高中数学的数形结合思想方法
数形结合思想方法在高中数学教学中的运用
数形结合思想方法在高中数学教学中的运用一、数形结合思想方法的概念数形结合思想方法是指将数学中的抽象概念与具体图形相结合,使抽象概念更加形象化和具体化,从而帮助学生更好地理解和掌握数学知识。
这种方法通过将数学问题转化为几何问题,突出了问题的形象性和直观性,使学生更容易理解和掌握数学内容。
二、数形结合思想方法的运用1. 代数表达与几何图形在代数学习中,常常涉及到各种方程、函数及其图像。
教师可以引导学生通过绘制函数图像的方法,帮助学生更好地理解代数表达式的意义。
对于一元二次函数y=ax^2+bx+c,教师可以通过绘制抛物线的图像,让学生直观地感受到a、b、c对函数图像的影响,从而加深对函数的理解和运用。
2. 数列与平面几何在数列的学习中,常常涉及到数列的通项公式和求和公式。
通过将数列的通项公式和求和公式与平面几何结合起来,可以帮助学生更好地理解数列的规律和性质。
教师可以通过绘制数列的图形,让学生直观地感受到数列的增减规律及其和的变化规律,从而加深对数列的理解和掌握。
3. 解析几何与代数方程在解析几何的学习中,常常涉及到直线、圆、抛物线等几何图形的方程式。
教师可以通过将几何图形的方程式与代数方程结合起来,帮助学生更直观地理解几何图形的性质和方程的意义。
教师可以通过分析直线方程和圆的方程的关系,让学生理解方程式与几何图形的联系,从而加深对解析几何的理解和运用。
2. 培养学生的几何直观能力学生在数学学习中往往更倾向于代数计算,而对几何图形的理解和运用能力相对较弱。
数形结合思想方法可以帮助学生培养几何直观能力,提高他们对几何图形的理解和运用水平。
3. 提高学生的数学思维能力数形结合思想方法可以激发学生的求知欲,培养他们的数学思维能力。
通过将数学问题转化为几何问题,学生能够更主动地思考和解决问题,提高他们的数学思维能力。
2. 拓展教学手段和方法数形结合思想方法为教师提供了新的教学手段和方法,丰富了教学内容和形式,提高了教学的多样性和趣味性,能够激发学生的学习兴趣。
数形结合思想方法在高中数学教学与解题中的应用
数形结合思想方法在高中数学教学与解题中的应用1. 引言1.1 概述数形结合思想方法是一种通过将数学与几何图形相结合的方式来解决数学问题的方法。
在高中数学教学与解题中,数形结合思想方法被广泛运用,对学生的数学思维能力和解题能力有着显著的提升作用。
本文将从理论基础、教学应用、解题实际操作、优势局限性和案例分析等方面对数形结合思想方法进行详细介绍和分析,旨在探讨这种方法在高中数学教学和解题中的实际应用效果及其潜在局限性。
通过对数形结合思想方法的深入研究,可以为未来数学教学和研究提供新的思路和方法,促进学生对数学的深入理解和应用能力的提高。
【概述】1.2 研究背景随着科技的不断发展和社会的快速进步,教育也在不断改革和创新。
高中数学作为学生必修科目之一,承担着培养学生逻辑思维能力和数学素养的重要使命。
在传统的数学教学中,很多学生常常感到枯燥和无趣,难以理解和掌握抽象的概念和定理。
有必要寻找一种更加生动、直观且实用的教学方法来激发学生学习数学的兴趣和动力。
1.3 研究意义数范围等。
【研究意义】内容如下:研究数形结合思想方法在高中数学教学与解题中的应用具有重要的实际意义。
数学教学是培养学生逻辑思维能力和问题解决能力的重要途径,而数形结合思想方法能够帮助学生更好地理解数学知识,提高他们的数学学习兴趣和学习效果。
数形结合思想方法在解题中的应用能够帮助学生更加深入地理解问题的本质,提高他们的问题解决能力和创新思维水平。
研究数形结合思想方法的优势和局限性,有助于教师更好地指导学生应用该方法解决问题,并且能够帮助教育部门和相关机构调整和改进数学教学计划,推动数学教育的发展和进步。
深入研究数形结合思想方法在高中数学教学与解题中的应用,对于提高我国数学教育质量,培养优秀数学人才,具有重要的现实意义和战略意义。
2. 正文2.1 数形结合思想方法的理论基础数,具体格式等。
数形结合思想方法的理论基础主要包括几何与代数的融合和数学建模的理论支持。
高中数学高考二轮复习数形结合思想教案
第二讲数形结合思想对应学生用书P1291数形结合的含义(1)数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法.数形结合思想通过“以形助数,以数辅形”,使复杂问题简单化,抽象问题具体化,能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合.(2)数形结合包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:一是借助形的生动性和直观性来阐明数形之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;二是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.2数形结合的途径(1)通过坐标系“形题数解”借助于直角坐标系、复平面,可以将几何问题代数化.这一方法在解析几何中体现得相当充分(在高考中主要也是以解析几何作为知识载体来考查的).值得强调的是,“形题数解”时,通过辅助角引入三角函数也是常常运用的技巧(这是因为三角公式的使用,可以大大缩短代数推理).实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义.如等式(x -2)2+(y -1)2=4,表示坐标平面内以(2,1)为圆心,2为半径的圆.(2)通过转化构造“数题形解”许多代数结构都有着相对应的几何意义,据此,可以将数与形进行巧妙地转化.例如,将a (a >0)与距离互化;将a 2与面积互化,将a 2+b 2+ab =a 2+b 2-2|a ||b |cos θ(θ=60°或θ=120°)与余弦定理沟通;将a ≥b ≥c >0且b +c >a 中的a 、b 、c 与三角形的三边沟通;将有序实数对(或复数)和点沟通;将二元一次方程与直线、将二元二次方程与相应的圆锥曲线对应等等.这种代数结构向几何结构的转化常常表现为构造一个图形(平面的或立体的).另外,函数的图象也是实现数形转化的有效工具之一,正是基于此,函数思想和数形结合思想经常相互渗透,演绎出解题捷径.例1 已知函数f (x )=sin ⎝ ⎭⎪⎫2ωx +π3的相邻两条对称轴之间的距离为π4,将函数f (x )的图象向右平移π8个单位后,再将所有点的横坐标伸长为原来的2倍,得到g (x )的图象,若g (x )+k =0在x ∈⎣⎢⎡⎦⎥⎤0,π2有且只有一个实数根,则k 的取值范围是( )A.k ≤12B .-1≤k <-12 C.-12<k ≤12 D .-12<k ≤12或k =-1解析 因为f (x )相邻两条对称轴之间的距离为π4,结合三角函数的图象可知T 2=π4.又T =2π2ω=πω=π2,所以ω=2,f (x )=sin ⎝ ⎛⎭⎪⎫4x +π3. 将f (x )的图象向右平移π8个单位得到f (x )=sin ⎣⎢⎡⎦⎥⎤4⎝ ⎛⎭⎪⎫x -π8+π3=sin ⎝ ⎛⎭⎪⎫4x -π6,再将所有点的横坐标伸长为原来的2倍得到g (x )=sin ⎝ ⎛⎭⎪⎫2x -π6. 所以方程为sin ⎝ ⎛⎭⎪⎫2x -π6+k =0. 令2x -π6=t ,因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以-π6≤t ≤5π6. 若g (x )+k =0在x ∈⎣⎢⎡⎦⎥⎤0,π2有且只有一个实数根, 即g (t )=sin t 与y =-k 在⎣⎢⎡⎦⎥⎤-π6,5π6有且只有一个交点. 如图所示,由正弦函数的图象可知-12≤-k <12或-k =1,即-12<k ≤12或k =-1.利用数形结合求方程解应注意两点(1)讨论方程的解(或函数的零点)可构造两个函数,使问题转化为讨论两曲线的交点问题,但用此法讨论方程的解一定要注意图象的准确性、全面性,否则会得到错解.(2)正确作出两个函数的图象是解决此类问题的关键,数形结合应以快和准为原则而采用,不要刻意去数形结合.模拟演练1 已知函数f (x )满足f (x )+1=1f (x +1),当x ∈[0,1]时,f (x )=x ,若在区间(-1,1]上方程f (x )-mx -m =0有两个不同的实根,则实数m 的取值范围是( )A.⎣⎢⎡⎭⎪⎫0,12 B.⎣⎢⎡⎭⎪⎫12,+∞ C.⎣⎢⎡⎭⎪⎫0,13 D.⎝ ⎛⎦⎥⎤0,12 答案 D解析方程f (x )-mx -m =0有两个不同的实根等价于方程f (x )=m (x +1)有两个不同的实根,等价于直线y =m (x +1)与函数f (x )的图象有两个不同的交点.因为当x ∈(-1,0)时,x +1∈(0,1),所以f (x )+1=1f (x +1)=1x +1,所以f (x )=1x +1-1,所以f (x )=⎩⎨⎧ x ,x ∈[0,1]1x +1-1,x ∈(-1,0).在同一平面直角坐标系内作出直线y =m (x+1)与函数f (x ),x ∈(-1,1]的图象,由图象可知,当直线y =m (x +1)与函数f (x )的图象在区间(-1,1]上有两个不同的公共点时,实数m 的取值范围为⎝ ⎛⎦⎥⎤0,12.例2 (1)使log 2(-x )<x +1成立的x 的取值范围是________.(2)若不等式|x -2a |≥12x +a -1对x ∈R 恒成立,则a 的取值范围是________.。
高中四大数学思想方法
高中四大数学思想方法高中四大数学思想方法一、数形结合思想应用数形结合的思想,应注意以下数与形的转化:(1)集合的运算及韦恩图;(2)函数及其图象;(3)数列通项及求和公式的`函数特征及函数图象;(4)方程(多指二元方程)及方程的曲线.以形助数常用的有:借助数轴;借助函数图象;借助单位圆;借助数式的结构特征;借助于解析几何方法.以数助形常用的有:借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合.二、分类讨论思想分类讨论思想就是根据所研究对象的性质差异,分各种不同的情况予以分析解决.分类讨论题覆盖知识点较多,利于考查学生的知识面、分类思想和技巧;同时方式多样,具有较高的逻辑性及很强的综合性,树立分类讨论思想,应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论”.应用分类讨论思想方法解决数学问题的关键是如何正确分类,即正确选择一个分类标准,确保分类的科学,既不重复,又不遗漏.如何实施正确分类,解题时需要我们首先明确讨论对象和需要分类的全体,然后确定分类标准与分类方法,再逐项进行讨论,最后进行归纳小结.常见的分类情形有:按数分类;按字母的取值范围分类;按事件的可能情况分类;按图形的位置特征分类等.分类讨论思想方法可以渗透到高中数学的各个章节,它依据一定的标准,对问题分类、求解,要特别注意分类必须满足互斥、无漏、最简的原则.三、函数与方程思想函数与方程思想是最重要的一种数学思想,高考中所占比重较大,综合知识多、题型多、应用技巧多.函数思想简单,即将所研究的问题借助建立函数关系式亦或构造中间函数,结合初等函数的图象与性质,加以分析、转化、解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;方程思想即将问题中的数量关系运用数学语言转化为方程模型加以解决。
运用函数与方程的思想时,要注意函数,方程与不等式之间的相互联系和转化,应做到:(1)深刻理解函数f(x)的性质(单调性、奇偶性、周期性、最值和图象变换),熟练掌握基本初等函数的性质,这是应用函数思想解题的基础.(2)密切注意三个“二次”的相关问题,三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系.掌握二次函数基本性质,二次方程实根分布条件,二次不等式的转化策略.四、转化与化归思想化归与转化的思想,就是在研究和解决数学问题时采用某种方式,借助某种函数性质、图象、公式或已知条件将,问题通过变换加以转化,进而达到解决问题的思想.转化是将数学命题由一种形式向另一种形式的变换过程,化归是把待解决的问题通过某种转化过程归结为一类已经解决或比较容易解决的问题.转化与化归思想是中学数学最基本的思想方法,堪称数学思想的精髓,它渗透到了数学教学内容的各个领域和解题过程的各个环节中.转化有等价转化与不等价转化.等价转化后的新问题与原问题实质是一样的.不等价转化则部分地改变了原对象的实质,需对所得结论进行必要的修正.应用转化与化归思想解题的原则应是化难为易、化生为熟、化繁为简,尽量是等价转化.常见的转化有:正与反的转化、数与形的转化、相等与不等的转化、整体与局部的转化、空间与平面相互转化、复数与实数相互转化、常量与变量的转化、数学语言的转化。
高中数学七大基本思想方法讲解
在二维空间,实数对与坐标平面上的点建立一一对应关系
数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化
第三:分类与整合思想
(1)分类是自然科学乃至社会科学研究中的基本逻辑方法
(2)从具体出发,选取适当的分类标准
(5) 高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向
第六:有限与无限的思想:
(1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路
(2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向
(3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用
(4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查
第七:或然与必然的思想:
(1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性
(2)偶然中找必然,再用必然规律解决偶然
(3)等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验、随机事件的分布列、数学期望是考查的重点
(3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化
第五: 特殊与一般思想
(1)通过对个例认识与研究,形成对事物的认识
(2)由浅入深,由现象到本质、由局部到整体、由实践到理论
(3)由特殊到一般,再由一般到特殊的反复认识过程
(4) 构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程
(2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法
高中数学_必须掌握的六种常用的数学思想方法
高中数学_必须掌握的六种常用的数学思想方法数学思想方法与数学基础知识相比较,它有较高的地位和层次。
数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。
而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。
常用数学思想方法有:1、数形结合的思想方法2、分类讨论的思想方法3、函数与方程的思想方法4、转化(化归)的思想方法5、分类讨论的思想方法6、整体的思想方法。
更多数学思维方法,请参阅《高中数学_快速解题的六种数学思维方法》。
一、数形结合的数学思想方法数学中的知识,有的本身就可以看作是数形的结合。
如:锐角三角函数的定义是借助于直角三角形来定义的;任意角的三角函数是借助于直角坐标系或单位圆来定义的。
1、导读:2、相关内容:3、再现性题组:1.如果θ是第二象限的角,且满足cos θ2-sinθ2=1-sinθ,那么θ2是_____。
A.第一象限角B.第三象限角C.可能第一象限角,也可能第三象限角D.第二象限角2.如果实数x、y满足等式(x-2)2+y2=3,那么yx的最大值是_____。
A. 12B.33C.32D. 34、巩固性题组:1.已知5x+12y=60,则x y22+的最小值是_____。
A. 6013 B. 135C. 1312D. 12.方程2x=x2+2x+1的实数解的个数是_____。
A. 1B. 2C. 3D.以上都不对3.方程x=10sinx的实根的个数是_______。
二、分类讨论的数学思想方法①问题所涉及到的数学概念是分类进行定义的。
如|a|的定义分a>0、a=0、a<0三种情况。
这种分类讨论题型可以称为概念型。
②问题中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的。
高中数学七大数学基本思想方法
高中数学七大数学基本思想方法数学是一门以逻辑推理为基础的学科,它不仅是一种学科,更是一种思维方式。
在高中数学学习中,我们需要掌握七大数学基本思想方法,它们分别是归纳法、演绎法、逆向思维、递归思维、几何思维、数形结合思维和抽象思维。
本文将详细介绍这七大数学基本思想方法,并分析其在数学学习中的应用。
一、归纳法归纳法是一种从特殊到一般的思维方法,通过观察和总结特殊情况的共性来得到一般规律。
在数学学习中,我们经常使用归纳法来猜测数列、函数等的规律,并通过举例子来验证猜测的正确性,从而得到一般规律。
二、演绎法演绎法是一种从一般到特殊的思维方法,通过已知的一般规律得出特殊情况的结论。
在数学证明中,我们通常使用演绎法来推导定理和公式的正确性,从而得到具体问题的解答。
三、逆向思维逆向思维是一种从结果到原因的思维方法,通过倒推问题的解答过程来寻找问题的关键步骤。
在解决复杂数学问题时,我们可以运用逆向思维逐步分析问题,从已知的结论反推出问题的解答过程,找到问题的关键。
四、递归思维递归思维是一种通过推导和分解问题的方法来解决问题的思维方式。
在数列、函数、图形等问题中,我们常常使用递归思维来将复杂的问题分解为简单的子问题,通过子问题的解答来得到原问题的解答。
五、几何思维几何思维是一种通过观察和想象空间形象来解决问题的思维方法。
在几何学中,我们常常使用几何思维来推导定理、证明等,通过观察图形的性质和特点来解决问题。
六、数形结合思维数形结合思维是一种将数学概念与图形结合起来进行推导和证明的思维方式。
在数学学习中,我们可以通过数形结合思维来解决几何图形的性质、推导函数的变化规律等问题。
七、抽象思维抽象思维是一种将具体问题抽象为一般规律的思维方法。
在解决复杂数学问题时,我们可以通过抽象思维将具体的问题进行简化,找出问题的共性,并运用一般规律来解决问题。
总之,掌握高中数学七大数学基本思想方法对于提升数学学习能力至关重要。
通过运用归纳法、演绎法、逆向思维、递归思维、几何思维、数形结合思维和抽象思维,我们可以更加深入地理解数学的本质和规律,并能够灵活运用这些思维方法来解决各种数学问题。
高中数学中的数形结合方法和应用
数形结合是一种数学思想方法,它通过将抽象的数学语言与直观的图形相结合,使问题变得更加清晰易懂。
在高中数学中,数形结合方法的应用非常广泛,包括函数、方程、不等式、三角函数、向量、解析几何等方面。
首先,我们来了解一下数形结合方法的定义。
数形结合方法是指将数学语言和图形相结合,通过直观的图形来帮助解决抽象的数学问题。
这种方法的核心思想是将抽象的数学语言转化为直观的图形,从而更好地理解问题。
接下来,我们来探讨数形结合方法在高中数学中的应用。
1. 函数函数是高中数学中的重要概念之一。
通过数形结合方法,我们可以将函数图像与函数解析式相结合,从而更好地理解函数的性质和特点。
例如,在研究函数的单调性时,我们可以画出函数的图像,通过观察图像来了解函数的单调性。
2. 方程方程是高中数学中的另一个重要概念。
通过数形结合方法,我们可以将方程的解转化为函数的图像,从而更好地理解方程的解。
例如,在求解一元二次方程时,我们可以画出根的判别式与根的关系图像,从而更好地理解方程的解。
3. 不等式不等式是高中数学中的另一个重要概念。
通过数形结合方法,我们可以将不等式的解转化为函数的图像,从而更好地理解不等式的性质和特点。
例如,在研究不等式的单调性时,我们可以画出函数的图像,通过观察图像来了解不等式的单调性。
4. 三角函数三角函数是高中数学中的另一个重要概念。
通过数形结合方法,我们可以将三角函数的图像与三角函数的解析式相结合,从而更好地理解三角函数的性质和特点。
例如,在研究三角函数的周期性时,我们可以画出三角函数的图像,通过观察图像来了解三角函数的周期性。
5. 向量向量是高中数学中的另一个重要概念。
通过数形结合方法,我们可以将向量的坐标与向量的长度、方向相结合,从而更好地理解向量的性质和特点。
例如,在研究向量的加法、减法时,我们可以画出向量的图像,通过观察图像来了解向量的加法、减法。
6. 解析几何解析几何是高中数学中的另一个重要概念。
高中数学教学中学生数形结合思维的培养
高中数学教学中学生数形结合思维的培养高中数学教学中,数形结合是一种非常重要的教学方式。
利用数形结合的教学方法,可以激发学生的数学学习兴趣,培养学生的数学思维能力,提高学生的数学解决问题的能力。
本文将从数形结合的重要性、培养学生数形结合思维的方法以及数形结合教学对学生的益处等方面进行探讨。
一、数形结合的重要性数学是一门抽象的学科,数学问题往往需要通过抽象的符号和计算进行求解。
而数形结合的教学方法可以将抽象的数学知识与具体的几何形式进行结合,使得学生能够更直观地理解数学概念,进而更好地掌握数学知识。
数形结合不仅可以帮助学生理解数学知识,还可以帮助学生培养数学思维能力和解决问题的能力。
通过数形结合的教学,可以让学生在具体的空间中感受数学的魅力,从而激发学生的学习兴趣,提高学生的学习效果。
二、培养学生数形结合思维的方法1. 引导学生学会观察数形结合思维的培养首先需要学生学会观察。
在数学教学中,教师可以通过引导学生观察一些数学问题的实际情况,让学生在观察中逐渐形成对数学事物的感性认识。
在学习坐标系时,可以通过引导学生观察图形在坐标系中的位置、属性以及与数学函数的关系,让学生从直观的观察中理解数学概念,从而培养学生的数形结合思维能力。
2. 练习数形转化数形结合思维的培养还需要学生掌握数和形之间的转化。
在数学教学中,教师可以通过一些练习题让学生将数学问题转化为几何图形的形式,或者将几何图形转化为数学公式的形式,从而训练学生的数形结合能力。
通过大量的练习,学生可以逐渐掌握数形结合的方法和技巧,从而提高数学解决问题的能力。
3. 鼓励学生思维延伸在数学教学中,教师还可以通过鼓励学生进行思维延伸的方式来培养学生的数形结合思维能力。
在学习三角函数的时候,教师可以鼓励学生思考三角函数的图形特征与数学公式的关系,从而引导学生将抽象的数学概念与具体的几何形式进行结合,培养学生的数形结合思维能力。
三、数形结合教学对学生的益处1. 激发学生的学习兴趣通过数形结合的教学方法,学生可以更直观地感受到数学的魅力,从而激发学生的学习兴趣。
高中数学二轮专题复习——数形结合思想
思想方法专题数形结合思想【思想方法诠释】一、数形结合的思想所谓的数形结合,就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和空间形式巧妙、和谐地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决,数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。
数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化,从形的直观和数的严谨两方面思考问题,拓宽了解题思路,是数学的规律性与灵活性的有机结合.数形结合的实质是将抽象的数学语言与直观的图象结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化.二、数形结合思想解决的问题常有以下几种:1.构建函数模型并结合其图象求参数的取值范围;2.构建函数模型并结合其图象研究方程根的范围;3.构建函数模型并结合其图象研究量与量之间的大小关系;4.构建函数模型并结合其几何意义研究函数的最值问题和证明不等式;5.构建立体几何模型研究代数问题;6.构建解析几何中的斜率、截距、距离等模型研究最值问题;7.构建方程模型,求根的个数;8.研究图形的形状、位置关系、性质等。
三、数形结合思想是解答高考数学试题的一种常见方法与技巧,特别是在解选择题、填空题时发挥奇特功效,具体操作时,应注意以下几点:1.准确画出函数图象,注意函数的定义域;2.用图象法讨论方程(特别是含参数的方程)的解的个数是一种行之有效的方法,值得注意的是首先把方程两边的代数式看作是两个函数的表达式(有时可能先作适当调整,以便于作图)然后作出两个函数的图象,由图求解。
四、在运用数形结合思想分析问题和解决问题时,需做到以下四点:1.要清楚一些概念和运算的几何意义以及曲线的代数特征;2.要恰当设参,合理用参,建立关系,做好转化;3.要正确确定参数的取值范围,以防重复和遗漏;4.精心联想“数”与“形”,使一些较难解决的代数问题几何化,几何问题代数化,以便于问题求解。
高中数学教学中如何渗透数形结合思想
、
高 中数 学 教 学 中“ 数形结合” 思 想 方 法 具 体 应 用原 则
数 学 问 题 可 以 说 是灵 活 多 变 , 并且非 常复杂 , 真 的 要 说 解 决 问 题 要 有 一 套 固 定 的方 法 是 不 可 能 的 , 只 有 灵 活 运 用 各 种 模 式 与 方法 才 能解 决 , 其 实 这 也 是 数 学 学 科 解 题 魅 力 的精 髓 .
2 . 等 价 性 原 则 等价性原则直观来分析就是“ 数” 的代数性质 与“ 形” 的几 何 性 质 在 转 化 的 过 程 中应 该 是 等 价 的 , 也 就 是 说 研 究 的 问 题
:
3 . “ 数” 与“ 形” 的 结合 使 用
根据前面的分析 , 我们 可 以知道 “ 数” 与“ 形” 在 使 用 的 过 程 中各 自虽 然 存 在 一 些 不 足 , 却 又相 辅 相 成 . 在 面 对 很 多 数 学
形 结合 的基 本 涵 义 , 而且 能灵 活运 用.
例 1 函数 f ( z ) = 4 7 一C O S X , 在[ o , +。 。 ) 内(
A. 没 有 零 点 B . 有 且 只 有 一 个 零 点 C . 有 且 并 有 两 个 零 点
) .
关键词 : 高 中数 学 ; 数 形 结 合
高 中数 学教 学 中如何 渗 透 数 形 结 合 思 想
■ 董 晓 萍
摘 要: 随 着 新 课 改 的 不 断深 入 , 新课 程 标 准 明 确 指 出要 坚 持 以 生 为 本 的教 学 理 念 , 在 高 中数 学 中 以 学 生 为 学 习 主体 , 要 求 学 生 对基 本 的概 念 与 思 想 要 准 确 掌握 , 而数 与形又是 高中 数 学教 学过 程 中非 常 重 要 的 两 个 教 材 内容 , 数 与 形 的 结 合 思
高中数学数形结合思想在解题中的应用
中学数学数形结合思想在解题中的应用一、学问整合1.数形结合是数学解题中常用的思想方法,运用数形结合的方法,许多问题能迎刃而解,且解法简捷。
所谓数形结合,就是依据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。
数形结合思想通过“以形助数,以数解形”,使困难问题简洁化,抽象问题详细化能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与敏捷性的有机结合。
2.实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。
如等式()()x y -+-=214223.纵观多年来的高考试题,奇妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是探讨“以形助数”。
4.数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域,最值问题中,在求复数和三角函数问题中,运用数形结合思想,不仅直观易发觉解题途径,而且能避开困难的计算与推理,大大简化了解题过程。
这在解选择题、填空题中更显其优越,要留意培育这种思想意识,要争取胸中有图,见数想图,以开拓自己的思维视野。
二、例题分析例1.的取值范围。
之间,求和的两根都在的方程若关于k k kx x x 310322-=++ 分析:0)(32)(2=++=x f x k kx x x f 程轴交点的横坐标就是方,其图象与令()13(1)0y f x f =-->的解,由的图象可知,要使二根都在,之间,只需,(3)0f >,()()02bf f k a-=-<10(10)k k -<<∈-同时成立,解得,故,例2. 解不等式x x +>2 解:法一、常规解法:原不等式等价于或()()I x x x x II x x ≥+≥+>⎧⎨⎪⎩⎪<+≥⎧⎨⎩02020202解,得;解,得()()I x II x 0220≤<-≤<综上可知,原不等式的解集为或{|}{|}x x x x x -≤<≤<=-≤<200222 法二、数形结合解法: 令,,则不等式的解,就是使的图象y x y x x x y x 121222=+=+>=+在的上方的那段对应的横坐标,y x 2=如下图,不等式的解集为{|}x x x x A B ≤<而可由,解得,,,x x x x x B B A +===-222故不等式的解集为。
高中数学思想中数形结合
高中数学思想中的数形结合纵观整个中学数学可以看到,中学数学研究的对象可分为两大部分,一部分是数,一部分是形。
数是数量关系的体现,形是空间形式的体现,两者是对立统一的,我们在探讨数量关系时常常借助于图形直观地去研究;而在研究图形时,又常借助于图形间隐含的数量关系去求解。
即将数与形灵活地转换,运用彼此间的相互联系和作用,去有效地探求问题的解答,我认为这就是数形结合的思想方法。
华罗庚教授曾精彩地诠释:“数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休。
”由此可见,数形结合的巧与妙,数形结合的思想方法能扬数之长,取形之优,使得数量关系与空间形式珠联壁合,相映生辉。
因此它足以成为高中数学思想方法的一朵奇葩。
数形结合思想在高中数学新课程教材中渗透之深是显而易见的,新教材之中的每一章节内容几乎都有以数形结合的形式出现的题目,这样能很好地培养和发展学生的数形结合思想。
新教材中渗透这一方法,对发展学生的解题思路、寻找最佳解题方法明显带有指导性作用,通过对问题进行正确的分析、比较、合理联想,训练学生思维、拓宽视野,逐步形成正确的解题观;还可在学习中引导学生对抽象概念给予形象化的理解和记忆,提高数学认知能力,并提升对现实世界的认识能力,从而提高数学素养,不断完善自己。
在运用数形结合思想解题时,应必须关注以下几个方面:(1)由数想形时,要注意“形”的准确性,这是数形结合的基础。
(2)数形结合,贵在结合,要充分发挥两者的优势。
“形”有直观、形象的特点,但代替不上具体的运算和证明,在解题中往往提供一种数学解题的平台或模式,而“数”才是其真正的主角,若忽视这一点,很容易造成对数形结合的谬用。
下面我将通过几个模块习题的讲解来感受一下数形结合思想的灵活应用。
一、数形结合在函数问题中应用例题:已知奇函数f(x)的定义域是{x|x≠0,x∈r},且在(0,+∞)上单调递增,若f(1)=0,满足xf(x)<0的x的取值范围是。
数形结合思想方法在高中数学教学中的应用分析
数形结合思想方法在高中数学教学中的应用分析作者:朱大艺来源:《家长·下》2023年第08期在新课程标准理念指导下,数学教师在传授学生基础知识与基本技能的同时,还要重视学生活动经验的积累及数学思想的形成。
数学思想在促进学生综合发展方面具有重大意义,因此教师愈发关注数学思想教学工作。
“数”和“形”作为高中数学中的主要研究对象,数形结合思想扮演着连通两者的桥梁角色,在教学实践中起到举足轻重的作用。
基于此,本文立足数形结合思想,分析高中数学课堂教学中渗透、运用数形结合思想方法的相关建议,以期为高中数学教师发挥该数学思想的作用提供参考。
一、数形结合思想的基本内涵数形结合思想是数学思想的重要构成部分,既是一种思维方法,又是一种解题的基本策略。
“数形结合”是将抽象的数学语言和直观的几何图形有机地结合起来,通过分析、观察图形,运用数与形的相互关系,将复杂问题简单化,使抽象问题具体化。
数形结合的思想方法主要有这几种:(1)以形助数:将抽象的数学语言和直观图形结合起来,借助图形理解数学语言。
(2)以数解形:用数字验证图形或直观地反映函数关系,在几何直观的基础上进行数量关系分析。
(3)以形助数:通过形象直观地描述问题,引导学生把抽象问题具体化。
(4)以数解形:在图形上表示数量关系或变化过程,借助图形揭示数量关系。
“数形结合”从字面上理解,是将“数”和“形”结合到一起。
从不同角度出发对“数”和“形”的内涵理解各有不同。
基于广义视角,“形”为现实世界客观存在的事物,“数”则被视为用于对客观事物进行研究的手段;基于狹义视角,“数”指代数,而“形”指几何。
有关“数形结合”本质内涵的理解,虽然不同学者和研究者具有不同的理解,但在数形结合作用和价值方面比较一致,都认识到需要对高中阶段的学生进行渗透,让学生理解这种重要的数学思想方法,并将其作为解题技巧和创新思考的方法融入数学知识体系。
在培养学生数形结合能力方面,大部分研究者意识到采用渗透教学法进行培养,让学生灵活思考,尊重学生的主观能动性,确保学生主动理解、运用这种重要思想方法。
高中数学常用的数学思想——数形结合
高中数学常用的数学思想一、数形结合思想方法中学数学的基本知识分三类:一类是纯粹数的知识,如实数、代数式、方程(组)、不等式(组)、函数等;一类是关于纯粹形的知识,如平面几何、立体几何等;一类是关于数形结合的知识,主要体现是解析几何。
数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。
恩格斯曾说过:“数学是研究现实世界的量的关系与空间形式的科学。
”数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量关的精确刻划与空间形式的直观形象巧妙、和谐地结合在一起,充分利用这种结合,寻找解题思路,使问题化难为易、化繁为简,从而得到解决。
“数”与“形”是一对矛盾,宇宙间万物无不是“数”和“形”的矛盾的统一。
华罗庚先生说过:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休。
数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。
在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。
数学中的知识,有的本身就可以看作是数形的结合。
如:锐角三角函数的定义是借助于直角三角形来定义的;任意角的三角函数是借助于直角坐标系或单位圆来定义的。
Ⅰ、再现性题组:1.设命题甲:0<x<5;命题乙:|x-2|<3,那么甲是乙的_____。
高中的数学思想方法
高中的数学思想方法高中的数学思想方法高中的数学是一门重要的学科,那么,高中的数学思想方法有哪些呢?下面给大家整理了高中的数学思想方法,一起来看看吧!第一:函数与方程思想(1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等内容时,起着重要作用(2)方程思想是解决各类计算问题的基本思想,是运算能力的基础高考把函数与方程思想作为七种重要思想方法重点来考查第二:数形结合思想:(1)数学研究的对象是数量关系和空间形式,即数与形两个方面(2)在一维空间,实数与数轴上的点建立一一对应关系在二维空间,实数对与坐标平面上的点建立一一对应关系数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化第三:分类与整合思想(1)分类是自然科学乃至社会科学研究中的基本逻辑方法(2)从具体出发,选取适当的分类标准(3)划分只是手段,分类研究才是目的(4)有分有合,先分后合,是分类整合思想的本质属性(5)含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性第四:化归与转化思想(1)将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决问题化归为已解决问题(2)灵活性、多样性,无统一模式,利用动态思维,去有利于问题解决的变换途径与方法(3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化第五:特殊与一般思想(1)通过对个例认识与研究,形成对事物的认识(2)由浅入深,由现象到本质、由局部到整体、由实践到理论(3)由特殊到一般,再由一般到特殊的反复认识过程(4)构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程(5)高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向第六:有限与无限的思想:(1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路(2)积累的'解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向(3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用(4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查第七:或然与必然的思想:(1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性(2)偶然中找必然,再用必然规律解决偶然(3)等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验、随机事件的分布列、数学期望是考查的重点下载全文。
数形结合思想方法在高中数学教学与解题中的应用探析
2020年13期New Generation数形结合思想方法在高中数学教学与解题中的应用探析钱朗宇(广西壮族自治区田阳高中广西百色533600)摘要:随着高中教育改革的全面落实以及教学理念的实践应用,高中数学教学更加注重培养学生的创新精神以及个人思考能力。
丰富的课外实践活动以及针对性的强化训练为学生数学思维培养提供了巨大的发展空间,加强了学生数学图形的应用水平。
在教学改革发展中数形结合思维方式得到了充分发挥,加强了学习中以学生为主体的教学方式应用力度,大大激发了学生空间思维以及独立思考意识,综合提升了学生数学思维水平以及解题能力。
本文将针对高中数学教学中数形结合思维的实践应用,综合剖析实践应用方法能够思维全面提升数学教学水平。
关键词:教育改革;高中;数学教学;数形结合;思维高中数学知识体系联系较为紧密,实际应用场景对于数学思维把控水平要求较高。
教师在教学中更加注重数学思维的培养以及图形分析能力的提升,充分落实新教育理念标准,全面发展学生数学能力。
而改革之前部分教师受考试考核方式以及传统教学理念的影响,课堂教学总体质量不高,学生学习方式较为单一且数学解题能力较为死板,过于依赖数学解题套路缺乏相应的思维能力分析。
同时数学教学课堂教师与学生互动积极性不高,学生实际学习效果反馈不明确。
因此当前高中数学教学中要积极创新发展,积极实践应用图形分析思维,切实提升高中数学教学水平。
一、数形结合教学的创新发展道路高中传统数学教学课堂主体是教师与课本理论知识,部分学生不能够充分参与到理论知识的理解和应用,限制了课堂学习效率的提升以及数学思维的养成。
课堂主要以教师为中心展开的理论教学大大限制了学生图形分析能力的提升,同时大大减少了课堂数学实践以及学生之间讨论的次数,因此部分学生对于数学课堂积极性不高。
而在经过教育发展改革后,从根本上解决课堂主体问题,将教师教学以学生为主体展开,积极鼓励学生参与课堂实践,教师安排特定趣味场景调动学生讨论以及独立思考积极性,切实落实数学思维以及图形分析能力的培养。
高中数学中的数形结合思想方法详解
高中数学中的数形结合思想方法详解在高中数学中,数形结合思想方法被广泛应用于各类数学问题的解决过程中。
数形结合思想方法是将数学问题与几何形状相结合,通过观察、分析和推理,找到问题的解决路径的一种思维方式。
本文将详细介绍数形结合思想方法在高中数学中的应用。
一、图形与代数的结合图形与代数的结合是数形结合思想方法中的一种常见形式。
通过将代数式与几何图形相对应,可以更加直观地理解代数表达式的含义,从而更好地解决问题。
以一元二次方程为例,我们可以通过绘制抛物线图像来帮助理解方程的根的个数和特点。
当抛物线与 x 轴相交于两个点时,方程有两个实数根;当抛物线与 x 轴相切于一个点时,方程有一个实数根;当抛物线不与 x 轴相交时,方程没有实数根。
借助图形,我们可以更加准确地判断方程的解的情况。
同样,在平面几何的问题中,我们可以通过引入代数的思想,使用变量和代数式来表示未知量和条件。
将几何问题转化为代数问题后,可以通过代数运算和推导来解决问题,再将结果转化回几何语言,从而得到问题的几何意义。
图形与代数的结合使得数学问题更加具体化,同时也拓宽了解题思路,提高了问题解决的灵活性和多样性。
二、图形与函数的结合在高中数学中,图形与函数的结合也是数形结合思想方法的一种重要应用。
通过绘制函数图像,可以更好地理解函数的性质和变化规律,从而解决与函数相关的问题。
以一元函数为例,我们可以通过绘制函数的图像来观察函数的单调性、极值点、零点等特征。
通过分析函数图像的变化,可以得到函数在特定区间上的性质,并进一步解决与函数相关的问题。
在解析几何中,图形与函数的结合也发挥着重要的作用。
通过使用函数的定义式,我们可以得到相应函数的方程,并进一步利用函数的性质来解决几何问题。
例如,通过绘制两点之间的直线与圆的图像,我们可以发现直线与圆的交点可能有 0 个、1 个或 2 个,从而解决与直线和圆相关的问题。
图形与函数的结合使得数学问题更加具象化和形象化,使抽象的函数概念更加有实际意义,有助于学生更好地理解和掌握相关知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学的数形结合思想方法
作者:田荣斌
来源:《新课程·下旬》2019年第09期
摘要:高中数学最大的特点是抽象,教师可以通过数形结合的思想把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过“以形助数”或“以数解形”即通过抽象思维与形象思维的结合,使复杂问题简单化、抽象问题具体化,从而达到优化解题的目的。
数形结合的思想在高考中作为重点考查的数学思想之一,要求學生重点掌握。
关键词:以形助数;以数解形;高中数学
★规律总结
命题揭秘:利用函数的图象讨论方程(特别是含参数的指数、对数、根式、三角等复杂的方程)的解的个数是一种重要的思想方法,其基本思路是先把方程两边的代数式看作是两个熟悉函数的表达式(不熟悉的函数适当变形转化为熟悉的两个函数),然后在同一坐标系中画出两个函数的图象,图象的交点个数即为方程的解的个数。
★规律总结
命题揭秘:求参数范围或解不等式问题时常联系函数的图象,根据不等式量的特征,选择适当的两个(或多个)函数,将两个函数图象的上下位置关系转化为数量关系来解决,往往可以避免繁琐的运算,获得简捷的解答,处理线性规划问题的关键是弄清线性目标函数的几何意义。
夺分宝典:(1)在有关几何的一些最值问题中,可以根据图象的性质,结合图形上点的条件进行转换,快速求得最值;(2)如果(不)等式、代数式的结构蕴含着明显的几何特征,就要考虑用数形结合的思想方法来解题,即几何法求解。
参考文献:
[1]李巧文.数形结合的心理机制[D].陕西师范大学,2008.
[2]姜秋亚.数形结合思想方法在高中教学中的应用情况研究[D].华中师范大学,2015.
编辑谢尾合。