______个平方根,它们之间的关系是________②负数有____个平方根,有______算术平方根③0的平方根和算术平方根都是______④算术平方根是一个______(大于、小于、大于等于、小于等于)零的数。

⑤算术平方根等于其本身的数有__________,平方根等于其本身的数有___________2.立方根如果a x =3 则称x 是a 的_______(也叫三次方根),可以表示为________注意:①正数的立方根是________ ②负数的立方根是___________③0的立方根是___________ ④任何一个数都有________的立方根 ⑤立方根等于其本身的数有___________ ⑥________3=-a3.实数及其分类1.____________________叫无理数。

试写出几个常见的无理数__________2.实数是________和_________的统称。

3.实数和数轴上的点是________对应的关系。

4.实数的分类⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧无限不循环小数正无理数无限循环小数都可以化成有限小数或正有理数有理数实数____________________________ ⎪⎩⎪⎨⎧_________0________实数4.实数的运算有理数的运算法则及性质,到实数范围内依然成立如 ① 相反数任意一个实数a 的相反数是______________② 绝对值⎪⎩⎪⎨⎧<=>=)0_________()0_________()0_________(a a a a③ 倒数任意一个实数a )0(≠a 的倒数是______________④ 交换律、结合律、分配律、去括号法则等运算性质和法则在实数范围内依然成立 二:小试牛刀(快乐展示 展示快乐)选择题:1. 有下列说法:⑴2是无理数; ⑵无限不循环小数是无理数;⑶无理数是无限小数;。

实数的相关概念中考考点梳理

实数的相关概念中考考点梳理

实数的相关概念中考考点梳理全文共四篇示例,供读者参考第一篇示例:实数是数学中最基础的概念之一,它包括有理数和无理数两类。

在数学的学习中,实数的相关概念是非常重要的。

在中考中,实数相关的考点也是比较多的。

下面我们来看看实数相关概念中中考的考点梳理。

1. 实数的分类实数可以分为有理数和无理数两类。

有理数是可以表示为两个整数的比值的数,包括整数、分数和循环小数。

无理数是不能表示为有理数的数,如π和根号2等。

在中考中,同学们需要了解实数的分类,并能够判断一个数是有理数还是无理数。

2. 实数的运算实数的运算是中考数学的重要内容之一。

同学们需要掌握实数的加减乘除运算规则,包括有理数和无理数的运算。

在中考中,常见的考点有实数的加法、减法、乘法、除法运算,以及混合运算等。

3. 实数的大小比较在实数的概念中,同学们也需要学会对实数进行大小比较。

无论是有理数还是无理数,都可以通过大小比较符号进行比较,如大于等于、小于等于、大于、小于等等。

在中考中,通常会出现实数的大小比较题目,同学们需要根据实数的性质进行判断。

4. 实数的分数表示实数可以表示为分数的形式,分数是有理数的一种形式。

在中考中,同学们需要能够将实数表示为分数的形式,并且能够进行化简和计算。

分数的化简和运算是中考数学的常见考点之一,同学们需要多进行练习,掌握分数的性质和运算规则。

5. 实数的应用问题实数的概念在中考中不仅仅是为了考察同学们的概念掌握程度,还可以通过应用题目考察同学们对实数的应用能力。

实数在现实生活中有着广泛的应用,比如长度、重量、体积等问题都可以通过实数进行表示和计算。

在中考中,同学们可能会遇到一些实际问题,需要用实数进行求解,这就需要同学们将实数的概念运用到实际问题中去。

实数的相关概念在中考数学中占据着重要的地位,同学们需要充分理解实数的分类、运算、大小比较、分数表示以及应用问题等知识点。

通过不断的练习和巩固,可以帮助同学们提高实数相关概念的理解和运用能力,从而在中考中取得更好的成绩。

人教版数学七年级下册第六章实数基础知识点讲解+典型例题讲解.doc

人教版数学七年级下册第六章实数基础知识点讲解+典型例题讲解.doc

【本文档由书林工作坊整理发布,谢谢你的下载和关注!】平方根(基础)【学习目标】1.了解平方根、算术平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.【要点梳理】知识点一、平方根和算术平方根的概念 1.算术平方根的定义如果一个正数x 的平方等于a ,即2x a =,那么这个正数x 叫做a 的算术平方根(规定0的算术平方根还是0);a a a 的算术平方根”,a 叫做被开方数.要点诠释:a a a 0,a ≥0. 2.平方根的定义如果2x a =,那么x 叫做a 的平方根.求一个数a 的平方根的运算,叫做开平方.平方与开平方互为逆运算. a (a ≥0)的平方根的符号表达为(0)a a ≥a 是a 的算术平方根.知识点二、平方根和算术平方根的区别与联系 1.区别:(1)定义不同;(2)结果不同:a a2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根. (2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根.知识点三、平方根的性质20||000a a a a a a a >⎧⎪===⎨⎪-<⎩()20a aa =≥知识点四、平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位.62500250=62525= 6.25 2.5=0.06250.25=.【典型例题】类型一、平方根和算术平方根的概念1、下列说法错误的是( )A.5是25的算术平方根B.l 是l 的一个平方根C.()24-的平方根是-4 D.0的平方根与算术平方根都是0【答案】C ;【解析】利用平方根和算术平方根的定义判定得出正确选项.A.因为25=5,所以本说法正确;B.因为±1=±1,所以l 是l 的一个平方根说法正确;C.因为±()24-=±16=±4,所以本说法错误;D.因为0±=0,0=0,所以本说法正确;【总结升华】此题主要考查了平方根、算术平方根的定义,关键是明确运用好定义解决问题. 举一反三:【变式】判断下列各题正误,并将错误改正:(1)9-没有平方根.( )(2)164=±.( ) (3)21()10-的平方根是110±.( ) (4)25--是425的算术平方根.( ) 【答案】√ ;×; √; ×, 提示:(2)164=;(4)25是425的算术平方根. 2、 填空:(1)4-是 的负平方根. (2116表示 的算术平方根,116= . (3181的算术平方根为 . (43x =,则x = ,若23x =,则x = .【思路点拨】(3)181就是181的算术平方根=19,此题求的是19的算术平方根. 【答案与解析】(1)16;(2)11;164(3)13 (4) 9;±3【总结升华】要审清楚题意,不要被表面现象迷惑.注意数学语言与数学符号之间的转化.举一反三:【变式1】下列说法中正确的有( ):①3是9的平方根. ② 9的平方根是3.③4是8的正的平方根.④ 8-是64的负的平方根.A .1个B .2个C .3个D .4个 【答案】B ;提示:①④是正确的.【变式2】求下列各式的值:(1)325 (2)8136+(3)0.040.25- (4)40.36121⋅【答案】(1)15;(2)15;(3)-0.3;(4)6553、使代数式1x +有意义的x 的取值范围是______________. 【答案】x ≥1-;【解析】x +1≥0,解得x ≥1-.【总结升华】当式子a 有意义时,a 一定表示一个非负数,即a ≥0,a ≥0. 举一反三:【变式】(2015春•中江县期中)若+(3x+y ﹣1)2=0,求5x+y 2的平方根.【答案】解:∵+(3x+y ﹣1)2=0, ∴,解得,,∴5x+y 2=5×1+(﹣2)2=9,∴5x+y 2的平方根为±=±3.类型二、利用平方根解方程4、(2015春•鄂州校级期中)求下列各式中的x 值(1)169x2=144(2)(x﹣2)2﹣36=0.【思路点拨】(1)移项后,根据平方根定义求解;(2)先将(x﹣2)看成一个整体,移项后,根据平方根定义求解.【答案与解析】解:(1)169x2=144,两边同时除以169,得1442x=169开平方,得x=(2)(x﹣2)2﹣36=0,移项,得(x﹣2)2=36开平方,得x﹣2=±6,解得:x=8或x=﹣4.【总结升华】本题考查了平方根,根据是一个正数的平方根有两个.类型三、平方根的应用5、要在一块长方形的土地上做田间试验,其长是宽的3倍,面积是1323平方米.求长和宽各是多少米?【答案与解析】解:设宽为x,长为3x,由题意得,x·3x=132332x=1323x=±21x=-21(舍去)答:长为63米,宽为21米.【总结升华】根据面积由平方根的定义求出边长,注意实际问题中边长都是正数.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】立方根【学习目标】1. 了解立方根的含义;2. 会表示、计算一个数的立方根,会用计算器求立方根.【要点梳理】要点一、立方根的定义如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果3=,那么x叫做a的立方根.求一个数的立方根的运算,叫做开立方.x a要点诠释:一个数a3a a是被开方数,3是根指数. 开立方和立方互为逆运算.要点二、立方根的特征立方根的特征:正数的立方根是正数,负数的立方根是负数,0的立方根是0.要点诠释:任何数都有立方根,一个数的立方根有且只有一个,并且它的符号与这个非零数的符号相同. 两个互为相反数的数的立方根也互为相反数. 要点三、立方根的性质33a a -=-33a a =()33a a =要点诠释:第一个公式可以将求负数的立方根的问题转化为求正数的立方根的问题. 要点四、立方根小数点位数移动规律被开方数的小数点向右或者向左移动3位,它的立方根的小数点就相应地向右或者向左移动1位.例如,30.000 2160.06=,30. 2160.6=,3 2166=,3216000 60=. 【典型例题】 类型一、立方根的概念1、(2016春•吐鲁番市校级期中)下列语句正确的是( ) A .如果一个数的立方根是这个数本身,那么这个数一定是0 B .一个数的立方根不是正数就是负数 C .负数没有立方根D .一个不为零的数的立方根和这个数同号,0的立方根是0 【思路点拨】根据立方根的定义判断即可. 【答案】D ;【解析】A .如果一个数的立方根是这个数本身,那么这个数一定是0或1或-1,故错误;B .一个数的立方根不是正数就是负数,错误,还有0;C .负数有立方根,故错误;D .正确.【总结升华】本题考查了立方根,解决本题的关键是熟记立方根的定义. 举一反三:【变式】下列结论正确的是( )A .64的立方根是±4B .12-是16-的立方根 C .立方根等于本身的数只有0和1D .332727-=-【答案】D.类型二、立方根的计算2、求下列各式的值:(1)327102-- (2)3235411+⨯ (3)336418-⋅ (4)23327(3)1-+--- (5)10033)1(412)2(-+÷-- 【答案与解析】解:(1)310227-- (2)3321145⨯+ (3)331864⋅-3642743==33=116425=729=9⨯+ 1=241=2⎛⎫⨯- ⎪⎝⎭-(4)23327(3)1-+---=331=1-++(5)310031(2)2(1)4--÷+-3=21247=1=33÷++【总结升华】立方根的计算,注意符号和运算顺序,带分数要转化成假分数再开立方.举一反三:【变式】计算:(1)30.008-=______;(2)=364611______; (3)=--312719______.(4)=-33511)(______. 【答案】(1)-0.2;(2)54;(3)23;(4)45. 类型三、利用立方根解方程3、(2015春•北京校级期中)(x ﹣2)3=﹣125.【思路点拨】利用立方根的定义开立方解答即可. 【答案与解析】 解:(x ﹣2)3=﹣125, 可得:x ﹣2=﹣5, 解得:x=﹣3.【总结升华】此题考查立方根问题,关键是先将x ﹣2看成一个整体. 举一反三:【变式】求出下列各式中的a :(1)若3a =0.343,则a =______;(2)若3a -3=213,则a =______; (3)若3a +125=0,则a =______;(4)若()31a -=8,则a =______.【答案】(1)a =0.7;(2)a =6;(3)a =-5;(4)a =3. 类型四、立方根实际应用4、在做物理实验时,小明用一根细线将一个正方体铁块拴住,完全浸入盛满水的圆柱体烧杯中,并用一量筒量得铁块排出的水的体积为643cm ,小明又将铁块从水中提起,量得烧杯中的水位下降了169πcm .请问烧杯内部的底面半径和铁块的棱长各是多少?【思路点拨】铁块排出的643cm 水的体积,是铁块的体积,也是高为169πcm 烧杯的体积. 【答案与解析】解:铁块排出的643cm 的水的体积,是铁块的体积.设铁块的棱长为y cm ,可列方程364,y =解得4y =设烧杯内部的底面半径为x cm ,可列方程216649x ππ⨯=,解得x =6. 答:烧杯内部的底面半径为6cm ,铁块的棱长 4cm .【总结升华】应该熟悉体积公式,依题意建立相等关系(方程),解方程时,常常用到求平方根、立方根,要结合实际意义进行取舍.本题体现与物理学科的综合. 举一反三:【变式】将棱长分别为和的两个正方体铝块熔化,制成一个大正方体铝块,这个大正方体的棱长为____________.(不计损耗) 333a b +.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】实数(基础)【学习目标】1. 了解无理数和实数的意义;2. 了解有理数的概念、运算法则在实数范围内仍适用 . 【要点梳理】要点一、有理数与无理数有限小数和无限循环小数都称为有理数.无限不循环小数又叫无理数. 要点诠释:(1)无理数的特征:无理数的小数部分位数无限.无理数的小数部分不循环,不能表示成分数的形式.(2)常见的无理数有三种形式:①含π类.②看似循环而实质不循环的数,如:1.313113111…….③带有根号的数,但根号下的数字开方开不尽,如5.要点二、实数有理数和无理数统称为实数. 1.实数的分类 按定义分:实数⎧⎨⎩有理数:有限小数或无限循环小数无理数:无限不循环小数按与0的大小关系分:实数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正数正无理数负有理数负数负无理数2.实数与数轴上的点一一对应.数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.要点三、实数大小的比较对于数轴上的任意两个点,右边的点所表示的实数总是比左边的点表示的实数大. 正实数大于0,负实数小于0,两个负数,绝对值大的反而小. 要点四、实数的运算有理数关于相反数和绝对值的意义同样适合于实数.当数从有理数扩充到实数以后,实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且正数及0可以进行开平方运算,任意一个实数可以进行开立方运算.在进行实数的运算时,有理数的运算法则及运算性质等同样适用. 【典型例题】类型一、实数概念1、指出下列各数中的有理数和无理数: 332222,,,9,8,9,0,,12,55,0.1010010001 (7)3π-【思路点拨】对实数进行分类时,应先对某些数进行计算或化简,然后根据它的最后结果进行分类,不能仅看到根号表示的数就认为是无理数.π是无理数,化简后含π的代数式也是无理数.【答案与解析】有理数有3222,9,8,0,,73--无理数有32,,9,12,55,0.1010010001π-……【总结升华】有限小数和无限循环小数都称为有理数.无限不循环小数又叫无理数. 常见的无理数有三种形式:①含π类.②看似循环而实质不循环的数,如:0.1010010001…….③带有根号的数,但根号下的数字开方开不尽,如55,39,2,12-.举一反三: 【变式】(2015春•聊城校级月考)在下列语句中: ①无理数的相反数是无理数; ②一个数的绝对值一定是非负数; ③有理数比无理数小;④无限小数不一定是无理数. 其中正确的是( )A .②③B .②③④C .①②④D .②④ 【答案】C ;解:①因为实数包括有理数和无理数,无理数的相反数 不可能式有理数,故本选项正确; ②一个数的绝对值一定≥0,故本选项正确;③数的大小,和它是有理数还是无理数无关,故本选项是错误的; ④无限循环小数是有理数,故本选项正确.类型二、实数大小的比较2、比较520.5的大小. 【答案与解析】解:作商,得5250.5=51>,即5210.5>50.5>. 【总结升华】根据若a ,b 均为正数,则由“1a b >,1a b =,1ab<”分别得到结论“a b >,a b =,a b <,”从而比较两个实数的大小.比较大小的方法有作差法和作商法等,根据具体情况选用适当的方法.举一反三:【变式】比较大小___ 3.14π-- 7___54__2323___32 32 9___0- 3___10-- |43|___(7)--- 【答案】<; >; <; <; <; >; <.3、(2015•枣庄)实数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是( )A .ac >bcB .|a ﹣b|=a ﹣bC .﹣a <﹣b <cD .﹣a ﹣c >﹣b ﹣c【答案】D ;【解析】解:∵由图可知,a <b <0<c , ∴A 、ac <bc ,故A 选项错误; B 、∵a <b , ∴a ﹣b <0,∴|a ﹣b|=b ﹣a ,故B 选项错误; C 、∵a <b <0,∴﹣a >﹣b ,故C 选项错误; D 、∵﹣a >﹣b ,c >0,∴﹣a ﹣c >﹣b ﹣c ,故D 选项正确. 故选:D .【总结升华】本题考查的是实数与数轴,熟知数轴上各点与实数是一一对应关系是解答此题的关键.类型三、实数的运算4、化简:(1)|2 1.4|- (2)|7|74||-- (3)|12|+|23|+|32|--- 【答案与解析】 解:|2 1.4|-2 1.4=-|7|74||-- =|74+7|- =274-|12|+|23|+|32|---2132231=-+-+-=.【总结升华】有理数关于相反数和绝对值的意义同样适合于实数.有理数的运算法则及运算性质等同样适用.5、若2|2|3(4)0a b c ---=,则a b c -+=________.【思路点拨】由有限个非负数之和为零,则每个数都应为零可得到方程中a ,b ,c 的值.【答案】3; 【解析】解:由非负数性质可知:203040a b c -=⎧⎪-=⎨⎪-=⎩,即234a b c =⎧⎪=⎨⎪=⎩,∴ 2343a b c -+=-+=.【总结升华】初中阶段所学的非负数有|a |,2,a a ,非负数的和为0,只能每个非负数分别为0 . 举一反三:【变式】已知2(16)|3|30x y z ++++-=,求xyz 的值.【答案】解:由已知得1603030x y z +=⎧⎪+=⎨⎪-=⎩,解得1633x y z =-⎧⎪=-⎨⎪=⎩.∴xyz =(16)(3)312-⨯-⨯=.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】实数全章复习与巩固(基础)【学习目标】1.了解算术平方根、平方根、立方根的概念,会用根号表示数的平方根、立方根.2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根.3.了解无理数和实数的概念,知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应;了解数的范围由有理数扩大为实数后,概念、运算等的一致性及其发展变化.4.能用有理数估计一个无理数的大致范围. 【知识网络】【要点梳理】类型项目平方根 立方根 被开方数 非负数任意实数符号表示a ±3a性质一个正数有两个平方根,且互为相反数;零的平方根为零; 负数没有平方根;一个正数有一个正的立方根; 一个负数有一个负的立方根; 零的立方根是零;重要结论⎩⎨⎧<-≥==≥=)0()0()0()(22a a a a a a a a a333333)(aa a a aa -=-==要点二:实数有理数和无理数统称为实数. 1.实数的分类 按定义分:实数⎧⎨⎩有理数:有限小数或无限循环小数无理数:无限不循环小数按与0的大小关系分:实数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正数正无理数负有理数负数负无理数要点诠释:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数.(2532等;②有特殊意义的数,如π;③有特定结构的数,如0.1010010001…(3)凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形式.(4)实数和数轴上点是一一对应的.2.实数与数轴上的点一 一对应.数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.3.实数的三个非负性及性质:在实数范围内,正数和零统称为非负数。

实数(单元复习)标准教案

实数(单元复习)标准教案

实数(单元复习)标准教案一、教学目标:1. 知识与技能:(1)理解实数的定义及分类,掌握有理数和无理数的特点。

(2)掌握实数的性质,如相反数、绝对值、平方等。

(3)学会实数的运算方法,包括加、减、乘、除、乘方等。

2. 过程与方法:(1)通过复习实数的定义和性质,提高学生的逻辑思维能力。

(2)运用实数运算方法,培养学生解决实际问题的能力。

3. 情感态度与价值观:培养学生对数学的兴趣,提高学生分析问题、解决问题的能力。

二、教学重点与难点:1. 教学重点:(1)实数的定义及分类。

(2)实数的性质和运算方法。

2. 教学难点:(1)实数分类的理解和运用。

(2)实数运算的灵活应用。

三、教学过程:1. 导入新课:回顾实数的定义,引导学生思考实数的分类和性质。

2. 知识讲解:(1)讲解实数的分类,包括有理数和无理数。

(2)阐述实数的性质,如相反数、绝对值、平方等。

(3)介绍实数的运算方法,如加、减、乘、除、乘方等。

3. 例题解析:选取典型例题,讲解实数的运算方法和应用。

4. 课堂练习:设计练习题,让学生巩固实数的分类、性质和运算方法。

5. 总结提升:对本节课的内容进行总结,强调实数在数学中的重要性。

四、课后作业:1. 复习实数的定义、分类和性质。

2. 练习实数的运算方法,解决实际问题。

3. 总结实数在实际生活中的应用。

五、教学评价:1. 学生对实数的定义、分类和性质的掌握程度。

2. 学生实数运算方法的运用能力。

3. 学生解决实际问题的能力。

4. 学生对数学学科的兴趣和积极性。

六、教学策略与方法:1. 采用问题驱动法,引导学生主动探究实数的性质和运算方法。

2. 通过小组讨论,培养学生合作学习的能力。

3. 利用信息技术辅助教学,如数学软件、网络资源等。

4. 设计富有挑战性的数学问题,激发学生的创新思维。

七、教学实践与拓展:1. 结合实际生活中的问题,让学生运用实数知识和方法解决问题。

2. 开展数学竞赛,提高学生的学习积极性。

人教版七年级数学下册第六章《实数》知识点复习与小结优秀教学案例

人教版七年级数学下册第六章《实数》知识点复习与小结优秀教学案例
2.通过问题的提出和解决,引导学生发现实数知识之间的内在联系。
3.利用问题引导学生进行推理和证明,培养他们的逻辑思维能力。
4.鼓励学生主动寻找解决问题的方法,培养他们的自主学习能力和创新意识。
(三)小组合作1.将学生分为小ຫໍສະໝຸດ ,鼓励他们进行合作学习和讨论交流。
2.设计具有挑战性和综合性的任务,让学生在合作中解决问题,提高解决问题的能力。
(三)学生小组讨论
1.将学生分为小组,给出具有挑战性和综合性的任务,让学生在小组合作中解决问题。例如,可以让学生探讨实数的性质和运算规则,并尝试解决一些实际问题。
2.鼓励学生分享自己的观点和思考过程,培养他们的团队合作意识和沟通能力。例如,可以让每个小组成员依次发表自己的观点,并进行讨论交流。
(四)总结归纳
三、教学策略
(一)情景创设
1.利用生活实际问题,创设情境,引发学生对实数的兴趣和好奇心。
2.通过图形、模型等直观教具,帮助学生形象地理解实数的概念和性质。
3.设计具有挑战性和针对性的问题,激发学生的思考和探索欲望。
4.创设互动交流的平台,让学生分享自己的思考过程和解决问题的方法。
(二)问题导向
1.引导学生提出问题,培养他们的问题意识和解决问题的能力。
3.鼓励学生分享自己的观点和思考过程,培养他们的团队合作意识和沟通能力。
4.注重小组合作的过程和结果,对学生的合作学习和团队精神进行评价和反馈。
(四)反思与评价
1.引导学生对自己的学习过程进行反思,发现自己的优点和不足,提高自我认知能力。
2.让学生通过自我评价和同伴评价,了解自己的学习进展和提高方向。
1.培养学生对数学学科的兴趣和热情,使他们愿意主动学习数学。
2.培养学生的团队合作意识,使他们能够在学习过程中相互帮助、共同进步。

中考数学专题复习一实数及其运算

中考数学专题复习一实数及其运算

专题01有理数考点一:有理数之正数和负数◎基础巩固1.正数和负数的定义:大于0的数叫做正数,小于0的数叫做负数。

0既不是正数也不是负数。

2.正数和负数的意义:表示具有相反意义的两个量。

3.正负号的化简:同号为正,异号为负。

◎同步练习1.下列各数是负数的是()A .0B .21C .﹣(﹣5)D .﹣52.下列各数为负数的是()A .﹣2B .0C .3D .53.四个实数﹣2,1,2,31中,比0小的数是()A .﹣2B .1C .2D .314.在﹣3,1,21,3中,比0小的数是()A .﹣3B .1C .21D .35.若气温上升2℃记作+2℃,则气温下降3℃记作()A .﹣2℃B .+2℃C .﹣3℃D .+3℃6.如果将“收入50元”记作“+50元”,那么“支出20元”记作()A .+20元B .﹣20元C .+30元D .﹣30元7.在东西向的马路上,把出发点记为0,向东与向西意义相反.若把向东走2km 记做“+2km ”,那么向西走1km 应记做()A .﹣2km B .﹣1km C .1km D .+2km8.中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.若零上10℃记作+10℃,则零下10℃可记作()A .10℃B .0℃C .﹣10℃D .﹣20℃9.(如果水位升高2m 时水位变化记作+2m ,那么水位下降2m 时水位变化记作.10.负数的概念最早出现在中国古代著名的数学专著《九章算术》中,负数与对应的正数“数量相等,意义相反”,如果向东走5米,记作+5米,那么向西走5米,可记作米.考点二:有理数之相反数◎基础巩固1.相反数的定义:只有符号不同的两个数互为相反数。

我们说其中一个数是另一个数的相反数。

0的相反数还是0。

2.相反数的性质:互为相反数的两个数和为0。

即a 与b 互为相反数⇔0=+b a ⇔()a b b a -=-=◎同步练习11.实数9的相反数等于()A .﹣9B .+9C .91D .﹣9112.下列各数中,﹣1的相反数是()A .﹣1B .0C .1D .213.﹣2022的相反数是.14.如图,数轴上点A 表示的数的相反数是()A .﹣2B .﹣21C .2D .3考点三:有理数之绝对值◎基础巩固1.绝对值的定义:数轴上表示数a 的点到原点的距离用数a 的绝对值来表示。

苏教版七年级上册数学[《代数式》全章复习与巩固(基础)知识点整理及重点题型梳理]

苏教版七年级上册数学[《代数式》全章复习与巩固(基础)知识点整理及重点题型梳理]

苏教版七年级上册数学[《代数式》全章复习与巩固(基础)知识点整理及重点题型梳理]代数式》全章复与巩固(基础)知识讲解研究目标:1.进一步理解用字母表示数的意义,能分析简单问题的数量关系,并用代数式表示;2.理解代数式的含义,能解释一些简单代数式的实际背景或几何意义,体会数学与现实生活的密切联系;3.会求代数式的值,能解释值的实际意义,能根据代数式的值推断代数式反映的规律;4.理解并掌握单项式与多项式的相关概念;5.理解整式加减的基础是去括号和合并同类项,并熟练的运用整式的加减运算法则,进行整式的加减运算、求值;6.深刻体会本章体现的主要的数学思想——整体思想。

要点梳理:1.代数式是用运算符号(+、-、×、÷、乘方、开方)把数和表示数的字母连接而成的式子,像16n、2a+3b、34、n、2、(a+b)等式子都是代数式,单独的一个数或一个字母也是代数式。

代数式的书写规范:1) 字母与数字或字母与字母相乘时,通常把乘号写成“·”或省略不写;2) 除法运算一般以分数的形式表示;3) 字母与数字相乘时,通常把数字写在字母的前面;4) 字母前面的数字是分数的,如果既能写成带分数又能写成假分数,一般写成假分数的形式;5) 如果字母前面的数字是1,通常省略不写。

2.单项式是由数与字母的乘积组成的代数式,单独的一个数或一个字母也是单项式。

单项式的系数是指单项式中的数字因数,单项式的次数是指单项式中所有字母的指数和。

多项式是几个单项式的和,每个单项式叫做多项式的项。

在多项式中,不含字母的项叫做常数项。

多项式中次数最高的项的次数,就是这个多项式的次数。

如果一个多项式的次数是n次,有m个单项式,我们就把这个多项式称为n次m项式。

3.多项式的降幂与升幂排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个字母降幂排列。

另外,把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个字母升幂排列。

《实数》全章复习与巩固(知识讲解)八年级数学上册基础知识讲与练(北师大版)

《实数》全章复习与巩固(知识讲解)八年级数学上册基础知识讲与练(北师大版)

专题2.22 《实数》全章复习与巩固(知识讲解)【学习目标】1.了解算术平方根、平方根、立方根的概念,会用根号表示数的平方根、立方根.2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根.3.了解无理数和实数的概念,知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应;了解数的范围由有理数扩大为实数后,概念、运算等的一致性及其发展变化.4.能用有理数估计一个无理数的大致范围.【要点梳理】有理数和无理数统称为实数.1.实数的分类按定义分:实数按与0的大小关系分:实数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正数正无理数负有理数负数负无理数特别说明:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数.(2等;②有特殊意义的数,如π;③有特定结构的数,如0.1010010001…(3)凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形式.(4)实数和数轴上点是一一对应的.2.实数与数轴上的点一一对应.⎧⎨⎩有理数:有限小数或无限循环小数无理数:无限不循环小数数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.3.实数的三个非负性及性质:在实数范围内,正数和零统称为非负数。

我们已经学习过的非负数有如下三种形式:(1)任何一个实数的绝对值是非负数,即||≥0;(2)任何一个实数的平方是非负数,即≥0;(3().非负数具有以下性质:(1)非负数有最小值零;(2)有限个非负数之和仍是非负数;(3)几个非负数之和等于0,则每个非负数都等于0.4.实数的运算:数的相反数是-;一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.有理数的运算法则和运算律在实数范围内仍然成立.实数混合运算的运算顺序:先乘方、开方、再乘除,最后算加减.同级运算按从左到右顺序进行,有括号先算括号里.5.实数的大小的比较:有理数大小的比较法则在实数范围内仍然成立.法则1. 实数和数轴上的点一一对应,在数轴上表示的两个数,右边的数总比左边的数大;法则2.正数大于0,0大于负数,正数大于一切负数,两个负数比较,绝对值大的反而小;法则3. 两个数比较大小常见的方法有:求差法,求商法,倒数法,估算法,平方法.【典型例题】类型一、与实数有关的概念1、把下列各数填入相应的大括号里.π,2,﹣12,|,2.3,30%(1)整数集:{…};(2)有理数集:{…};(3)无理数集:{…}.【答案】(1)2,﹣12,2.3,30%π,|【分析】根据有理数与无理数概念,运用实数的分类求解即可.(1)解:∵|22,∵整数集:{2…}故答案为:2(2)解:有理数集:{2,﹣12,2.3,30%…};故答案为:2,﹣12,2.3,30%(3)解:无理数集:{π,|,…};a aa2a≥0a≥a a故答案为:π,|.【点拨】本题考查了实数的分类,解决本题的关键是熟记实数的分类. 【变式】一个数值转换器,如图所示:(1)当输入的x 为9时,输出的y 值是 ;(2)若输入有效的x 值后,始终输不出y 值,请写出所有满足要求的x 的值,并说明你的理由;(3)若输出的y x 值: . 【答案】或1,理由见分析(3)7或49 【分析】(1)根据算术平方根的定义进行计算即可; (2)根据0或1的算术平方根的特殊性得出答案;(3)可以考虑1次运算输出结果,2次运算输出结果,进而得出答案.(1)解:当x =9时,93,而3是有理数,3(2)0或1,理由如下:因为0的算术平方根是0,1的算术平方根是1, 无论进行多少次运算都不可能是无理数; (3)若1次运算就是无理数,则输入的数为7, 若2次运算输出的数是无理数,则输入的数是49, 故答案为:7或49.【点拨】本题考查算术平方根、有理数和无理数,理解算术平方根的定义是正确解答的前提.2、若0,0a ab <<,化简433a b b a ----+【答案】【分析】由0,0a ab <<判断b >0,再判断绝对值里的数的正负,由绝对值的定义去掉绝对值,再计算即可.解:∵0,0a ab <<,∵b >0,∵0,0a b b a ---+>∵a b b a ---((a b b a =-----a b b a =-+++=【点拨】本题考查二次根式的化简,正确的对含绝对值号的代数式的化简是解题的关键.分类的标准应按正实数,负实数,零分类考虑.掌握好分类标准,不断加强分类讨论的意识.【变式】实数a 在数轴上的对应点A 的位置如图所示,b =|a +|2−a |(1)求b 的值;(2)已知b +2的小数部分是m ,8-b 的小数部分是n ,求2m +2n +1的平方根.【答案】2(2)【分析】(1)先判断2<a <3,再判断a <0,2−a <0,再化简绝对值,合并即可;(2)先求解2,8,b b 再求解,m n 的值,再求解2m +2n +1,最后求解平方根即可. (1)解:∵2<a <3∵a ,2−a <0∵b -a +a -2(2)∵b +8-b =8)=10,3104,<<610107,∵m -3,n =10-6=4∵2m +2n +6+8-1=3∵2m +2n +1的平方根为【点拨】本题考查的是实数与数轴,化简绝对值,无理数的小数部分的理解,平方根的含义,掌握以上基础知识是解本题的关键.类型二、二次根式双重非负性3、若a 、b 为实数,且b <222a a -+-+,化简:214422b b a b-++-. 【答案】3【分析】首先由二次根式有意义的条件求得:a =2,b <2,再利用实数的运算法则求解即可求得答案.解:∵20 20aa-≥⎧⎨-≥⎩,解得:a=2,∵b2=2,即b<2,221232bb-=+=+=-.【点拨】本题主要考查的是二次根式的非负性,以及二次根式的化简求值,利用非负性求得a值,以及b的取值范围是解本题的关键.【变式】已知实数,b,c满足3a+(2a b+的值.【答案】4【分析】根据二次根式的非负性求得b的值,然后根据非负数的性质求得,a c的值,最后代入代数式求解即可.解:∵3a+∵5050bb-≥⎧⎨-≥⎩,5b∴=,∴3a+0,3,2a c∴=-=,∴(2a b+()23504=-+-=.【点拨】本题考查了二次根式的非负性,非负数的性质,掌握二次根式的非负性是解题的关键.类型三、与二次根式有关的规律问题4、细心观察图形,认真分析各式,然后解答问题:11OA=;2OA = 1111122S =⨯⨯=;3==OA 2112S ==4==OA 3112S ==; (1)请用含有n (n 为正整数)的等式表示上述变化规律:2nOA =______,n S =______. (2)若一个三角形的面积是 (3)求出22221239S S S S +++⋅⋅⋅+的值.【答案】(1)n 它是第32个三角形;(3)11.25. 【分析】(1)由勾股定理及直角三角形的面积求解;(2)利用(1)的规律代入Sn n 即可; (3)算出第一到第九个三角形的面积后求和即可.(1)解:因为每一个三角形都是直角三角形,由勾股定理可求得:OA 1,OA 2OA 3…,OAn所以OAn 2=n .Sn =12故答案为:n(2)解:当Sn 解之得:n =32,即:说明它是第32个三角形; (3)解:S 12+S 22+S 32+…+S 92 =14+24+…+94=454=11.25.即:S 12+S 22+S 32+…+S 92的值为11.25.【点拨】本题考查了勾股定理以及二次根式的应用,解题的关键是看清楚相邻两个三角形的各个边之间的关系.【变式】观察以下等式:第112=第223=第334== ...........按照以上规律,解决下列问题: (1)写出第7个等式: ;(2)写出你猜想的第n 个等式: (用含n 的等式表示,n 为自然数)(3)【答案】78=;1n n =+;(3)150 【分析】(1)根据所给的等式的形式求解即可; (2)分析所给的等式的形式,总结出规律即可; (3)利用(2)中的规律进行求解即可. (1)解:根据题意得第7个等式为:78==;78==;(2)解:第112;第223=;第334==; 由以上等式可以猜想第n 个等式是:1nn +;1nn =+;(3)……=1234923450⨯⨯⨯…… =150. 【点拨】本题主要考查数字的变化规律、二次根式性质和运算法则,解答的关键是由所给的等式总结出存在的规律.类型四、二次根式化简、求值5、计算:(1)⎛ ⎝ (2) )21+【答案】4+【分析】(1)先把各二次根式化为最简二次根式,去括号后再合并即可; (2)先利用平方差公式及完全平方公式进行计算,然后再合并即可.(1)解:原式=⎛ ⎝⎭=(2)解:原式=2221-++=3221-++ =4+【点拨】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,然后进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.【变式】计算:(1) (2) (1112π-⎛⎫- ⎪⎝⎭【答案】(1)10-2 【分析】(1)根据二次根式的运算法则进行计算即可; (2)根据运算法则进行计算即可.(1)解:===46=+-10=-(2)解:(2)原式112=+2=【点拨】本题考查二次根式的计算,实数的计算,熟练掌握各运算法则是解题的关键.6、已知21x =+,21y =-,求2y xx y++的值. 【答案】8【分析】根据x y ,求出x y +和xy 的值,然后对原式进行通分转化为x y +和xy 的形式.解:∵1x =,1y =∵x y +=1xy =,22282()2y x x y xy x x y y xy x y ++===++=+ 【点拨】此题考查了二次根式的加减乘除运算,涉及了完全平方公式的应用,解题的关键是掌握二次根式的有关运算法则以及完全平方公式.【变式】(124x =.(2)已知x =y =22x xy y -+值.【答案】(1) (2)11 【分析】(1)根据二次根式的性质化简,然后代入即可求出答案.(2)先由x 与y 的值计算出x ﹣y 和xy 的值,再代入原式=x 2﹣2xy +y 2+xy =(x ﹣y )2+xy 计算可得.解:(1)原式==,当4x =时,原式6=(2)∵x =y =∵x y -231xy ==-=-,原式=x 2﹣2xy +y 2+xy =(x ﹣y )2+xy=(2﹣1 =12﹣1 =11.【点拨】本题主要考查二次根式的化简求值,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则及完全平方公式、平方差公式.类型四、二次根式大小比较7、请比较52和113的大小.【分析】先将两数通分,然后将分子中根号外的数字平方后移到根号内,通过比较被开方数的大小得出结论.解:,又∴.【点拨】本题主要考查了实数大小的比较,二次根式的性质.将两个无理数适当变形后,通过比较被开方数的大小进行解答是解题的关键.【分析】再进行作差运算,10>即可.=;解:1=1)1=,1,>,10【点拨】本题考查了无理数的比较大小,以及二次根式的分母有理化,解题的关键是将进行分母有理化,再进行作差运算比较大小.8、(1)观察各式:0.030.1732,3 1.732,30017.32≈≈≈...发现规律:被开方数的小数点每向右移动_________位,其算术平方根的小数点向______移动______位;(2 2.236≈_________________;(37.746≈≈的值.【答案】(1)2;右;1(2)0.2236;22.36(3)15.492,0.7347【分析】(1)观察分析已知式子中被开方数与算术平方根的小数点从小到位数,总结归纳出规律即可;(2)根据(1)发现的规律计算即可;(3=解:(1)0.1732≈17.32≈ 1.732≈,∵发现规律:被开方数的小数点每向右移动2位,其算术平方根的小数点向右移动1位;故答案为:2,右,1;(2) 2.236≈,≈,0.2236≈,22.36故答案为:0.2236,22.36;(3)7.746≈,27.74615.492=⨯=,2.449≈30.24490.7347==≈⨯=【点拨】本题考查数字型规律,算术平方根,总结归纳出规律是解题的关键.【变式】阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J .Nplcr ,1550﹣1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr ,1707﹣1783年)才发现指数与对数之间的联系.对数的定义:一般地,若x a N =(0a >且1x ≠),那么x 叫做以a 为底N 的对数,记作log a x N =,比如指数式4216=可以转化为对数式24log 16=,对数式52log 25=,可以转化为指数式2525=.我们根据对数的定义可得到对数的一个性质:log ()log log a a a M N M N ⋅=+(0a >,1a ≠,0M >,0N >),理由如下:设log a M m =,log a N n =,则m M a =,n N a =,∵m n m n M N a a a +⋅=⋅=,由对数的定义得log ()a m n M N +=⋅又∵log log a a m n M N +=+∵log ()log log a a a M N M N ⋅=+根据阅读材料,解决以下问题:(1)将指数式4381=转化为对数式________;(2)求证:log log log a a a M M N N=-(0a >,1a ≠,0M >,0N >) (3)拓展运用:计算666log 9log 8log 2+-=________.【答案】(1)34log 81=;(2)详见分析;(3)2.【分析】(1)根据对数式的定义转化即可;(2)先设log a M m =,log a N n =,根据对数的定义可表示为指数式为:m M a =,n N a =,计算M N的结果,类比所给材料的证明过程可得结论; (3)根据公式:log ()log log a a a M N M N ⋅=+和log log log M M N N ααα=-的逆用,计算可得结论.解:(1)34log 81=(或3log 814=),故答案为34log 81=;(2)证明:设log a M m =,log a N n =,则m M a =,n N a =, ∵mm n n M a a N a-==,由对数的定义得log a M m n N -=, 又∵log log a a m n M N -=-, ∵log log log a a a M M N N=-; (3)666log 9log 8log 2+-66log (982)log 362=⨯÷==.故答案为2.【点拨】本题是新定义试题,主要考查幂的运算性质、新定义对数与指数之间的关系,解题的关键是明确新定义,理解对数的运算法则,明白指数与对数之间的相互转化关系.。

人教版七年级数学下册15.实数全章复习与巩固(提高)巩固练习及答案.doc

人教版七年级数学下册15.实数全章复习与巩固(提高)巩固练习及答案.doc

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】【巩固练习】 一.选择题1.已知a 、b 是实数,下列命题结论正确的是( ) A .若a >b ,则2a >2bB .若a >|b |,则2a >2bC .若|a |>b ,则2a >2b D .若3a >3b ,则2a >2b 2.下列式子表示算术平方根的是 ( ). ①()233-= ②()()2515--= ③93104-=- ④ 255-= ⑤ 0.010.1±=± ⑥ ()20a a a =≥A .①②④B .①④⑥C .①⑤⑥D .①②⑥ 3. 下列说法正确的有( )①无限小数不一定是无理数; ②无理数一定是无限小数; ③带根号的数不一定是无理数; ④不带根号的数一定是有理数. A ①②③ B ②③④ C ①③④ D ①②④4. 下列语句、式子中 ① 4是16的算术平方根,即.416=±②4是16的算术平方根,即.416=③-7是49的算术平方根,即.7)7(2=-④7是2(7)-的算术平方根,即.7)7(2=-其中正确的是( )A. ①③B. ②③C. ②④D. ①④ 5. (2015•南京)估计介于( )A .0.4与0.5之间B .0.5与0.6之间C .0.6与0.7之间D .0.7与0.8之间6.下列运算中正确的是( )4913=12622-82==)(C. 24±=D. ∣32-∣=23- 7. 已知:a a 则,且,68.2868.82.62333=-==( ) A.2360 B.-2360 C.23600 D.-23600 8. -2781 ) A .0 B .6C .6或-12D .0或6 二.填空题9. 下列命题中正确的有 (填序号)(1)若,b a >那么b a 22>; (2)两数的和大于等于这两数的差;(3)若,b a >那么22b a >; (4)若,b a > c b >则c a >;(5))()(c b a c b a ++=++ (6)一个数越大,这个数的倒数越小; (7)有理数加有理数一定是有理数; (8)无理数加无理数一定是无理数; (9)无理数乘无理数一定是无理数; 10.(2015•庆阳)若﹣2xm ﹣n y 2与3x 4y2m+n是同类项,则m ﹣3n 的立方根是 .11. 若22)3(-=a ,则a = ,若23)3(-=a ,则a = .12. 已知 :===00236.0,536.136.2,858.46.23则 . 13. 若x x -+有意义,则=+1x ________.14. 阅读下列材料:设0.30.333x ==…①,则10 3.333x =…②,则由②-①得:93x =,即13x =.所以0.30.333= (1)=3.根据上述提供的方法把下列两个数化成分数. 0.7= 1.3= ;15. 方程 361(12)164x +-=的解x = _________ . 16. 若,19961995a a a =-+-则21995-a 的值等于_________.三.解答题17. (2015春•和平区期末)已知一个正数的两个平方根分别为a 和2a ﹣9 (1)求a 的值,并求这个正数; (2)求17﹣9a 2的立方根.18. 如图所示,已知A 、B 两点的坐标分别为(5,0)A -,(2,1)B -.(1)求△OAB 的面积和△ACB 的面积(结果保留一位小数); (2)比较点A 所表示的数与-2.4的大小.19. 把下列无限循环小数化成分数:(1)0.6•(2)0.23••(3)0.107••20.细心观察右图,认真分析各式,然后解答问题:()()212211122===+,S ; ()()223312222===+,S; ()()234413322===+,S; ……,……; (1)请用含n(n 为正整数)的等式表示上述变化规律;(2)观察总结得出结论:三角形两条直角边与斜边的关系,用一句话概括为: ; (3)利用上面的结论及规律,请作出等于7的长度;(4)你能计算出210232221S S S S ++++ 的值吗?【答案与解析】 一.选择题1. 【答案】B ;【解析】B 答案表明,||||a b a b >>且,故2a >2b . 2. 【答案】D ;【解析】算术平方根的专用记号是“a ”根号前没有“-”或“±”号. 3. 【答案】A ; 4. 【答案】C ;【解析】算术平方根是平方根中符号为正的那个. 5.【答案】C . 【解析】∵ 2.235,∴﹣1≈1.235,∴≈0.617,∴介于0.6与0.7之间.6. 【答案】D ;7. 【答案】D ;O.....S 5S 4S 3S 2S 1111111A 6A 5A 4A 3A 2A 1【解析】2.868向右移动1位,23.6应向右移动3位得23600,考虑到符号,a =-23600. 8. 【答案】A ;【解析】819=,9的算术平方根是3,故选A. 二.填空题 9. 【答案】(1),(4),(5),(7); 10.【答案】2. 【解析】若﹣2xm ﹣n y 2与3x 4y2m+n是同类项,∴,解方程得:.∴m ﹣3n=2﹣3×(﹣2)=8.8的立方根是2.故答案为:2. 11.【答案】3±39【解析】正数的平方根有2个,实数有一个与它符号相同的立方根. 12.【答案】0.04858【解析】23.6向左移动4位,4.858向左移动2位得0.04858. 13.【答案】1;【解析】x ≥0,-x ≥0,得x =0,所以=+1x 1. 14.【答案】74;93; 【解析】设x =0.777……,10x =7.777……,9x =7, x =79.设y =1.333……,10y =13.333……,9y =12, y =43. 15.【答案】18; 【解析】()31255112,12,6448x x x +=+==. 16.【答案】1996;1996a -a ≥1996,原式=a -19951996a -a 1996a -1995,两边平方得21995-a =1996. 三.解答题17.【解析】 解:(1)由平方根的性质得,a+2a ﹣9=0, 解得a=3,∴这个正数为32=9;(2)当a=3时,17﹣9a 2=﹣64, ∵﹣64的立方根﹣4, ∴17﹣9a 2的立方根为﹣4. 18.【解析】解:(1)∵ (5,0)A ,(2,1)B -,∴ ||5OA =BC =1,AC =OA -OC 52.∴ 115||||51 1.122OAB S OA BC ∆===≈. 115||||(52)110.1222ACB S AC BC ∆==⨯⨯=-≈. (2)点A 表示的实数为5-5 2.24-≈-. ∵ 2.24<2.4,∴ -2.24>-2.4, 即 5 2.4>- 19.【解析】解:(1) 设0.6x •= ① 则10x =6.6•② ②-①得 9x =6∴6293x ==,即20.63•=(2) 设0.23x ••= ① 则10023.23x ••= ② ②-①,得 99x =23∴2399x =,即230.2399••=. (3) 设0.107x ••= ① 则1000107.107x ••= ② ②-①,得 999x =107,∴107999x =,即1070.107999••=. 20.【解析】 解:(1)()2,112nS n n n =+=+. (2)直角三角形中,两条直角边的平方和等于斜边的平方. (3)略.22222222123101231055(4)22224S S S S ⎛⎫⎛⎫⎛⎫⎛⎫++++=+++= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。

浙教版第三章实数复习

浙教版第三章实数复习

第三章实数复习导学案(浙教版)复习目标通过复习,使学生对本章的知识能得到熟练、巩固,并能灵活地运用实数知识去解决问题。

复习重点:1、用对比的方法复习概念。

2、归纳本章内容,把本章学习内容纳入自己的知识体系。

3.通过典型问题的分析,对重点知识有进一步的认识。

复习难点:无理数、实数概念的理解。

教学过程(一)基础知识梳理1、数的分类及概念2、每一个实数都可以用数轴上的点来表示;反过来,数轴上的每一个点都表示一个实数。

即,实数与数轴上的点是对应的。

绝对值相反数倒数,在实数的运算中,仍然成立3、平方根、算术平方根及立方根的区别与联系实数无理数(有理数实数正数a 为a为表示方法( )( )a 的取值a 0, ≥0a 0a 是任何数性 质 0正数( 个) 互为相反数( 个) 正数( 个)0 0 0没有 没有数(一个)开方求一个数的平方根 的运算叫 。

求一个数的立方根 的运算叫开立方 (二)例题讲解例1.下列判断中,错误的是( ) A .﹣1的平方根是±1 B .﹣1的倒数是﹣1C .﹣1的绝对值是1D .﹣1的平方的相反数是﹣1知识考点:本题考查基本数学概念,涉及平方根、倒数、绝对值等,要求学生熟练掌握.,属于基础知识,难度不大.例2.如果一个数的平方根等于这个数本身,那么这个数是( ) A .1 B .﹣1 C .0 D .±1知识考点:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根变式:立方根是本身的数是( ) 例3.的算术平方根是( ) A .±81 B .±9 C .9 D .3知识考点:本题考查的是算术平方根的定义.一个非负数的非负平方根叫做这个数的算术平方根.正数的平方根是正数.特别注意:应首先计算的值变式:9的平方根是( )例4.下列说法正确的是( ) A .带根号的数是无理数 B .无理数就是开方开不尽而产生的数C .无理数是无限小数D .无限小数是无理数aa知识考点:此题主要考查了无理数的定义.解答此题的关键是熟练掌握无理数的定义.初中常见的无理数有三类:①π类;②开方开不尽的数,如;③有规律但无限不循环的数,如0.8080080008…(每两个8之间依次多1个0). 变式:在实数﹣,0.21,,,,0.20202中,无理数的个数为( )A .1B .2C .3D .4例5.若x 2=(﹣3)2,y 3﹣27=0,则x+y 的值是( ) A .0 B .6 C .0或6 D .0或﹣6 知识考点:本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根. 立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根是0. 这类属于基本的题型,要求熟练掌握.变式:若16的平方根是m ,﹣27的立方根是n ,那么m+n 的值为 _________ . 例6.两个无理数的和,差,积,商一定是( ) A .无理数 B .有理数 C .0 D .实数知识考点:此题主要考查了实数的运算及无理数的定义,也考查了学生的综合应用能力,要注意举实例的方法.变式:已知:a 和b 都是无理数,且a ≠b ,下面提供的6个数a+b ,a ﹣b ,ab ,,ab+a ﹣b ,ab+a+b 可能成为有理数的个数有 个. 四:课堂小结1反思基础知识点,例题,巩固练习是否弄懂 2解题要点及方法 五:1、背出知识点2 、试卷一张 一、选择题1.81的平方根是 ( )A.±9B.9C.±3D.32.在下列各数3.1415,0.2060060006……(每两个6之间依次多一个1),0,0..2,-π,35,722,27中,无理数的个数是 ( ) A.1 B.2 C.3 D.43.若规定误差小于1,那么60的估算值为 ( )A.3B.7C.8D.7或B 4.已知|a|=5,2b =7,且|a+b|=a+b ,则“a-b 的值为 ( )A.2或12B.2或-12C.-2或12D.-2或-12 5.化简31--3+25的结果是 ( )A.6-3B.4-3C.-4-3D. 3-4二、填空题6.若2a =3,则a= ;若(b )2=5,则b= .7.3125.0的绝对值是 . 8.5-5的整数部分是 . 三、解答题9.画出数轴,在数轴上表示下列各数和它们的相反数,并把这些数从小到大的顺序排列,用“<”连接: 6,-3.5,21,410.全球气候变暖导致-些冰川融化并消失.在冰川|消失12年后,一种低等植物苔藓,就开始在岩石上生长.每一个苔藓都会长成近似的圆形.苔藓的直径和其生长年限近似地满足如下的关系式:d=712-t (t≥12),其中d 表示苔藓的直径,单位是厘米,t 代表冰川消失的时间(单位:年).(1)计算冰川消失16年后苔藓的直径为多少厘米?(2)如果测得一些苔藓的直径是35厘米,问冰川约是在多少年前消失的?感谢您的阅读,祝您生活愉快。

数学沪科版七年级下册教案第6章实数复习

数学沪科版七年级下册教案第6章实数复习

根据新课标理念,课堂教学规律、课堂教学评价体系,教学反思可以从以下六个方面着手:
1、教学内容方面:教材处理的合理性;导入、结课的激励性;深层意义的规律有否揭示与发掘。

2、教学过程方面:教学程序安排的合理性;教学设计的科学性;媒体运用的适切性;反馈评价的准确性。

3、从课堂管理方面进行反思:班级成员涉及面的广泛性;全班同学学习的积极性;学法指导的经常性;处理偶发事件的应变性。

4、时间安排方面:时间分布的合理性;课内时间的可压缩性。

5、学生活动方面:学生活动的能动性;交往状态的合理性;学生心智活动的发展性。

6、目标达成方面:学生知识、技能的落实性;学生学会学习的水平性;教师课内教学监控的有效性。

撰写教后录的切入点
1、成功点:主要是指课堂教学中的闪光点。

如课堂上一个恰当的比喻,教学难点的顺利突破,引人入胜的教学方法。

又如一些难忘的教学艺术镜头:新颖精彩的导语,成功的临场发挥,扭转僵局的策略措施
2、失败点:主要是指课堂教学中的砸锅点。

如教学目标定位不准,造成的“吃不了”或“吃不饱”之现象;教学引导的度把握不适,造成的“一问三不知”的僵局;教学方法选择不当,造成的低效等。

3、遗漏点:主要是指课堂教学设计中遗漏的一些环节或知识点。

如教学衔接必需的知识点,帮助学生理解课文的背景材料,拓展延伸的内容等。

4、改进点:主要是指课堂教学中经过微调可以追求更高效益的那些点。

如更合理的分配讲与练的时间,更恰当的选择例题,更完美的板书设计,更科学的媒体选用等。

鲁教版七年级上册第四章实数(小结与思考)(复习课件)

鲁教版七年级上册第四章实数(小结与思考)(复习课件)
解:(1)观察有理数a,b,c在数轴上对应
的点,可知:
b<﹣a<c<﹣c<a<﹣b;
(2)|c|﹣|c+b|+|a﹣c|﹣|b+a|
=﹣c+c+b+a﹣c+b+a
=﹣c+2b+2a.
b
c 0
a
巩固练习
1.实数a、b在数轴上的对应点的位置如图所示,下列结论正确的是( D )
A.a<-2
B.b<2
C.a>b
考点分析
考点七
实数的运算
例 计算:(1) − (−) −( − ) +− .
解:原式= − −

= .


+


(2) + − − − .
解:原式= − −
=−− +
=−

巩固练习
1. − 绝对值是________;


−的相反数是_____.

解∶∵ + + +

= , + ≥ , +
∴ + = , + = ,
∴ = −, = −,
∴ + = − + − = −,

∴ + 的立方根是 − = −.

≥ ,
巩固练习
3.已知a,b为实数,且满足 − +b2﹣6b+9=0.
6
考点分析
考点四
无理数的估算
例(2023·江苏徐州) 的值介于( D )
A.25与30之间 B.30与35之间 C.35与40之间 D.40与45之间
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《实数》全章复习及巩固(基础)1.了解算术平方根、平方根、立方根的概念,会用根号表示数的平方根、立方根.2.了解开方及乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根.3.了解无理数和实数的概念,知道实数及数轴上的点一一对应,有序实数对及平面上的点一一对应;了解数的范围由有理数扩大为实数后,概念、运算等的一致性及其发展变化.4.能用有理数估计一个无理数的大致范围. 【知识网络】【要点梳理】要点一、平方根和立方根 类型 项目平方根 立方根 被开方数 非负数任意实数符号表示a ±3a性质一个正数有两个平方根,且互为相反数;零的平方根为零; 负数没有平方根;一个正数有一个正的立方根; 一个负数有一个负的立方根; 零的立方根是零;重要结论⎩⎨⎧<-≥==≥=)0()0()0()(22a a a a a a a a a要点二、次方根如果一个数的n 次方(n 是大于1的整数)等于a ,那么这个数叫做a 的n 次方根.当n 为奇数时,这个数为a 的奇次方根;当n 为偶数时,这个数为a 的偶次方根.求一个数a 的n 次方根的运算叫做开n 次方,a 叫做被开方数,n 叫做根指数.实数a 的奇次方根有且只有一个,正数a 的偶次方根有两个,它们互为相反数;负数的偶次方根不存在.;零的n 次方根等于零. 要点三、实数有理数和无理数统称为实数.1.实数的分类要点诠释:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数.(2532等;②有特殊意义的数,如π;③有特定结构的数,如0.1010010001…(3)凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形式.2.实数及数轴上的点一 一对应.数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点及之对应.3.实数的三个非负性及性质:在实数范围内,正数和零统称为非负数.我们已经学习过的非负数有如下三种形式: (1)任何一个实数a 的绝对值是非负数,即|a |≥0; (2)任何一个实数a 的平方是非负数,即2a ≥0;(30a ≥ (0a ≥).非负数具有以下性质: (1)非负数有最小值零;(2)有限个非负数之和仍是非负数;(3)几个非负数之和等于0,则每个非负数都等于0. 4.实数的运算:数a 的相反数是-a ;一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.有理数的运算法则和运算律在实数范围内仍然成立.实数混合运算的运算顺序:先乘方、开方、再乘除,最后算加减.同级运算按从左到右顺序进行,有括号先算括号里. 5.实数的大小的比较:有理数大小的比较法则在实数范围内仍然成立.法则1. 实数和数轴上的点一一对应,在数轴上表示的两个数,右边的数总比左边的数大;法则2.正数大于0,0大于负数,正数大于一切负数,两个负数比较,绝对值大的反而小;法则3. 两个数比较大小常见的方法有:求差法,求商法,倒数法,估算法,平方法.要点四、近似数及有效数字1.近似数:完全符合实际地表示一个量多少的数叫做准确数;及准确数达到一定接近程度的数叫做近似数.2.精确度:近似数及准确数的接近程度即近似程度.对近似程度的要求叫做精确度. 要点诠释:精确度有两种形式:①精确到哪一位.②保留几个有效数字.3.有效数字:从一个数的左边第一个不为零的数字起,往右到末位数字为止的所有的数字都是这个数的有效数字,如0.208的有效数字有三个:2,0,8. 要点五、分数指数幂()0m nmna aa =≥,,其中m n 、为正整数,1n >. 上面规定中的m na 和m na-叫做分数指数幂,a 是底数.整数指数幂和分数指数幂统称为有理数指数幂. 要点诠释:设00a b p q >>,,、为有理数,那么(1)pqp qp q p q a a a a a a +-=÷=,.(2)()qp pq aa =.(3)()pp pppp a a ab a b b b ⎛⎫== ⎪⎝⎭,.【典型例题】类型一、有关方根的问题1、下列命题:①负数没有立方根;②一个实数的算术平方根一定是正数;③一个正数或负数的立方根及这个数同号;④如果一个数的算术平方根是这个数本身,那么这个数是1或0;⑤如果一个数的立方根是这个数本身,那么这个数是1或0 ,其中错误的有( ) A.2个 B.3 个 C.4 个 D.5个 【答案】B ;【解析】①负数有立方根;②0的平方根是0;⑤立方根是本身的数有0,±1. 【总结升华】把握平方根和立方根的定义是解题关键. 举一反三:【变式1】下列运算正确的是( )A .42=±B .235+=C .382-=-D .|2|2--=【答案】C ;【变式2】的5次方根是=_________. 【答案】34-;2102.0110.1= 1.0201=若7160.03670.03=,542.1670.33=,则_____________3673= 【答案】±1.01;7.16;【解析】102.01向左移动2位变成1.0201,它的平方根向左移动1位,变成1.01,注意符号;0.3670向右移动3位变成367,它的立方根向右移动1位,变成7.16【总结升华】一个数向左移动2位,它的平方根向左移动1位;一个数向右移动3位,它的立方根向右移动1位. 类型二、及实数有关的问题3、把下列各数填入相应的集合:-1、3、π、-3.14、9、26-、、7.0 . (1)有理数集合{ };(2)无理数集合{ }; (3)正实数集合{ }; (4)负实数集合{ }.【思路点拨】首先把能化简的数都化简,然后对照概念填到对应的括号里. 【答案及解析】(1)有理数集合{-1、-3.14、9、7.0 };(2)无理数集合{ 3、π、26-、 };(3)正实数集合{ 3、π、9、26-、7.0 };(4)负实数集合{ -1、-3.14、 }.【总结升华】有理数是有限小数和无限循环小数,无理数是无限不循环小数.总结常见的无理数形式. 举一反三:【变式】(2015•绥化)在实数0、π、、、﹣中,无理数的个数有( )A .1个B .2个C .3个D .4个 【答案】B ;4、计算(1)233)32(1000216-++ (2) (3)【思路点拨】先逐个化简后,再按照计算法则进行计算. 【答案及解析】解:(1)233)32(1000216-++=(223111112743412⎛⎫--=-+=- ⎪⎝⎭(3)=3314218121393327333⎛⎫+⨯-=+-=-=- ⎪⎝⎭. 【总结升华】根据开立方和立方,开平方和平方互逆运算的关系,可以通过立方、平方的方法去求一个数的立方根、平方根. 举一反三: 【变式】计算(1) 333000216.0008.012726---- (2) ()223323)3()21()4()4(2--⨯-+-⨯-【答案】 解:(1) 333000216.0008.012726---- ()310.20.0627=----(2) ()223323)3()21()4()4(2--⨯-+-⨯-321336=---=-.5、(2015•资阳)已知:(a+6)2+=0,则2b 2﹣4b ﹣a 的值为.【答案】12. 【解析】 解:∵(a+6)2+=0,∴a+6=0,b 2﹣2b ﹣3=0, 解得,a=﹣6,b 2﹣2b=3, 可得2b 2﹣4b=6,则2b 2﹣4b ﹣a=6﹣(﹣6)=12, 故答案为:12.【总结升华】本题主要考查了非负数的性质,初中阶段有三种类型的非负数:绝对值、偶次方、二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0. 举一反三:【变式1】实数a 、b 在数轴上所对应的点的位置如图所示:化简2a +∣a -b ∣=.【答案】解:∵a <0<b ,∴a -b <0∴2a +∣a -b ∣=-a -(a -b )=b -2a .【变式2】实数a 在数轴上的位置如图所示,则的大小关系是:;-1a【答案】;6、用四舍五入法,按括号中的要求把下列各数取近似数. (1)0.0198 (精确到0.001); (2)0.34082(精确到千分位); (3)64.49 (精确到个位);【答案及解析】解:(1)0.0198≈0.020; (2)(2)0.34082≈0.341; (3)64.49≈64.【总结升华】从一个数的左边第一个不为零的数字起,往右到末位数字为止的所有的数字都是这个数的有效数字. 近似数末位的0不能随便去掉,去掉了就会改变它的精确度.7、把下列方根化为幂的形式:(1)315; (2)347; (3)8-; (4)513.【答案及解析】解:(1)1331515=;(2)334477=; (3); (4). 【总结升华】()0mnmna aa =≥,其中m n 、为正整数,1n >.类型三、实数综合应用8、现有一面积为150平方米的正方形鱼池,为了增加养鱼量,欲把鱼池的边长增加6米,那么扩建鱼池的面积为多少(最后结果保留4个有效数字)?【答案及解析】解:因为原正方形鱼池的面积为150平方米,根据面积公式,≈(米).12.247由题意可得扩建后的正方形鱼池的边长为(12.247+6)米,18.247≈333.0(平方米).所以扩建后鱼池的面积为2答:扩建后的鱼池的面积约为333.0(平方米).【总结升华】要求扩建后的鱼池的面积,应先求出其边长,而原鱼池的面积为150平方米,由此可得原鱼池的边长,再加上增加的6米,故新鱼池面积可求.举一反三:m,池深1.5m,求这个水池的底边长.【变式】一个底为正方形的水池的容积是4863【答案】解:设水池的底边长为x,由题意得2 1.5486x⨯=2324x=x=18答:这个水池的底边长为18m.。

相关文档
最新文档