2020-2021学年北京市海淀区九上期中数学模拟试卷

合集下载

北京海淀区2020-2021学年七上数学期中试卷(解析版)

北京海淀区2020-2021学年七上数学期中试卷(解析版)
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.
【详解】解:188000000这个科学记数法表示,结果正确的是1.88×108,
故选:B.
【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
从表示-3的点向左数4个单位是-7,
从表示-3的点向右数4个单位是1.
故答案为:-7或1.
【点睛】本题考查数轴,解题的关键是明确数轴的特点,知道到一个点的距离相等的点有两个.
16.某班部分学生外出参加社会实践活动,据统计共有三种出行方式:骑自行车、乘公交车和乘私家车(每人选择了一种出行方式),其中骑车的人数比乘公交车的人数多10人,乘私家车的人数比骑车的人数少3人,设乘公交车的有m人,则该班骑车参加此次活动的有_____人,该班参加此次活动的学生共有_____人(用含m的式子表示).
x
﹣1
0
1
2
ax+b
﹣5
﹣3
﹣1
1
则a+2b的值为_____.
【答案】-4
【解析】
【分析】分别求出x=﹣1,2时,式子ax+b的值,再相加即可求解.
【详解】解:x=﹣1时,式子ax+b=﹣a+b=﹣5,
x=2时,式子ax+b=2a+b=1,
两式相加得﹣a+b+2a+b=a+2b=﹣5+1=﹣4.
故答案为:﹣4.
【分析】根据单项式与多项式的定义分别对每一项进行分析,即可得出答案.
【详解】解:A、﹣2x是单项式,正确,符合题意;
B、 的系数是 ,故错误,不符合题意;

2020-2021学年北京市海淀区高一(下)期中数学试卷

2020-2021学年北京市海淀区高一(下)期中数学试卷

2020-2021学年北京市海淀区高一(下)期中数学试卷试题数:19,总分:1001.(单选题,4分)若角α的终边经过点P (-2,3),则tanα=( ) A. −23 B. 23 C. −32 D. 322.(单选题,4分)已知向量 a ⃗ =(1,2),则| a ⃗ |=( ) A.3 B. √3 C.5 D. √53.(单选题,4分) MB ⃗⃗⃗⃗⃗⃗⃗−BA ⃗⃗⃗⃗⃗⃗+BO ⃗⃗⃗⃗⃗⃗+OM ⃗⃗⃗⃗⃗⃗⃗ =( ) A. AB ⃗⃗⃗⃗⃗⃗ B. BA ⃗⃗⃗⃗⃗⃗ C. MB ⃗⃗⃗⃗⃗⃗⃗ D. BM ⃗⃗⃗⃗⃗⃗⃗4.(单选题,4分)在△ABC 中,A 为钝角,则点P (cosA ,tanB )( ) A.在第一象限 B.在第二象限 C.在第三象限 D.在第四象限5.(单选题,4分)下列函数中,周期为π且在区间( π2 ,π)上单调递增的是( ) A.y=cos2x B.y=sin2x C. y =cos 12x D. y =sin 12x6.(单选题,4分)对函数y=sinx的图象分别作以下变换:① 向左平移π4个单位,再将每个点的横坐标缩短为原来的13(纵坐标不变);② 向左平移π12个单位,再将每个点的横坐标缩短为原来的13(纵坐标不变)③ 将每个点的横坐标缩短为原来的13(纵坐标不变),再向左平移π4个单位④ 将每个点的横坐标缩短为原来的13(纵坐标不变),再向左平移π12个单位其中能得到函数y=sin(3x+π4)的图象的是()A. ① ③B. ② ③C. ① ④D. ② ④7.(单选题,4分)如图,已知向量a⃗,b⃗⃗,c⃗,d⃗,e⃗的起点相同,则c⃗ + d⃗ - e⃗ =()A.- b⃗⃗B. b⃗⃗C.-6 a⃗ + b⃗⃗D.6 a⃗ - b⃗⃗8.(单选题,4分)已知函数f(x)=2sin(ωx+φ)(ω>0,|φ|<π2)的图象如图所示,则ω的值为()A.2B.1C. 12D. 149.(单选题,4分)“sinα=cosβ”是“ α+β=π2+2kπ(k∈Z)”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件10.(单选题,4分)已知函数f (x )=(x-1)3.Q 是f (x )的图象上一点,若在f (x )的图象上存在不同的两点M ,N ,使得 OM ⃗⃗⃗⃗⃗⃗⃗=2OQ ⃗⃗⃗⃗⃗⃗⃗−ON ⃗⃗⃗⃗⃗⃗⃗ 成立,其中O 是坐标原点,则这样的点Q ( ) A.有且仅有1个 B.有且仅有2个 C.有且仅有3个 D.可以有无数个11.(填空题,4分)已知向量 a ⃗ =(1,-2), b ⃗⃗ =(3,1),则 a ⃗ +2 b ⃗⃗ =___ . 12.(填空题,4分)已知cosα4sinα−2cosα=16,则tanα=___ .13.(填空题,4分)在△ABC 中,点D 满足 BD ⃗⃗⃗⃗⃗⃗⃗=4DC ⃗⃗⃗⃗⃗⃗ ,若 AD ⃗⃗⃗⃗⃗⃗=xAB ⃗⃗⃗⃗⃗⃗+yAC ⃗⃗⃗⃗⃗⃗ ,则x-y=___ . 14.(填空题,4分)已知函数 f (x )=sin (ωx +φ)(ω>0,|φ|<π2) 在区间 (π3,4π3) 上单调,且对任意实数x 均有 f (4π3)≤f (x )≤f (π3) 成立,则φ=___ .15.(填空题,4分)声音是由物体振动而产生的声波通过介质(空气、固体或液体)传播并能被人的听觉器官所感知的波动现象.在现实生活中经常需要把两个不同的声波进行合成,这种技术被广泛运用在乐器的调音和耳机的主动降噪技术方面.(1)若甲声波的数学模型为f 1(t )=sin200πt ,乙声波的数学模型为f 2(t )=sin (200πt+φ)(φ>0),甲、乙声波合成后的数学模型为f (t )=f 1(t )+f 2(t ).要使f (t )=0恒成立,则φ的最小值为;(2)技术人员获取某种声波,其数学模型记为H (t ),其部分图象如图所示,对该声波进行逆向分析,发现它是由S 1,S 2两种不同的声波合成得到的,S 1,S 2的数学模型分别记为f (t )和g (t ),满足H (t )=f (t )+g (t ).已知S 1,S 2两种声波的数学模型源自于下列四个函数中的两个.① y =sin π2t ; ② y=sin2πt ; ③ y=sin3πt ; ④ y=2sin3πt . 则S 1,S 2两种声波的数学模型分别是___ .(填写序号)16.(问答题,9分)已知函数 f (x )=1−cos 2xsinx. (Ⅰ)求f (x )的定义域; (Ⅱ)若 f (θ)=2√55,且 θ∈(π2,π) ,求tan (π-θ)的值.17.(问答题,9分)已知点A (5,-2),B (-1,4),C (3,3),M 是线段AB 的中点. (Ⅰ)求点M 和 AB ⃗⃗⃗⃗⃗⃗ 的坐标;(Ⅱ)若D 是x 轴上一点,且满足 BD ⃗⃗⃗⃗⃗⃗⃗∥CM ⃗⃗⃗⃗⃗⃗⃗ ,求点D 的坐标.18.(问答题,11分)已知函数 f (x )=2sin (x −π3) . (Ⅰ)某同学利用五点法画函数f (x )在区间 [π3,7π3] 上的图象.他列出表格,并填入了部分数据,请你帮他把表格填写完整,并在坐标系中画出图象;xπ3 5π6 11π6 7π3 x −π3π 3π2 2π f (x )2(ⅰ)若函数g (x )的最小正周期为 2π3 ,求g (x )的单调递增区间;(ⅱ)若函数g (x )在 [0,π3] 上无零点,求ω的取值范围(直接写出结论).19.(问答题,11分)若定义域R 的函数f (x )满足:① ∀x 1,x 2∈R ,(x 1-x 2)[f (x 1)-f (x 2)]≥0, ② ∃T >0,∀x∈R ,f (x+T )=f (x )+1.则称函数f (x )满足性质P (T ).(Ⅰ)判断函数f (x )=2x 与g (x )=sinx 是否满足性质P (T ),若满足,求出T 的值; (Ⅱ)若函数f (x )满足性质P (2),判断是否存在实数a ,使得对任意x∈R ,都有f (x+a )-f (x )=2021,并说明理由;(Ⅲ)若函数f (x )满足性质P (4),且f (-2)=0.对任意的x∈(-2,2),都有f (-x )=-f (x ),求函数 g (t )=tf (t )+f (t )f(4t)的值域.2020-2021学年北京市海淀区高一(下)期中数学试卷参考答案与试题解析试题数:19,总分:1001.(单选题,4分)若角α的终边经过点P (-2,3),则tanα=( ) A. −23 B. 23 C. −32 D. 32【正确答案】:C【解析】:利用任意角的三角函数的定义求解.【解答】:解:∵角α的终边经过点P (-2,3), ∴tanα= 3−2 =- 32 , 故选:C .【点评】:本题主要考查了任意角的三角函数的定义,是基础题. 2.(单选题,4分)已知向量 a ⃗ =(1,2),则| a ⃗ |=( ) A.3 B. √3 C.5 D. √5【正确答案】:D【解析】:根据题意,由向量的坐标结合向量的模的计算公式,计算可得答案.【解答】:解:根据题意,向量 a ⃗ =(1,2),则| a ⃗ |= √12+22 = √5 , 即| a ⃗ |= √5 , 故选:D .【点评】:本题考查向量模的计算,关键是理解向量的坐标以及向量模的定义.3.(单选题,4分) MB ⃗⃗⃗⃗⃗⃗⃗−BA ⃗⃗⃗⃗⃗⃗+BO ⃗⃗⃗⃗⃗⃗+OM ⃗⃗⃗⃗⃗⃗⃗ =( ) A. AB ⃗⃗⃗⃗⃗⃗ B. BA ⃗⃗⃗⃗⃗⃗ C. MB ⃗⃗⃗⃗⃗⃗⃗ D. BM ⃗⃗⃗⃗⃗⃗⃗【正确答案】:A【解析】:根据向量的减法的运算法则进行求解即可.【解答】:解:因为: MB ⃗⃗⃗⃗⃗⃗⃗−BA ⃗⃗⃗⃗⃗⃗+BO ⃗⃗⃗⃗⃗⃗+OM ⃗⃗⃗⃗⃗⃗⃗ = OM ⃗⃗⃗⃗⃗⃗⃗ + MB ⃗⃗⃗⃗⃗⃗⃗ + BO ⃗⃗⃗⃗⃗⃗ - BA ⃗⃗⃗⃗⃗⃗ = AB ⃗⃗⃗⃗⃗⃗ , 故选:A .【点评】:本题主要考查平面向量的基本运算,比较基础.4.(单选题,4分)在△ABC 中,A 为钝角,则点P (cosA ,tanB )( ) A.在第一象限 B.在第二象限 C.在第三象限 D.在第四象限 【正确答案】:B【解析】:根据三角形内角和定理与三角函数值的符号法则,判断即可.【解答】:解:△ABC 中,A 为钝角,所以B 为锐角, 所以cosA <0,tanB >0,所以点P (cosA ,tanB )在第二象限内. 故选:B .【点评】:本题考查了三角形内角和定理与三角函数值符号的判断问题,是基础题. 5.(单选题,4分)下列函数中,周期为π且在区间( π2 ,π)上单调递增的是( ) A.y=cos2x B.y=sin2x C. y =cos 12x D. y =sin 12x 【正确答案】:A【解析】:利用三角函数的周期性和单调性即可求解.【解答】:解:对于A,y=cos2x的周期为π,在区间(π2,π)单调递增函数,所以正确;对于B,y=sin2x的周期为π,在区间(π2,π)不是单调函数,所以不正确;对于C,y=cos 12 x的周期为2π12=4π,所以不正确;对于D,y=sin 12 x的周期为2π12=4π,所以不正确;故选:A.【点评】:本题考查三角函数的周期性以及单调性的判断,是基础题.6.(单选题,4分)对函数y=sinx的图象分别作以下变换:① 向左平移π4个单位,再将每个点的横坐标缩短为原来的13(纵坐标不变);② 向左平移π12个单位,再将每个点的横坐标缩短为原来的13(纵坐标不变)③ 将每个点的横坐标缩短为原来的13(纵坐标不变),再向左平移π4个单位④ 将每个点的横坐标缩短为原来的13(纵坐标不变),再向左平移π12个单位其中能得到函数y=sin(3x+π4)的图象的是()A. ① ③B. ② ③C. ① ④D. ② ④【正确答案】:C【解析】:根据三角函数沿x轴的平移变换和伸缩变换,看哪个变换可由y=sinx得到y=sin(3x+π4)即可.【解答】:解:① y=sinx→ y=sin(x+π4)→ y=sin(3x+π4);② y=sinx→ y=sin(x+π12)→ y=sin(3x+π12);③ y=sinx→y=sin3x→ y=sin3(x+π4);④ y=sinx→y=sin3x→ y=sin3(x+π12)=sin(3x+π4).故选:C.【点评】:本题考查了三角函数沿x轴方向的平移变换和伸缩变换,考查了计算能力,属于基础题.7.(单选题,4分)如图,已知向量a⃗,b⃗⃗,c⃗,d⃗,e⃗的起点相同,则c⃗ + d⃗ - e⃗ =()A.- b⃗⃗B. b⃗⃗C.-6 a⃗ + b⃗⃗D.6 a⃗ - b⃗⃗【正确答案】:D【解析】:利用平面向量的基本定理,推出结果即可.【解答】:解:如图,已知向量a⃗,b⃗⃗,c⃗,d⃗,e⃗的起点相同,则c⃗ + d⃗ - e⃗ = a⃗+b⃗⃗ +(2 a⃗−2b⃗⃗)-(-3 a⃗)=6 a⃗ - b⃗⃗.故选:D.【点评】:本题考查向量的基本定理的应用,向量的加减运算,是基础题.8.(单选题,4分)已知函数f(x)=2sin(ωx+φ)(ω>0,|φ|<π2)的图象如图所示,则ω的值为()A.2B.1C. 12D. 14【正确答案】:C【解析】:由点(0,√2)在函数的图象上可求sinφ= √22,结合范围|φ|<π2,可得φ= π4,又点(2π,- √2)在函数的图象上,有sin(2πω+ π4)=- √22,可得2πω+ π4=2kπ- π4,或2kπ- 3π4,k∈Z,从而解得ω的值.【解答】:解:∵点(0,√2)在函数的图象上,即有2sinφ= √2,∴sinφ= √22,∵|φ|<π2,∴可得:φ= π4,又∵点(2π,- √2)在函数的图象上,即有2sin(2πω+ π4)=- √2,∴sin(2πω+ π4)=- √22,可得2πω+ π4=2kπ- π4,或2kπ- 3π4,k∈Z,∴解得ω=k- 14,或ω=k- 12,k∈Z,则当k=1时,ω的值为12.故选:C.【点评】:本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,理解三角函数图象的特征是解题的关键,属于基础题.9.(单选题,4分)“sinα=cosβ”是“ α+β=π2+2kπ(k∈Z)”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【正确答案】:B【解析】:sinα=cosβ⇒cos(π2 -α)=cosβ,可得β=2kπ±(π2-α),k∈Z.即可判断出结论.【解答】:解:sinα=cosβ⇒cos(π2-α)=cosβ,∴β=2kπ±(π2-α),k∈Z.化为:α+β= π2+2kπ,k∈Z,或β-α=- π2+2kπ,k∈Z,∴“sinα=cosβ“是“α+β= π2+2kπ,k∈Z“的必要不充分条件.故选:B.【点评】:本题考查了三角函数方程的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.10.(单选题,4分)已知函数f (x )=(x-1)3.Q 是f (x )的图象上一点,若在f (x )的图象上存在不同的两点M ,N ,使得 OM ⃗⃗⃗⃗⃗⃗⃗=2OQ ⃗⃗⃗⃗⃗⃗⃗−ON ⃗⃗⃗⃗⃗⃗⃗ 成立,其中O 是坐标原点,则这样的点Q ( ) A.有且仅有1个 B.有且仅有2个 C.有且仅有3个 D.可以有无数个 【正确答案】:A【解析】:先由已知可得Q 为M ,N 的中点,然后根据函数f (x )的对称性即可做出判断.【解答】:解:因为 OM ⃗⃗⃗⃗⃗⃗⃗=2OQ ⃗⃗⃗⃗⃗⃗⃗−ON ⃗⃗⃗⃗⃗⃗⃗ ,则 OM ⃗⃗⃗⃗⃗⃗⃗+ON ⃗⃗⃗⃗⃗⃗⃗=2OQ ⃗⃗⃗⃗⃗⃗⃗ ,所以Q 为MN 的中点, 因为函数f (x )=(x-1)3关于点(1,0)成中心对称,所以当Q 的坐标为(1,0)时,取关于点Q 对称的点M ,N 符合题意, M ,N 在(1,0)两侧时,中点也要在函数f (x )上,只能是(1,0),M ,N 在(1,0)同侧时,相当于M ,Q ,N 所在的直线与f (x )在一侧有3个交点,不可能成立,故满足条件的Q 只有一个, 故选:A .【点评】:本题考查了平面向量基本定理的应用,涉及到函数的对称性,考查了学生的分析问题的能力,属于中档题.11.(填空题,4分)已知向量 a ⃗ =(1,-2), b ⃗⃗ =(3,1),则 a ⃗ +2 b ⃗⃗ =___ . 【正确答案】:[1](7,0)【解析】:根据向量的坐标运算求出 a ⃗ +2 b ⃗⃗ 的坐标即可.【解答】:解:∵ a ⃗ =(1,-2), b ⃗⃗ =(3,1), ∴ a ⃗ +2 b⃗⃗ =(1,-2)+2(3,1)=(7,0), 故答案为:(7,0).【点评】:本题考查了向量的坐标运算,考查对应思想,是基础题. 12.(填空题,4分)已知 cosα4sinα−2cosα=16 ,则tanα=___ . 【正确答案】:[1]2【解析】:对已知等式分子分母同时除以cosα,即可求出tanα的值.【解答】:解:∵ cosα4sinα−2cosα=16 , ∴ 14tanα−2=16 , ∴4tanα-2=6, ∴tanα=2, 故答案为:2.【点评】:本题主要考查了同角三角函数间的基本关系,是基础题.13.(填空题,4分)在△ABC 中,点D 满足 BD ⃗⃗⃗⃗⃗⃗⃗=4DC ⃗⃗⃗⃗⃗⃗ ,若 AD ⃗⃗⃗⃗⃗⃗=xAB ⃗⃗⃗⃗⃗⃗+yAC ⃗⃗⃗⃗⃗⃗ ,则x-y=___ . 【正确答案】:[1]- 35【解析】:利用已知条件画出图形,利用平面向量的基本定理,求解x ,y 即可.【解答】:解:在△ABC 中,点D 满足 BD ⃗⃗⃗⃗⃗⃗⃗=4DC ⃗⃗⃗⃗⃗⃗ ,若 AD ⃗⃗⃗⃗⃗⃗=xAB ⃗⃗⃗⃗⃗⃗+yAC ⃗⃗⃗⃗⃗⃗ , 如图,可知 AD ⃗⃗⃗⃗⃗⃗ = 15 AB ⃗⃗⃗⃗⃗⃗ +45 AC ⃗⃗⃗⃗⃗⃗ , 所以x= 15 ,y= 45 , 则x-y=- 35 . 故答案为:- 35 .【点评】:本题考查平面向量的基本定理的应用,是基础题. 14.(填空题,4分)已知函数 f (x )=sin (ωx +φ)(ω>0,|φ|<π2) 在区间 (π3,4π3) 上单调,且对任意实数x 均有f (4π3)≤f (x )≤f (π3) 成立,则φ=___ . 【正确答案】:[1] π6【解析】:由题意利用正弦函数的图象和性质,先求出ω,再根据五点法作图,可得φ的值.【解答】:解:∵函数 f (x )=sin (ωx +φ)(ω>0,|φ|<π2) 在区间 (π3,4π3) 上单调,且对任意实数x 均有 f (4π3)≤f (x )≤f (π3) 成立,∴ 1 2• 2πω= 4π3- π3,∴ω=1.且π3是f(x)的最大值点,4π3是函数f(x)的最小值点,由五点法作图可得1× π3+φ= π2,∴φ= π6,故答案为:π6.【点评】:本题主要考查正弦函数的图象和性质,属于中档题.15.(填空题,4分)声音是由物体振动而产生的声波通过介质(空气、固体或液体)传播并能被人的听觉器官所感知的波动现象.在现实生活中经常需要把两个不同的声波进行合成,这种技术被广泛运用在乐器的调音和耳机的主动降噪技术方面.(1)若甲声波的数学模型为f1(t)=sin200πt,乙声波的数学模型为f2(t)=sin(200πt+φ)(φ>0),甲、乙声波合成后的数学模型为f(t)=f1(t)+f2(t).要使f(t)=0恒成立,则φ的最小值为;(2)技术人员获取某种声波,其数学模型记为H(t),其部分图象如图所示,对该声波进行逆向分析,发现它是由S1,S2两种不同的声波合成得到的,S1,S2的数学模型分别记为f(t)和g(t),满足H(t)=f(t)+g(t).已知S1,S2两种声波的数学模型源自于下列四个函数中的两个.① y=sinπ2t;② y=sin2πt;③ y=sin3πt;④ y=2sin3πt.则S1,S2两种声波的数学模型分别是___ .(填写序号)【正确答案】:[1] ② ③【解析】:(1)由函数f(t)的解析式以及正弦型函数的性质,即可解出;(2)由函数图象分析可知至少有一个数学模型的振幅大于等于2,由此可知④ 是必选,再利用函数图象及其周期性可作出判断.【解答】:解:(1)由题意可知sin200πt=-sin(200πt+φ),又∵sin(π+α)=-sinα,∴φmin=π,(2)当t=1时,y=sinπ2=1,y=sin2π=0,y=sin3π=0,y=2sin3π=0,由图象可知H(1)=0,∴排出① ,由图象可知,波峰波谷是不一样波动的,且有三种不同的波峰,则说明f(t),g(t)的周期不同,而③ ④ 的周期相同,∴一定包含② y=sin2πt,若② ④ 组合,当t= 16时,H(16)=sin(2π× 16)+2sin(3π× 16)= √32+2>3,与图象不符,∴排除④ ,∴只能是② ③ .故答案为:π,② ③ .【点评】:本题考查了函数模型的实际应用,学生的数学运算能力,分析问题能力,属于基础题.16.(问答题,9分)已知函数f(x)=1−cos2xsinx.(Ⅰ)求f(x)的定义域;(Ⅱ)若f(θ)=2√55,且θ∈(π2,π),求tan(π-θ)的值.【正确答案】:【解析】:(Ⅰ)由sinx≠0即可求出f(x)的定义域.(Ⅱ)先化简函数f(x)的解析式,再代入f(θ)=2√55,得到sinθ= 2√55,在根据同角三角函数间的基本关系和角θ的范围求解即可.【解答】:解:(Ⅰ)由题意可知sinx≠0,∴x≠kπ(k∈Z),∴f(x)的定义域为{x|x≠kπ,k∈Z}.(Ⅱ)f(x)=1−cos 2xsinx = sin2xsinx=sinx,∵ f(θ)=2√55,∴sinθ= 2√55,又∵ θ∈(π2,π),∴cosθ=- √1−sin2θ =- √55,∴tan(π-θ)=-tanθ=- sinθcosθ=2.【点评】:本题主要考查了三角函数的恒等变形及化简,考查了同角三角函数间的基本关系,是基础题.17.(问答题,9分)已知点A (5,-2),B (-1,4),C (3,3),M 是线段AB 的中点. (Ⅰ)求点M 和 AB ⃗⃗⃗⃗⃗⃗ 的坐标;(Ⅱ)若D 是x 轴上一点,且满足 BD ⃗⃗⃗⃗⃗⃗⃗∥CM ⃗⃗⃗⃗⃗⃗⃗ ,求点D 的坐标.【正确答案】:【解析】:(Ⅰ)根据向量的运算性质计算即可;(Ⅱ)根据向量的线性运算计算即可.【解答】:解:(Ⅰ)∵A (5,-2),B (-1,4),M 是线段AB 的中点, ∴M (5−12 , −2+42)=(2,1), AB ⃗⃗⃗⃗⃗⃗ = OB ⃗⃗⃗⃗⃗⃗ - OA ⃗⃗⃗⃗⃗⃗ =(-1,4)-(5,-2)=(-6,6);(Ⅱ)设D (x ,0),则 BD ⃗⃗⃗⃗⃗⃗⃗ =(x+1,-4), CM ⃗⃗⃗⃗⃗⃗⃗ =(-1,-2), ∵ BD ⃗⃗⃗⃗⃗⃗⃗∥CM ⃗⃗⃗⃗⃗⃗⃗ ,∴(x+1)•(-2)-(-4)•(-1)=0,解得:x=-3, ∴点D 的坐标是(-3,0).【点评】:本题考查了向量的坐标运算,考查平行向量,是基础题. 18.(问答题,11分)已知函数 f (x )=2sin (x −π3) . (Ⅰ)某同学利用五点法画函数f (x )在区间 [π3,7π3] 上的图象.他列出表格,并填入了部分数据,请你帮他把表格填写完整,并在坐标系中画出图象;xπ35π611π6 7π3x−π3π3π22πf(x) 2(Ⅱ)已知函数g(x)=f(ωx)(ω>0).(ⅰ)若函数g(x)的最小正周期为2π3,求g(x)的单调递增区间;(ⅱ)若函数g(x)在[0,π3]上无零点,求ω的取值范围(直接写出结论).【正确答案】:【解析】:(Ⅰ)利用正弦函数的性质及五点作图法即可求解;(Ⅱ)(ⅰ)由已知可求g(x)=2sin(ωx- π3),利用正弦函数的周期公式可求ω=3,利用正弦函数的单调性即可求解;(ⅱ)利用正弦函数的性质即可求解.【解答】:解:(Ⅰ)表格如下:x π35π611π67π3x−π3π2π3π22πf(x) 2 -2 图像如下:(Ⅱ)已知函数g(x)=f(ωx)(ω>0).(ⅰ)∵ f (x )=2sin (x −π3) ,g (x )=f (ωx )(ω>0). ∴g (x )=2sin (ωx - π3 ),∵函数g (x )的最小正周期为 2π3 = 2πω ,解得ω=3, ∴g (x )=2sin (3x- π3),令2kπ- π2 ≤3x - π3 ≤2kπ+ π2 ,k∈Z ,解得- π18 + 2kπ3 ≤x≤ 5π18 + 2kπ3,k∈Z , 可得g (x )的单调递增区间为[- π18 + 2kπ3 , 5π18 + 2kπ3],k∈Z ; (ⅱ)ω的取值范围为(0,1).【点评】:本题主要考查了五点法作函数y=Asin (ωx+φ)的图象,正弦函数的单调性,考查了数形结合思想和函数思想的应用,属于中档题. 19.(问答题,11分)若定义域R 的函数f (x )满足:① ∀x 1,x 2∈R ,(x 1-x 2)[f (x 1)-f (x 2)]≥0, ② ∃T >0,∀x∈R ,f (x+T )=f (x )+1.则称函数f (x )满足性质P (T ).(Ⅰ)判断函数f (x )=2x 与g (x )=sinx 是否满足性质P (T ),若满足,求出T 的值; (Ⅱ)若函数f (x )满足性质P (2),判断是否存在实数a ,使得对任意x∈R ,都有f (x+a )-f (x )=2021,并说明理由;(Ⅲ)若函数f (x )满足性质P (4),且f (-2)=0.对任意的x∈(-2,2),都有f (-x )=-f (x ),求函数 g (t )=tf (t )+f (t )f(4t)的值域.【正确答案】:【解析】:(Ⅰ)利用定义分别判断即可求解得结论;(Ⅱ)由 ② 计算可得f (x+2n )=f (x )+n ,即f (x+2n )-f (x )=n ,令n=2021即可求得a 的值;(Ⅲ)根据已知可得任意的x∈[-2,2),f (x )=0,递推可得任意的x∈[4k -2,4k+2),k∈Z ,有f (x )=k ,由f (t )≠0,可得t∉[-2,2),分t=2,|t|>2两种情况分别求出g (t )的值域即可得解.【解答】:解:(Ⅰ)函数f (x )=2x 为增函数,满足性质 ① , 对于 ② ,由∀x∈R ,f (x+T )=f (x )+1有2(x+T )=2x+1, 所以2T=1,T= 12,所以函数f (x )=2x 满足性质P ( 12 ).函数g (x )=sinx 显然不满足 ① ,所以不满足性质P (T ). (Ⅱ)存在,理由如下: 由∀x∈R ,f (x+2)=f (x )+1.可得f (x+2n )=f (x+2n-2)+1=f (x+2n-4)+2=f (x+2n-6)+3=…=f (x )+n (n∈N*), 即f (x+2n )-f (x )=n , 令n=2021,得a=2n=4042.(Ⅲ)依题意,对任意的x∈(-2,2),都有f (-x )=-f (x ),所以f (0)=0, 因为函数f (x )满足性质P (4),由 ① 可得,在区间[-2,0]上有f (-2)≤f (x )≤f (0),又因为f (-2)=0,所以0≤f (x )≤0,可得任意x ∈[-2,0],f (x )=0, 又因为对任意的x∈(-2,2),都有f (-x )=-f (x ), 所以任意的x∈[-2,2),f (x )=0,递推可得任意的x∈[4k -2,4k+2),k∈Z ,有f (x )=k , 函数g (t )=tf (t )(f(4t)+1),因为f (t )≠0,所以t∉[-2,2),由 ② 及f (-2)=0,可得f (2)=1, 所以当t=2时,g (2)= 21×(1+1) =1, 当|t|>2时, 4t ∈(-2,2),所以f ( 4t )=0, 即|t|>2时,g (t )= tf (t ) ,所以当t∈[4k -2,4k+2)(k∈Z ,k≠0,t≠2)时,g (t )= tk , 当k≥1时,g (t )∈[4k−2k , 4k+2k )=[4- 2k ,4+ 2k)(当k=1时,g (t )≠2,需要排除),此时 2k 随k 的增大而减小,所以[4- 2k+1 ,4+ 2k+1 )⫋[4- 2k ,4+ 2k ), 所以求值域,只需取k=1,得g (t )∈[4- 21 ,4+ 21 )=[2,6), 当k <0时,g (t )∈(4k+2k , 4k−2k ]=(4+ 2k ,4- 2k], 此时 2k 随k 的增大而减小,所以(4+ 2k−1 ,4- 2k−1 ]⫋(4+ 2k ,4- 2k ], 只需取k=-1,得g (t )∈(4+ 2−1 ,4- 2−1 ]=(2,6].综上,函数g(t)的值域为{1}∪(2,6].【点评】:本题主要考查抽象函数及其应用,考查新定义,函数值域的求法,考查逻辑推理与运算求解能力,属于难题.。

北京市海淀区2020-2021学年八年级下学期期中数学试卷 解析版

北京市海淀区2020-2021学年八年级下学期期中数学试卷 解析版

2020-2021学年北京市海淀区八年级(下)期中数学试卷一、选择题:本大题共10小题,每题3分,共30分。

1.(3分)下列曲线中,表示y是x的函数的是()A.B.C.D.2.(3分)下列四组线段中,可以构成直角三角形的是()A.4,5,6B.2,3,4C.5,12,13D.1,,3 3.(3分)下列二次根式中,最简二次根式是()A.B.C.D.4.(3分)如图,矩形ABCD中,对角线AC、BD相交于点O,若AB=2,∠AOB=60°,则AC的长度为()A.2B.3C.4D.65.(3分)如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开.若测得AM 的长为1.2km,则M,C两点间的距离为()A.0.5 km B.0.6 km C.0.9 km D.1.2 km6.(3分)把函数y=x的图象向上平移2个单位,下列各点在平移后的函数图象上的是()A.(2,2)B.(2,3)C.(2,4)D.(2,5)7.(3分)一次函数y=kx+2中,若k>0,则其图象可能是()A.B.C.D.8.(3分)如图,点P是▱ABCD边上一动点,沿A→D→C→B的路径移动,设P点经过的路径长为x,△BAP的面积是y,则下列能大致反映y与x的函数关系的图象是()A.B.C.D.9.(3分)如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE =6,F为DE的中点.若OF的长为1,则△CEF的周长为()A.14B.16C.18D.1210.(3分)直线y=x+1与y=﹣2x+a的交点在第一象限,则a的取值可以是()A.﹣1B.0C.1D.2二、填空题:本大题共7小题,11-16题,每题3分,17题4分,共22分。

11.(3分)函数y=中自变量x的取值范围是.12.(3分)若正比例函数y=kx(k是常数,k≠0)的图象经过第一、三象限,请写出一个满足上述要求的k的值.13.(3分)如图,一棵高为16m的大树被台风刮断,若树在离地面6m处折断,树顶端刚好落在地可上,此处离树底部m处.14.(3分)如图,在平行四边形ABCD中,BC=8cm,AB=6cm,BE平分∠ABC交AD边于点E,则线段DE的长度为.15.(3分)如图,在正方形ABCD中,等边△AEF的顶点E、F分别在边BC和CD上,则∠AEB=°.16.(3分)春耕期间,某农资门市部连续8天调进一批化肥进行销售,在开始调进化肥的第7天开始销售.若进货期间每天调入化肥的吨数与销售期间每天销售化肥的吨数都保持不变,这个门市部的化肥存量S(单位:t)与时间t(单位:天)之间的函数关系如图所示,则该门市部这次化肥销售活动(从开始进货到销售完毕)所用时间是.17.(4分)在平面直角坐标系xOy中,过点A(5,3)作y轴的平行线,与x轴交于点B,直线y=kx+b(k,b为常数,k≠0)经过点A且与x轴交于点C(9,0).我们称横、纵坐标都是整数的点为整点.(1)记线段AB,BC,CA围成的区域(不含边界)为W.请你结合函数图象,则区域W内的整点个数为;(2)将直线y=kx+b向下平移n个单位(n≥0),若平移后的直线与线段AB,BC围成的区域(不含边界)存在整点,请结合图象写出n的取值范围.三、解答题:本大题共8小题,第18题6分,第19、20、21题,每题5分,第22题6分,第23、24、25题,每题7分,共48分。

2020-2021学年北京市海淀区九年级(上)期末数学试卷

2020-2021学年北京市海淀区九年级(上)期末数学试卷

2020-2021学年北京市海淀区九年级(上)期末数学试卷一、选择题(本题共24分,每小题3分)第1-8题均有四个选项,符合题意的选项只有一个,1.(3分)已知反比例函数y=的图象经过点(2,3),则k=()A.2B.3C.﹣6D.62.(3分)围棋起源于中国,古代称之为“弈”,至今已有4000多年的历史.2017年5月,世界围棋冠军柯洁与人工智能机器人AlphaGo进行围棋人机大战.截取首局对战棋谱中的四个部分,由黑白棋子摆成的图案是中心对称的是()A.B.C.D.3.(3分)不透明袋子中有1个红球和2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,恰好是红球的概率为()A.B.C.D.14.(3分)如图,△ABC中,点D,E分别在边AB,AC的反向延长线上,且DE∥BC.若AE=2,AC=4,AD=3,则AB为()A.9B.6C.3D.5.(3分)在下列方程中,有一个方程有两个实数根,且它们互为相反数,这个方程是()A.x﹣1=0B.x2+x=0C.x2﹣1=0D.x2+1=06.(3分)如图,⊙O的内接正六边形ABCDEF的边长为1,则的长为()A.πB.πC.πD.π7.(3分)已知二次函数y=ax2+bx+c的部分图象如图所示,则使得函数值y大于2的自变量x的取值可以是()A.﹣4B.﹣2C.0D.28.(3分)下列选项中,能够被半径为1的圆及其内部所覆盖的图形是()A.长度为线段B.斜边为3的直角三角形C.面积为4的菱形D.半径为,圆心角为90°的扇形二、填空题(本题共24分,每小题3分)9.(3分)写出一个二次函数,使得它有最小值,这个二次函数的解析式可以是.10.(3分)若点(1,a),(2,b)都在反比例函数y=的图象上,则a,b的大小关系是:a b(填“>”、“=”或“<”).11.(3分)如图,△ABC为等腰三角形,O是底边BC的中点,若腰AB与⊙O相切,则AC与⊙O的位置关系为(填“相交”、“相切”或“相离”).12.(3分)若关于x的一元二次方程x2﹣3x+m=0的一个根为1,则m的值为.13.(3分)某城市启动“城市森林”绿化工程,林业部门要考察某种树苗在一定条件下的移植成活率.在同样条件下,对这种树苗进行大量移植,并统计成活情况,数据如下表所示:移植总数10270400750150035007000900014000成活数量8235369662133532036335807312628成活频率0.8000.8700.9230.8830.8900.9150.9050.8970.902估计树苗移植成活的概率是(结果保留小数点后一位).14.(3分)如图,在测量旗杆高度的数学活动中,某同学在脚下放了一面镜子,然后向后退,直到他刚好在镜子中看到旗杆的顶部.若眼睛距离地面AB=1.5m,同时量得BC=2m,CD=12m,则旗杆高度DE=m.15.(3分)如图,在Rt△ABC中,∠ABC=90°,AB=BC=3,点D在AC上,且AD=2,将点D绕着点A顺时针方向旋转,使得点D的对应点E恰好落在AB边上,则旋转角的度数为,CE的长为.16.(3分)已知双曲线y=﹣与直线y=kx+b交于点A(x1,y1),B(x2,y2).(1)若x1+x2=0,则y1+y2=;(2)若x1+x2>0时,y1+y2>0,则k0,b0(填“>”,“=”或“<”).三、解答题(本题共52分,第17-20题,每小题5分,第21-23题,每小题5分,第24-25题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.(5分)解方程:x2﹣4x+3=0.18.(5分)如图,在Rt△ABC和Rt△ACD中,∠B=∠ACD=90°,AC平分∠BAD.(1)证明:△ABC∽△ACD;(2)若AB=4,AC=5,求BC和CD的长.19.(5分)如图1是博物馆展出的古代车轮实物,《周礼•考工记》记载:“…故兵车之轮六尺有六寸,田车之轮六尺有三寸…”据此,我们可以通过计算车轮的半径来验证车轮类型,请将以下推理过程补充完整.1.如图2所示,在车轮上取A、B两点,设所在圆的圆心为O,半径为r cm.作弦AB的垂线OC,D为垂足,则D是AB的中点.其推理依据是:.经测量:AB=90cm,CD=15cm,则AD=cm;用含r的代数式表示OD,OD=cm.在Rt△OAD中,由勾股定理可列出关于r的方程:r2=,解得r=75.通过单位换算,得到车轮直径约为六尺六寸,可验证此车轮为兵车之轮.20.(5分)文具店购进了20盒“2B”铅笔,但在销售过程中,发现其中混入了若干“HB”铅笔.店员进行统计后,发现每盒铅笔中最多混入了2支“HB”铅笔,具体数据见下表:混入“HB”铅笔数012盒数6m n (1)用等式写出m,n所满足的数量关系;(2)从20盒铅笔中任意选取1盒:①“盒中没有混入‘HB’铅笔”是事件(填“必然”、“不可能”或“随机”);②若“盒中混入1支‘HB’铅笔”的概率为,求m和n的值.21.(6分)如图,在平面直角坐标系xOy中,线段AB两个端点的坐标分别为A(1,2),B (4,2),以点O为位似中心,相似比为2,在第一象限内将线段AB放大得到线段CD.已知点B在反比例函数y=(x>0)的图象上.(1)求反比例函数的解析式,并画出图象;(2)判断点C是否在此函数图象上;(3)点M为直线CD上一动点,过M作x轴的垂线,与反比例函数的图象交于点N.若MN≥AB,直接写出点M横坐标m的取值范围.22.(6分)如图,Rt△ABC中,∠ACB=90°,点D在BC边上,以CD为直径的⊙O与直线AB相切于点E,且E是AB中点,连接OA.(1)求证:OA=OB;(2)连接AD,若AD=,求⊙O的半径.23.(6分)在平面直角坐标系xOy中,点P(m,y1)在二次函数y=x2+bx+c的图象上,点Q(m,y2)在一次函数y=﹣x+4的图象上.(1)若二次函数图象经过点(0,4),(4,4).①求二次函数的解析式与图象的顶点坐标;②判断m<0时,y1与y2的大小关系;(2)若只有当m≥1时,满足y1•y2≤0,求此时二次函数的解析式.24.(7分)已知∠MAN=45°,点B为射线AN上一定点,点C为射线AM上一动点(不与点A重合),点D在线段BC的延长线上,且CD=CB,过点D作DE⊥AM于点E.(1)当点C运动到如图1的位置时,点E恰好与点C重合,此时AC与DE的数量关系是;(2)当点C运动到如图2的位置时,依题意补全图形,并证明:2AC=AE+DE;(3)在点C运动的过程中,点E能否在射线AM的反向延长线上?若能,直接用等式表示线段AC,AE,DE之间的数量关系;若不能,请说明理由.25.(7分)如图1,对于△PMN的顶点P及其对边MN上的一点Q,给出如下定义:以P 为圆心,PQ为半径的圆与直线MN的公共点都在线段MN上,则称点Q为△PMN关于点P的内联点.在平面直角坐标系xOy中:(1)如图2,已知点A(7,0),点B在直线y=x+1上.①若点B(3,4),点C(3,0),则在点O,C,A中,点是△AOB关于点B的内联点;②若△AOB关于点B的内联点存在,求点B纵坐标n的取值范围;(2)已知点D(2,0),点E(4,2),将点D绕原点O旋转得到点F.若△EOF关于点E的内联点存在,直接写出点F横坐标m的取值范围.2020-2021学年北京市海淀区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共24分,每小题3分)第1-8题均有四个选项,符合题意的选项只有一个,1.【分析】直接根据反比例函数图象上点的坐标特征求解.【解答】解:∵反比例函数y=的图象经过点(2,3),∴k=2×3=6.故选:D.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k ≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.2.【分析】根据中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是中心对称图形,故本选项符合题意;B、不是中心对称图形,故本选项不合题意;C、不是中心对称图形,故本选项不合题意;D、不是中心对称图形,故本选项不合题意.故选:A.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵袋子中共有3个小球,其中红球有1个,∴摸出一个球是红球的概率是,故选:A.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.4.【分析】平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例,据此可得结论.【解答】解:∵点D,E分别在边AB,AC的反向延长线上,且DE∥BC,∴=,即,解得AB=6,故选:B.【点评】本题主要考查了平行线分线段成比例的推论,平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.5.【分析】根据题意一次项系数为0且Δ>0.【解答】解:A、x﹣1=0是一次方程,方程有一个实数根,故选项不合题意;B、∵一次项的系数为1,故选项不合题意;C、∵Δ=0﹣4×1×(﹣1)=4>0,且一次项系数为0,故此选项符合题意;D、∵Δ=0﹣4×1×1=﹣4<0,故此选项不合题意.故选:C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.也考查了一元二次方程的根的判别式.6.【分析】连接OC、OB,求出圆心角∠AOB的度数,再利用弧长公式解答即可;【解答】解:∵ABCDEF为正六边形,∴∠COB=360°×=60°,∴△OBC是等边三角形,∴OB=OC=BC=1,弧BC的长为=π.故选:B.【点评】本题考查了正多边形和圆的知识,解题的关键是能够求得扇形的圆心角,难度不大.7.【分析】利用抛物线的对称性确定(0,2)的对称点,然后根据函数图象写出抛物线在直线y=2上方所对应的自变量的范围即可.【解答】解:∵抛物线的对称轴为x=﹣1.5,∴点(0,2)关于直线x=﹣1.5的对称点为(﹣3,2),当﹣3<x<0时,y>2,即当函数值y>2时,自变量x的取值范围是﹣3<x<0.故选:B.【点评】本题考查了二次函数图象上点的坐标特征,二次函数的图象与性质,数形结合是解题的关键.8.【分析】根据图形中最长的的线段与圆的直径相比较即可判断.【解答】解:半径为1的圆的直径为2,A、∵>2,∴长度为线段不能够被半径为1的圆及其内部所覆盖;B、∵3>2,∴斜边为3的直角三角形不能够被半径为1的圆及其内部所覆盖;C、∵面积为4的菱形的长的对角线>2,∴面积为4的菱形不能够被半径为1的圆及其内部所覆盖;D、∵半径为,圆心角为90°的扇形的弦为2,∴半径为,圆心角为90°的扇形能够被半径为1的圆及其内部所覆盖;故选:D.【点评】本题考查了三角形的外接圆,菱形的性质,求得图形中最长的线段是解题的关键.二、填空题(本题共24分,每小题3分)9.【分析】根据二次函数有最小值,即可得出a>0,据此写出一个二次函数即可.【解答】解:∵二次函数有最小值,∴a>0,∴这个二次函数的解析式可以是y=x2,故答案为y=x2.【点评】本题主要考查了二次函数的性质,熟练运用性质是解此题的关键.此题是一道开放型的题目.10.【分析】直接利用反比例函数的增减性分析得出答案.【解答】解:∵反比例函数y=中,k=4>0,∴在每个象限内,y随x的增大而减小,∵点(1,a),(2,b)都在反比例函数y=的图象上,且2>1,∴a>b,故答案为:>.【点评】此题主要考查了反比例函数图象上点的坐标特征,正确把握反比例函数的性质是解题关键.11.【分析】连接OA,过O点作OE⊥AB,OF⊥AC,如图,根据等腰三角形的性质得到AO 平分∠BAC,则利用角平分线的性质得OE=OF,接着根据切线的性质可判断OE为⊙O 的半径,然后根据切线的判定定理可判断AC与⊙O相切.【解答】解:连接OA,过O点作OE⊥AB,OF⊥AC,如图,∵O是等腰△ABC的底边BC的中点,∴AO平分∠BAC,∵OE⊥AB,OF⊥AC,∴OE=OF,∵腰AB与⊙O相切,∴OE为⊙O的半径,∴OF为⊙O的半径,而OF⊥AC,∴AC与⊙O相切.故答案为相切.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了等腰三角形的性质、角平分线的性质和切线的判定.12.【分析】根据一元二次方程的解的定义,将x=1代入原方程,列出关于m的方程,然后解方程即可.【解答】解:∵关于x的一元二次方程x2﹣3x+m=0的一个根为1,∴x=1满足一元二次方程x2﹣3x+m=0,∴1﹣3+m=0,解得,m=2.故答案是:2.【点评】此题主要考查了方程解的定义,此类题型的特点是,利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.13.【分析】根据表格中的数据和概率的含义,可以估计树苗移植成活的概率.【解答】解:由表格中的数据可以估计树苗移植成活的概率是0.9,故答案为:0.9.【点评】本题考查利用频率估计概率,解答本题的关键是明确题意,写出相应概率.14.【分析】根据镜面反射的性质,△ABC∽△EDC,再根据相似三角形对应边成比例列式求解即可.【解答】解:∵AB⊥BD,DE⊥BD,∴∠ABC=∠EDC=90°,∵∠ACB=∠DCE,∴△ABC∽△EDC,∴=,∴=,∴DE=9(m),故答案为:9.【点评】本题考查了相似三角形的应用.应用镜面反射的基本性质,得出三角形相似,再运用相似三角形对应边成比例即可解答.15.【分析】由旋转的性质可得旋转角为∠BAC=45°,AD=AE=2,由勾股定理可求解.【解答】解:如图,连接CE,∵∠ABC=90°,AB=BC,∴∠BAC=45°,∵将点D绕着点A顺时针方向旋转,使得点D的对应点E恰好落在AB边上,∴旋转角为∠BAC=45°,AD=AE=2,∴BE=1,∴CE===,故答案为:45°,.【点评】本题考查了旋转的性质,等腰直角三角形的性质,掌握旋转的性质是本题的关键.16.【分析】(1)根据反比例函数图象上点的坐标特征即可得出结论;(2)根据题意画出图象,根据图象即可得出结论.【解答】解:(1)∵双曲线y=﹣与直线y=kx+b交于点A(x1,y1),B(x2,y2).∴y1=﹣,y2=﹣,∵x1+x2=0,∴x2=﹣x1,∴y2=﹣=﹣=﹣y1,∴y1+y2=0,故答案为0;(2)∵双曲线y=﹣在二、四象限,∴设A(x1,y1)在第二象限,B(x2,y2)在第四象限.则x1<0,y1>0,x2>0,y2<0,∵x1+x2>0,y1+y2>0,∴|x2|>|x1|,|y1|>|y2|,如图,∴直线y=kx+b经过一、二、四象限,∴k<0,b>0,故答案为<,>.【点评】本题是反比例函数与一次函数的交点问题,考查了反比例函数图象上点的坐标特征,一次函数的性质,数形结合是解题的关键.三、解答题(本题共52分,第17-20题,每小题5分,第21-23题,每小题5分,第24-25题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.【分析】利用因式分解法解出方程.【解答】解:x2﹣4x+3=0(x﹣1)(x﹣3)=0x﹣1=0,x﹣3=0x1=1,x2=3.【点评】本题考查的是一元二次方程的解法,掌握因式分解法解一元二次方程的一般步骤是解题的关键.18.【分析】(1)由角平分线定义得∠BAC=∠CAD,再由∠B=∠ACD=90°,即可得出结论;(2)先由勾股定理求出BC=3,再由相似三角形的性质求出CD即可.【解答】(1)证明:∵AC平分∠BAD,∴∠BAC=∠CAD,又∵∠B=∠ACD=90°,∴△ABC∽△ACD;(2)解:∵∠B=90°,AB=4,AC=5,∴BC===3,由(1)得:△ABC∽△ACD,∴=,即=,解得:CD=.【点评】本题考查了相似三角形的判定与性质以及勾股定理等知识;熟练掌握勾股定理,证明三角形相似是解题的关键.19.【分析】根据垂径定理,利用勾股定理构建方程求解即可.【解答】解:如图2所示,在车轮上取A、B两点,设所在圆的圆心为O,半径为rcm.作弦AB的垂线OC,D为垂足,则D是AB的中点.其推理依据是:垂直弦的直径平分弦.经测量:AB=90cm,CD=15cm,则AD=45cm;用含r的代数式表示OD,OD=(r﹣15)cm.在Rt△OAD中,由勾股定理可列出关于r的方程:r2=452+(r﹣15)2,解得r=75.通过单位换算,得到车轮直径约为六尺六寸,可验证此车轮为兵车之轮.故答案为:垂直弦的直径平分弦,45,(r﹣15),452+(r﹣15)2.【点评】本题考查垂径定理,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.20.【分析】(1)根据表格确定m,n满足的数量关系即可;(2)①根据事件的性质进行解答即可;②利用概率公式列式计算即可.【解答】解:(1)观察表格发现:6+m+n=20,∴用等式写出m,n所满足的数量关系为m+n=14,故答案为:m+n=14;(2)①“盒中没有混入‘HB’铅笔”是随机事件,故答案为:随机;②∵“盒中混入1支‘HB’铅笔”的概率为,∴=,∴m=5,n=9.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.21.【分析】(1)将点B代入反比例函数解析式中,解方程求解,即可得出结论;(2)先求出点C的坐标,再判断,即可得出结论;(3)先表示出点M,N的坐标,进而利用MN≥AB,建立不等式,解不等式,即可得出结论.【解答】解:(1)将点B(4,2)代入反比例函数y=中,得,∴k=8,∴反比例函数的解析式为y=,图象如图1所示,(2)∵以点O为位似中心,相似比为2,在第一象限内将线段AB放大得到线段CD,且A(1,2),∴C(1×2,2×2),即C(2,4),由(1)知,反比例函数解析式为y=,当x=2时,y==4,∴点C在反比例函数图象上;(3)∵以点O为位似中心,相似比为2,在第一象限内将线段AB放大得到线段CD,且B(4,2),∴D(4×2,2×2),即D(8,4),由(2)知,C(2,4),∴直线CD的解析式为y=4,∵点M的横坐标为m,则M(m,4),N(m,),∴MN=|4﹣|,∵A(1,2),B(4,2),∴AB=3,∵MN≥AB,∴|4﹣|≥3,∴m≥8或m≤,即0<m≤或m≥8.【点评】此题是反比例函数综合题,主要考查了待定系数法,解绝对值不等式,掌握解绝对值不等式的方法是解本题的关键.22.【分析】(1)连接OE,如图,根据切线的性质得OE⊥AB,则可判断OE垂直平分AB,根据线段垂直平分线的性质得到结论;(2)设⊙O的半径为r,先证明AO平分∠BAC,再证明∠OAC=∠B=∠OAB=30°,所以AC=OC=r,利用勾股定理得到(r)2+(2r)2=()2,然后解方程即可.【解答】(1)证明:连接OE,如图,∵以CD为直径的⊙O与直线AB相切于点E,∴OE⊥AB,∵E是AB中点,∴OE垂直平分AB,∴OA=OB;(2)解:设⊙O的半径为r,∵OE⊥AB,OC⊥AC,OE=OC,∴AO平分∠BAC,∴∠OAC=∠OAB,∵OA=OB,∴∠B=∠OAB,∴∠OAC=∠B=∠OAB=30°,在Rt△OAC中,AC=OC=r,在Rt△ACD中,(r)2+(2r)2=()2,解得r=1,即⊙O的半径为1.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了角平分线的性质.23.【分析】(1)①待定系数法即可求得解析式,把解析式化成顶点式即可求得顶点坐标;②画出二次函数和一次函数y=﹣x+4的图像,根据图像即可得到结论;(2)由题意可知,只有二次函数y=x2+bx+c的图象经过点(1,0)和点(4,0),才能满足m≥1时,y1•y2≤0,然后根据待定系数法求得即可.【解答】解:(1)①∵二次函数y=x2+bx+c的图象经过点(0,4),(4,4),∴,解得,∴二次函数的解析式为y=x2﹣4x+4,∵y=x2﹣4x+4=(x﹣2)2,∴图象的顶点坐标为(2,0);②画出函数的图像如图:由图像可知,m<0时,y1>y2;(2)由题意可知二次函数y=x2+bx+c的图象经过点(1,0)和点(4,0),把(1,0)和点(4,0)代入得,解得,∴此时二次函数的解析式为y=x2﹣5x+4.【点评】本题考查了二次函数的图象上点的坐标特征,一次函数图象上点的坐标特征,待定系数法求二次函数的解析式,明确题意是解题的关键.24.【分析】(1)易证△ABD是等腰三角形,得AB=AD,由SSS证得△ABC≌△ADC,得出∠CAD=∠BAC=45°,则∠BAD=90°,由直角三角形斜边上的中线性质即可得出答案;(2)依题意即可补全图形,过点B作BF⊥AM于F,则∠BFC=∠DEC=90°,由AAS 证得△BFC≌△DEC,得出BF=DE,CF=CE,易证△ABF是等腰直角三角形,再BF =AF,推出AF=DE,即可得出结论;(3)过点B作BF⊥AM于F,同(2)△BFC≌△DEC(AAS),得出BF=DE,CF=CE,证得AF=DE,即可得出结果.【解答】(1)解:∵CD=CB,DE⊥AM,∴△ABD是等腰三角形,∴AB=AD,在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠CAD=∠BAC=45°,∴∠BAD=45°+45°=90°,∴AC=CD=CB,∵点E恰好与点C重合,∴AC=DE,故答案为:AC=DE;(2)证明:过点B作BF⊥AM于F,如图2所示:则∠BFC=∠DEC=90°,在△BFC和△DEC中,,∴△BFC≌△DEC(AAS),∴BF=DE,CF=CE,∵∠MAN=45°,∴△ABF是等腰直角三角形,∴BF=AF,∴AF=DE,∴AE+DE=AF+CF+CE+DE=AC+CF+AF=AC+AC=2AC,∴2AC=AE+DE;(3)解:能,2AC+AE=DE;理由如下:过点B作BF⊥AM于F,如图3所示:则∠BFC=∠DEC=90°,在△BFC和△DEC中,,∴△BFC≌△DEC(AAS),∴BF=DE,CF=CE,∵∠MAN=45°,∴△ABF是等腰直角三角形,∴BF=AF,∴AF=DE,∴2AC+AE=AC+CE=AC+CF=AF=DE.【点评】本题考查了全等三角形的判定与性质、等腰直角三角形的判定与性质等知识;熟练掌握等腰直角三角形的判定与性质,证明三角形全等是解题的关键,属于中考常考题型.25.【分析】(1)①分别以B为圆心,BO,BC,BA为半径作圆,观察图像根据线段OA与圆的交点的位置,可得结论.②如图2中,当点B(0,1)时,此时以OB为半径的圆与直线OA的公共点都在线段OA上,此时点O是△AOB关于点B的内联点,当点B(7,8)时,以AB为半径的圆,与线段OA有公共点,此时点A是△AOB关于点B的内联点,利用图像法即可解决问题.(2)如图3中,过点E作EH⊥x轴于H,过点F作FN⊥y轴于N.利用相似三角形的性质求出点F的坐标,再根据对称性求出F′的坐标,当OF″⊥EF″时,设OH交F″E于P,想办法求出F″的坐标,结合图像法可得结论.【解答】解:(1)①如图1中,根据点Q为△PMN关于点P的内联点的定义,观察图像可知,点O,点C是是△AOB关于点B的内联点.故答案为:O,C.②如图2中,当点B(0,1)时,此时以OB为半径的圆与线段OA有唯一的公共点,此时点O是△AOB关于点B的内联点,当点B(7,8)时,以AB为半径的圆,与线段OA有公共点,此时点A是△AOB关于点B的内联点,观察图像可知,满足条件的n的值为1≤n≤8.(2)如图3中,过点E作EH⊥x轴于H,过点F作FN⊥y轴于N.∵E(4,2),∴OH=4,EH=2,∴OE==2,当OF⊥OE时,点O是△OEF关于点E的内联点,∵∠EOF=∠NOH=90°,∴∠FON=∠EOH,∵∠FNO=∠OHE=90°,∴△FNO∽△EHO,∴==,∴==,∴FN=,ON=,∴F(﹣,),观察图像可知当﹣≤m≤0时,满足条件.作点F关于点O的对称点F′(,﹣),当OF″⊥EF″时,设OH交F″E于P,∵∠EF″O=∠EHO=90°,OE=EO,EH=OF″,∴Rt△OHE≌△EF″O(HL),∴∠EOH=∠OEF″,∴PE=OP,s3PE=OP=t,在Rt△PEH中,则有t2=22+(4﹣t)2,解得t=,∴OP=,PH=PF″=,可得F″(,﹣),观察图像可知,当≤m≤.综上所述,满足条件的m的值为﹣≤m≤0或≤m≤.【点评】本题属于圆综合题,考查了点Q为△PMN关于点P的内联点的定义,一次函数的性质,解直角三角形,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是理解题意,学会寻找特殊点,特殊位置解决问题,属于中考压轴题.。

北京四中2020-2021学年度第一学期初三数学上册期中试卷【含答案】

北京四中2020-2021学年度第一学期初三数学上册期中试卷【含答案】
当 x<0 时函数 y=________. (3)根据上题,在如图所示的平面直角坐标系中描点,
画出该函数的图象,并写出该函数的一条性质: ______________________________________________. (4)若直线 y=k 与该函数只有两个公共点,根据图象判断 k 的取值范围为________.
图1
图2
由图 2,同理可得 AP=BP+PC. (2)①如下图 3、图 4; ②请判断 PA、PB、PC 的关系,并给出证明.
由图 3,由∠APB=∠ACB=45°,做等腰直角三角形△APE. 可得△CAK≌△CBP,可得 AP-BP= 2 PC.
图3
图4
由图 4,同理可得 AP +BP= 2 PC.
24. 在平面直角坐标系 xOy 中,抛物线 y mx2 +2mx 3m 2 . (1) 求抛物线的对称轴; (2) 过点 P(0,2) 作与 x 轴平行的直线,交抛物线于点 M,N.求点 M,N 的坐标; (3) 横、纵坐标都是整数的点叫做整点.如果抛物线和线段 MN 围成的封闭区域内(不包括
②将△POQ 绕原点 O 旋转一周,直线 = 晐 M 交 轴、y 轴于点 M、N,若线段 MN 上存在△POQ 关于边 PQ 的“Math 点”,求 M 的取值范围.
图1
图2
初三期中测试数学学科答案:
一、选择题
1、D 2、B 3、A 4、B 5、B 6、D 7、A
8、A
二、填空题
9、9
10、110 11、-6 12、2
2
y2,y3 的大小关系为(

A. y1<y2<y3
B. y1<y3<y2
C. y3<y1<y2

2020-2021学年北京海淀区人教版八年级(上)期末数学试卷(含答案)

2020-2021学年北京海淀区人教版八年级(上)期末数学试卷(含答案)

2020-2021学年北京市海淀区八年级(上)期末数学试卷一、选择题(本大题共24分,每小题3分)第1~8题符合题意的选项均只有一个,请将你的答案填写在下面的表格中.1.(2020秋•海淀区期末)冬季奥林匹克运动会是世界规模最大的冬季综合性运动会,每四年举办一届.第24届冬奥会将于2022年在北京和张家口举办.下列四个图分别是四届冬奥会图标中的一部分,其中是轴对称图形的为()A.B.C.D.2.(2021•朝阳区校级模拟)KN95型口罩可以保护在颗粒物浓度很高的空间中工作的人不被颗粒物侵害,也可以帮助人们预防传染病.“KN95”表示此类型的口罩能过滤空气中95%的粒径约为0.0000003m的非油性颗粒.其中,0.0000003用科学记数法表示为()A.3×10﹣6B.3×10﹣7C.0.3×10﹣6D.0.3×10﹣73.(2020秋•海淀区期末)下列计算正确的是()A.a2•a3=a6B.(a2)3=a6C.(2a)3=2a3D.a10÷a2=a54.(2020秋•海淀区期末)下列等式中,从左到右的变形是因式分解的是()A.x(x﹣2)=x2﹣2x B.(x+1)2=x2+2x+1C.x2﹣4=(x+2)(x﹣2)D.x+2=x(1+)5.(2021•绿园区一模)如图,菊花1角硬币为外圆内正九边形的边缘异形币,则该正九边形的一个内角大小为()A.135°B.140°C.144°D.150°6.(2021•柳南区校级模拟)小聪在用直尺和圆规作一个角等于已知角时,具体过程是这样的:已知:∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:(1)如图,以点O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;(2)画一条射线O′A′,以点O′为圆心,OC长为半径画弧,交O′A′于点C′;(3)以点C'为圆心,CD长为半径画弧,与第(2)步中所画的弧相交于点D′;(4)过点D'画射线O′B′,则∠A′O′B′=∠AOB.小聪作法正确的理由是()A.由SSS可得△O′C′D′≌△OCD,进而可证∠A′O′B′=∠AOBB.由SAS可得△O′C′D′≌△OCD,进而可证∠A′O′B′=∠AOBC.由ASA可得△O′C′D′≌△OCD,进而可证∠A′O′B′=∠AOBD.由“等边对等角”可得∠A′O′B′=∠AOB7.(2021•沂南县模拟)如果a﹣b=2,那么代数式(﹣2b)•的值是()A.2B.﹣2C.D.8.(2020秋•海淀区期末)在△ABC中,AB≠AC,线段AD,AE,AF分别是△ABC的高,中线,角平分线,则点D,E,F的位置关系为()A.点D总在点E,F之间B.点E总在点D,F之间C.点F总在点D,E之间D.三者的位置关系不确定二、填空题(本大题共24分,每小题3分)9.(2020•北京一模)使式子有意义的x取值范围是.10.(2020秋•海淀区期末)计算:(3a2+2a)÷a=.11.(2020秋•海淀区期末)如图,在△ABC中,∠ABC=90°,∠ACB=60°,BD⊥AC,垂足为D.若AB=6,则BD的长为.12.(2020秋•海淀区期末)如图,AB⊥BC,AD⊥DC,垂足分别为B,D.只需添加一个条件即可证明△ABC≌△ADC,这个条件可以是.(写出一个即可)13.(2020秋•海淀区期末)某中学要举行校庆活动,现计划在教学楼之间的广场上搭建舞台.已知广场中心有一座边长为b的正方形的花坛.学生会提出两个方案:方案一:如图1,围绕花坛搭建外围为正方形的“回”字形舞台(阴影部分),舞台的面积记为S1;方案二:如图2,在花坛的三面搭建“凹”字形舞台(阴影部分),舞台的面积记为S2;具体数据如图所示,则S1S2.(填“>”,“<”或“=”)14.(2020秋•海淀区期末)如图,AB=AC,∠A=40°,AB的垂直平分线MN交AC于点D.则∠DBC 的大小为.15.(2020秋•海淀区期末)在平面直角坐标系xOy中,点A的坐标为(0,3),点B与点A关于x轴对称,点C在x轴上,若△ABC为等腰直角三角形,则点C的坐标为.16.(2020秋•海淀区期末)图1是小明骑自行车的某个瞬间的侧面示意图,将小明右侧髋关节和车座看作一个整体抽象为A点,将膝盖抽象为B点,将脚跟、脚掌、踏板看作一个整体抽象为C点,将自行车中轴位置记为D点(注:自行车中轴是连接左右两个踏板,使两个踏板绕其旋转的部件),在骑行过程中,点A,D的位置不变,B,C为动点.图2是抽象出来的点和线.若AB=BC=40cm,CD=16cm,小明在骑车前,需调整车座高度,保证在骑行过程中脚总可以踩到踏板,则AD最长为cm.三、解答题(本大题共52分,第17题8分,第18~21题每题5分,第22题6分,第23题5分,第24题6分,第25题7分)17.(2020秋•海淀区期末)(1)计算:(﹣)2+2﹣2﹣(2﹣π)0;(2)分解因式:3x2﹣6xy+3y2.18.(2021•朝阳区校级模拟)已知3x2﹣x﹣1=0,求代数式(2x+5)(2x﹣5)+2x(x﹣1)的值.19.(2020秋•海淀区期末)如图,C是AB的中点,CD∥BE,CD=BE,连接AD,CE.求证:AD=CE.20.(2020秋•海淀区期末)《几何原本》是一部集前人思想和欧几里得个人创造性于一体的不朽之作,把人们公认的一些事实列成定义、公理和公设,用它们来研究各种几何图形的性质,从而建立了一套从定义、公理和公设出发,论证命题得到定理的几何学论证方法.在其第一卷中记载了这样一个命题:“在任意三角形中,大边对大角.”请补全上述命题的证明.已知:如图,在△ABC中,AC>AB.求证:.证明:如图,由于AC>AB,故在AC边上截取AD=AB,连接BD.(在图中补全图形)∵AD=AB,∴∠ABD=∠.()(填推理的依据)∵∠ADB是△BCD的外角,∴∠ADB=∠C+∠DBC.()(填推理的依据)∴∠ADB>∠C.∴∠ABD>∠C.∵∠ABC=∠ABD+∠DBC,∴∠ABC>∠ABD.∴∠ABC>∠C.21.(2020秋•海淀区期末)列方程解应用题开展“光盘行动”,拒绝“舌尖上的浪费”,已成为一种时尚.某学校食堂为了激励同学们做到光盘不浪费,提出如果学生每餐做到光盘不浪费,那么餐后奖励香蕉或橘子一份.近日,学校食堂花了2800元和2500元分别采购了香蕉和橘子,采购的香蕉比橘子多150千克,香蕉每千克的价格比橘子每千克的价格低30%,求橘子每千克的价格.22.(2020秋•海淀区期末)如图,在△ABC中,∠BAC=90°,AB=AC,D是AC边上一点,连接BD,EC⊥AC,且AE=BD,AE与BC交于点F.(1)求证:CE=AD;(2)当AD=CF时,求证:BD平分∠ABC.23.(2020秋•海淀区期末)小明在学习有关整式的知识时,发现一个有趣的现象:对于关于x的多项式x2﹣2x+3,由于x2﹣2x+3=(x﹣1)2+2,所以当x﹣1取任意一对互为相反数的数时,多项式x2﹣2x+3的值是相等的.例如,当x﹣1=±1,即x=2或0时,x2﹣2x+3的值均为3;当x﹣1=±2,即x=3或﹣1时,x2﹣2x+3的值均为6.于是小明给出一个定义:对于关于x的多项式,若当x﹣t取任意一对互为相反数的数时,该多项式的值相等,就称该多项式关于x=t对称.例如x2﹣2x+3关于x=1对称.请结合小明的思考过程,运用此定义解决下列问题:(1)多项式x2﹣4x+6关于x=对称;(2)若关于x的多项式x2+2bx+3关于x=3对称,求b的值;(3)整式(x2+8x+16)(x2﹣4x+4)关于x=对称.24.(6分)(2020秋•海淀区期末)已知△ABC是等边三角形,点D在射线BC上(与点B,C不重合),点D关于直线AC的对称点为点E,连接AD,AE,CE,DE.(1)如图1,当点D为线段BC的中点时,求证:△ADE是等边三角形;(2)当点D在线段BC的延长线上时,连接BE,F为线段BE的中点,连接CF.根据题意在图2中补全图形,用等式表示线段AD与CF的数量关系,并证明.25.(7分)(2020秋•海淀区期末)在平面直角坐标系xOy中,直线l为过点M(m,0)且与x轴垂直的直线.对某图形上的点P(a,b)作如下变换:当b≥|m|时,作出点P关于直线l的对称点P1,称为Ⅰ(m)变换;当b<|m|时,作出点P关于x轴的对称点P2,称为Ⅱ(m)变换.若某个图形上既有点作了Ⅰ(m)变换,又有点作了Ⅱ(m)变换,我们就称该图形为m﹣双变换图形.例如,已知A(1,3),B(2,﹣1),如图1所示,当m=2时,点A应作Ⅰ(2)变换,变换后A1的坐标是(3,3);点B作Ⅱ(2)变换,变换后B1的坐标是(2,1).请解决下面的问题:(1)当m=0时,①已知点P的坐标是(﹣1,1),则点P作相应变换后的点的坐标是;②若点P(a,b)作相应变换后的点的坐标为(﹣1,2),求点P的坐标;(2)已知点C(﹣1,5),D(﹣4,2),①若线段CD是m﹣双变换图形,则m的取值范围是;②已知点E(m,m)在第一象限,若△CDE及其内部(点E除外)组成的图形是m﹣双变换图形,且变换后所得图形记为G,直接写出所有图形G所覆盖的区域的面积.2020-2021学年北京市海淀区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共24分,每小题3分)第1~8题符合题意的选项均只有一个,请将你的答案填写在下面的表格中.1.(2020秋•海淀区期末)冬季奥林匹克运动会是世界规模最大的冬季综合性运动会,每四年举办一届.第24届冬奥会将于2022年在北京和张家口举办.下列四个图分别是四届冬奥会图标中的一部分,其中是轴对称图形的为()A.B.C.D.【考点】轴对称图形.【专题】平移、旋转与对称;几何直观.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项不合题意;B、不是轴对称图形,故本选项不合题意;C、不是轴对称图形,故本选项不合题意;D、是轴对称图形,故本选项符合题意.故选:D.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(2021•朝阳区校级模拟)KN95型口罩可以保护在颗粒物浓度很高的空间中工作的人不被颗粒物侵害,也可以帮助人们预防传染病.“KN95”表示此类型的口罩能过滤空气中95%的粒径约为0.0000003m的非油性颗粒.其中,0.0000003用科学记数法表示为()A.3×10﹣6B.3×10﹣7C.0.3×10﹣6D.0.3×10﹣7【考点】科学记数法—表示较小的数.【专题】实数;数感.【分析】用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000003用科学记数法表示为:3×10﹣7.故选:B.【点评】本题考查了科学记数法,用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(2020秋•海淀区期末)下列计算正确的是()A.a2•a3=a6B.(a2)3=a6C.(2a)3=2a3D.a10÷a2=a5【考点】同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.【专题】整式;运算能力.【分析】分别根据同底数幂的乘法法则,幂的乘方运算法则,积的乘方运算法则以及同底数幂的除法法则逐一判断即可.【解答】解:A、a2•a3=a5,故本选项不合题意;B、(a2)3=a6,故本选项符合题意;C、(2a)3=8a3,故本选项不合题意;D、a10÷a2=a8,故本选项不合题意;故选:B.【点评】本题主要考查了同底数幂的乘除法以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.4.(2020秋•海淀区期末)下列等式中,从左到右的变形是因式分解的是()A.x(x﹣2)=x2﹣2x B.(x+1)2=x2+2x+1C.x2﹣4=(x+2)(x﹣2)D.x+2=x(1+)【考点】因式分解的意义.【专题】整式;运算能力.【分析】根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.【解答】解:A、是整式的乘法,不是因式分解,故此选项不符合题意;B、是整式的乘法,不是因式分解,故此选项不符合题意;C、把一个多项式转化成几个整式乘积的形式,是因式分解,故此选项符合题意;D、没把一个多项式转化成几个整式乘积的形式,不是因式分解,故此选项不符合题意.故选:C.【点评】本题考查了因式分解的意义.严格按照因式分解的定义去验证每个选项是正确解答本题的关键.5.(2021•绿园区一模)如图,菊花1角硬币为外圆内正九边形的边缘异形币,则该正九边形的一个内角大小为()A.135°B.140°C.144°D.150°【考点】多边形内角与外角.【专题】多边形与平行四边形;几何直观.【分析】先根据多边形内角和定理:180°•(n﹣2)求出该多边形的内角和,再求出每一个内角的度数.【解答】解:该正九边形内角和=180°×(9﹣2)=1260°,则每个内角的度数=1260°÷9=140°.故选:B.【点评】本题主要考查了多边形的内角和定理:180°•(n﹣2),比较简单,解答本题的关键是直接根据内角和公式计算可得内角和.6.(2021•柳南区校级模拟)小聪在用直尺和圆规作一个角等于已知角时,具体过程是这样的:已知:∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:(1)如图,以点O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;(2)画一条射线O′A′,以点O′为圆心,OC长为半径画弧,交O′A′于点C′;(3)以点C'为圆心,CD长为半径画弧,与第(2)步中所画的弧相交于点D′;(4)过点D'画射线O′B′,则∠A′O′B′=∠AOB.小聪作法正确的理由是()A.由SSS可得△O′C′D′≌△OCD,进而可证∠A′O′B′=∠AOBB.由SAS可得△O′C′D′≌△OCD,进而可证∠A′O′B′=∠AOBC.由ASA可得△O′C′D′≌△OCD,进而可证∠A′O′B′=∠AOBD.由“等边对等角”可得∠A′O′B′=∠AOB【考点】全等三角形的判定;等腰三角形的性质;作图—基本作图.【专题】作图题;应用意识.【分析】先利用作法得到OD=OC=OD′=OC′,CD=C′D′,然后根据全等三角形的判定方法对各选项进行判断.【解答】解:由作图得OD=OC=OD′=OC′,CD=C′D′,则根据“SSS”可判断△C′O′D′≌△COD.故选:A.【点评】本题考查了作图﹣基本作图:基本作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.也考查了全等三角形的判定.7.(2021•沂南县模拟)如果a﹣b=2,那么代数式(﹣2b)•的值是()A.2B.﹣2C.D.【考点】分式的化简求值.【专题】分式;运算能力.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把已知等式代入计算即可求出值.【解答】解:原式=•=•=a﹣b,当a﹣b=2时,原式=2.故选:A.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.8.(2020秋•海淀区期末)在△ABC中,AB≠AC,线段AD,AE,AF分别是△ABC的高,中线,角平分线,则点D,E,F的位置关系为()A.点D总在点E,F之间B.点E总在点D,F之间C.点F总在点D,E之间D.三者的位置关系不确定【考点】三角形的角平分线、中线和高;全等三角形的判定与性质.【专题】三角形;推理能力.【分析】延长AE至点H,使EH=AE,连接CH,证明△AEB≌△HEC,根据全等三角形的性质得到AB=CH,∠BAE=∠H,根据三角形的高、中线、角平分线的定义解答即可.【解答】解:假设AB<AC,如图所示,延长AE至点H,使EH=AE,连接CH,在△AEB和△HEC中,,∴△AEB≌△HEC(SAS),∴AB=CH,∠BAE=∠H,∵AB<AC,∴CH<AC,∴∠CAH<∠H,∴∠CAH<∠BAE,∴点F总在点D,E之间,故选:C.【点评】本题考查的是全等三角形的判定和性质、三角形的中线、高、角平分线的定义,掌握全等三角形的判定定理和性质定理是解题的关键.二、填空题(本大题共24分,每小题3分)9.(2020•北京一模)使式子有意义的x取值范围是x≠2.【考点】分式有意义的条件.【分析】根据分式的分母不等于零分式有意义,可得答案.【解答】解:要使式子有意义,得x﹣2≠0.解得x≠2,故答案为:x≠2.【点评】本题考查了分式有意义的条件,利用了分式的分母为零分式无意义.10.(2020秋•海淀区期末)计算:(3a2+2a)÷a=3a+2.【考点】整式的除法.【专题】整式;运算能力.【分析】直接利用整式的除法运算法则计算得出答案.【解答】解:(3a2+2a)÷a=3a2÷a+2a÷a=3a+2.故答案为:3a+2.【点评】此题主要考查了整式的除法,正确掌握相关运算法则是解题关键.11.(2020秋•海淀区期末)如图,在△ABC中,∠ABC=90°,∠ACB=60°,BD⊥AC,垂足为D.若AB=6,则BD的长为3.【考点】含30度角的直角三角形.【专题】等腰三角形与直角三角形;几何直观.【分析】利用含30°的直角三角形的性质解答即可.【解答】解:在△ABC中,∠ABC=90°,∠ACB=60°,∴∠BAC=90°﹣∠ACB=90°﹣60°=30°,∵BD⊥AC,∴∠ADB=90°,∵AB=6,∴BD=AB=,故答案为:3.【点评】此题考查含30°的直角三角形的性质,关键是根据在直角三角形中,30°角所对的直角边等于斜边的一半解答.12.(2020秋•海淀区期末)如图,AB⊥BC,AD⊥DC,垂足分别为B,D.只需添加一个条件即可证明△ABC≌△ADC,这个条件可以是AB=AD或BC=CD或∠BAC=∠DAC或∠ACB=∠ACD(答案不唯一).(写出一个即可)【考点】全等三角形的判定.【专题】图形的全等;推理能力.【分析】由全等三角形的判定定理可求解.【解答】解:若添加AB=AD,且AC=AC,由“HL”可证Rt△ABC≌Rt△ADC;若添加BC=CD,且AC=AC,由“HL”可证Rt△ABC≌Rt△ADC;若添加∠BAC=∠DAC,且AC=AC,由“AAS”可证Rt△ABC≌Rt△ADC;若添加∠BCA=∠DCA,且AC=AC,由“AAS”可证Rt△ABC≌Rt△ADC;故答案为:AB=AD或BC=CD或∠BAC=∠DAC或∠ACB=∠ACD(答案不唯一).【点评】本题考查了全等三角形的判定,掌握全等三角形的判定定理是本题的关键.13.(2020秋•海淀区期末)某中学要举行校庆活动,现计划在教学楼之间的广场上搭建舞台.已知广场中心有一座边长为b的正方形的花坛.学生会提出两个方案:方案一:如图1,围绕花坛搭建外围为正方形的“回”字形舞台(阴影部分),舞台的面积记为S1;方案二:如图2,在花坛的三面搭建“凹”字形舞台(阴影部分),舞台的面积记为S2;具体数据如图所示,则S1>S2.(填“>”,“<”或“=”)【考点】正方形的性质.【专题】矩形菱形正方形;运算能力.【分析】根据正方形和矩形的面积公式即可得到结论.【解答】解:方案一:如图1,S1=a2﹣b2,方案二:如图2,S2=(a﹣b)(+b+)﹣b2=(a﹣b)(a﹣b)﹣b2=a2﹣b2﹣b2=a2﹣2b2,∵S1﹣S2=a2﹣b2﹣(a2﹣2b2)=a2﹣b2﹣a2+2b2=b2>0,∴S1>S2.故答案为:>.【点评】本题考查了正方形的性质,正方形和矩形的面积的计算,正确识别图形是解题的关键.14.(2020秋•海淀区期末)如图,AB=AC,∠A=40°,AB的垂直平分线MN交AC于点D.则∠DBC 的大小为30°.【考点】线段垂直平分线的性质;等腰三角形的性质.【专题】等腰三角形与直角三角形;推理能力.【分析】先根据等腰三角形的性质及三角形内角和定理求出∠ABC及∠ACB的度数,再根据线段垂直平分线的性质求出∠ABD的度数即可进行解答.【解答】解:∵AB=AC,∴∠ABC=∠ACB=70°,∵MN的垂直平分AB,∴DA=DB,∴∠A=∠ABD=40°,∴∠DBC=∠ABC﹣∠ABD=70°﹣40°=30°.故答案为:30°.【点评】本题考查的是线段垂直平分线的性质,即线段垂直平分线上的点到线段两端的距离相等.15.(2020秋•海淀区期末)在平面直角坐标系xOy中,点A的坐标为(0,3),点B与点A关于x轴对称,点C在x轴上,若△ABC为等腰直角三角形,则点C的坐标为(﹣3,0)或(3,0).【考点】等腰直角三角形;关于x轴、y轴对称的点的坐标.【专题】等腰三角形与直角三角形;平移、旋转与对称;推理能力.【分析】由轴对称的性质可求点B坐标,由等腰直角三角形的性质可求OC=OA=3,即可求解.【解答】解:∵点A的坐标为(0,3),点B与点A关于x轴对称,∴点B(0,﹣3),∴OA=OB=3,又∵∠ACB=90°,AC=BC,∴OC=OA=OB=3,∴点C(3,0)或(﹣3,0),故答案为:(3,0)或(﹣3,0).【点评】本题考查了轴对称的性质,等腰直角三角形的性质,掌握等腰直角三角形的性质是本题的关键.16.(2020秋•海淀区期末)图1是小明骑自行车的某个瞬间的侧面示意图,将小明右侧髋关节和车座看作一个整体抽象为A点,将膝盖抽象为B点,将脚跟、脚掌、踏板看作一个整体抽象为C点,将自行车中轴位置记为D点(注:自行车中轴是连接左右两个踏板,使两个踏板绕其旋转的部件),在骑行过程中,点A,D的位置不变,B,C为动点.图2是抽象出来的点和线.若AB=BC=40cm,CD=16cm,小明在骑车前,需调整车座高度,保证在骑行过程中脚总可以踩到踏板,则AD最长为64cm.【考点】旋转的性质.【专题】平移、旋转与对称;运算能力;推理能力.【分析】根据已知条件得到当AB+BC=AD+CD时,AD最长,根据线段的和差即可得到结论.【解答】解:∵在骑行过程中脚总可以踩到踏板,∴当AB+BC=AD+CD时,AD最长,则,AD最长为AB+BC﹣CD=40+40﹣16=64(cm),故答案为:64.【点评】本题考查了旋转的性质,知道当AB+BC=AD+CD时,AD最长是解题的关键.三、解答题(本大题共52分,第17题8分,第18~21题每题5分,第22题6分,第23题5分,第24题6分,第25题7分)17.(8分)(2020秋•海淀区期末)(1)计算:(﹣)2+2﹣2﹣(2﹣π)0;(2)分解因式:3x2﹣6xy+3y2.【考点】实数的运算;提公因式法与公式法的综合运用;零指数幂;负整数指数幂.【专题】因式分解;实数;运算能力.【分析】(1)原式利用乘方的意义,零指数幂、负整数指数幂法则计算即可求出值;(2)原式提取公因式,再利用完全平方公式分解即可.【解答】解:(1)原式=+﹣1=﹣1=﹣;(2)原式=3(x2﹣2xy+y2)=3(x﹣y)2.【点评】此题考查了提公因式法与公式法的综合运用,以及实数的运算,熟练掌握因式分解的方法是解本题的关键.18.(5分)(2021•朝阳区校级模拟)已知3x2﹣x﹣1=0,求代数式(2x+5)(2x﹣5)+2x(x﹣1)的值.【考点】整式的混合运算—化简求值.【专题】整式;运算能力.【分析】首先利用多项式乘以多项式、多项式乘以单项式进行计算,然后再合并同类项,化简后,再代入求值即可.【解答】解:原式=4x2﹣25+2x2﹣2x=6x2﹣2x﹣25,∵3x2﹣x﹣1=0,∴3x2﹣x=1.∴原式=2(3x2﹣x)﹣25=2×1﹣25=﹣23.【点评】此题主要考查了整式的混合运算,关键是掌握有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.19.(5分)(2020秋•海淀区期末)如图,C是AB的中点,CD∥BE,CD=BE,连接AD,CE.求证:AD =CE.【考点】全等三角形的判定与性质.【专题】图形的全等;几何直观;推理能力.【分析】根据平行线的性质和中点的定义以及全等三角形的判定和性质解答即可.【解答】证明:∵C是AB的中点,∴AC=CB,∵CD∥BE,∴∠ACD=∠B.在△ACD和△CBE中,,∴△ACD≌△CBE(SAS),∴AD=CE.【点评】该题主要考查了全等三角形的判定、平行线的性质及其应用等几何知识点问题;应牢固掌握全等三角形的判定.20.(5分)(2020秋•海淀区期末)《几何原本》是一部集前人思想和欧几里得个人创造性于一体的不朽之作,把人们公认的一些事实列成定义、公理和公设,用它们来研究各种几何图形的性质,从而建立了一套从定义、公理和公设出发,论证命题得到定理的几何学论证方法.在其第一卷中记载了这样一个命题:“在任意三角形中,大边对大角.”请补全上述命题的证明.已知:如图,在△ABC中,AC>AB.求证:∠ABC>∠C.证明:如图,由于AC>AB,故在AC边上截取AD=AB,连接BD.(在图中补全图形)∵AD=AB,∴∠ABD=∠ADB.(等边对等角)(填推理的依据)∵∠ADB是△BCD的外角,∴∠ADB=∠C+∠DBC.(三角形的外角等于与它不相邻的两个内角的和)(填推理的依据)∴∠ADB>∠C.∴∠ABD>∠C.∵∠ABC=∠ABD+∠DBC,∴∠ABC>∠ABD.∴∠ABC>∠C.【考点】作图—应用与设计作图.【专题】作图题;推理能力.【分析】根据文字题目的要求写出已知,求证,利用等腰三角形的性质以及三角形的我觉得性质解决问题即可.【解答】已知:如图,在△ABC中,AC>AB.求证:∠ABC>∠C.证明:如图,由于AC>AB,故在AC边上截取AD=AB,连接BD.(在图中补全图形).∵AD=AB,∴∠ABD=∠ADB(等边对等角),∵∠ADB是△BCD的外角,∴∠ADB=∠C+∠DBC.(三角形的外角等于与它不相邻的两个内角的和),∴∠ADB>∠C,∴∠ABD>∠C,∵∠ABC=∠ABD+∠DBC,∴∠ABC>∠ABD,∴∠ABC>∠C.故答案为:∠ABC>∠C,ADB,等边对等角,三角形的外角等于与它不相邻的两个内角的和.【点评】本题考查作图﹣应用与设计,等腰三角形的性质,三角形的外角的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.21.(5分)(2020秋•海淀区期末)列方程解应用题开展“光盘行动”,拒绝“舌尖上的浪费”,已成为一种时尚.某学校食堂为了激励同学们做到光盘不浪费,提出如果学生每餐做到光盘不浪费,那么餐后奖励香蕉或橘子一份.近日,学校食堂花了2800元和2500元分别采购了香蕉和橘子,采购的香蕉比橘子多150千克,香蕉每千克的价格比橘子每千克的价格低30%,求橘子每千克的价格.【考点】分式方程的应用.【专题】一元二次方程及应用;应用意识.【分析】设橘子每千克的价格为x元,则香蕉每千克的价格为70%x元,根据题意可得等量关系:2800元所购买的香蕉的重量﹣2500元所购买的橘子的重量=150,再列出方程,解出x的值即可.【解答】解:设橘子每千克的价格为x元,则香蕉每千克的价格为70%x元.根据题意,得﹣=150,解得x=10,检验:当x=10时,70%x≠0.所以原分式方程的解为x=10且符合题意.答:橘子每千克的价格为10元.【点评】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.22.(6分)(2020秋•海淀区期末)如图,在△ABC中,∠BAC=90°,AB=AC,D是AC边上一点,连接BD,EC⊥AC,且AE=BD,AE与BC交于点F.(1)求证:CE=AD;(2)当AD=CF时,求证:BD平分∠ABC.【考点】全等三角形的判定与性质;等腰直角三角形.【专题】图形的全等;几何直观;推理能力.【分析】(1)根据HL证明Rt△CAE与Rt△ABD全等,进而解答即可;(2)根据全等三角形的性质和角之间的关系解答即可.【解答】证明:(1)∵EC⊥AC,∠BAC=90°,∴∠ACE=∠BAC=90°,在Rt△CAE与Rt△ABD中,,∴Rt△CAE≌Rt△ABD(HL),∴CE=AD.(2)由(1)得Rt△CAE≌Rt△ABD,∴∠EAC=∠ABD,∠E=∠ADB.由(1)得CE=AD,∵AD=CF,∴CE=CF.∴∠CFE=∠E,∵∠CFE=∠AFB,∴∠AFB=∠E.∵∠E=∠ADB,∴∠AFB=∠ADB,∵∠AGB=∠EAC+∠ADB,∠AGB=∠DBC+∠AFB,∴∠EAC=∠DBC.∵∠EAC=∠BAD,∴∠BAD=∠DBC,∴BD平分∠ABC.【点评】此题考查全等三角形问题,关键是根据HL证明三角形全等,再利用全等三角形的性质解答.23.(5分)(2020秋•海淀区期末)小明在学习有关整式的知识时,发现一个有趣的现象:对于关于x的多项式x2﹣2x+3,由于x2﹣2x+3=(x﹣1)2+2,所以当x﹣1取任意一对互为相反数的数时,多项式x2﹣2x+3的值是相等的.例如,当x﹣1=±1,即x=2或0时,x2﹣2x+3的值均为3;当x﹣1=±2,即x=3或﹣1时,x2﹣2x+3的值均为6.于是小明给出一个定义:对于关于x的多项式,若当x﹣t取任意一对互为相反数的数时,该多项式的值相等,就称该多项式关于x=t对称.例如x2﹣2x+3关于x=1对称.请结合小明的思考过程,运用此定义解决下列问题:(1)多项式x2﹣4x+6关于x=2对称;(2)若关于x的多项式x2+2bx+3关于x=3对称,求b的值;(3)整式(x2+8x+16)(x2﹣4x+4)关于x=﹣1对称.【考点】配方法的应用.【专题】一元二次方程及应用;运算能力.【分析】(1)对多项式进行配方,根据新定义判断即可;(2)求出x2+2bx+3的对称轴,令对称轴=3即可;(3)对多项式进行配方,根据新定义判定即可.【解答】解:(1)x2﹣4x+6=(x﹣2)2+2,则多项式关于x=2对称,故答案为:2;(2)∵x2+2bx+3=(x+b)2+3﹣b2,∴关于x的多项式x2+2bx+3关于x=﹣b对称,∴﹣b=3,∴b=﹣3;(3)原式=(x+4)2(x﹣2)2=[(x+4)(x﹣2)]2=(x2+2x﹣8)2=[(x+1)2﹣9]2=[(x+1+3)(x+1﹣3)]2=(x+4)2(x﹣2)2,当x=﹣4和2时,原式=0,∴关于x=﹣1对称,故答案为:﹣1.【点评】本题考查了配方法的应用,能够对多项式进行配方,根据新定义判断出对称轴是解题的关键.24.(6分)(2020秋•海淀区期末)已知△ABC是等边三角形,点D在射线BC上(与点B,C不重合),点D关于直线AC的对称点为点E,连接AD,AE,CE,DE.(1)如图1,当点D为线段BC的中点时,求证:△ADE是等边三角形;(2)当点D在线段BC的延长线上时,连接BE,F为线段BE的中点,连接CF.根据题意在图2中补全图形,用等式表示线段AD与CF的数量关系,并证明.。

2020-2021学年人教版第一学期九年级期中考试数学试卷(含答案)

2020-2021学年人教版第一学期九年级期中考试数学试卷(含答案)

九年级期中考试数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.观察下列图形,其中既是轴对称图形又是中心对称图形的是()A. B. C. D.2.若x=1是方程x2+ax-2=0的一个根,则a的值为()A. 0B. 1C. 2D. 33.将二次函数y=2(x-1)2+2的图象向左平移2个单位长度得到的新图象的表达式为()A. B. C. D.4.在平面直角坐标系中,将点P(a,b)关于原点对称得到点P1,再将点P1向左平移2个单位长度得到点P2,则点P2的坐标是()A. (b−2,−a)B. (b+2,−a)C. (−a+2,−b)D. (−a−2,−b)5.同一坐标系中,抛物线y=(x-a)2与直线y=a+ax的图象可能是( )A. B. C. D.6.一元二次方程x2-6x+5=0的两根分别是x1、x2,则x1+x2的值是( )A. 6B. -6C. 5D. -57.如图,已知在△ABC中,∠ABC=90°,AB=8,BC=6,将线段AC绕点A顺时针旋转得到AD,且∠DAC=∠BAC,连接CD,且△ACD的面积为()A. 24B. 30C. 36D. 408.有一人患了流感,经过两轮传染后共有64人患了流感,则每轮传染中平均一个人传染的人数是()A. 5人B. 6人C. 7人D. 8人9.已知关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根,则k的取值范围是()A. B. C. D. 且10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则在下列各式子:①abc>0;②a+b+c>0;③a+c >b;④2a+b=0;⑤△=b2-4ac<0;⑥3a+c>0;⑦(m2-1)a+(m-1)b≥0(m为任意实数)中成立式子()A. ②④⑤⑥⑦B. ①②③⑥⑦C. ①③④⑤⑦D. ①③④⑥⑦二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题3分,共30分)11.如图,已知点A(2,0),B(0,4),C(2,4),D(6,6),连接AB,CD,将线段AB绕着某一点旋转一定角度,使其与线段CD重合(点A与点C重合,点B与点D重合),则这个旋转中心的坐标为________.12.某乡村种的水稻2018年平均每公顷产3200kg ,2020年平均每公顷产5000kg ,则水稻每公顷产量的年平均增长率为________.13.一抛物线的形状,开口方向与y=3x2−3x+1相同,顶点在(-2,3),则此抛物线的解析式为2________.14.如图,是抛物线y=ax2+bx+c(a≠0)的一部分,已知抛物线的对称轴为x=2,与x轴的一个交点是(-1,0),则方程ax2+bx+c=0(a≠0)的两根是________15.如图,四边形ABCD是正方形,P在CD上,△ADP旋转后能够与△ABP′重合,若AB=3,DP=1,则PP′=________.16.如图,已知AB⊥BC,AB=12cm,BC=8cm.一动点N从C点出发沿CB方向以1cm/s的速度向B 点运动,同时另一动点M由点A沿AB方向以2cm/s的速度也向B点运动,其中一点到达B点时另一点也随之停止,当△MNB的面积为24cm2时运动的时间t为________秒.17.如图,在边长为6的等边△ABC中,AD是BC边上的中线,点E是△ABC内一个动点,且DE=2,将线段AE绕点A逆时针旋转60°得到AF,则DF的最小值是________.18.如图,抛物线y=−14x2+12x+2与x轴相交于A、B两点,与y轴相交于点C,点D在抛物线上,且CD∥AB.AD与y轴相交于点E,过点E的直线PQ平行于X轴,与拋物线相交于P、Q两点,则线段PQ的长为________.三、解答题(本大题共8小题,共90分.解答时应写出必要的计算过程、推演步骤或文字说明)19.如图,AC是正方形ABCD的对角线,△ABC经过旋转后到达△AEF的位置.(1)指出它的旋转中心;(2)说出它的旋转方向和旋转角是多少度;(3)分别写出点A,B,C的对应点.20.已知关于x的一元二次方程x2+(k−1)x+k−2=0.(1)求证:方程总有两个实数根;(2)任意写出一个k值代入方程,并求出此时方程的解.21.已知二次函数y=x2-4x+3,设其图象与x轴的交点分别是A、B(点A在点B的左边),与y轴的交点是C,求:(1)A、B、C三点的坐标;(2)△ABC的面积.22.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为________件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?23.跳绳时,绳甩到最高处时的形状是抛物线. 正在甩绳的甲、乙两名同学拿绳的手间距AB为6米,到地面的距离AO和BD均为0. 9米,身高为1. 4米的小丽站在距点O的水平距离为1米的点F处,绳子甩到最高处时刚好通过她的头顶点E. 以点O为原点建立如图所示的平面直角坐标系, 设此抛物线的解析式为y=ax2+bx+0.9.(1)求该抛物线的解析式;(2)如果身高为1. 85米的小华也想参加跳绳,问绳子能否顺利从他头顶越过?请说明理由;(3)如果一群身高在1. 4米到1. 7米之间的人站在OD之间,且离点O的距离为t米, 绳子甩到最高处时必须超过他们的头顶,请结合图像,写出t的取值范围________.24.将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.(1)连接BF,求证:CF=EF.(2)若将图①中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其他条件不变,如图②,求证:AF+EF=DE.(3)若将图①中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其他条件不变,如图③,你认为(2)中的结论还成立吗?若成立,写出证明过程;若不成立,请直接写出AF、EF与DE之间的数量关系.25.如图,已知抛物线y=1x2+bx与直线y=2x交于点O(0,0),A(a,12),点B是抛物线上2O、A之间的一个动点,过点B分别作x轴和y轴的平行线与直线OA交于点C、E,(1)求抛物线的函数解析式;(2)若点C为OA的中点,求BC的长;(3)以BC、BE为边构造矩形BCDE,设点D的坐标为(m,n),求出m、n之间的关系式.26.在一-次数学研究性学习中,小兵将两个全等的直角三角形纸片ABC和DEF拼在一起,使点A与点F 重合,点C与点D重合(如图1),其中∠ACB=∠DFE=90°,BC=EF=3cm,AC=DF=4 cm,并进行如下研究活动。

2020-2021学年北京市海淀区北京版二年级上册期末测试数学试卷(含答案解析)

2020-2021学年北京市海淀区北京版二年级上册期末测试数学试卷(含答案解析)

2020-2021学年北京市海淀区北京版二年级上册期末测试数学试卷学校:___________姓名:___________班级:___________考号:___________一、选择题1.观察下图,丝带长()厘米。

A .6B .7C .132.笑笑用一张圆形纸片对折后剪下一个图案(如下图),展开后的样子是()。

A .B .C .3.猴妈妈摘来了20个桃子,至少再摘()个,就可以平均分给6只小猴了。

A .3B .4C .104.停车场有80辆车,上午开走了25辆,下午开走了18辆,一共开走了多少辆?列式正确的是()。

A .2518+B .2518-C .802518--5.淘气买了2本练习本,付给售货员,应找回()元。

2元2角A .4元4角B .5元6角C .6元6角6.观察下图,大约高()厘米。

A.7B.10C.147.学校举行合唱比赛。

二(1)班把男生排成3行,女生排成2行,每行正好都是9人。

二(1)班一共有()人参加合唱比赛。

A.35B.45C.548.小鸟换新家,9只小鸟住一间房子,36只小鸟要准备几间房子?下面的思考过程()是错误的。

A.B.9.有15个棒棒糖,按淘气、笑笑、奇思的顺序,每人每次发一个,()得到了最后一个棒棒糖。

A.淘气B.笑笑C.奇思10.舞蹈社团的同学排成了下面的队形,每边站4人。

舞蹈社团一共有()人。

二、填空题11.观察下图:(1)小青蛙每次跳()格,跳了()次,一共跳了()格。

(2)列乘法算式是()。

12.观察下图:(1)一共有()个油画棒。

(2)买这3盒油画棒共花()元钱。

13.看图填空。

从上图中可以看出:(1)的只数是的()倍。

(2)有()只。

14.百米赛跑。

(1)小刚还差()米到终点。

(2)目前()跑在第一名的位置。

(填名字)三、解答题15.购物。

(1)书包的价钱是钢笔价钱的8倍,一个书包()元。

妙想:⨯+8⨯我:=⨯+⨯四、填空题五、口算和估算18.直接写得数。

2020-2021学年北京五中分校九年级上学期期中数学试卷 (解析版)

2020-2021学年北京五中分校九年级上学期期中数学试卷 (解析版)

2020-2021学年北京五中分校九年级(上)期中数学试卷一、选择题(共8小题).1.下列图案中,是中心对称图形的是()A.B.C.D.2.如图,点A,B,C在⊙O上,若∠AOB=70°,则∠ACB的度数为()A.35°B.40°C.50°D.70°3.当x<0时,函数y=的图象位于()A.第三象限B.第一、二、三象限C.第二、四象限D.第二象限4.将抛物线y=2x2向右平移1个单位,再向上平移3个单位,得到的抛物线是()A.y=2(x+1)2+3B.y=2(x﹣1)2+3C.y=2(x+1)2﹣3D.y=2(x﹣1)2﹣35.如图,⊙O的半径为5,AB为弦,OC⊥AB,垂足为E,如果CE=2,那么AB的长是()A.4B.8C.6D.106.如图,PA、PB是⊙O的切线,A、B分别为切点,PO交圆于点C,若∠APB=60°,PC=6,则AC的长为()A.4B.C.D.7.如图,直线y1=2x和抛物线y2=﹣x2+4x,当y1>y2时,x的取值范围是()A.0<x<2B.x<0或x>2C.x<0或x>4D.0<x<48.已知O⊙,如图,(1)作⊙O的直径AB;(2)以点A为圆心,AO长为半径画弧,交⊙O于C,D两点;(3)连接CD交AB于点E,连接AC,BC.根据以上作图过程及所作图形,有下面三个推断:①CE=DE;②BE=3AE;⑧BC=2CE.其中正确的推断的个数是()A.0个B.1个C.2个D.3个二、填空题(共8小题).9.在平面直角坐标系xOy中,点(4,﹣5)关于原点的对称点坐标是.10.已知在△ABC中,∠C=90°,AB=6,BC=5,则sin∠A=.11.小云家开了一个小文具店,今年一月份的利润是2250元,三月份的利润是1000元,计算这个文具店这两个月利润的平均下降率.设这两个月利润的平均下降率为x,则可列方程得.12.如图,在平面直角坐标系xOy中,将线段OA绕点O顺时针旋转90°得到线段OA',其中A(﹣2,3),则A'的坐标是.13.如图,⊙O的直径AB=4,点C在⊙O上,∠ABC=30°,则AC的长是.14.如图,在△AOB中,∠AOB=90°,∠B=30°,△A'OB'是由△AOB绕点O顺时针旋转α(α<180°)角度得到的,若点A'在AB上,则旋转角α=.15.如图,为了估算河的宽度,小明采用的办法是:在河的对岸选取一点A,在近岸取点D,B,使得A,D,B在一条直线上,且与河的边沿垂直,测得BD=10m,然后又在垂直AB 的直线上取点C,并量得BC=30m.如果DE=20m,则河宽AD为m.16.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,有下列4个结论:①abc>0;②b2﹣4ac>0;③关于x的方程ax2+bx+c=0的两个根是x1=﹣2,x2=3;④关于x的不等式ax2+bx+c>0的解集是x>﹣2.其中正确的结论是.三、解答题(本题共68分)17.解方程:2x2﹣3x﹣2=0.18.如图,AB是⊙O的直径,弦CD⊥AB于点H,∠A=30°,CD=4,求⊙O的半径的长.19.如图,正方形ABCD的边长为4,E是CD中点,点P在射线AB上,过点P作线段AE 的垂线段,垂足为F.(1)求证:△PAF∽△AED;(2)连接PE,若存在点P使△PEF与△AED相似,直接写出PA的长.20.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如下表:x…﹣3﹣2﹣101…y=…44m…ax2+bx+c根据以上列表,回答下列问题:(1)直接写出c,m的值;(2)求此二次函数的解析式.21.关于x的一元二次方程(k﹣2)x2﹣4x+2=0有两个不相等的实数根.(1)求k的取值范围;(2)如果符合条件的最大整数k是一元二次方程k2+mk+1=0的根,求m的值.22.如图,在平面直角坐标系xOy中,直线y=x+3与函数y=(x>0)的图象交于点A (1,m),与x轴交于点B.(1)求m,k的值;(2)过动点P(0,n)(n>0)作平行于x轴的直线,交函数y=(x>0)的图象于点C,交直线y=x+3于点D.①当n=2时,求线段CD的长;②若CD≥OB,结合函数的图象,直接写出n的取值范围.23.如图,在△ABC中,AB=AC,以AC为直径的⊙O与BC交于点D,DE⊥AB,垂足为E,ED的延长线与AC的延长线交于点F.(1)求证:DE是⊙O的切线;(2)若⊙O的半径为2,BE=1,求CF的长.24.某超市销售一款洗手液,这款洗手液成本价为每瓶16元,当销售单价定为每瓶20元时,每天可售出60瓶.市场调查反应:销售单价每上涨1元,则每天少售出5瓶.若设这款洗手液的销售单价上涨x元,每天的销售量利润为y元.(1)每天的销售量为瓶,每瓶洗手液的利润是元;(用含x的代数式表示)(2)若这款洗手液的日销售利润y达到300元,则销售单价应上涨多少元?(3)当销售单价上涨多少元时,这款洗手液每天的销售利润y最大,最大利润为多少元?25.有这样一个问题:探究函数y=x2﹣4|x|+3的图象与性质.小丽根据学习函数的经验,对函数y=x2﹣4|x|+3的图象与性质进行了探究.下面是小丽的探究过程,请补充完整:(1)函数y=x2﹣4|x|+3的自变量x的取值范围是.(2)如图,在平面直角坐标系xOy中,画出了函数y=x2﹣4|x|+3的部分图象,用描点法将这个函数的图象补充完整:(3)对于上面的函数y=x2﹣4|x|+3,下列四个结论:①函数图象关于y轴对称;②函数既有最大值,也有最小值;③当x>2时,y随x的增大而增大,当x<﹣2时,y随x的增大而减小;④函数图象与x轴有2个公共点.所有正确结论的序号是.(4)结合函数图象,解决问题:若关于x的方程x2﹣4|x|+3=k有4个不相等的实数根,则k的取值范围是.26.在平面直角坐标系xOy中,抛物线y=mx2+2mx﹣3与x轴交于A,B两点(点A在点B 左侧),与y轴交于点C,AB=4.(1)直接写出抛物线的对称轴为直线,点A的坐标为;(2)求抛物线的解析式(化为一般式);(3)若将抛物线y=mx2+2mx﹣3沿x轴方向平移n(n>0)个单位长度,使得平移后的抛物线与线段AC恰有一个公共点,结合函数图象,回答下列问题:①若向左平移,则n的取值范围是.②若向右平移,则n的取值范围是.27.如图1,△ABC和△DEF都是等腰直角三角形,∠A=90°,∠E=90°,△DEF的顶点D恰好落在△ABC的斜边BC中点,把△DEF绕点D旋转,始终保持线段DE、DF 分别与线段AB、AC交于M、N,连接MN.在这个变化过程中,小明通过观察、度量,发现了一些特殊的数量关系.(1)于是他把△DEF旋转到特殊位置,验证自己的猜想.如图2,当MN∥BC时,①通过计算∠BMD和∠NMD的度数,得出∠BMD∠NMD(填>,<或=);②设BC=2,通过计算AM,MN,NC的长度,其中NC=,进而得出AM、MN、NC之间的数量关系是.(2)在特殊位置验证猜想还不够,还需要在一般位置进行证明.请你对(1)中猜想的线段AM、MN、NC之间的数量关系进行证明.28.在平面直角坐标系xOy中,⊙O的半径为1,对于⊙O和⊙O外的点P,给出如下的定义:若在⊙O上存在一点Q,使得P、Q两点间的距离小于或等于1,则称P为⊙O的近距点.(1)在点P1(1,1),P2(﹣,),P3(0,﹣),P4(2,1)中,⊙O的近距点是;(2)若直线l:y=x+b上存在⊙O的近距点,求b的取值范围;(3)若点P在直线y=x+1上,且点P是⊙O的近距点,求点P横坐标x P的取值范围.参考答案一、选择题(本题共16分,每小题2分)1.下列图案中,是中心对称图形的是()A.B.C.D.解:A、不是中心对称图形,故此选项不合题意;B、不是中心对称图形,故此选项不合题意;C、不是中心对称图形,故此选项不合题意;D、是中心对称图形,故此选项符合题意;故选:D.2.如图,点A,B,C在⊙O上,若∠AOB=70°,则∠ACB的度数为()A.35°B.40°C.50°D.70°解:∵∠AOB=70°,∴∠ACB=∠AOB=35°,故选:A.3.当x<0时,函数y=的图象位于()A.第三象限B.第一、二、三象限C.第二、四象限D.第二象限解:∵反比例函数y=中k=5>0,∴此函数的图象位于一、三象限,∴当x<0时函数的图象在第三象限.故选:A.4.将抛物线y=2x2向右平移1个单位,再向上平移3个单位,得到的抛物线是()A.y=2(x+1)2+3B.y=2(x﹣1)2+3C.y=2(x+1)2﹣3D.y=2(x﹣1)2﹣3解:由题意得原抛物线的顶点为(0,0),∴平移后抛物线的顶点为(1,3),∴新抛物线解析式为y=2(x﹣1)2+3,故选:B.5.如图,⊙O的半径为5,AB为弦,OC⊥AB,垂足为E,如果CE=2,那么AB的长是()A.4B.8C.6D.10解:连接OA,∵半径OC⊥AB,∴AE=BE=AB,∵OC=5,CE=2,∴OE=3,在Rt△AOE中,AE===4,∴AB=2AE=8,故选:B.6.如图,PA、PB是⊙O的切线,A、B分别为切点,PO交圆于点C,若∠APB=60°,PC=6,则AC的长为()A.4B.C.D.解:如图,设CP交⊙O于点D,连接AD.设⊙O的半径为r.∵PA、PB是⊙O的切线,∠APB=60°,∴OA⊥AP,∠APO=∠APB=30°.∴OP=2OA,∠AOP=60°,∴PC=2OA+OC=3r=6,则r=2,易证△AOD是等边三角形,则AD=OA=2,又∵CD是直径,∴∠CAD=90°,∴∠ACD=30°,∴AC=AD•cot30°=2故选:C.7.如图,直线y1=2x和抛物线y2=﹣x2+4x,当y1>y2时,x的取值范围是()A.0<x<2B.x<0或x>2C.x<0或x>4D.0<x<4解:由,解得或,∴两函数图象交点坐标为(0,0),(2,4),由图可知,y1>y2时,x的取值范围是x<0或x>2.故选:B.8.已知O⊙,如图,(1)作⊙O的直径AB;(2)以点A为圆心,AO长为半径画弧,交⊙O于C,D两点;(3)连接CD交AB于点E,连接AC,BC.根据以上作图过程及所作图形,有下面三个推断:①CE=DE;②BE=3AE;⑧BC=2CE.其中正确的推断的个数是()A.0个B.1个C.2个D.3个解:如图,连接OC,①∵AB是⊙O的直径,∴∠ACB=90°,∵以点A为圆心,AO长为半径画弧,交⊙O于C,D两点,∴=,根据垂径定理,得AB⊥CE,CE=DE,所以①正确;②∵AC=OA=OC,∴△AOC是等边三角形,∵AB⊥CE,∴AE=OE,∴BE=BO+OE=3AE,∴②正确;③方法一:∵∠CAO=60°,∠ACB=90°,∠CBE=30°,∴BC=2CE.所以③正确.方法二:由△ACE∽△CBE,∴AC:AE=BC:CE=2:1,∴BC=2CE,所以③正确,故选:D.二、填空题(本题共16分,每小题2分)9.在平面直角坐标系xOy中,点(4,﹣5)关于原点的对称点坐标是(﹣4,5).解:点(4,﹣5)关于原点的对称点坐标是(﹣4,5),故答案为:(﹣4,5).10.已知在△ABC中,∠C=90°,AB=6,BC=5,则sin∠A=.解:如图,∵∠C=90°,BC=5,AB=6,∴sin A==.故答案为:.11.小云家开了一个小文具店,今年一月份的利润是2250元,三月份的利润是1000元,计算这个文具店这两个月利润的平均下降率.设这两个月利润的平均下降率为x,则可列方程得2250(1﹣x)2=1000.解:设这两个月利润的平均下降率为x,则可列方程得:2250(1﹣x)2=1000.故答案为:2250(1﹣x)2=1000.12.如图,在平面直角坐标系xOy中,将线段OA绕点O顺时针旋转90°得到线段OA',其中A(﹣2,3),则A'的坐标是(3,2).解:如图,观察图象可知,A′(3,2).故答案为(3,2).13.如图,⊙O的直径AB=4,点C在⊙O上,∠ABC=30°,则AC的长是2.解:∵直径AB=4,∠ACB=90°,∵点C在⊙O上,∠ABC=30°,∴AC=AB=2,故答案为:2.14.如图,在△AOB中,∠AOB=90°,∠B=30°,△A'OB'是由△AOB绕点O顺时针旋转α(α<180°)角度得到的,若点A'在AB上,则旋转角α=60°.解:∵∠AOB=90°,∠B=30°,∴∠A=60°.∵△A′OB′是由△AOB绕点O顺时针旋转α角度得到的,∴OA=OA′.∴△OAA′是等边三角形.∴∠AOA′=60°,即旋转角α的大小是60°.故答案为:60°.15.如图,为了估算河的宽度,小明采用的办法是:在河的对岸选取一点A,在近岸取点D,B,使得A,D,B在一条直线上,且与河的边沿垂直,测得BD=10m,然后又在垂直AB 的直线上取点C,并量得BC=30m.如果DE=20m,则河宽AD为20m.解:∵AB⊥DE,BC⊥AB,∴DE∥BC,∴△ADE∽△ABC,∴,即,解得:AD=20m.故答案为:20.16.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,有下列4个结论:①abc>0;②b2﹣4ac>0;③关于x的方程ax2+bx+c=0的两个根是x1=﹣2,x2=3;④关于x的不等式ax2+bx+c>0的解集是x>﹣2.其中正确的结论是②③.解:∵抛物线开口向下,交y轴的正半轴,∴a<0,c>0,∵﹣=,∴b=﹣a>0,∴abc<0,所以①错误;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,即b2>4ac,所以②正确;∵抛物线y=ax2+bx+c经过点(﹣2,0),而抛物线的对称轴为直线x=,∴点(﹣2,0)关于直线x=的对称点(3,0)在抛物线上,∴关于x的一元二次方程ax2+bx+c=0的两根是x1=﹣2,x2=3,所以③正确.由图象可知当﹣2<x<3时,y>0,∴不等式ax2+bx+c>0的解集是﹣2<x<3,所以④错误;故答案为②③.三、解答题(本题共68分)17.解方程:2x2﹣3x﹣2=0.解:(x﹣2)(2x+1)=0,x﹣2=0或2x+1=0,所以x1=2,x2=﹣.18.如图,AB是⊙O的直径,弦CD⊥AB于点H,∠A=30°,CD=4,求⊙O的半径的长.解:连接BC,如图所示:∵AB是⊙O的直径,弦CD⊥AB于H,∴∠ACB=90°,CH=DH=CD=2,∠AHC=90°,∵∠A=30°,∴AC=2CH=4,在Rt△ABC中,∠A=30°,∴AC=BC=4,AB=2BC,∴BC=4,AB=8,∴OA=4,即⊙O的半径长是4.19.如图,正方形ABCD的边长为4,E是CD中点,点P在射线AB上,过点P作线段AE 的垂线段,垂足为F.(1)求证:△PAF∽△AED;(2)连接PE,若存在点P使△PEF与△AED相似,直接写出PA的长2或5.【解答】(1)证明:在正方形ABCD中,∠D=90°,CD∥AB,∴∠AED=∠PAF,∵PF⊥AE,∴∠D=∠PFA=90°,∴△PAF∽△AED.(2)解:当PA=PB=2时,∵DE=EC,AP=PB,∴PE∥AD,此时∠DAE=∠PEF,∠D=∠PFE=90°,可得△PEF∽△EAD.当∠AED=∠PEF,∠D=∠PFE时,△ADE∽△PFE,∵CD∥AB,∴∠AED=∠EAP=∠AEP,∴PA=PE,∵PF⊥AE,∴AF=FE,∵AD=4,DE=EC=2,∠D=90°,∴AE===2,∴AF=,∵△PAF∽△AED,∴=,∴=,∴PA=5,综上所述,满足条件的PA的值为2或5.20.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如下表:x…﹣3﹣2﹣101…y=…44m…ax2+bx+c根据以上列表,回答下列问题:(1)直接写出c,m的值;(2)求此二次函数的解析式.解:(1)根据图表可知:二次函数y=ax2+bx+c的图象过点(0,4),(﹣2,4),∴对称轴为直线x ==﹣1,c=4,∵(﹣3,)的对称点为(1,),∴m =;(2)∵对称轴是直线x=﹣1,∴顶点为(﹣1,),设y=a(x+1)2+,将(0,4)代入y=a(x+1)2+得,a +=4,解得a =﹣,∴这个二次函数的解析式为y =﹣(x+1)2+.21.关于x的一元二次方程(k﹣2)x2﹣4x+2=0有两个不相等的实数根.(1)求k的取值范围;(2)如果符合条件的最大整数k是一元二次方程k2+mk+1=0的根,求m的值.解:(1)根据题意得k﹣2≠0且△=(﹣4)2﹣4(k﹣2)×2>0,解得k<4且k≠2;(2)符合条件的最大整数k=3,把k=3代入k2+mk+1=0得9+3m+1=0,解得m =﹣.22.如图,在平面直角坐标系xOy中,直线y=x+3与函数y =(x>0)的图象交于点A(1,m),与x轴交于点B.(1)求m,k的值;(2)过动点P(0,n)(n>0)作平行于x轴的直线,交函数y=(x>0)的图象于点C,交直线y=x+3于点D.①当n=2时,求线段CD的长;②若CD≥OB,结合函数的图象,直接写出n的取值范围.解:(1)∵直线y=x+3经过点A(1,m),∴m=1+3=4,∵反比例函数的图象经过点A(1,4),∴k=1×4=4;(2)①当n=2时,点P的坐标为(0,2),当y=2时,2=,解得x=2,∴点C的坐标为(2,2),当y=2时,x+3=2,解得x=﹣1,∴点D的坐标为(﹣1,2),∴CD=2﹣(﹣1)=3;②当y=0时,x+3=0,解得x=﹣3,则B(﹣3,0)当y=n时,n=,解得x=,∴点C的坐标为(,n),当y=n时,x+3=n,解得x=n﹣3,∴点D的坐标为(n﹣3,n),当点C在点D的右侧时,若CD=OB,即﹣(n﹣3)=3,解得n1=2,n2=﹣2(舍去),∴当0<n≤2时,CD≥OB;当点C在点D的左侧时,若CD=OB,即n﹣3﹣=3,解得n1=3+,n2=3﹣(舍去),∴当n≥3+时,CD≥OB,综上所述,n的取值范围为0<n≤2或n≥3+.23.如图,在△ABC中,AB=AC,以AC为直径的⊙O与BC交于点D,DE⊥AB,垂足为E,ED的延长线与AC的延长线交于点F.(1)求证:DE是⊙O的切线;(2)若⊙O的半径为2,BE=1,求CF的长.【解答】(1)证明:如图,连接OD,AD,∵AC是直径,∴AD⊥BC,又∵在△ABC中,AB=AC,∴BD=CD,∵AO=OC,∴OD∥AB,又∵DE⊥AB,∴DE⊥OD,∵OD为⊙O半径,∴DE是⊙O的切线;(2)解:∵⊙O的半径为2,AB=AC,∴AC=AB=2+2=4,∵BE=1,∴AE=4﹣1=3,过O作OH⊥AB于H,则四边形ODEH是矩形,∴EH=OD=2,∴AH=1,∴AH=AO,∴∠AOH=30°,∴∠BAC=60°,∴AF=2AE=6,∴CF=AF﹣AC=2.∵DE⊥AB,AD⊥BC,∴∠AED=∠BED=∠ADB=90°,∴∠DAE+∠ADE=90°,∠ADE+∠BDE=90°,∴∠DAE=∠BDE,∴△AED∽△DEB,∴=,∴=,解得:DE=,∵OD∥AB,∴△FOD∽△FAE,∴=,∴=,解得:FD=2,在Rt△FOD中,FO===4,∴CF=FO﹣OC=4﹣2=2.24.某超市销售一款洗手液,这款洗手液成本价为每瓶16元,当销售单价定为每瓶20元时,每天可售出60瓶.市场调查反应:销售单价每上涨1元,则每天少售出5瓶.若设这款洗手液的销售单价上涨x元,每天的销售量利润为y元.(1)每天的销售量为(60﹣5x)瓶,每瓶洗手液的利润是(4+x)元;(用含x 的代数式表示)(2)若这款洗手液的日销售利润y达到300元,则销售单价应上涨多少元?(3)当销售单价上涨多少元时,这款洗手液每天的销售利润y最大,最大利润为多少元?解:(1)每天的销售量为(60﹣5x)瓶,每瓶洗手液的利润是(4+x)元;故答案为:(60﹣5x);(4+x);(2)根据题意得,(60﹣5x)(4+x)=300,解得:x1=6,x2=2,答:销售单价应上涨2元或6元;(3)根据题意得,y=(60﹣5x)(4+x)=﹣5(x﹣12)(x+4)=﹣5(x﹣4)2+320,答:当销售单价上涨4元时,这款洗手液每天的销售利润y最大,最大利润为320元.25.有这样一个问题:探究函数y=x2﹣4|x|+3的图象与性质.小丽根据学习函数的经验,对函数y=x2﹣4|x|+3的图象与性质进行了探究.下面是小丽的探究过程,请补充完整:(1)函数y=x2﹣4|x|+3的自变量x的取值范围是任意实数.(2)如图,在平面直角坐标系xOy中,画出了函数y=x2﹣4|x|+3的部分图象,用描点法将这个函数的图象补充完整:(3)对于上面的函数y=x2﹣4|x|+3,下列四个结论:①函数图象关于y轴对称;②函数既有最大值,也有最小值;③当x>2时,y随x的增大而增大,当x<﹣2时,y随x的增大而减小;④函数图象与x轴有2个公共点.所有正确结论的序号是①③.(4)结合函数图象,解决问题:若关于x的方程x2﹣4|x|+3=k有4个不相等的实数根,则k的取值范围是﹣1<k<3.解:(1)∵函数y=x2﹣4|x|+3,∴x的取值范围为任意实数,故答案为:任意实数;(2)由函数y=x2﹣4|x|+3可知,x>0和x<0时的函数图象关于y轴对称,函数图象如右图所示;(3)由图象可得,函数图象关于y轴对称,故①正确;函数有最小值,但没有最大值,故②错误;当x>2时,y随x的增大而增大,当x<﹣2时,y随x的增大而减小,故③正确;函数图象与x轴有4个公共点,故④错误;故答案为:①③;(4)由图象可得,关于x的方程x2﹣4|x|+3=k有4个不相等的实数根,则k的取值范围是﹣1<k<3,故答案为:﹣1<k<3.26.在平面直角坐标系xOy中,抛物线y=mx2+2mx﹣3与x轴交于A,B两点(点A在点B 左侧),与y轴交于点C,AB=4.(1)直接写出抛物线的对称轴为直线x=﹣1,点A的坐标为(﹣3,0);(2)求抛物线的解析式(化为一般式);(3)若将抛物线y=mx2+2mx﹣3沿x轴方向平移n(n>0)个单位长度,使得平移后的抛物线与线段AC恰有一个公共点,结合函数图象,回答下列问题:①若向左平移,则n的取值范围是0<n≤4.②若向右平移,则n的取值范围是0<n≤2.解:(1)∵抛物线y=mx2+2mx﹣3的对称轴为直线x==﹣1,AB=4,∴点A(﹣3,0),点B(1,0),故答案为:x=﹣1,(﹣3,0);(2)∵抛物线y=mx2+2mx﹣3过点B(1,0),∴0=m+2m﹣3,∴m=1,∴抛物线的解析式:y=x2+2x﹣3,(3)如图,∵y=x2+2x﹣3=(x+1)2﹣4,∴设向左平移后的解析式为:y=(x+1+n)2﹣4,把x=﹣3,y=0代入解析式可得:0=(﹣3+1+n)2﹣4,∴n=0(舍去),n=4,∴向左平移,则n的取值范围是0<n≤4;设向右平移后的解析式为:y=(x+1﹣n)2﹣4,把x=0,y=﹣3代入解析式可得:﹣3=(1﹣n)2﹣4,∴n=0(舍去),n=2,∴向右平移,则n的取值范围是0<n≤2,故答案为:0<n≤4;0<n≤2.27.如图1,△ABC和△DEF都是等腰直角三角形,∠A=90°,∠E=90°,△DEF的顶点D恰好落在△ABC的斜边BC中点,把△DEF绕点D旋转,始终保持线段DE、DF 分别与线段AB、AC交于M、N,连接MN.在这个变化过程中,小明通过观察、度量,发现了一些特殊的数量关系.(1)于是他把△DEF旋转到特殊位置,验证自己的猜想.如图2,当MN∥BC时,①通过计算∠BMD和∠NMD的度数,得出∠BMD=∠NMD(填>,<或=);②设BC=2,通过计算AM,MN,NC的长度,其中NC=,进而得出AM、MN、NC之间的数量关系是AM+MN=CN.(2)在特殊位置验证猜想还不够,还需要在一般位置进行证明.请你对(1)中猜想的线段AM、MN、NC之间的数量关系进行证明.解:(1)①∵△ABC和△DEF都是等腰直角三角形,∠A=90°,∠E=90°,∴∠B=∠C=∠EDF=45°,AB=AC,BC=AB,∵MN∥BC,∴∠AMN=∠B=45°=∠ANM=∠C,∠DMN=∠BDM,∴AM=AN,∴BM=CN,∵点D是BC中点,∴BD=CD,在△BMD和△CND中,,∴△BMD≌△CND(SAS),∴∠BMD=∠DNC,∵∠MDB=∠C+∠DNC=∠MDN+∠BDM,∴∠BDM=∠CND,∴∠BMD=∠CND=∠BDM=∠CMN,故答案为:=;②∵BC=2,BC=AB,∴AB=AC=2,∵∠BMD=∠CND=∠BDM,∴BD=BM=BC=,∴NC=,∴AM=2﹣,∵AM=AN,∠A=90°,∴MN=AM=2﹣2,∴AM+MN=2﹣+2﹣2==NC,故答案为:;AM+MN=NC;(2)如图1,在CN上截取CH=AM,连接AD,DH,∵△ABC是等腰直角三角形,点D是BC中点,∴AD=CD,∠BAD=∠ACD=45°,AD⊥BC,又∵AM=CH,∴△AMD≌△CHD(SAS),∴MD=DH,∠ADM=∠CDH,∵∠ADM+∠ADN=∠MDN=45°,∴∠ADN+∠CDH=45°,∴∠HDN=45°=∠MDN,在△MDN和△HDN中,,∴△MDN≌△HDN(SAS),∴MN=HN,∴NC=CH+NH=AM+MN.28.在平面直角坐标系xOy中,⊙O的半径为1,对于⊙O和⊙O外的点P,给出如下的定义:若在⊙O上存在一点Q,使得P、Q两点间的距离小于或等于1,则称P为⊙O的近距点.(1)在点P1(1,1),P2(﹣,),P3(0,﹣),P4(2,1)中,⊙O的近距点是P1;(2)若直线l:y=x+b上存在⊙O的近距点,求b的取值范围;(3)若点P在直线y=x+1上,且点P是⊙O的近距点,求点P横坐标x P的取值范围.解:(1)由题意得:OQ=1,P1(1,1),P2(﹣,),P3(0,﹣),P4(2,1)的坐标知,点P2、P3都不在圆O外,故不符合题意;对于P1,OP1==,则OP1﹣OQ<P1Q<OP1+OQ,即﹣1<P1Q<+1,故存在P1Q≤1,故点P1符合题意;同理可得OP4=,则﹣1<P4Q<+1,故不存在P4Q≤1,故点P4符合题意;故答案为P1;(2)如图1,平移直线l至图示与半径为2的圆相切的位置,即l和l′的位置,当直线l位于图示l和l′之间的位置时,直线l:y=x+b上存在⊙O的近距点,设直线l与圆切于点A,则△OAB为等腰直角三角形,则OB=OA=2=b,同理当直线l处于l′的位置时,b=﹣2,故b的取值范围为﹣2≤b≤2;(3)如图2,作半径为2的同心圆O,与直线y=x+1交于点B、C,设直线y=x+1与半径为1的圆交于点E、F,则点P点在BE和CF之间的位置时,符合题意,设点B的坐标为(x,x+1),过点B作BH⊥y轴于点H,连接OB、OC,在Rt△OBH中,OB2=BH2+OH2,即(x+1)2+x2=22,解得x=(舍去负值),故x==x B,同理可得,x C=﹣,故0<x P≤或﹣≤x P<﹣1.。

【整合】2020-2021学年度第一学期北京市海淀区七年级期中考试数学试题 共3套

【整合】2020-2021学年度第一学期北京市海淀区七年级期中考试数学试题 共3套

2020学年第一学期阶段性抽测七年级数学(问卷)(无答案)本试卷分选择题和非选择题两部分,共三大题24小题,共6页,满分120分,考试用时100分钟注意事项:1.答卷前,考生务必在答题卡上用黑色字迹的钢笔或签宇笔填写镇(街)、学校、试室号、姓名、座位号及准考证号等自己的个人信息,再用2B铅笔把对应准考证号的标号涂黑2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑如需要改动,用橡皮擦干净后,再选涂其他答案不能答在试卷上3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B铅笔画图答案必须写在答题卡各题目指定区域的相应位置上;如需要改动,先划掉原来的答案,然后再写上新的答案,改动的答案也不能趯出指定的区域;不准使用铅笔、圆珠笔和涂改液不按以上要求作答的答案无效4.考生必须保持答题卡的整洁,考试结束后,将答题卡上交第一部分选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.我国古代《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是今有两数其意义相反,则分别叫做正数与负数.如果向北走两步记作+2步,那么向南走5步记作()(A)+5步 (B)-5步 (C)-3步 (D)-2步2.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的是(※)(A)(C)(D)3.在-3、-2、0、1中,最小的一个数是(※)(A)-3 (B)-2 (C)0 (D)14.“001号议案”提出三年后,广州目前污水处理能力达到了760000吨/日,位居全国第二,将7660000用科学记数法表示为(※)(A)7.66×104 (B)7.66×105 (C )76.6×105 (D)7.66×106 5.已知a=-2,b=1,则a b +-的值为(※)(A)3 (B)1 (C)0 (D)-1 6.下列运算中正确的是(※)(A)a 3+a 3=a 6 (B)a 3+a 3=2a 3 (C)a 3+a 3=2a 6 (D)a 3+a 3=a 9 7.下列变形中,正确的是(※)(A)-(3x+2)=-3x+2 (B)-(3x-2)=3x+2 (C)-(3x-2)=-3x+2 (D)-(3x-2)=-3x-2 8.下列说法错误的是(※)(A)2x 2-3xy-1是二次三项式 (B)-x+1不是单项式(C) 23π-xy 2的系数是23π- (D)-22xab 2的次数是69.已知a,b 是有理数,满足a<0<b,a+b>0,则把a,-a,b,-b 按照从小到大的顺序排列,正确的是(※)(A) -b<-a<a<b (B)-b<a<-a<b (C) -a<-b<a<b (D) a<-b<b<-a 10.等边△ABC 在数轴上的位置如图所示,点A 、C 对应的数分别为0和-1,若△ABC 绕顶点沿顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为1,则连续翻转2020次后,点B(※)(A)不对应任何数 (B)对应的数是2018 (C)对应的数是2019 (D)对应的数是2020+0.9 g-0.36 g-0.8 g+2.5 g第10题图第二部分非选择题(共90分)二、填空题(本大题共6小题,每小题3分,共18分)11.某地某天的最高气温是6℃,最低气温是-4℃,则该地当天的温差为 ※ ℃ 12.用四舍五入法将3.1416精确到0.01后,得到的近似数是※13在数轴上将点A 向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A 表示的数是 ※14.若单项式3x 2y n 与-2x m y 3是同类项,则m+n= ※ 15.若代数式2y 2-y+1=3,那么代数式4y 2-2y+5的值为 ※16.根据下图所示的程序运算,若输入的x 值为1,则输出的结果为 ※第16题图三、解答题(本大题共8小题,满分72分.解答应写出文字说明、证明过程或演算步骤17.(本小题满分6分) 计算:(1)12-(-8)+(-7)+10(2) ()10011543⎛⎫-⨯--÷- ⎪⎝⎭18.(本小题满分6分)把下列各数分别填入相应的集合里:15, 12-,-5,2.333,0.1,0(1)正数集合:{ }(2)整数集合:{ }(3)分数集合:{ }19.(本小题满分8分)化简:8a2+4-2a2-5a-a2-5+7a20.(本小题满分8分)辆货车从百货大楼出发送货,向东行驶4千米到达小明家,继续向东行驶1.5千米到达小红家,然后向西行驶8.5千米到达小刚家,最后返回百货大楼。

北京市海淀区2020-2021学年第一学期期中考试初一数学试题及答案

北京市海淀区2020-2021学年第一学期期中考试初一数学试题及答案

海淀区2020年七年级学业水平调研数学试卷2020.11一、选择题(本题共24分,每小题2分)第1-12题均有四个选项,符合题意的选项只有一个.... 1. -2的相反数是 A.12B. 12-C. 2D. -22. “天问一号”探测器由长征五号运载火箭直接送入地火转移轨道,飞行期间已成功完成地月合影获取、两次轨道中途修正、载荷自检等工作,截至2020年10月1日凌晨,探测器已飞行约188 000 000千米,飞行状态良好,188 000 000这个科学记数法表示,结果正确的是 A. 61.8810⨯B. 81.8810⨯C. 618810⨯D. 90.18810⨯3.下列各数中,是负整数的是 A. 32-B. 0.1--C. 13⎛⎫-- ⎪⎝⎭D. 2(2)-4.有理数1.3429精确到千分位的近似数为 A. 1.3B. 1.34C. 1.342D. 1.3435. 若x ,y 满足22(3)0x y -++=,则xy 的值为 A. 9B. 6C. -5D. -66.下面说法正确的是 A. -2x 是单项式B.35ab的系数是3C. 22ab 的次数是2D. 22x xy +是四次多项式7.若单项式62x y -与25mn x y 是同类项,则A. m =2,n =1B. m =3,n =1C. m =3,n =0D. m =1,n =38.下列运算正确的是 A. 224x x x +=B. 235x x x +=C. 321x x -=D.2222x y x y x y -=-9.若2a -b =4,则式子4a -2b -5的值为 A. -1B. 1C. -3D. 310.有理数m ,n ,k 在数轴上的对应点的位置如图所示,若m +n <0,n +k >0,则A ,B ,C ,D 四个点中可能是原点的是A. A 点B. B 点C. C 点D. D 点11.如图,在11月的日历表中用框数器“”框出8,10,16,22,24五个数,它们的和为80,若将“”在图中换个位置框出五个数,则它们的和可能是A. 42B. 63C. 90D. 12512.如图,直线上的四个点A ,B ,C ,D 分别代表四个小区,其中A 小区和B 小区相距a m ,B 小区和C 小区相距200m,C 小区和D 小区相距a m ,某公司的员工在A 小区由30人,B 小区有5人,C 小区有20人,D 小区有6人,现公司计划在A ,B ,C ,D 四个小区中选一个作为班车停靠点,为使所有员工步行到停靠点的路程总和最小,那么停靠点的位置应设在A. A 小区B. B 小区C. C 小区D. D 小区二、填空题(本题共24分,每小题3分)13.妈妈的微信账单中6月23日显示-36.00,6月24日显示+100.00,如果+100.00表示收入100元,则-36.00表示 .14.化简:c +2(b -c )=.15.数轴上,与表示-3的点的距离为4的点表示的数是.16.某班部分学生外出参加社会实践活动,据统计共有三种出行方式:骑自行车、乘公交车和成私家车(每人选择了一种出行方式),其中骑车的人数比乘公交车的人数多10人,乘私家车的人数比骑车的人数少3人,设乘公交车的有m 人,则该班骑车参加此次活动的有人,该班参加此次活动的学生共有人(用含m 的式子表示).17.有理数a 在数轴上的对应点的位置如图所示,化简1a a --的结果是.18.有两个正方体的积木,如图所示下面是淘气掷200次积木的情况统计表: 灰色的面朝上白色的面朝上32次168次根据表中的数据推测,淘气更有可能掷的是号积木,请简要说明你的判断理由.19.当x 分别为-1,0,1,2时,式子ax +b 的值如下表:x -1 0 1 2 ax +b -5 -3-11则a +2b 的值为.20.图纸上一个零件的标注为0.030.0230φ+-,表示这个零件直径的标准尺寸是30mm,实际合格产品的直径最小可以是29.98mm,最大可以是mm ,现有另一零件的标注为其零件直径的标准尺寸有些模糊,一直该零件的七个合格产品,直径尺寸分别为73.1mm.72.7mm,72.8mm,73.2mm,72.9mm,73.3mm,72.6mm,则该零件的标准尺寸可能是mm (写出一个满足条件的尺寸,结果保留一位小数).三、解答题(本题共52分,第21题4分,第22题16分,第23题4分,第24题4分,第25题4分,第26题6分,第27题7分,第28题7分) 21.在数轴上表示下列各数;0,2,-1.5,13-,并按从小到大的顺序用“<”号把这些数连接起来 22.计算:(1)-7+(+20)-(-5)-(+3) (2)512.5()()84-÷-⨯-;(3)3777(1)();48128--⨯- (4)32(2)(2)(31)12(4)-+-⨯+-÷-23.结合图中信息回答问题:(1)两种电器销售量相差最大的是月;(2)简单描述一年中冰箱销售量的变化情况:;(3)两种电器中销售量相对稳定的是.24.设22(32)2(1)A x x x =--+- (1)当x =2时,求A 的值;(2)若A 的值为正,请写出满足条件的x 的值: (写出一个即可)25.今年故宫博物院举办了“丹宸永固:紫禁城建成六百年”大展,奇思和妙想两位同学想在国庆期间参观故宫,他们设计了如图所示的游览路线(图中实线部分),准备从午门(点A )进,从神武门(点B )出,所走的路线均时正东、正西、正北方向 (1)紫禁城建成的年份是;(2)请根据图中提供的信息(长度单位:m ),计算他们的游览路程(用含a ,b 的式子表示)26.阅读:计算322(357)(233)x x x x -+-+-+时,可列竖式:32232357)32338210x x x x x x x -+-++--++-小明认为,整式的加减实际上就是合并同类项,而合并同类项的关键是合并各同类项的系数,因此,可以把上题的竖式简化为:3507032338210-++-+++--++-)所以,原式=3238210x x x -++- 根据阅读材料解答下列问题:已知:3432231,24A x x x B x x x =--++=-+(1)将A 按x 的降幂排列: ; (2)请仿照小明的方法计算:A -B ; (3)请写出一个多项式C : ,使其与B 的和是二次三项式27.我们知道,正整数按照能否被2整除可以分成两类:正奇数和正偶数,小浩受此启发,按照一个正整数被3除的余数把正整数分成了三类:如果一个正整数被3除余数为1,则这个正整数属于A 类,例如1,4,7等;如果一个正整数被3除余数为2,则这个正整数属于B 类,例如2,5,8等;如果一个正整数被3整除,则这个正整数属于C 类,例如3,6,9等. (1)2020属于类(填A ,B 或C);(2)①从A 类数中任取两个数,则它们的和属于 类(填A ,B 或C );②从A 类数中任意取出15个数,从B 类数中任意取出16个数,从C 类数中任意取出17个数,把它们都加起来,则最后的结果属于 类(填A ,B 或C );(3)从A 类数中任意取出m 个数,从B 类数中任意取出n 个数,把它们都加起来,若最后的结果属于C 类,则下列关于m ,n 的叙述中正确的是 (填序号) ①m +2n 属于C 类②m n -属于B 类③m 属于A 类,n 属于C 类④m ,n 属于同一类28.对于有理数a ,b ,n ,d ,若,a n b n d -+-=则称a 和b 关于n 的“相对关系值”为d ,例如,21313-+-=,则2和3关于1的“相对关系值”为3. (1)-3和5关于1的“相对关系值”为 ;(2)若a 和2关于1的“相对关系值”为4,求a 的值;(3)若0a 和1a 关于1的“相对关系值”为1,1a 和2a 关于2的“相对关系值”为1,2a 和3a 关于3的“相对关系值”为1,···,20a 和21a 关于21的“相对关系值”为1. ①0a +1a 的最大值为; ②12320a a a a +++⋅⋅⋅+的值为(用含0a 的式子表示)海淀区2020年七年级学业水平调研数 学 答 案一、选择题(本题共24分,每小题2分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CBADDABDDBCB二、填空题(本题共24分,每小题3分)13. 支出36元; 14. 2b c -; 15. 1或7-; 16. (10m +),(317m +); 17. 1-;18.②,因为②号积木白色面多;19. 4-; 20. 30.03; 答案不唯一,72.9(或73.0,73.1,73.2).三、解答题(本题共52分,第21题4分,第22题16分,第23题4分,第24题4分,第25题4分,第26题6分,第27题7分,第28题7分)21. 解: ----------------------3分11.5023-<-<<. ----------------------4分22.(1)7(+20)(5)(+3)-+--- .解:原式72053=-++- ----------------------2分15=. ----------------------4分 (2)512.5()()84-÷-⨯-. 解:原式581=254-⨯⨯ ----------------------2分 =1-. ----------------------4分(3)3778(1)()48127--⨯-.解:原式787878=4787127-⨯+⨯+⨯ 2=213-++ ----------------------3分1=3-. ----------------------4分(4)32(2)(2)(31)12(4)-+-⨯+-÷-.解:原式=8(2)(91)+3-+-⨯+=820+3-- ----------------------3分=25-.----------------------4分23.解:(1)7; ----------------------1分 (2)先上升后下降,在夏季时销售量最大; ----------------------3分 (3)热水器. ----------------------4分 24.解:(1)2232222A x x x =---+ ----------------------1分22x x =-.----------------------2分当2x =时, 原式2=222=0-⨯. ----------------------3分 (2) 3 (答案不唯一,x >2或x <0均可). ----------------------4分 25. 解:(1)1420年(明朝永乐十八年); ----------------------1分(2)42()a a b b b a ++++- ----------------------3分=422a a b b b a ++++-=54a b +.答:他们的游览路程为54m a b +(). ----------------------4分 26. 解:(1)43321A x x x =--+; ----------------------1分(2)15+43+1)0+24+1+013+02+1----------------------3分所以,A -B =4325+43+1x x x x --. ----------------------4分(3)321C x =-+ (答案不唯一) . --------------------6分 27.解:(1)A ; ---------------------- 1分(2)① B ; ---------------------3分② B ; ---------------------- 5分 (3)① ④ ---------------------- 7分 28. 解:(1)8; ---------------------- 1分 (2)a 和2关于1的“相对关系值”为4,∴1214a -+-=.∴13a -=. ----------------------2分解得a =4或2-. ----------------------3分 (3)① 3; ----------------------5分 ②020+210a 或025020a -. ----------------------7分(对于本卷中学生的不同解法,请老师根据评分标准酌情给分)。

2021-2022学年北京人大附中本部九年级(上)期末数学模拟练习试卷(六)

2021-2022学年北京人大附中本部九年级(上)期末数学模拟练习试卷(六)

2021-2022学年北京人大附中本部九年级(上)期末数学模拟练习试卷(六)1.(单选题,3分)在抛物线y=x2-4x-5上的一个点的坐标为()A.(0,-4)B.(2,0)C.(1,0)D.(-1,0)2.(单选题,3分)在半径为6cm的圆中,60°的圆心角所对弧的弧长是()A.πcmB.2πcmC.3πcmD.6πcm3.(单选题,3分)将抛物线y=x2先向右平移3个单位长度,再向上平移5个单位长度,所得抛物线的解析式为()A.y=(x+3)2+5B.y=(x-3)2+5C.y=(x+5)2+3D.y=(x-5)2+34.(单选题,3分)2020年是紫禁城建成600年暨故宫博物院成立95周年,在此之前有多个国家曾发行过紫禁城元素的邮品.图1所示的摩纳哥发行的小型张中的图案,以敞开的紫禁城大门和大门内的石狮和太和殿作为邮票和小型张的边饰,如果标记出图1中大门的门框并画出相关的几何图形(图2),我们发现设计师巧妙地使用了数学元素(忽略误差),图2中的四边形ABCD与四边形A'B'C'D'是位似图形,点O是位似中心,点A'是线段OA的中点,那么以下结论正确的是()A.四边形ABCD与四边形A'B'C'D'的相似比为1:1B.四边形ABCD与四边形A'B'C'D'的相似比为1:2C.四边形ABCD与四边形A'B'C'D'的周长比为3:1D.四边形ABCD与四边形A'B'C'D'的面积比为4:15.(单选题,3分)如图,AB是⊙O的直径,CD是弦,若∠CDB=32°,则∠ABC等于()A.68°B.64°C.58°D.32° 6.(单选题,3分)若抛物线y=ax 2+bx+c (a≠0)经过A (1,0),B (3,0)两点,则抛物线的对称轴为( )A.x=1B.x=2C.x=3D.x=47.(单选题,3分)近年来我国无人机产业迅猛发展,无人机驾驶员已正式成为国家认可的新职业,中国民用航空局的现有统计数据显示,从2017年底至2019年底,全国拥有民航局颁发的民用无人机驾驶执照的人数已由约2.44万人增加到约6.72万人.若设2017年底至2019年底,全国拥有民用无人机驾驶执照人数的年平均增长率为x ,则可列出关于x 的方程为( )A.2.44(1+x )=6.72B.2.44(1+2x )=6.72C.2.44(1+x )2=6.72D.2.44(1-x )2=6.728.(单选题,3分)现有函数y= {x +4(x <a)x 2−2x (x ≥a )如果对于任意的实数n ,都存在实数m ,使得当x=m 时,y=n ,那么实数a 的取值范围是( )A.-5≤a≤4B.-1≤a≤4C.-4≤a≤1D.-4≤a≤59.(填空题,3分)若正六边形的边长为2,则它的半径为 ___ .10.(填空题,3分)若抛物线y=ax 2(a≠0)经过A (1,3),则该抛物线的解析式为___ .11.(填空题,3分)如图,在Rt△ABC 中,∠C=90°,AC=6,AB=9,则sinB=___ .12.(填空题,3分)若抛物线y=ax2+bx+c(a≠0)的示意图如图所示,则a___ 0,b___ 0,c___ 0(填“>”,“=”或“<”).13.(填空题,3分)如图,AB为⊙O的直径,AB=10,CD是弦,AB⊥CD于点E,若CD=6,则EB=___ .14.(填空题,3分)如图,PA,PB是⊙O的两条切线,A,B为切点,若OA=2,∠APB=60°,则PB=___ .15.(填空题,3分)放缩尺是一种绘图工具,它能把图形放大或缩小.制作:把钻有若干等距小孔的四根直尺用螺栓分别在点A,B,C,D处连接起来,使得直尺可以绕着这些点转动,O为固定点,OD=DA=CB,DC=AB=BE,在点A,E处分别装上画笔.画图:现有一图形M,画图时固定点O,控制点A处的笔尖沿图形M的轮廓线移动,此时点E处的画笔便画出了将图形M放大后的图形N.原理:若连接OA,OE,可证得以下结论:① △ODA和△OCE为等腰三角形,则∠DOA= 12(180°-∠ODA),∠COE= 12(180°-∠___ );② 四边形ABCD为平行四边形(理由是___ );③ ∠DOA=∠COE,于是可得O,A,E三点在一条直线上;④ 当DCCB =35时,图形N是以点O为位似中心,把图形M放大为原来的___ 倍得到的.16.(填空题,3分)如图,在平面直角坐标系xOy中,P(4,3),⊙O经过点P.点A,点B在y轴上,PA=PB,延长PA,PB分别交⊙O于点C,点D,设直线CD与x轴正方向所夹的锐角为α.(1)⊙O的半径为 ___ ;(2)tanα=___ .17.(问答题,5分)计算:2sin60°-tan45°+cos230°.18.(问答题,5分)已知关于x的方程x2+2x+k-4=0.(1)如果方程有两个不相等的实数根,求k的取值范围;(2)若k=1,求该方程的根.19.(问答题,6分)借助网格画图并说理:如图所示的网格是正方形网格,△ABC的三个顶点是网格线的交点,点A在BC边的上方,AD⊥BC于点D,BD=4,CD=2,AD=3.以BC为直径作⊙O,射线DA交⊙O于点E,连接BE,CE.(1)补全图形;(2)填空:∠BEC=___ °,理由是 ___ ;(3)判断点A与⊙O的位置关系并说明理由;(4)∠BAC ___ ∠BEC(填“>”,“=”或“<”).20.(问答题,5分)二次函数y=ax2+bx+c(a≠0)的图象经过(3,0)点,当x=1时,函数的最小值为-4.(1)求该二次函数的解析式并画出它的图象;(2)直线x=m与抛物线y=ax2+bx+c(a≠0)和直线y=x-3的交点分别为点C,点D,点C 位于点D的上方,结合函数的图象直接写出m的取值范围.21.(问答题,5分)如图,AB为⊙O的直径,AC为弦,点D在⊙O外,∠BCD=∠A,OD交⊙O于点E.(1)求证:CD是⊙O的切线;,求DE的长.(2)若CD=4,AC=2.7,cos∠BCD= 92022.(问答题,5分)如图,一艘海轮位于灯塔P的南偏东30°方向,距离灯塔100海里的A 处,它计划沿正北方向航行,去往位于灯塔P的北偏东45°方向上的B处.(1)问B处距离灯塔P有多远?(结果精确到0.1海里)(2)假设有一圆形暗礁区域,它的圆心位于射线PB上,距离灯塔150海里的点O处.圆形暗礁区域的半径为60海里,进入这个区域,就有触礁的危险.① 请判断海轮到达B处是否有触礁的危险?并说明理由.② 如果海伦从B处继续向正北方向航行,是否有触礁的危险?直接写出结论,不用说明理由.(参考数据:√2≈1.414,√3≈1.732)23.(问答题,7分)如图,正方形ABCD的边长为4,点E在AB边上,BE=1,F为BC边的中点.将正方形截去一个角后得到一个五边形AEFCD,点P在线段EF上运动(点P可与点E,点F重合),作矩形PMDN,其中M,N两点分别在CD,AD边上.设CM=x,矩形PMDN的面积为S.(1)DM=___ (用含x的式子表示),x的取值范围是___ ;(2)求S与x的函数关系式;(3)要使矩形PMDN的面积最大,点P应在何处?并求最大面积.24.(问答题,7分)已知:点A(-1,-4)和P是一次函数y=kx+b与反比例函数y= m图象x的两个不同交点,点P关于y轴的对称点为P′,直线AP以及AP′分别与x轴交于点M和N.的表达式;(1)求反比例函数y= mxMN,求k的取值范围.(2)若PP′≥ 3225.(问答题,7分)已知抛物线y=- 1x2+x.2(1)直接写出该抛物线的对称轴,以及抛物线与y轴的交点坐标;(2)已知该抛物线经过A(3n+4,y1),B(2n-1,y2)两点.① 若n<-5,判断y1与y2的大小关系并说明理由;② 若A,B两点在抛物线的对称轴两侧,且y1>y2,直接写出n的取值范围.26.(问答题,0分)在平面直角坐标系xOy中,抛物线y=ax2+bx经过点(3,3).(1)用含a的式子表示b;(2)直线y=x+4a+4与直线y=4交于点B,求点B的坐标(用含a的式子表示);(3)在(2)的条件下,已知点A(1,4),若抛物线与线段AB恰有一个公共点,直接写出a(a<0)的取值范围.27.(问答题,0分)在Rt△ABC中,∠ACB=90°,∠ABC=30°,BC= √3.将△ABC绕点B顺时针旋转α(0°<α≤120°)得到△A'BC',点A,点C旋转后的对应点分别为点A',点C'.(1)如图1,当点C'恰好为线段AA'的中点时,α=___ °,AA'=___ ;(2)当线段AA'与线段CC'有交点时,记交点为点D.① 在图2中补全图形,猜想线段AD与A'D的数量关系并加以证明;② 连接BD,请直接写出BD的长的取值范围.28.(问答题,0分)对于平面内的图形G1和图形G2,记平面内一点P到图形G1上各点的最短距离为d1,点P到图形G2上各点的最短距离为d2,若d1=d2,就称点P是图形G1和图形G2的一个“等距点”.在平面直角坐标系xOy中,已知点A(6,0),B(0,2 √3).(1)在R(3,0),S(2,0),T(1,√3)三点中,点A和点B的等距点是 ___ ;(2)已知直线y=-2.① 若点A和直线y=-2的等距点在x轴上,则该等距点的坐标为 ___ ;② 若直线y=a上存在点A和直线y=-2的等距点,求实数a的取值范围;x,以原点O为圆心作半径为r的⊙O.若⊙O上(3)记直线AB为直线l1,直线l2:y=- √33有m个直线l1和直线l2的等距点,以及n个直线l1和y轴的等距点(m≠0,n≠0),当m≠n时,求r的取值范围.。

北京市海淀区2021届九年级上期中考试数学试题含答案

北京市海淀区2021届九年级上期中考试数学试题含答案

AOA '北京市海淀区2021届九年级上期中考试数学试题含答案数 学 2021.11学校 姓名 学号 一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的.请将正确选项前的字母填在表格中相应的位置.题号 1 2 3 4 5 6 7 8 9 10 答案1.一元二次方程2320x x --=的二次项系数、一次项系数、常数项分别是 A .3,1-,2- B .3,1,2- C .3,1-,2 D .3,1,2 2.里约奥运会后,受到奥运健儿的感召,群众参与体育运动的热度不减,全民健身再次成为了一种时尚,球场上也显现了更多年轻人的身影.请问下面四幅球类的平面图案中,是中心对称图形的是A B C D 3.用配方法解方程2620x x ++=,配方正确的是A .()239x += B .()239x -= C .()236x += D .()237x += 4.如图,小林坐在秋千上,秋千旋转了80°,小林的位置也从 A 点运动到了A '点,则'OAA ∠的度数为 A .40° B .50° C .70° D .80°5.将抛物线22y x =平移后得到抛物线221y x =+,则平移方式为 A .向左平移1个单位B .向右平移1个单位C .向上平移1个单位D .向下平移1个单位6.在△ABC 中,90C ︒∠=,以点B 为圆心,以BC 长为半径作圆,点A 与该圆的位置关系为A .点A 在圆外B .点A 在圆内C .点A 在圆上D .无法确定 7.若扇形的圆心角为60°,半径为6,则该扇形的弧长为A .πB .2πC .3πD .4π 8.已知2是关于x 的方程230x ax a +-=的根,则a 的值为A .4-B .4C .2D .459.给出一种运算:关于函数nx y =,规定1-='n nx y .例如:若函数41y x =,则有314y x '=.函数32y x =,则方程212y '=的解是A .14x =,24x =-B .123x =,223x =-C .021==x xD .12x =,22x =-10.太阳影子定位技术是通过分析视频中物体的太阳影子变化,确定视频拍照地点的一种方法.为了确定视频拍照地的经度,我们需要对比视频中影子最短的时刻与同一天东经120度影子最短的时刻.在一定条件下,直杆的太阳影子长度l (单位:米)与时刻t (单位:时)的关系满足函数关系2l at bt c =++(a ,b ,c 是常数),如图记录了三个时刻的数据,依照上述函数模型和记录的数据,则该地影子最短时,最接近的时刻t 是A .12.75B .13C .13.33D .13.5二、填空题(本题共18分,每小题3分) 11.方程02=-x x 的解为 .12.请写出一个对称轴为3x =的抛物线的解析式 .13.如图,用直角曲尺检查半圆形的工件,其中合格的是图 (填“甲”、“乙”或“丙”),你的依照是_______________________________________________________ _______________________________________________________.14.若关于x 的方程220x x k --=有两个相等的实数根,则k 的值是 .15.如图,△ABC 内接于⊙O ,∠C =45°,半径OB 的长为3,则AB的长为 .16.CPI 指居民消费价格指数,反映居民家庭购买消费商品及服务的价格水平的变动情形.CPI 的涨跌率在一定程度受到季节性因素和天气因素的阻碍.依照北京市2020年甲 乙丙1413120.350.40.6Ol (米t (时)B OyxO –1–2–3123–1–2–3123与2021年CPI 涨跌率的统计图中的信息,请判定2020年1~8月份与2021年1~8月份,同月份比较CPI 涨跌率下降最多的月份是 月;请依照图中提供的信息,预估北京市2021年第四季度CPI 涨跌率变化趋势是 ,你的预估理由是 .2020与2021年CPI 涨跌率(%)三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.解方程:246x x +=.18.求抛物线22y x x =-的对称轴和顶点坐标,并画出图象.19.如图,A ,D 是半圆上的两点,O 为圆心,BC 是直径,∠D =35°,求∠OAC 的度数.20.已知:2230m m +-=.D B O C A图2求证:关于x 的方程2220x mx m --=有两个不相等的实数根.21.如图,在等边△ABC 中,点D 是 AB 边上一点,连接CD ,将线段CD 绕点C 按顺时针方向旋转60°后得到CE ,连接AE . 求证:AE ∥BC .22.如图1,在线段AB 上找一点C ,C 把AB 分为AC 和CB 两段,其中BC 是较小的一段,假如2BC AB AC ⋅=,那么称线段AB 被点C 黄金分割.为了增加美感,黄金分割经常被应用在绘画、雕塑、音乐、建筑等艺术领域. 如图2,在我国古代紫禁城的中轴线上,太和门位于太和殿与内金水桥之间靠近内金水桥的一侧,三个建筑的位置关系满足黄金分割,已知太和殿到内金水桥的距离约为1005 2.2).A C B图1B CDA EDOMB EC FA23.如图1是某公园一块草坪上的自动旋转喷水装置,这种旋转喷水装置的旋转角度为240°,它的喷灌区是一个扇形.小涛同学想了解这种装置能够喷灌的草坪面积,他 测量出了相关数据,并画出了示意图.如图2,A ,B 两点的距离为18米,求这种 装置能够喷灌的草坪面积.24.下表是二次函数2y ax bx c =++的部分x ,y 的对应值:x… 1-12-12 132 252 3 … y…m141-74- 2-74- 1-142…(1)二次函数图象的开口向 ,顶点坐标是 ,m 的值为 ;(2)当0x >时,y 的取值范畴是 ;(3)当抛物线2y ax bx c =++的顶点在直线y x n =+的下方时,n 的取值范畴是 .25.如图,在△ABC 中,AB =BC ,以AB 为直径的⊙O 分别交AC ,BC 于点D ,E ,过点A作⊙O 的切线交BC 的延长线于点F ,连接AE . (1)求证:∠ABC =2∠CAF ; (2)过点C 作CM ⊥AF 于M 点,若CM = 4,BE = 6,求AE 的长.图1OA B240°图226.小华在研究函数1y x =与22y x =图象关系时发觉:如图所示,当1x =时,11y =,22y =;当2x =时,12y =,24y =;…;当x a =时,1y a =,22y a =.他得出假如将函数1y x =图象上各点的横坐标不变,纵坐标变为原先的2倍,就能够得到函数22y x =的图象.类比小华的研究方法,解决下列问题:(1)假如函数3y x =图象上各点横坐标不变,纵坐标变为原先的3倍,得到的函数图象的表达式为 ;(2)①将函数2y x =图象上各点的横坐标不变,纵坐标变为原先的 倍,得到函数24y x =的图象;②将函数2y x =图象上各点的纵坐标不变,横坐标变为原先的2倍,得到图象 的函数表达式为 .27.在平面直角坐标系xOy 中,抛物线21y x mx n =++-的对称轴为2x =.(1)m 的值为 ;(2)若抛物线与y 轴正半轴交于点A ,其对称轴与x 轴交于点B ,当△OAB 是等腰直角三角形时,求n 的值;(3)点C 的坐标为(3,0),若该抛物线与线段OC 有且只有一个交点,求n 的取值范畴.28.在菱形ABCD 中,∠BAD =α,E 为对角线AC 上的一点(不与A ,C 重合),将射线EB绕点E 顺时针旋转β角之后,所得射线与直线AD 交于F 点.试探究线段EB 与EF 的数量关系.小宇发觉点E 的位置,α和β的大小都不确定,因此他从专门情形开始进行探究.(1)如图1,当α=β=90°时,菱形ABCD 是正方形.小宇发觉,在正方形中,AC 平分∠BAD ,作EM ⊥AD 于M ,EN ⊥AB 于N .由角平分线的性质可知EM =EN ,进而可得EMF ENB △≌△,并由全等三角形的性质得到EB 与EF 的数量关系为 .(2)如图2,当α=60°,β=120°时,①依题意补全图形;②请帮小宇连续探究(1)的结论是否成立.若成立,请给出证明;若不成立, 请举出反例说明;(3) 小宇在利用专门图形得到了一些结论之后,在此基础上对一样的图形进行了探究,FEM CD A N B 图1 图2设∠ABE =γ,若旋转后所得的线段EF 与EB 的数量关系满足(1)中的结论,请直截了当写出角α,β,γ满足的关系:. 29.点P 到AOB ∠的距离定义如下:点Q 为AOB ∠的两边上的动点,当PQ 最小时,我们称现在PQ 的长度为点P 到AOB ∠的距离,记为()d P AOB ∠,.专门的,当点P 在AOB ∠的边上时,()0d P AOB ∠=,. 在平面直角坐标系xOy 中,A ()40,. (1)如图1,若M (0,2),N (1-,0),则()d M AOB ∠=, ,()d N AOB ∠=, ;(2)在正方形OABC 中,点B (4,4).①如图2,若点P 在直线34y x =+上,且()d P AOB ∠=,,求点P 的坐标;②如图3,若点P 在抛物线24y x =-上,满足()d P AOB ∠=,P 有个,请你画出示意图,并标出点图2图1图3九年级第一学期期中练习数 学 答 案 2021.11一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)11.1201x x ==,; 12.()23y x =-(答案不唯独);13.乙,90°的圆周角所对的弦是直径; 14.1-; 15. 16.8,第二空填“上涨”、“下降”、“先减后增”等,第三空要能支持第二空的合理性即可.三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分) 17.解法一:解:24410x x ++=,----------------------------------------------------------------------------------1分 ()2210x +=,-------------------------------------------------------------------------------------3分2x =-±12x =-,22x =- -------------------------------------------------------------5分解法二: 解:2460x x +-=,----------------------------------------------------------------------------------1分-2b x a ±==,----------------------------------------------------3分2x =-±12x =-,22x =- -------------------------------------------------------------5分 18.解:()211y x =--,-----------------------------------------------------------------------------------1分∴对称轴为1x =. --------------------------------------------------------------------------------2分顶点为()11-,. ----------------------------------------------------------------------------------3分----------------------------------------------------------------------------5分19.解法一:解:∵35D ∠=°,∴35B D ∠=∠=°. ---------------------------------------------1分 ∵BC 是直径, ∴90BAC ∠=°.∴90ACB ∠=°55ABC -∠=°. -------------------------------3分 ∵OA OC =,∴55OAC OCA ∠=∠=°. --------------------------------------5分 解法二:解:∵35D ∠=°, ∴270AOC D ∠=∠=°. ---------------------------------------------------------------------1分∵OA OC =, ∴OAC OCA ∠=∠,----------------------------------------------------------------------------3分∵180OAC OCA AOC ∠+∠+∠=°, ∴55OAC ∠=°. ---------------------------------------------------------------------------------5分 20.解:∵2230m m +-=, ∴223m m +=. ---------------------------------------------------------------------------------1分∴248m m ∆=+-----------------------------------------------------------------------------------2分 ()242120m m =+=>,------------------------------------------------------------------4分 ∴原方程有两个不相等的实数根. -------------------------------------------------------------5分 21.解:∵等边ABC △,∴AC BC =,60B ACB ∠=∠=°.∵线段CD 绕点C 顺时针旋转60°得到CE , ∴CD CE =,60DCE ∠=°. ∴DCE ACB ∠=∠.------------------------------------------------1分即1223∠+∠=∠+∠.∴13∠=∠. -----------------------------------------------------------------------------------------2分 在BCD △与ACE △中,13BC AC CD CE =⎧⎪∠=∠⎨⎪=⎩,,, ∴BCD △≌ACE △. ------------------------------------------------------------------------3分∴60EAC B ∠=∠=°. ∴EAC ACB ∠=∠.--------------------------------------------------------------------------------4分∴AE BC ∥. --------------------------------------------------------------------------------------5分 22.解:设太和门到太和殿的距离为x 丈,321DB CA E-----------------------------------------------------------1分 由题意可得,()2100100x x =-.----------------------------------------------------------------------------3分150x =-+,250x =--(舍).--------------------------------------------4分 5050 2.260x ≈-+⨯=.答:太和门到太和殿的距离为60丈. ------------------------------------------------------------5分 23.解:过点O 作OC AB ⊥于C 点.∵OC AB ⊥,18AB =,∴192AC AB ==. ---------------------------------------1分∵OA OB =,360AOB ∠=°240-°120=°,∴1602AOC AOB ∠=∠=°. ---------------------------2在Rt OAC △中,222OA OC AC =+,又∵12OC OA =,∴r OA == -----------------------------------------4分 ∴240360S =πr 2=72π(m 2).----------------------------------5分 24.(1)上;()12-,;2;(说明:每空1分) ------------------------------------------------------3分 (2)2y ≥-;------------------------------------------------------------------------------------------4分 (3)3n >-. -------------------------------------------------------------------------------------------5分 25.(1)连接BD , ∵AB 是直径,∴90ADB ∠=°. --------------------------1∵AF 是⊙O 的切线, ∴90BAF ∠=°.∴1290BAC BAC ∠+∠=∠+∠=°. ∴12∠=∠. ∵AB=BC , ∴2122ABC ∠=∠=∠. ---------------------------------------------------------------------2分(2)∵12334∠=∠=∠∠=∠,,∴24∠=∠. ∵AB 是直径, ∴CE⊥AE .--------------------------------------------------------------------------------------------3分 ∵CM ⊥AF ,CM =4, ∴CE =CM =4. --------------------------------------------------------------------------------------4分 ∵BE =6,∴AB =BC =BE +EC =10.在Rt △ABE 中,8AE ===. ----------------------------------------------------5分 26.(1)9y x=;-------------------------------------------------------------------------------------------1分 (2)①4;----------------------------------------------------------------------------------------------3分 ②214y x =. --------------------------------------------------------------------------------------5分27.(1)4-. ----------------------------------------------------------------------------------------------1分 (2)241y x x n =-+-, ()01A n -,,()20B , ,------------------------------------------------------------------2分12n -=,3n =. --------------------------------------------------------------------------------------------3分(3)如图1,当抛物线顶点在x 轴上时,5n =, ------------------------------------------------4分 如图2,当抛物线过点C (3,0)时,4n =,--------------------------------------------------5分如图3,当抛物线过原点时,1n =, ---------------------------------------------------------6分结合图象可得,14n ≤<或5n =.------------------------------------------------------------7分28.(1)EB=EF;------------------------------------------------------------------------------------------1分 (2)①;---------------------------------------------------------------------2分 ②结论依旧成立EB =EF . -----------------------------------3分证法1:过点E 作EM ⊥AF 于M ,EN ⊥AB 于N .∵四边形ABCD 为菱形,∴12∠=∠.∵EM ⊥AF ,EN ⊥AB .∴=90FME N ∠=∠°,EM=EN . -------------------4分 ∵60BAD ∠=°,120BEF ∠=°,∴3360F ∠+∠=°180BAD BEF -∠-∠=°. ∵3180EBN ∠+∠=°, ∴F EBN ∠=∠.------------------------------------------------------------------------------5分 在△EFM 与△EBN 中,F EBN FME N EM EN ∠=∠⎧⎪∠=∠⎨⎪=⎩,,,∴△EFM ≌△EBN . ∴EF=EB . ------------------------------------------------------------------------------------6分证法2:连接ED∵四边形ABCD 是菱形, ∴AD =AB ,∠DAC =∠BAE . 又∵AE =AE ,∴△ADE ≌△ABE .∴ED =EB ,∠ADE =∠ABE . ------------------------4分 又∵∠DAB =60°,∠BEF =120°. ∴∠F +∠ABE =180°.又∵∠ADE +∠FDE =180°, --------------------------5分 ∴∠F =∠FDE . ∴EF =ED . ∴EF =EB . -------------------------------------------------------------------------------------6分 (3)+=180αβ°或++=18022αβγ°. ------------------------------------------------------7分 29.(1)1;1.(说明:每空1分) --------------------------------------------------------------------2分(2)①如图,点P 在EF 上时,OP=, 设P (x ,3x +4),()22348x x ++=,12225x x =-=-,(舍),P ()22--,, --------------------------------4分点P 在射线FG 上时,P 到射线OB的距离为 点P 与点C 重合,P ()04,, -------------------------------------5分∴P ()22--,,()04,.②4. -------------------------------------------------------------------------------------------------6分 -------------------------------------------------------------8分(说明:每标对两个点得1分)。

2020-2021学年北京市各区九年级中考一模数学试卷精选汇编:函数计算及运用专题及答案

2020-2021学年北京市各区九年级中考一模数学试卷精选汇编:函数计算及运用专题及答案

函数计算及运用专题东城区22. 已知函数()30y x x=>的图象与一次函数()20y ax a =-≠的图象交于点A ()3,n . (1)求实数a 的值;(2) 设一次函数()20y ax a =-≠的图象与y 轴交于点B.若点C 在y 轴上,且=2ABC AOB S S △△,求点C 的坐标.22.解:(1)∵点()3,A n 在函数()30y x x=>的图象上, ∴=1n ,点()3,1A .∵直线()20y ax a =-≠过点()3,1A , ∴ 321a -= .解得 1a =. ----------------------2分 (2)易求得()0,2B -.如图,12AOB A S OB x =⋅△,1=2ABC A S BC x ⋅△∵=2ABC AOB S S △△, ∴=24BC OB =.∴()10,2C ,或()20,6C -. ----------------------5分西城区22.如图,在平面直角坐标系xOy 中,直线y x m =+与x 轴的交点为0()4,A -,与y 轴的交点为B ,线段AB 的中点M 在函数ky x=(0k ≠)的图象上 (1)求m ,k 的值;(2)将线段AB 向左平移n 个单位长度(0n >)得到线段CD ,A ,MB 的对应点分别为C ,N ,D .①当点D 落在函数ky x=(0x <)的图象上时,求n 的值. ②当MD MN ≤时,结合函数的图象,直接写出n 的取值范围.【解析】(1)如图.∵直线y x m =+与x 轴的交点为0()4,A -, ∴4m =.∵直线y x m =+与y 轴的交点为B , ∴点B 的坐标为(0,4)B . ∵线段AB 的中点为M , ∴可得点M 的坐标为(2,2)M -.∵点M 在函数ky x=(0k ≠)的图象上, ∴4k =-.(2)①由题意得点D 的坐标为(,4)D n -, ∵点D 落在函数ky x=(0k ≠)的图象上, ∴44n -=-, 解得1n =.②n 的取值范围是2n ≥.海淀区22.在平面直角坐标系xOy 中,已知点P (2,2),Q (-1,2),函数my x=. (1)当函数my x=的图象经过点P 时,求m 的值并画出直线y x m =+. (2)若P ,Q 两点中恰有一个点的坐标(x ,y )满足不等式组,m y xy x m⎧>⎪⎨⎪<+⎩(m >0),求m 的取值范围.22.解:(1)∵函数my x=的图象经过点()22P ,, ∴2=2m,即4m =. ………………1分 图象如图所示. ………………2分(2)当点()22P ,满足,m y xy x m⎧>⎪⎨⎪<+⎩(m >0)时, 解不等式组2222m m⎧>⎪⎨⎪<+⎩,得04m <<. ………………3分 当点()12Q -,满足,m y xy x m⎧>⎪⎨⎪<+⎩(m >0)时, 解不等式组221m m >-⎧⎨<-+⎩,得3m >. ………………4分∵P Q ,两点中恰有一个点的坐标满足,m y xy x m⎧>⎪⎨⎪<+⎩(m >0), ∴m 的取值范围是:03m <≤,或4m ≥. ………………5分丰台区22.在平面直角坐标系xOy 中,反比例函数2y x=的图象与一次函数y kx b =+的图象的交点分别为 P(m ,2),Q(-2,n). (1)求一次函数的表达式;(2)过点Q 作平行于y 轴的直线,点M 为此直线上的一点,当MQ = PQ 时,直接写出点M的坐标.22.(1)解: ∵反比例函数2y x=的图象经过点(,2)P m ,Q(-2,n), ∴1m =,1n =-.∴点P ,Q 的坐标分别为(1,2),(-2,-1). …….…….…….……2分 ∵一次函数y kx b =+的图象经过点P(1,2),Q(-2,-1),∴2,2 1.k b k b +=⎧⎨-+=-⎩ 解得1,1.k b =⎧⎨=⎩ ∴一次函数的表达式为1y x =+. .…….…….…….……3分 (2)点M 的坐标为(-2,)或(-2,)……………5分石景山区22.在平面直角坐标系xOy 中,函数a y x=(0x >)的图象与直线1l y x b =+:交于点(3,2)A a -.(1)求a ,b 的值;(2)直线2l y x m =-+:与x 轴交于点B ,与直线1l 交于点C ,若S △ABC 6≥,求m 的取值范围.22.解:(1)∵函数()0a y x x=>的图象过点()3,2A a -,∴23a a -=,解得3a =. ………………1分∵直线1l y x b =+:过点()3,1A ,∴2b =-. ………………2分 (2)设直线2y x =-与x 轴交于点D ,则(2,0)D , 直线y x m =-+与x 轴交于点(,0)B m ,与直线y x b =+交于点22(,)22m m C +-. ①当S △ABC =S △BCD +S △ABD =6时,如图1. 可得211(2)(242m m -+- 解得2m =-,8m =②当S △ABC =S △BCD -S △ABD =6时,如图2. 可得211(2)(2)1642m m ---⨯=, 解得8m =,2m =-(舍).综上所述,当8m ≥或2m -≤时,S △ABC 6≥. ………………5分朝阳区22. 如图,在平面直角坐标系xOy 中,直线AB 与x 轴、y 轴分别交于点A 、B ,与反比例函数xky =的图象在第四象限交于点C ,CD ⊥x 轴于点D ,tan ∠OAB =2,OA =2,OD =1. (1)求该反比例函数的表达式;(2)点M 是这个反比例函数图象上的点,过点M作MN ⊥y 轴,垂足为点N ,连接OM 、AN ,如果 S △ABN =2S △OMN ,直接写出点M 的坐标.22. 解:(1)∵AO =2,OD =1,∴AD =AO+ OD =3. ………………………………………………1分 ∵CD ⊥x 轴于点D , ∴∠ADC =90°.在Rt △ADC 中,6tan =∠⋅=OAB AD CD ..∴C (1,-6). ……………………………………………………2分 ∴该反比例函数的表达式是xy 6-=. ……………………………………3分 (2)点M 的坐标为(-3,2)或(53,-10). ……………………5分 ∴OM 27=215 OM=715∴⊙O 的半径是715…………………………………6′ 门头沟区20. 如图,在平面直角坐标系xOy 中,一次函数y x =与反比例函数ky x=(k ≠0)的图象相交于点)A a .(1)求a 、k 的值;(2)直线x=b (0b >)分别与一次函数y x =、反比例函数ky x=的图象相交于点M 、N , 当MN=2时,画出示意图并直接写出b 的值.20.(本小题满分5分) (1)∵直线y x =与双曲线ky x=(k ≠0)相交于点)A a .∴a =1分∴A∴,解得3k =………………………2分 (2)示意图正确………………………………3分 3b =或1 ………………………………5分大兴区22.如图,点A 是直线2y x =与反比例函数1m y x-=(m 为常数)的图象的交点.过点A 作x 轴的垂线,垂足为B ,且OB =2. (1)求点A 的坐标及m 的值;(2)已知点P (0,n) (0<n ≤8) ,过点P 作平行于x 轴的直线,交直线2y x =于点C 11(,)x y , 交反比例函数1m y x-=(m 为常数)的图象于点D 22(,)x y ,交垂线AB 于点E 33(,)x y , 若231x x x <<,结合函数的图象,直接写出123++x x x 的取值范围.22.(1)解:由题意得,可知点A 的横坐标是2,……………………1分由点A 在正比例函数2y x =的图象上,∴点A 的坐标为(2,4)……………………………………2分又Q 点A 在反比例函数1m y x-=的图象上,142m -∴=,即9m =.……………………………………… 3分(2)6<x 1+x 2+x 3≤7 ……………………………………………… 5分平谷区22.如图,在□ABCD 中,BF 平分∠ABC 交AD 于点F ,AE ⊥BF 于点O ,交BC 于点E ,连接EF . (1)求证:四边形ABEF 是菱形;(2)连接CF ,若∠ABC=60°, AB= 4,AF =2DF ,求CF 的长.ODF22.(1)证明:∵BF平分∠ABC,∴∠ABF=∠CBF. (1)∵□ABCD,∴AD∥BC.∴∠ABF=∠AFB.∴AB=AF.∵AE⊥BF,∴∠ABF+∠BAO=∠CBF+∠BEO=90°.∴∠BAO=∠BEO.∴AB=BE.∴AF=BE.∴四边形ABEF是平行四边形.∴□ABEF是菱形. (2)(2)解:∵AD=BC,AF=BE,∴DF=CE.∴BE=2CE.∵AB=4,∴BE=4.∴CE=2.过点A 作AG ⊥BC 于点G . (3)∵∠ABC=60°,AB=BE , ∴△ABE 是等边三角形. ∴BG=GE=2.∴AF=CG=4. ························ 4 ∴四边形AGCF 是平行四边形. ∴□AGCF 是矩形. ∴AG=CF .在△ABG 中,∠ABC=60°,AB=4, ∴AG= ∴CF=怀柔区22.在平面直角坐标系xOy 中,一次函数y=kx+b 的图象与y 轴交于点B (0,1),与反比例函数xmy 的图象交于点A(3,-2).(1)求反比例函数的表达式和一次函数表达式;(2)若点C 是y 轴上一点,且BC=BA ,直接写出点C 的坐标.yx–1–2–3–4–512345–1–2–3–4–512345O22.(1)∵双曲线x m y =过A (3,-2),将A (3,-2)代入xm y =, 解得:m= -6.∴所求反比例函数表达式为: y=x6-. …………………………………1分 ∵点A (3,-2)点B (0,1)在直线y=kx+b 上,∴-2=3k+1. …………………………………………………………………………………2分 ∴k=-1.∴所求一次函数表达式为y=-x+1. …………………………………………………………3分 (2)C(0,123+ )或 C(0,231- ). ……………………………………………………5分延庆区22.在平面直角坐标系xOy 中,直(0)y kx b k =+≠ 与x 轴交于点A ,与y 轴交于点B ,与反比例函数(0)my m x=≠的图象在第一象限交于点P (1,3),连接OP . (1)求反比例函数(0)my m x=≠的表达式; (2)若△AOB 的面积是△POB 的面积的2倍,求直线y kx b =+的表达式.-1-2-3-3-2-1y123456x54321O22.(1)3y x……1分 (2) 如图22(1):∵∴OA=2PE=2∴A (2,0) ……2分 将A (2,0),P (1,3)代入y=kx+b可得∴ ……3分 图22(1)∴直线AB 的表达式为:y=-3x+6同理:如图22(2)直线AB 的表达式为:y=x+2 ……4分 综上:直线AB 的表达式为y=-3x+6或y=x+2 ……5分图22(2)顺义区22.如图,在平面直角坐标系xOy 中,直线24y x =+与双曲线ky x=(k ≠0)相交于A (-3,a ),B 两点. (1)求k 的值;(2)过点P (0,m )作直线l ,使直线l 与y 轴垂直,直线l 与直线AB 交于点M ,与双曲线ky x=交于点N ,若点P 在点M 与点N 之间,直接写出m 的取值范围.22.解:(1)∵点A (-3,a )在直线24y x =+上,∴2(3)42a =⨯-+=-.∴点A 的坐标为(-3,-2). …………………………………… 1分 ∵点A (-3,-2)在双曲线ky x=上, ∴23k-=-, ∴6k =. …………………………………… 3分(2)m 的取值范围是 04m <<. ……………………………… 5分。

北京市西城区三帆中学2020-2021学年九年级上学期期中数学试题

北京市西城区三帆中学2020-2021学年九年级上学期期中数学试题

北京市西城区三帆中学2020-2021学年九年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.抛物线()213y x =-+的顶点坐标为( ) A .()1,3B .()1,3-C .()1,3--D .()3,12.如图,⊙O 是△ABC 的外接圆,∠OCB =40°,则∠A 的大小为( )A .40°B .50°C .80°D .100°3.下面列图案中既是轴对称图形.....又是中心对称图形......的是( ) A . B . C . D .4.如图,四边形ABCD 内接于⊙O ,E 为CD 延长线上一点,如果∠ADE=120°,那么∠B 等于( )A .130°B .120°C .80°D .60°5.在平面直角坐标系xOy 中,将抛物线y=2x 2 先向左平移3个单位长度,再向下平移4个单位长度后所得到的抛物线的表达式为( ) A .22(+3)4y x =- B .22(3)4y x =-- C .22(+3)4y x =+D .22(3)+4y x =-6.已知二次函数22y x x =-,若点1(1,)A y -,2(2,)B y ,是它图象上的两点,则1y 与2y 的大小关系为( )A .12y y >B .12y y =C .12y y <D .不能确定7.如图,数轴上有A 、B 、C 三点,点A ,C 关于点B 对称,以原点O 为圆心作圆,若点A ,B ,C 分别在O 外,O 内,O 上,则原点O 的位置应该在( )A .点A 与点B 之间靠近A 点 B .点A 与点B 之间靠近B 点C .点B 与点C 之间靠近B 点D .点B 与点C 之间靠近C 点8.已知一次函数()10y kx m k =+≠和二次函数()220y ax bx c a =++≠部分自变量和对应的函数值如表:当y 2>y 1时,自变量x 的取值范围是 A .-1<x <2 B .4<x <5C .x <-1或x >5D .x <-1或x >4二、填空题9.点(2,1)P 关于原点对称的点的坐标为_____________.10.请你写出一个二次函数,其图象满足条件:①开口向下;②图象过原点.此二次函数的解析式可以是______11.如图所示,P 是等边△ABC 内一点,△BCM 是由△BAP 旋转所得,则∠PBM =_____________.12.如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,已知CD =8,EB =2,则⊙O 的半径为_____.13.若抛物线2+6y x x m =-与x 轴有且只有....一个公共点,则m 的值为________. 14.如图,在一块长12m,宽8m 的矩形空地上,修建同样宽的两条道路(两条道路各与矩形的一条边平行),剩余部分栽种花草,且栽种花草的面积为60m 2,设道路的宽为x m ,则根据题意,可列方程为________.15.如图所示的网格是正方形网格,线段AB 绕点A 顺时针旋转α(0°<α<180°)后与⊙O 相切,则α的值为_____.16.如图,已知二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴的一个交点为A (-1,0),对称轴为直线x =1,与y .轴.的交点B 在(0,2)和(0,3)之间(包括这两点),下列四个结论中,①当x >3时,y <0;② 3a +b <0;③-1≤a ≤23-;④4ac -b 2> 8a ;所有正确结论的序号是_______________ .三、解答题17.解方程:22410x x --=18.阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题:根据小芸设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明: 证明:连接OA ,OB ,OC ,由作图可知 OA=OB=OC ( )(填推理的依据) ∴⊙O 为△ABC 的外接圆; ∵点C ,P 在⊙O 上,AB AB =∴∠APB =∠ACB .( )(填推理的依据) 19.已知抛物线y=﹣x 2+2x+3与x 轴交于A ,B 两点,点A 在点B 的左侧. (1)求A ,B 两点的坐标和此抛物线的对称轴;(2)设此抛物线的顶点为C ,点D 与点C 关于x 轴对称,求四边形ACBD 的面积. 20.如图,在ABC 中,ACB 90∠=,AC BC =,D 是AB 边上一点(点D 与A ,B不重合),连结CD ,将线段CD 绕点C 按逆时针方向旋转90得到线段CE ,连结DE 交BC 于点F ,连接BE .1()求证:ACD ≌BCE ;2()当AD BF =时,求BEF ∠的度数.21.已知二次函数y =x 2 + 4x + 3.(1)将二次函数的表达式化为y = a (x -h )2 + k 的形式;(2)在平面直角坐标系xOy 中,用描点法画出这个二次函数的图象;(3)观察图象,直接写出当30x -≤≤时y 的取值范围; (4)根据(2)中的图象,写出一条该二次函数的性质.22.跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分. 一名运动员起跳后,他的飞行路线如右图所示,当他的水平距离为15m 时,达到飞行的最高点C 处,此时的竖直高度为45m ,他落地时的水平距离(即OA 的长)为60m ,求这名运动员起跳时的竖直高度(即OB 的长).23.如图,AB是⊙O的直径,弦CD⊥AB于点E,在⊙O的切线CM上取一点P,使得∠CPB=∠COA.(1)求证:PB是⊙O的切线;(2)若CD=6,∠AOC=60°,求PB的长.24.如图,点P是AB上一动点,连接AP,作∠APC=45°,交弦AB于点C.已知AB=6cm,设A,P两点间的距离为x cm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm.(当点P与点A重合时,y1,y2的值为0;当点P与点B重合时,y1的值为0,y2的值为6).小智根据学习函数的经验,分别对函数y随自变量x的变化而变化的规律进行了探究.下面是小智的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y与x的几组对应值;经测量m的值是(保留一位小数).(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当△ACP为等腰三角形时,AP的长度约为cm(保留一位小数).25.关于x 的一元二次方程a x2+ bx + c = 0(a>0)有两个不相等且非零的实数根,探究a,b,c满足的条件.小华根据学习函数的经验,认为可以从二次函数的角度看一元二次方程,下面是小华的探究过程:第一步:设一元二次方程ax2+bx+c = 0(a>0)对应的二次函数为y = ax2+bx +c(a>0);第二步:借助二次函数图象,可以得到相应的一元二次方程中a,b,c满足的条件,列表如下:(1)请帮助小华将上述表格补充完整;(2)参考小华的做法,解决问题:若关于x的一元二次方程()2520-+-=x m x m有一个负实根和一个正实根,且负实根大于-1,求实数m的取值范围.26.已知抛物线24y x x n=-++,将抛物线在y轴左侧部分沿x轴翻折,翻折后的部.....分.和抛物线与y轴交点以及y轴右侧部分组成图形G,已知19(,1),(,1)22M N-(1)求抛物线24y x x n=-++的对称轴;(2)当0n=时,①若点(1,)A m-在图形G上,求m的值;②直接写出线段MN与图形G的公共点个数;(3)当n<0时,若线段MN与图形G恰有..两个公共点,直接写出n的取值范围. 27.已知△ABC中,∠ABC=90°,将△ABC绕点B逆时针旋转90°后,点A的对应点为点D,点C的对应点为点E,直线DE与直线AC交于点F,连接FB.(1)如图1,当∠BAC <45°时, ①求证:DF ⊥AC ; ②求∠DFB 的度数;(2)如图2,当∠BAC >45°时, ①请依题意补全图2;②用等式表示线段FC ,FB ,FE 之间的数量关系,并证明.28.对于平面直角坐标系xOy 中的点P 和⊙C ,给出如下定义:若存在过点P 的直线l 交⊙C 于异于点P 的A ,B 两点,在P ,A ,B 三点中,位于中间的点恰为以另外两点为端点的线段的中点时,则称点P 为⊙C 的相邻点,直线l 为⊙C 关于点P 的相邻线. (1)当⊙O 的半径为1时,①分别判断在点D (12,14),E (0),F (4,0)中,是⊙O 的相邻点有 ;②请从①中的答案中,任选一个相邻点,在图1中做出⊙O 关于它的一条相邻线,并说明你的作图过程;③点P 与点O 的距离d 满足范围___________________时,点P 是⊙O 的相邻点; ④点P 在直线y=﹣x+3上,若点P 为⊙O 的相邻点,求点P 横坐标x 的取值范围;(2)⊙C 的圆心在x 轴上,半径为1,直线y=﹣3x 轴,y 轴分别交于点M ,N ,若线段MN 上存在⊙C 的相邻点P ,直接写出圆心C 的横坐标x 的取值范围.参考答案1.A【分析】根据顶点式的特点可直接写出顶点坐标.【详解】因为y=(x-1)2+3是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(1,3).故选A.【点睛】本题考查了二次函数的性质:顶点式y=a(x-h)2+k,顶点坐标是(h,k),对称轴是x=h ,此题考查了学生的应用能力.2.B【解析】试题分析:∵OB=OC,∠OCB=40°,∴∠BOC=180°-2∠OCB=100°,∴由圆周角定理可知:∠A=12∠BOC=50°.故选B.3.D【分析】根据轴对称图形和中心对称图形的定义逐项判断即可.【详解】解:A、既不是轴对称图形,也不是中心对称图形,不符合题意,所以本选项错误;B、既不是轴对称图形,也不是中心对称图形,不符合题意,所以本选项错误;C、是轴对称图形,不是中心对称图形,不符合题意,所以本选项错误;D、既是轴对称图形,也是中心对称图形,符合题意,所以本选项正确.故选D.【点睛】本题考查了轴对称图形和中心对称图形的定义,属于基础题型,掌握概念是关键. 4.B【解析】试题分析:∵四边形ABCD 内接于⊙O ,∴∠B=∠ADE=120°.故选B .考点:圆内接四边形的性质.5.A【解析】【分析】把抛物线y=2x 2的顶点(0,0)先向左平移3个单位长度,再向下平移4个单位长度后得到点的坐标为(-3,-4),即得到平移后抛物线的顶点坐标,然后根据顶点式写出解析式即可.【详解】解:抛物线y=2x 2的顶点坐标为(0,0),把点(0,0)先向左平移3个单位长度,再向下平移4个单位长度后得到点的坐标为(-3,-4),所以平移后所得的抛物线的解析式为y=2(x+3)2-4.故选:A .【点睛】本题考查二次函数图象与几何变换:先把二次函数解析式配成顶点式y=a (x-h )2+k ,然后把抛物线的平移问题转化为顶点的平移问题6.A【分析】把A 、B 两点代入函数解析式,求出12,y y 的值即得答案.【详解】解:把1(1,)A y -,2(2,)B y 代入22y x x =-得:()()211213y =--⨯-=,222220y =-⨯=,所以12y y >.故选A.【点睛】本题考查了二次函数的性质和求值,属于基础题型,掌握比较的方法是关键.7.C【解析】【分析】分析A ,B ,C 离原点的远近,画出图象,利用图象法即可解决问题;【详解】由题意知,点A 离原点最远,点C 次之,点B 离原点最近,如图,观察图象可知,原点O 的位置应该在点B 与点C 之间靠近B 点,故选:C .【点睛】本题考查点与圆的位置关系,解题的关键是理解题意,学会利用图象法解决问题. 8.D【分析】利用表中数据得到直线与抛物线的交点为(-1,0)和(4,5),-1<x <4时,y 1>y 2,从而得到当y 2>y 1时,自变量x 的取值范围.【详解】∵当x=0时,y 1=y 2=0;当x=4时,y 1=y 2=5;∴直线与抛物线的交点为(-1,0)和(4,5),而-1<x <4时,y 1>y 2,∴当y 2>y 1时,自变量x 的取值范围是x <-1或x >4.故选D .【点睛】本题考查了二次函数与不等式:对于二次函数y=ax 2+bx+c (a 、b 、c 是常数,a≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.9.(2,1)--【分析】根据关于原点对称的点的坐标特征:横纵坐标均互为相反数进行求解.【详解】解:点(2,1)P 关于原点对称的点的坐标为(2,1)--.故答案为:(2,1)--.【点睛】本题考查了坐标系中点的对称性,难度不大,熟知一个点关于x 轴、y 轴、原点对称的点的坐标特征是解题的关键.10.2y x =-等【分析】根据题意,只要二次函数的解析式满足:二次项系数为负,常数项为0即可.【详解】解:符合题意的二次函数可以是:2y x =-等(答案不唯一).故答案为:2y x =-等.【点睛】本题考查了二次函数的图象与性质,属于基础题型,熟练掌握二次函数的性质是关键. 11.60°【分析】根据等边三角形的性质和旋转的性质即可求得答案.【详解】解:∵△ABC 是等边三角形,∴∠ABC =60°,∵△BCM 是由△BAP 旋转所得,∴旋转中心是点B ,旋转角为∠ABC =60°,∴∠PBM=∠ABC =60°. 故答案为:60°. 【点睛】本题考查了等边三角形的性质和旋转的性质,难度不大,掌握相关性质是解题的关键. 12.5【分析】连接OC ,设⊙O 的半径为R ,根据垂径定理求出CE ,根据勾股定理列式计算,得到答案.【详解】连接OC ,设⊙O 的半径为R ,则OE =R ﹣2,∵CD ⊥AB ,∴CE =12CD =4, 由勾股定理得,OC 2=OE 2+CE 2,即R 2=(R ﹣2)2+42,解得,R =5,则⊙O 的半径为5,故答案为5.【点睛】本题考查的是垂径定理、勾股定理,垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. 13.-9【分析】根据2+60x x m -=的判别式△=0求解即可.【详解】解:因为抛物线2+6y x x m =-与x 轴有且只有....一个公共点,所以对应的方程2+60x x m -=的判别式△=0,即()2640m -⨯-=,解得:9m =-. 故答案为:-9.【点睛】本题考查了二次函数和一元二次方程的关系,难度不大,熟练掌握二次函数和对应的一元二次方程的关系是求解的关键.14.(12)(8)60x x --=【分析】利用平移的思想把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的部分是一个矩形,根据矩形面积公式列出方程即可.【详解】解:因为道路的宽为x m ,所以根据题意可得:(12)(8)60x x --=.故答案为:(12)(8)60x x --=.【点睛】本题考查了一元二次方程的应用,是典型的利用平移思想求解的问题,解题的关键正确理解题意、掌握方法列出方程.15.60°或120 °【解析】【分析】线段AB 绕点A 顺时针旋转α(0°<α<180°)后与⊙O 相切,切点为C′和C″,连接OC′、OC″,根据切线的性质得OC′⊥AB′,OC″⊥AB″,利用直角三角形30度的判定或三角函数求出∠OAC′=30°,从而得到∠BAB′=60°,同理可得∠OAC″=30°,则∠BAB″=120°.【详解】线段AB 绕点A 顺时针旋转α(0°<α<180°)后与⊙O 相切,切点为C′和C″,连接OC′、OC″,则OC′⊥AB′,OC″⊥AB″,在Rt △OAC′中,∵OC′=1,OA=2,∴∠OAC′=30°,∴∠BAB′=60°,同理可得∠OAC″=30°,∴∠BAB″=120°,综上所述,α的值为60°或120°.故答案为60°或120°.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了旋转的性质和直角三角形的性质.16.①②③【分析】由抛物线的对称性可求得抛物线与x 轴另一个交点的坐标,据此可判断①;根据抛物线的对称轴为直线x =1可得a 与b 的关系式,再结合a 为负数即而可判断②;设抛物线的解析式为()()13y a x x =+-,根据抛物线与y 轴的交点B 在(0,2)和(0,3)之间可得关于a 的不等式,解不等式即可判断③;根据抛物线y 轴的交点B 在(0,2)和(0,3)之间,可得c 的取值范围,再假设④正确,则可推出c 的相应范围,由此可判断④.【详解】解:由抛物线的对称性可求得抛物线与x 轴另一个交点的坐标为(3,0),所以当x >3时,y <0,故①正确;因为抛物线开口向下,所以a <0,∵2b x a=-=1,∴2a +b =0,∴300a b a a +=+=<,故②正确;设抛物线的解析式为()()13y a x x =+-,则223y ax ax a =--,令x =0,得:3y a =-, ∵抛物线与y 轴的交点B 在(0,2)和(0,3)之间,∴233a ≤-≤,解得:213a -≤≤-,故③正确;∵抛物线与y 轴的交点B 在(0,2)和(0,3)之间,∴2≤c ≤3, 若248ac b a ->,则248ac a b ->,∵a <0,∴224b c a -<,∴20c -<,∴c <2,与2≤c ≤3矛盾,故④错误.故答案为:①②③.【点睛】本题考查了二次函数的性质以及二次函数与其系数的关系,属于中考常考题型,熟练掌握二次函数的性质是解题的关键.17.1211x x ==+ 【解析】试题分析:方程22410x x --=的()()24421240∆=--⨯⨯-=>,所以方程22410x x --=有两个实数根,由求根公式x =解得()1414x ---==()2414x --==+考点:一元二次方程点评:本题考查一元二次方程,要求考生会利用判别式判断一元二次方程根的情况,会用求根公式求一元二次方程的解18.(1)详见解析;(2)详见解析.【分析】(1)根据作图语言画出对应的几何图形即可;(2)根据线段垂直平分线的性质填写;根据圆周角定理的推论即得答案.【详解】解:(1)符合题意的图形如图所示:(2)证明:连接OA ,OB ,OC ,由作图可知 OA=OB=OC (线段垂直平分线上的点到这条线段两个端点的距离相等), ∴⊙O 为△ABC 的外接圆;∵点C ,P 在⊙O 上,AB AB =,∴∠APB =∠ACB (同弧所对的圆周角相等).故答案为:线段垂直平分线上的点与这条线段两个端点的距离相等;同弧所对的圆周角相等.【点睛】本题考查了尺规作三角形的外接圆、线段垂直平分线的性质和圆周角定理的推论等知识,正确把作图语言转化为符号语言、弄清作图的理由和根据是解题的关键.19.(1)A 的坐标是(-1,0),B 的坐标是(3,0);x=1; (2)16.【解析】【分析】(1)令y =0解方程即可求得A 和B 的横坐标,然后利用配方法即可求得对称轴和顶点坐标;(2)首先求得D 的坐标,然后利用面积公式即可求解.【详解】(1)令y =0,则2230x x -++=,解得121,3x x =-=,则A 的坐标是(-1,0),B 的坐标是(3,0),∴()222314y x x x =-++=--+,则对称轴是1x =,顶点C 的坐标是(1,4);(2)由题意,D 的坐标是(1,-4),AB =3-(-1)=4,CD =4-(-4)=8,则四边形ACBD 的面积是1148=1622AB CD ⨯=⨯⨯,故本题⑴1x =,⑵四边形ACBD 的面积是16. 【点睛】本题考查了待定系数法求函数解析式以及配方法确定二次函数的对称轴和顶点坐标,正确求得A 和B 的坐标是解决本题的关键.20.()1证明见解析;()2BEF 67.5∠=.【解析】【分析】()1由题意可知:CD CE =,DCE 90∠=,由于ACB 90∠=,从而可得ACD BCE ∠∠=,根据SAS 即可证明ACD ≌BCE ;()2由ACD ≌()BCE SAS 可知:A CBE 45∠∠==,BE BF =,从而可求出BEF ∠的度数.【详解】()1由题意可知:CD CE =,DCE 90∠=,ACB 90∠=,ACD ACB DCB ∠∠∠∴=-,BCE DCE DCB ∠∠∠=-,ACD BCE ∠∠∴=,在ACD 与BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,ACD ∴≌()BCE SAS ;()2ACB 90∠=,AC BC =,A 45∠∴=,由()1可知:A CBE 45∠∠==,AD BF =,BE BF ∴=,BEF 67.5∠∴=.【点睛】本题考查了旋转的性质、全等三角形的判定与性质,解题的关键是熟练运用旋转的性质以及全等三角形的判定与性质.21.(1)y =(x +2)2 -1;(2)详见解析;(3)-1≤y ≤3;(4)答案不唯一,如:①当x <-2时,y 随x 的增大而减小,②当x >-2时,y 随x 的增大而增大.③抛物线关于直线x=-2对称【分析】(1)利用配方法解答即可;(2)根据列表、描点、画图的步骤即可画出函数图象;(3)根据图象进行解答;(4)根据二次函数的性质作答即可.【详解】解:(1)y = x 2 + 4x + 3= (x +2)2 -1;(2)列表:(3)当30x -≤≤时y 的取值范围是:-1≤y ≤3;(4)答案不唯一,如:①当x <-2时,y 随x 的增大而减小;②当x >-2时,y 随x 的增大而增大;③抛物线关于直线x=-2对称. 【点睛】本题考查了二次函数的解析式之间的转化、二次函数的图象与性质,属于基础题型,熟练掌握二次函数的基本知识是关键.22.这名运动员起跳时的竖直高度为40m. 【分析】根据顶点式利用待定系数法求出二次函数的解析式即可解决问题. 【详解】解:由题意可知抛物线的顶点为C (15, 45), ∴设抛物线的解析式为2(15)45y a x =-+(a ≠0),∵y =0时,x =60,∴20(6015)45a =-+,∴145a =-, ∴21(15)4545y x =--+, ∴x =0时,21(015)455454045y =--+=-+=,即OB =40. 答:这名运动员起跳时的竖直高度为40m. 【点睛】本题是二次函数的实际应用题,主要考查了利用待定系数法求二次函数的解析式,弄清题意,熟练掌握待定系数法求解的方法是解题的关键. 23.(1)详见解析;(2)6 【分析】(1)根据切线的性质和四边形的内角和即可得出∠PBO =90°,进而证得结论;(2)解法1:连接OP ,先根据垂径定理和30°的直角三角形的性质求出半径OC 的长,即为OB 的长,再利用四边形的内角和和切线长定理求出∠BPO 的度数,进一步即可求出PB 的长;解法2:连接BC ,先证明△PBC 是等边三角形,再在直角△BCE 中求出BC 的长即可. 【详解】(1)证明: ∵ PC 与⊙O 相切于点C ,∴ OC ⊥PC ,∴ ∠OCP =90°. ∵ ∠AOC =∠CPB ,∠AOC +∠BOC =180°,∴∠BOC+∠CPB=180°.在四边形PBOC中,∠PBO=360°-∠CPB-∠BOC-∠PCO=90°.∴半径OB⊥PB,∴PB是⊙O的切线;(2)解法1:连接OP,如图.∵∠AOC=60°,∴∠BOC=120°.∵∠OCP=∠OBP=90°,∴∠BPC=360°-120°-2×90°=60°.∵PB,PC都是⊙O的切线,∴PO平分∠BPC,∴∠CPO=∠BPO=30°.∵CD⊥AB,AB是⊙O的直径,CD=6,∴132CE DE CD===,∵∠AOC=60°,CD⊥AB,∴∠ACO=30°,OC=OB.∴PB= OB.解法2:连接BC,如图.∵∠AOC=60°,∴∠BOC=120°,∵∠OCP=∠OBP=90°,∴∠BPC=360°-120°-2×90°=60°,∵PB,PC都是⊙O的切线,∴PB=PC,∴△PBC为等边三角形,∴PB=BC.∵CD⊥AB,AB是⊙O的直径,CD=6,∴132CE DE CD===,∵∠AOC=60°,CD⊥AB,∴∠ABC=30°,∴BC=2CE=6,∴PB= BC= 6.【点睛】本题是圆的综合题,主要考查了切线的判定和性质、四边形的内角和、等边三角形的判定和性质、垂径定理和解直角三角形等知识,涉及的知识点虽多,但难度不大,熟练掌握圆的有关性质和切线的判定与性质、灵活应用解直角三角形的知识是解题的关键. 24.(1)2.7(±0.2);(2)详见解析;(3)2.3或4.2 (±0.2) 【分析】(1)通过测量即可得出答案; (2)描点、连线即可画出函数图象;(3)分AC=PC 、AP=PC 两种情况结合图象解答即可. 【详解】解:(1)经测量:m =2.7(±0.2); (2)描点、连线后,画出图象如图;(3)当AC=PC 时,即12y y ,从图象可以看出:x =4.2 (±0.2); 当AP=PC 时,画出函数y=x 的图象,图象与1y 的交点处x 的值约为2.3(±0.2);故答案为:2.3或4.2 (±0.2).【点睛】本题以圆为载体,主要研究函数y随自变量x的变化而变化的规律,掌握研究函数的方法是解题的关键.25.(1)①方程有一个负实根,一个正实根;②详见解析;③20,40,0,20.ab acbac>⎧⎪∆=->⎪⎪⎨->⎪⎪>⎪⎩;(2)06m<<【分析】(1)根据二次函数与一元二次方程的关系和二次函数与系数的关系作答即可;(2)根据题意得出关于m的不等式组,解不等式组即可.【详解】解:(1)补全表格如下:②故答案为: ①方程有一个负实根,一个正实根;②;③2040020a b ac b a c >⎧⎪∆=->⎪⎪⎨->⎪⎪>⎪⎩;(2)解:设一元二次方程()2520-+-=x m x m 对应的二次函数为:()252=-+-y x m x m ,∵一元二次方程()2520-+-=x m x m 有一个负实根,一个正实根,且负实根大于-1,∴()2201(5)(1)20m m m -<⎧⎪⎨--+⋅-->⎪⎩,解得06m <<. ∴m 的取值范围是06m <<. 【点睛】本题考查了二次函数与一元二次方程的关系、二次函数图象与其系数的关系以及解不等式组等知识,熟练掌握二次函数与一元二次方程的关系是解题的关键. 26.(1)2x =;(2)①5;②3;3)3-1n -<≤ 【分析】(1)根据抛物线的对称轴公式求解即可;(2)①可先求出点A 关于x 轴的对称点,再代入已知的抛物线求解;②画出函数图象,结合函数图象即得答案;(3)根据图象找出线段MN 与图形G 恰有两个公共点和恰有一个公共点时对应的n 的值,问题即得解决. 【详解】解:(1)抛物线的对称轴是:直线422(1)x =-=⨯-;(2)①当n =0时,24y x x =-+,∵A (-1,m )在图形G 上,∴A (-1,m )关于x 轴的对称点(―1,―m )在24y x x =-+图象上,∴14m -=--,解得:m =5.② ∵y 轴左侧部分的解析式是24y x x =-,当12x =-时,211941224y ⎛⎫⎛⎫=--⨯-=> ⎪ ⎪⎝⎭⎝⎭,∴线段MN 与图形G 的公共点个数是3个,如图.:(3)当线段MN 与图形G 恰有两个公共点时,如图1,此时1n =-,当线段MN 与图形G 恰有一个公共点时,即24y x x =-+的顶点在线段MN 上,如图2,此时3n =-,∴n 的取值范围是:31n -<≤-.【点睛】本题考查了二次函数的图象与性质,灵活应用二次函数性质和数形结合的思想方法是解题的关键,其中第(3)小题误认为n=-1时有三个交点,是易错点.27.(1)①详见解析;②45°;(2)①见解析②FC-FE FB【分析】(1)①根据旋转的性质可得△ABC≌△DBE,再根据全等三角形的性质和直角三角形的性质即可证明;②证法一:先证明A,D,B,F四点均在以AB为直径的圆上,再连接AD,证明△ABD是等腰直角三角形即可;证法二:在DE上截取DG=AF,连接BG,根据SAS可证△ABF≌△DBG,再利用全等三角形的性质证明△GBF是等腰直角三角形,问题即得解决;(2)在CF上截取CG=EF,连接BG,利用SAS可证△BCG≌△BFE,再利用全等三角形的性质证明△GBF是等腰直角三角形,进一步即可得出结论.【详解】(1)①证明:如图1,∵△ABC绕点B逆时针旋转90°得△DBE,由旋转性质得,△ABC≌△DBE,∴∠1=∠2,AB=DB,∠ABC=∠DBE=90°,∵∠1+∠C=90°,∴∠2+∠C=90°,∴∠DFC=90°,即DF⊥AC;②解法一:如图3,连接AD,∵DF⊥AC,∠DBE=90°,∴∠DF A=90°,∴A,D,B,F四点均在以AB为直径的圆上,∵AB=DB ,∠DBE=90°,∴∠DAB=45°,∴∠DFB=∠DAB=45°;解法二:如图3,在DE 上截取DG=AF ,连接BG ,在△ABF 和△DBG 中,12AB DB AF DG =⎧⎪∠=∠⎨⎪=⎩∴△ABF ≌△DBG ,∴BF =BG ,∠ABF =∠DBG , ∵∠DBA =90°,∴∠GBF =90°, ∴△GBF 是等腰直角三角形, ∴∠DFB =45°;(2)补全图2,如图4;FC -FEFB . 证明:如图,在CF 上截取CG=EF ,连接BG ,在△BCG 和△BFE 中,BC BEC E CG EF =⎧⎪∠=∠⎨⎪=⎩∴△BCG ≌△BFE ,∴BF =BG ,∠CBG =∠EBF , ∵∠ABC =90°,∴∠GBF =90°, ∴△GBF 是等腰直角三角形, ∴FG =,∴ FC -FE =FC -CG=FG =.【点睛】本题考查了全等三角形的判定和性质、旋转的性质与作图、等腰直角三角形的判定和性质以及四点共圆等知识,正确作出辅助线、熟练掌握全等三角形的判定和性质是解题的关键. 28.(1)①D、E ② 证明见解析;③ 0≤d≤3且d≠1 ④0≤x≤3;(2) 0≤x≤9【解析】试题分析:(1)由相邻点的定义可知:在圆C内的点必为相邻点,在圆C外的点必须满足,2AB2=PC2-1,其中A为PB的中点,且AB≤2,所以若半径为1的圆C有相邻点P,则PC 的长必须满足0≤PC≤3且PC≠1,分别求出D、E、F到⊙O的距离即可判断.求出直线y=-x+3与坐标轴的交点坐标分别为(0,3)和(3,0),根据(1)问中结论可知,P的横坐标的取值范围是:0≤x≤3;(2)根据(1)问中可知:0≤PC≤3且PC≠1,又因为点P在线段MN上移动,所以点C在以点P为圆心,半径为3的圆内,且不能在以点P为圆心,半径为1的圆上,再根据点C在x轴上,即可得出C的横坐标取值范围.试题解析:(1)由定义可知,当点P在⊙C内时,由垂径定理可知,点P必为⊙C的相邻点,此时,0≤PC<1;当点P在⊙C外时,设点A是PB的中点,连接PC交⊙C于点M,延长PC交⊙C于点N,连接AM,BN,∵∠AMP+∠NMA=180°,∠B+∠NMA=180°,∴∠AMP=∠B,∵∠P=∠P,∴△AMP∽△NBP,∴PA PN PM PB,∴PA•PB=PM•PN,∵点A是PB的中点,∴AB=PA,又∵⊙C的半径为1,∴2AB2=(PC-CM)(PC+CN),∴2AB2=PC2-1,又∵AB是⊙C的弦,∴AB≤2,∴2AB2≤8,∴PC2-1≤8,∴PC2≤9,∴PC≤3,∵点P在⊙C外,∴PC>1,∴1<PC≤3,当点P在⊙C上时,此时PC=1,但不符合题意,综上所述,半径为1的⊙C,当点P与圆心C的距离满足:0≤PC≤3,且PC≠1时,点P为⊙C 的相邻点;①∵D(12,14),∴4=,∵E(0,,∴∵F(4,0),∴OF=4,∴D和E是⊙O的相邻点;②连接OD,过点D作OD的垂线交⊙O于A、B两点;③令x=0代入y=-x+3,∴y=3,令y=0代入y=-x+3,∴x=3,∴y=-x+3与坐标轴的交点为(0,3)和(3,0)∵由于点P在直线y=-x+3上,且点P是⊙O的相邻点,∴0≤PO≤3,且PO≠1又∵点P在⊙O外,∴1<PO≤3,∴p的横坐标范围为:0≤x≤3;(2)令x=0代入,∴,∴N(0,),令y=0代入∴x=6,∴M(6,0),∵点P是半径为1的⊙C的相邻点,∴0≤PC≤3且PC≠1,∴点C在以点P为圆心,半径为3的圆内,且不能在以点P为圆心,半径为1的圆上,∵点C在x轴上,∴点C的横坐标范围的取值范围:0≤x≤9.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1页(共14 页)
2020-2021学年北京市海淀区九上期中数学模拟试卷
一、选择题(共8小题;共40分) 1. 一元二次方程
的二次项系数、一次项系数、常数项分别是
A. ,,
B. ,
C.
D.
2. 把抛物线
向上平移
个单位长度得到的抛物线的表达式为
A. B. C. D.
3. 如图,,, 是 上的三个点.若
,则
的大小为
A. B. C. D.
4.
下列手机手势解锁图案中,是中心对称图形的是
A.
B.
C. D.
5.
用配方法解方程
,下列配方正确的是
A.
B.
C.
D.
6. 风力发电机可以在风力作用下发电.如图的转子叶片图案绕中心旋转 后能与原
来的图案重合,那么
的值可能是
A. B. C.
D.
第1页(共14 页)
7. 二次函数
与一次函数 的图象如图所示,则满足

的取值范围是
B. 或
C. 或
D.
8. 如图 ,动点 从格点 出发,在网格平面内运动,设点 走过的路程为


到直线 的距离为 .已知 与 的关系如图 所示.下列选项中,可能是点 的运动路线的是
A. B.
C. D.
二、填空题(共8小题;共40分)。

相关文档
最新文档