希望杯全国数学竞赛初二决赛试题与答案
八年级数学希望杯第1-22届试题汇总(含答案与提示)
希望杯第一届(1990)第二试试题 (1)希望杯第二届(1991年)初中二年级第二试试题 (5)希望杯第三届(1992年)初中二年级第二试题 (10)希望杯第四届(1993年)初中二年级第一试试题 (18)希望杯第四届(1993年)初中二年级第二试试题 (24)希望杯第五届(1994年)初中二年级第一试试题 (26)希望杯第五届(1994年)初中二年级第二试试题 (32)第六届(1995年)初中二年级第一试试题 (45)希望杯第六届(1995年)初中二年级第二试试题 (50)希望杯第七届(1996年)初中二年级第一试试题 (56)希望杯第七届(1996年)初中二年级第二试试题 (62)希望杯第八届(1997年)初中二年级第一试试题 (72)希望杯第八届(1997年)初中二年级第二试试题 (79)第九届(1998年)初中二年级第一试试题 (88)希望杯第九届(1998年)初中二年级第二试试题 (98)1999年第十届“希望杯”全国数学邀请赛第二试 (108)2000年第十一届“希望杯”数学竞赛初二第一试 (111)2000年第十一届“希望杯”数学竞赛初二第二试 (114)2001年希望杯第十二届初中二年级第一试试题 (119)2001年希望杯第12届八年级第2试试题 (122)2002年第十三届全国数学邀请赛初二年级第一试 (129)2002年度初二“希望杯”全国数学邀请赛第二试 (132)2003年第十四届“希望杯”全国数学邀请赛初二第1试 (139)2003年第十四届“希望杯”(初二笫2试) (142)2004年第十五届“希望杯”全国数学邀请赛初二 (148)2004年第十五届“希望杯”全国数学邀请赛初二第2试 (151)2005年第十六届希望杯初二第1试试题 (157)2005年第十六届“希望杯”全国数学邀请赛第二试 (159)2006年第十七届“希望杯”全国数学邀请赛第一试 (163)2006年第十七届“希望杯’’数学邀请赛第二试 (166)2007年第十八届”希望杯“全国数学邀请赛第一试 (171)2007年第十八届“希望杯”全国数学邀请赛第二试 (173)2008年第19届“希望杯”全国数学邀请赛初二第2试试题 (179)2009年第二十届“希望杯”全国数学邀请赛第一试 (183)2009年第20届“希望杯”全国数学邀请赛第二试 (186)2010年第二十一届“希望杯”全国数学邀请赛第一试 (193)2010年第二十一届“希望杯”全国数学邀请赛第二试 (195)2011年第二十二届“希望杯”全国数学邀请赛第二试 (201)希望杯第一届(1990)第二试试题一、选择题:(每题1分,共5分)1.等腰三角形周长是24cm,一腰中线将周长分成5∶3的两部分,那么这个三角形的底边长是[ ]A.7.5 B.12. C.4. D.12或42.已知P=2)1989(11991199019891988-++⨯⨯⨯,那么P 的值是[ ]A .1987B .1988.C .1989D .19903.a >b >c ,x >y >z ,M=ax+by+cz ,N=az+by+cx ,P=ay+bz+cx ,Q=az+bx+cy ,则[ ]A .M >P >N 且M >Q >N.B .N >P >M 且N >Q >MC .P >M >Q 且P >N >Q.D .Q >M >P 且Q >N >P4.凸四边形ABCD 中,∠DAB=∠BCD=900, ∠CDA ∶∠ABC=2∶1,AD ∶CB=1,则∠BDA=[ ]A .30°B .45°.C .60°.D .不能确定5.把一个边长为1的正方形分割成面积相等的四部分,使得在其中的一部分内存在三个点,以这三个点为顶点可以组成一个边长大于1的正三角形,满足上述性质的分割[ ]A .是不存在的.B .恰有一种.C .有有限多种,但不只是一种.D .有无穷多种二、填空题:(每题1分,共5分)1. △ABC 中,∠∠B=90°,∠C 的平分线与AB 交于L ,∠C 的外角平分线与BA 的延长线交于N .已知CL=3,则CN=______.2. 2(2)0ab -=,那么111(1)(1)(1990)(1990)ab a b a b ++++++的值是_____. 3. 已知a ,b ,c 满足a+b+c=0,abc=8,则c 的取值范围是______.4. ΔABC 中, ∠B=300,三个两两互相外切的圆全在△ABC 中,这三个圆面积之和的最大值的整数部分是______. 5. 设a,b,c 是非零整数,那么a b c ab ac bc abc a b c ab ac bc abc++++++的值等于_________.三、解答题:(每题5分,共15分)1.从自然数1,2,3…,354中任取178个数,试证:其中必有两个数,它们的差是177.2.平面上有两个边长相等的正方形ABCD 和A 'B 'C 'D ',且正方形A 'B 'C 'D '的顶点A '在正方形ABCD 的中心.当正方形A 'B 'C 'D '绕A '转动时,两个正方形的重合部分的面积必然是一个定值.这个结论对吗?证明你的判断.3.用1,9,9,0四个数码组成的所有可能的四位数中,每一个这样的四位数与自然数n 之和被7除余数都不为1,将所有满足上述条件的自然数n 由小到大排成一列n 1<n 2<n 3<n 4……,试求:n 1·n 2之值.答案与提示一、选择题提示:1.若底边长为12.则其他二边之和也是12,矛盾.故不可能是(B)或(D).又:底为4时,腰长是10.符合题意.故选(C).=19882+3×1988+1-19892=(1988+1)2+1988-19892=19883.只需选a=1,b=0,c=-1,x=1,y=0,z=-1代入,由于这时M=2,N=-2,P=-1,Q=-1.从而选(A).4.由图6可知:当∠BDA=60°时,∠CDB5.如图7按同心圆分成面积相等的四部分.在最外面一部分中显然可以找到三个点,组成边长大于1的正三角形.如果三个圆换成任意的封闭曲线,只要符合分成的四部分面积相等,那么最外面部分中,仍然可以找到三个点,使得组成边长大于1的正三角形.故选(D).二、填空题提示:1.如图8:∠NLC=∠B+∠1=∠CAB-90°+∠1=∠CAB-∠3 =∠N.∴NC=LC=3.5.当a,b,c均为正时,值为7.当a,b,c不均为正时,值为-1.三、解答题1.证法一把1到354的自然数分成177个组:(1,178),(2,179),(3,180),…,(177,354).这样的组中,任一组内的两个数之差为177.从1~354中任取178个数,即是从这177个组中取出178个数,因而至少有两个数出自同一个组.也即至少有两个数之差是177.从而证明了任取的178个数中,必有两个数,它们的差是177.证法二从1到354的自然数中,任取178个数.由于任何数被177除,余数只能是0,1,2,…,176这177种之一.因而178个数中,至少有两个数a,b的余数相同,也即至少有两个数a,b之差是177的倍数,即×177.又因1~354中,任两数之差小于2×177=354.所以两个不相等的数a,b之差必为177.即.∴从自然数1,2,3,…,354中任取178个数,其中必有两个数,它们的差是177.2.如图9,重合部分面积S A'EBF是一个定值.证明:连A'B,A'C,由A'为正方形ABCD的中心,知∠A'BE=∠A'CF=45°.又,当A'B'与A'B重合时,必有A'D'与A'C重合,故知∠EA'B=∠FA'C.在△A'FC和△A'EB中,∴S A'EBF=S△A'BC.∴两个正方形的重合部分面积必然是一个定值.3.可能的四位数有9种:1990,1909,1099,9091,9109,9910,9901,9019,9190.其中 1990=7×284+2,1909=7×272+5.1099=7×157,9091=7×1298+5,9109=7×1301+2,9910=7×1415+5,9901=7×1414+3,9019=7×1288+3,9190=7×1312+6.即它们被7除的余数分别为2,5,0,5,2,5,3,3,6.即余数只有0,2,3,5,6五种.它们加1,2,3都可能有余1的情形出现.如0+1≡1,6+2≡1,5+3≡(mod7).而加4之后成为:4,6,7,9,10,没有一个被7除余1,所以4是最小的n.又:加5,6有:5+3≡1,6+2≡1.(mod7)而加7之后成为7,9,10,12,13.没有一个被7除余1.所以7是次小的n.即 n1=4,n2=7∴ n1×n2=4×7=28.希望杯第二届(1991年)初中二年级第二试试题一、选择题:(每题1分,共10分)1.如图29,已知B是线段AC上的一点,M是线段AB的中点,N为线段AC的中点,P为NA的中点,Q为MA的中点,则MN∶PQ等于( )A.1 ; B.2; C.3; D.42.两个正数m,n的比是t(t>1).若m+n=s,则m,n中较小的数可以表示为( )A.ts; Bs-ts; C.1tss+; D.1st+.3.y>0时( )4.(x+a)(x+b)+(x+b)(x+c)+(x+c)(x+a)是完全平方式,则a,b,c的关系可以写成( ) A.a<b<c. B.(a-b)2+(b-c)2=0. C.c<a<b. D.a=b≠c5.如图30,AC=CD=DA=BC=DE.则∠BAE是∠BAC的 ( )A.4倍. B.3倍. C.2倍. D.1倍6.D是等腰锐角三角形ABC的底边BC上一点,则AD,BD,CD满足关系式( )A.AD 2=BD 2+CD 2. B .AD 2>BD 2+CD 2. C .2AD 2=BD 2+CD 2. D .2AD 2>BD 2+CD 27.方程2191()1010x x -=+的实根个数为( ) A .4 B .3. C .2 D .18.能使分式33x y y x-的值为的x 2、y 2的值是( )A.x 2y 22,y 2C. x 2y 22,y 29.在整数0,1,2,3,4,5,6,7,8,9中,设质数的个数为x ,偶数的个数为y ,完全平方数的个数为z ,合数的个数为u .则x+y+z+u 的值为 ( )A .17B .15.C .13D .1110.两个质数a ,b ,恰好是x 的整系数方程x 2-21x+t=0的两个根,则b a a b +等于( ) A.2213; B.5821; C.240249; D.36538. 二、填空题(每题1分,共10分)1.1989×19911991-1991×19891988=______.2.分解因式:a 2+2b 2+3c 2+3ab+4ac+5bc=______.3.(a 2+ba+bc+ac):[(b 2+bc+ca+ab):(c 2+ca+ab+bc)]的平方根是______.4.边数为a ,b ,c 的三个正多边形,若在每个正多边形中取一个内角,其和为1800,那么111a b c++=_________. 5.方程组51x ay y x +=⎧⎨-=⎩有正整数解,则正整数a=_______. 6.从一升酒精中倒出13升,再加上等量的水,液体中还有酒精__________升;搅匀后,再倒 出13升混合液,并加入等量的水, 搅匀后,再倒出13升混合液, 并加入等量的水,这时,所得混合液中还有______升酒精.7.如图31,在四边形ABCD 中.AB=6厘米,BC=8厘米,CD=24厘米,DA=26厘米.且∠ABC=90°,则四边形ABCD 的面积是______.8.如图32,∠1+∠2+∠3∠4+∠5+∠6=______.9.2x x +++______.10.已知两数积ab ≠1.且2a2+1234567890a+3=0,3b2+1234567890b+2=0,则ab=______.三、解答题:(每题5分,共10分,要求:写出完整的推理、计算过程,语言力求简明,字迹与绘图力求清晰、工整)1.已知两个正数的立方和是最小的质数.求证:这两个数之和不大于2.2.一块四边形的地(如图33)(EO∥FK,OH∥KG)内有一段曲折的水渠,现在要把这段水渠EOHGKF改成直的.(即两边都是直线)但进水口EF的宽度不能改变,新渠占地面积与原水渠面积相等,且要尽可能利用原水渠,以节省工时.那么新渠的两条边应当怎么作?写出作法,并加以证明.答案与提示一、选择题提示:3.由y>0,可知x<0.故选(C).4.容易看到a=b=c时,原式成为3(x+a)2,是完全平方式.故选(B).5.△ACD是等边三角形,△BCA和△ADE均为等腰三角形.故知∠BAC=30°,而∠BAE=120°,所以选(A).6.以等边三角形为例,当D为BC边上的中点时,有AD2>BD2+CD2,当D为BC边的端点时,有AD2=BD2+CD2,故有2AD2>BD2+CD2.故选(D).故选(C).∴选(C).9.∵x=4,y=5,z=4,u=4.∴选(A).10.由a+b=21,a,b质数可知a,b必为2与19两数.二、填空题提示:1.1989×19911991-1991×19891988=1989 (1991×104+1991)-1991(1989×104+1988)=1989×1991-1991×1988=1991.2.原式=a2+b2+c2+2ab+2bc+2ca+b2+2c2+ab+2ac+3bc=(a+b+c)2+(b+c)(b+2c)+a(b+2c)=(a+b+c)2+(b+2c)(a+b+c)=(a+b+c)(a+2b+3c).3.原式=(a+c)(a+b)∶[(b+a)(b+c)∶(c+a)(c+b)]∴平方根为±(a+c).4.正多边形中,最小内角为60°,只有a,b,c均为3时,所取的内角和才可能为180°.5.两式相加有(1+a)y=6,因为a,y均为正整数,故a的可能值为5,这时y=1,这与y-x=1矛盾,舍去;可能值还有a=2,a=1,这时y=2,y=3与y-x=1无矛盾.∴a=1或2.7.在直角三角形ABC中,由勾股定理可知AC=10cm,在△ADC中,三边长分别是10,24,26,由勾股定理的逆定理可△ADC为直角三角形.从而有面积为8.∠1+∠2+∠3+∠4+∠5+∠6,正好是以∠2,∠3,∠5为3个内角的四边形的4个内角之和.∴和为360°.10.由已知条件可知a是方程2x2+1234567890x+3=0的一个根,b是方程3y2+1234567890y+2=0的一个根,后者还可以看成:三、解答题1.设这两个正数为a,b.则原题成为已知a3+b3=2,求证a+b≤2.证明(反证法):若a+b>2由于a3+b3=2,必有一数小于或等于1,设为b≤1,→a>,这个不等式两边均为正数,→a3>(2-b)3.→a3>8-12b+6b2-b3.→a3+b3>8-12b+6b2.→6b2-12b+6<0.→b2-2b+1<0.→(b-1)2<0.矛盾.∴a+b≤2.即本题的结论是正确的.2.本题以图33为准.由图34知OK∥AB,延长EO和FK,即得所求新渠.这时,HG=GM(都等于OK),且OK∥AB,故△OHG的面积和△KGM的面积相同.即新渠占地面积与原渠面积相等.而且只挖了△KGM这么大的一块地.我们再看另一种方法,如图35.作法:①连结EH,FG.②过O作EH平行线交AB于N,过K作FG平行线交于AB于M.③连结EN和FM,则EN,FM就是新渠的两条边界线.又:EH∥ON∴△EOH面积=△FNH面积.从而可知左半部分挖去和填出的地一样多,同理,右半部分挖去和填出的地也一样多.即新渠面积与原渠的面积相等.由图35可知,第二种作法用工较多(∵要挖的面积较大).故应选第一种方法。
(2020年编辑)第二十二届()“希望杯”全国数学邀请赛初二培训题(含答案)
第二十二届(2011年)“希望杯”全国数学邀请赛培训题初中二年级一、选择题(以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母填在每题后面的圆括号内)1.如图1,数轴上的四个点A B C D 、、、分别代表整数a b c d 、、、.若1,1a b c b --=--=-,则d 的值是( )(A )3- (B) 0 (C)1 (D )4 1. 已知201020111,,20092011201020122011a b c ===⨯⨯,则( )(A )a b c <<(B)c b a << (C )b a c << (D )c a b <<2. 下列各数中,最大的是( )(A )37+ (B) 26+ (C )20 (D )114522+3. 已知a 是实数,并且2201040a a -+=则代数式228040200954a a a -+++的值是( )(A )2009 (B) 2010 (C )2011 (D )2012 4. Giventwonon-zerorealnumbersaandb,satisfy()2242342a b a b a -+++-+=,then the value of a b + is ( )(A )-1 (B) 0 (C )1 (D )25. If the linear function y ax b =+ passes through the point (-2, 0),but not the first Quadrant,then the solution set for ax b > is ( )(A )2x >- (B) 2x <- (C ) 2x > (D )2x < 6. 已知反比例函数k y x =的图像经过点1,b a -⎛⎫⎪⎝⎭,那么它可能不经过点( ) (A )1,b a ⎛⎫- ⎪⎝⎭ (B) 1,a b -⎛⎫ ⎪⎝⎭ (C ),1b a ⎛⎫- ⎪⎝⎭ (D ),1b a -⎛⎫ ⎪⎝⎭7. 已知a 是实数,关于x y 、的二元一次方程组235212x y ax y a-=⎧⎨+=-⎩的解不可能出现的情况是( )(A )x y 、都是正数 (B) x y 、都是负数 (C )x y 是正数、是负数 (D )x y 是负数、是正数8. If a and b are non -zero real numbers and ()()1991991a b -+=,then the value for111ab-+ is ( )(A )1 (B)100 (C )-1 (D )-1 9. 如图2是反比例函数ky x=在第二象限的图像,则k 的可能取值是( )(A )2 (B)-2 (C )12 (D )12-11. 在直角坐标系上,点(),11x y 关于电()22,x y 的对称点坐标是( )(A )()2121,22x y x y -- (B) ()1212,22x y y x -- (C )()12122,2x x y y -- (D )()21212,2x x y y --12. 一个长方体盒子的最短边长50cm ,最长边长90cm.则盒子的体积可能是( )(A )45003cm (B) 1800003cm (C )900003cm (D )3600003cm 13. 若两个角可以构成内错角,则称为“一对内错角”.四条直线两两相交,且任意三条直线不交于同一点.那么,在这个几何图形中,可以构成的内错角的两个角的对数是( )(A )12 (B) 24 (C )36 (D )48 14. 如图3,已知ABC 中,,AB AC BAC ACB =∠∠和的角平分线相交于D 点,130ADC ∠=︒,那么CAB ∠的大小是( ) (A )80︒ (B) 50︒ (C )40︒ (D )20︒ 15. GivenABC with 90ACB ∠=︒,15ABC ∠=︒,1AC =,then the length of BC is ( )(A )23+ (B) 32+(C )32- (D )23+16. 已知三角形三边的长分别为,,a b c ,且,,a b c 均为整数,若7,b a b =<,则满足条件的三角形的个数是( )(A )30 (B)36 (C )40 (D )45 17. 三角形三边的长分别为,,a b c ,且a ab cb c b c a++=+-,则三角形是( ) (A )等边三角形 (B) 直角三角形(C )以a 为腰的等腰三角形 (D )以a 为底的等腰三角形 18. 有4个命题:一组对边相等,一组对角相等的四边形是平行四边形; 一组对边平行,一组对角相等的四边形是平行四边形;O 是四边形ABCD 内一点,若AO=BO=CO=DO ,则四边形ABCD 是矩形;若四边形的两条对角线互相垂直,则这个四边形是菱形。
初二第22届希望杯”一试试题+解析
第二十二届“希望杯”全国数学邀请赛初二 第1试一、选择题(每小题4分,共40分)以下每题的四个选项中,仅有一个是正确的,请将正确答案前的英语字母写在1、将a 千克含盐10%的盐水配制成含盐15%的盐水,需加盐水x 千克,则由此可列出方程为( ) A 、%)151)(x a (%)101(a -+=- B 、%15)x a (%10a ⨯+=⨯ C 、%15a x %10a ⨯=+⨯ D 、%)151(x %)101(a -=-2、一辆汽车从A 地匀速驶往B 地,如果汽车行驶的速度增加a%,则所用的时间减少b%,则a ,b 的关系是( ) A 、%a 1a 100b +=B 、%a 1100b +=C 、a 1a b +=D 、a100a100b +=3、当1x ≥时,不等式|2x |m 1x |1x |--≥-++恒成立,那么实数m 的最大值是( ) A 、1 B 、2 C 、3 D 、44、在平面直角坐标系中,横、纵坐标都是整数的点称为整点,已知k 为整数,若函数1x 2y -=与k kx y +=的图象的交点是整点,则k 的值有( )A 、2个B 、3个C 、4个D 、5个5、The sum of all such integers x that satisfy inequality 6|1x 2|2≤-≤ is ( ) A 、8 B 、5 C 、2 D 、0(英汉词典:sum 和;integer 整数;satisfy 满足;inequality 不等式)6、若三角形的三条边的长分别为a ,b ,c ,且0b c b c a b a 3222=-+-,则这个三角形一定是( ) A 、等腰三角形 B 、直角三角形 C 、等三角形 D 、等腰直角三角形7、As shown in figure 1,point C is on the segment BG and quadrilateral ABCD is a square. AG intersects BD and CD at points E and F, respectively. If AE=5 and EF=3, then FG=( ) A 、316 B 、38C 、4D 、5 (英汉词典:square 正方形;intersect …at … 与…相交于…) 8、1215-能分解成n 个质因数的乘积,n 的值是( ) A 、6 B 、5 C 、4 D 、3 9、若关于x ,y 的方程组⎩⎨⎧=+-=++0a y 2bx 01ay x 没有实数解,则( )A 、2ab -=B 、2ab -=且1a ≠C 、2ab -≠D 、2ab -=且2a ≠10、如图2,∠AOB=45°,OP 平分∠AOB ,PC ⊥OB 于点C , 若PC=2,则OC 的长是( )A 、7B 、6C 、222+D 、32+二、A 组填空题(每小题4分,共40分) 11、化简:5252549+=++;12、若关于x ,y 的方程组⎩⎨⎧=--=+2y 3x 21k y 2x 3的解使2y 7x 4>+,则k 的取值范围是3k >;figure 1A O BP C 2 图213、如图3,平行于BC 的线段MN 把等边△ABC 分成一个 三角形和一个四边形,已知△AMN 和四边形MBCN 的周长相 等,则BC 与MN 的长度之比是 4:3 ;14、小华测得自家冰箱的压缩机运转很有规律,每运转5分钟, 停机15分钟,再运转5分钟,再停机15分钟,……,又知8月份 这台冰箱的耗电量是24.18度 (1度=1千瓦时),则这台冰箱的压缩 机运转时的功率是 130 瓦;15、已知自然数a ,b ,c ,满足c 12b 4a 442c b a 222++<+++和02a a 2>--,则代数式c1b 1a 1++的值是 1; 16、已知A 、B 是反比例函数x2y =的图象上的两点,A 、B 的横坐标分别是3,5.设O 为原点,则△AOB 的面积是1516;17、设完全平方数A 是11个连续整数的平方和,则A 的最小值是 121 ;18、将100个连续的偶数从小到大排成一行,其中第38个数与第63个数的和为218,则首尾两个数的和是 218 ; 19、A 、B 两地相距15km ,甲、乙两人同时从A 出发去B 。
历届“希望杯”全国数学邀请赛八年级真题及答案
希望杯第一届(1990年)初中二年级第一试试题一、选择题:(每题1分,共10分)1.一个角等于它的余角的5倍,那么这个角是 ( )A .45°.B .75°.C .55°.D .65°2.2的平方的平方根是 ( )A .2.B .?2.C .±2.D .43.当x=1时,a 0x 10-a 1x 9+a 0x 8-a 1x 7-a 1x 6+a 1x 5-a 0x 4+a 1x 3-a 0x 2+a 1x 的值是( )A .0B .a 0.C .a 1D .a 0-a 1 4. ΔABC,若AB=π27则下列式子成立的是( )A .∠A >∠C >∠B;B .∠C >∠B >∠A;C .∠B >∠A >∠C;D .∠C >∠A >∠B5.平面上有4条直线,它们的交点最多有( )A .4个B .5个.C .6个.D .76.725-的立方根是[ ](A )12-. (B )21-.(C ))12(-±. (D )12+.7.把二次根式aa 1-⋅化为最简二次根式是[ ] (A) a . (B)a -. (C) a --. (D) a -8.如图1在△ABC 中,AB=BC=CA ,且AD=BE=CF ,但D ,E ,F 不是AB ,BC ,CA 的中点.又AE ,BF ,CD 分别交于M ,N ,P ,如果把找出的三个全等三角形叫做一组全等三角形,那么从图中能找出全等三角形( )A .2组B .3组.C .4组D .5组。
9.已知 1112111222222--÷-+++-⨯--++x y x y xy y y x y xy x 等于一个固定的值, 则这个值是( )A .0.B .1.C .2.D .4. 把f 1990化简后,等于( ) A .1-x x . B.1-x. C.x 1. D.x.二、填空题(每题1分,共10分) 1..________6613022=-2.().__________125162590196.012133=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+÷- 3.89850-+=________.4.如图2,∠A=60°,∠1=∠2,则∠ABC 的度数是______.5.如图3,O 是直线AB 上一点,∠AOD=117°,∠BOC=123°,则∠COD 的度数是____度.6.△ABC 中,∠C=90°,∠A 的平分线与∠B 的平分线交于O 点,则∠AOB的度数是______度.7.计算下面的图形的面积(长度单位都是厘米)(见图4).答:______.8.方程x 2+px+q=0,当p >0,q <0时,它的正根的个数是______个.9.x ,y ,z 适合方程组则1989x-y+25z=______.10.已知3x 2+4x-7=0,则6x 4+11x 3-7x 2-3x-7=______.答案与提示一、选择题提示:1.因为所求角α=5(90°-α),解得α=75°.故选(B).2.因为2的平方是4,4的平方根有2个,就是±2.故选(C).3.以x=1代入,得a 0-a 1+a 0-a 1-a 1+a 1-a 0+a 1-a 0+a 1=2a 0-3a 1+3a 1-2a 0=0.故选(A).<3,根据大边对大角,有∠C >∠B >∠A .5.如图5,数一数即得.又因原式中有一个负号.所以也不可能是(D),只能选(A).7.∵a <0,故选(C).8.有△ABE ,△ABM ,△ADP ,△ABF ,△AMF 等五种类型.选(D).9.题目说是一个固定的值,就是说:不论x ,y 取何值,原式的值不变.于是以x=y=0代入,得:故选(B).故选(A).二、填空题提示:4.∠ADC=∠2+∠ADB=∠1+∠ADB=180°--∠A=120°所以∠ADC的度数是120度.5.∠COD度数的一半是30度.8.∵Δ=p2-4q>p2.9.方程组可化简为:解得: x=1,y=-1,z=0.∴1989x-y+25z=1990.10.∵6x4+11x3-7x2-3x-7=(3x2+4x-7)(2x2+x+1)而3x2+4x-7=0.希望杯第一届(1990)第二试试题一、选择题:(每题1分,共5分)1.等腰三角形周长是24cm,一腰中线将周长分成5∶3的两部分,那么这个三角形的底边长是[ ] A.7.5 B.12. C.4. D.12或42.已知P=2)1988-+⨯,那么P的值是[ ]⨯⨯+198919891(19901991A.1987 B.1988. C.1989 D.19903.a>b>c,x>y>z,M=ax+by+cz,N=az+by+cx,P=ay+bz+cx,Q=az+bx+cy,则[ ]A.M>P>N且M>Q>N. B.N>P>M且N>Q>MC.P>M>Q且P>N>Q. D.Q>M>P且Q>N>P4.凸四边形ABCD中,∠DAB=∠BCD=900, ∠CDA∶∠ABC=2∶1,AD∶CB=1,则∠BDA=[ A.30°B.45°. C.60°. D.不能确定5.把一个边长为1的正方形分割成面积相等的四部分,使得在其中的一部分内存在三个点,以这三个点为顶点可以组成一个边长大于1的正三角形,满足上述性质的分割[ ]A.是不存在的. B.恰有一种. C.有有限多种,但不只是一种.D.有无穷多种二、填空题:(每题1分,共5分)1.△ABC中,∠CAB?∠B=90°,∠C的平分线与AB交于L,∠C的外角平分线与BA的延长线交于N.已知CL=3,则CN=______.22(2)0ab +-=,那么111(1)(1)(1990)(1990)ab a b a b ++++++的值是_____. 3.已知a ,b ,c 满足a+b+c=0,abc=8,则c 的取值范围是______.4.ΔABC 中, ∠B=300三个两两互相外切的圆全在△ABC 中,这三个圆面积之和的最大值的整数部分是______. 5.设a,b,c 是非零整数,那么a b c ab ac bc abc a b c ab ac bc abc++++++的值等于_________.三、解答题:(每题5分,共15分)1.从自然数1,2,3…,354中任取178个数,试证:其中必有两个数,它们的差是177.2.平面上有两个边长相等的正方形ABCD 和A 'B 'C 'D ',且正方形A 'B 'C 'D '的顶点A '在正方形ABCD 的中心.当正方形A 'B 'C 'D '绕A '转动时,两个正方形的重合部分的面积必然是一个定值.这个结论对吗?证明你的判断.3.用1,9,9,0四个数码组成的所有可能的四位数中,每一个这样的四位数与自然数n 之和被7除余数都不为1,将所有满足上述条件的自然数n 由小到大排成一列n 1<n 2<n 3<n 4……,试求:n 1·n 2之值.答案与提示一、选择题提示:1.若底边长为12.则其他二边之和也是12,矛盾.故不可能是(B)或(D). 又:底为4时,腰长是10.符合题意.故选(C).=19882+3×1988+1-19892=(1988+1)2+1988-19892=19883.只需选a=1,b=0,c=-1,x=1,y=0,z=-1代入,由于这时M=2,N=-2,P=-1,Q=-1.从而选(A).4.由图6可知:当∠BDA=60°时,∠CDB5.如图7按同心圆分成面积相等的四部分.在最外面一部分中显然可以找到三个点,组成边长大于1的正三角形.如果三个圆换成任意的封闭曲线,只要符合分成的四部分面积相等,那么最外面部分中,仍然可以找到三个点,使得组成边长大于1的正三角形.故选(D).二、填空题提示:1.如图8:∠NLC=∠B+∠1=∠CAB-90°+∠1=∠CAB-∠3 =∠N.∴NC=LC=3.5.当a,b,c均为正时,值为7.当a,b,c不均为正时,值为-1.三、解答题1.证法一把1到354的自然数分成177个组:(1,178),(2,179),(3,180),…,(177,354).这样的组中,任一组内的两个数之差为177.从1~354中任取178个数,即是从这177个组中取出178个数,因而至少有两个数出自同一个组.也即至少有两个数之差是177.从而证明了任取的178个数中,必有两个数,它们的差是177.证法二从1到354的自然数中,任取178个数.由于任何数被177除,余数只能是0,1,2,…,176这177种之一.因而178个数中,至少有两个数a,b的余数相同,也即至少有两个数a,b之差是177的倍数,即a?b=k×177.又因1~354中,任两数之差小于2×177=354.所以两个不相等的数a,b之差必为177.即a?b=177.∴从自然数1,2,3,…,354中任取178个数,其中必有两个数,它们的差是177.是一个定值.2.如图9,重合部分面积SA'EBF证明:连A'B,A'C,由A'为正方形ABCD的中心,知∠A'BE=∠A'CF=45°.又,当A 'B '与A 'B 重合时,必有A 'D '与A 'C 重合,故知∠EA 'B=∠FA 'C .在△A 'FC 和△A 'EB 中,∴S A 'EBF =S △A 'BC .∴两个正方形的重合部分面积必然是一个定值.3.可能的四位数有9种:1990,1909,1099,9091,9109,9910,9901,9019,9190.其中 1990=7×284+2,1909=7×272+5.1099=7×157,9091=7×1298+5,9109=7×1301+2,9910=7×1415+5,9901=7×1414+3,9019=7×1288+3,9190=7×1312+6.即它们被7除的余数分别为2,5,0,5,2,5,3,3,6.即余数只有0,2,3,5,6五种.它们加1,2,3都可能有余1的情形出现.如0+1≡1,6+2≡1,5+3≡(mod7).而加4之后成为:4,6,7,9,10,没有一个被7除余1,所以4是最小的n .又:加5,6有:5+3≡1,6+2≡1.(mod7)而加7之后成为7,9,10,12,13.没有一个被7除余1.所以7是次小的n .即 n 1=4,n 2=7∴ n 1×n 2=4×7=28.第二届(1991年)初中二年级第一试试题一、选择题:(每题1分,共15分)1.如图1,已知AB=8,AP=5,OB=6,则OP 的长是[ ]A .2;B .3;C .4;D .52.方程x 2-5x+6=0的两个根是[ ] A .1,6 ; B .2,3; C .2,3; D .1,63.已知△ABC 是等腰三角形,则[ ]A .AB=AC;B .AB=BC;C .AB=AC 或AB=BC;D .AB=AC 或AB=BC 或AC=BC(1)B O344134b c-==+,则a,b,c的大小关系是[ ]A.a>b>c B.a=b=c C.a=c>b D.a=b>c5.若a≠b,则[ ]6.已知x,y都是正整数,那么三边是x,y和10的三角形有[ ]A.3个B.4个; C.5个D.无数多个7.两条直线相交所成的各角中,[ ]A.必有一个钝角;B.必有一个锐角;C.必有一个不是钝角;D.必有两个锐角8.已知两个角的和组成的角与这两个角的差组成的角互补,则这两个角[ ]A.一个是锐角另一个是钝角;B.都是钝角;C.都是直角;D.必有一个角是直角9.方程x2+|x|+1=0有[ ]个实数根.A.4; B.2; C.1; D.010.一个两位数,用它的个位、十位上的两个数之和的3倍减去-2,仍得原数,这个两位数是[ ]A.26; B.28; C.36; D.3811.若11个连续奇数的和是1991,把这些数按大小顺序排列起来,第六个数是[ ]A.179; B.181; C.183; D.18512.1,>+[ ]A.2x+5 B.2x-5; C.1 D.113.方程2x5+x4-20x3-10x2+2x+1=0有一个实数根是[ ]14.当a<-1时,方程(a3+1)x2+(a2+1)x-(a+1)=0的根的情况是 [ ] A.两负根;B.一正根、一负根且负根的绝对值大C.一正根、一负根且负根的绝对值小;D.没有实数根15.甲乙二人,从M地同时出发去N地.甲用一半时间以每小时a公里的速度行走,另一半时间以每小时b公里的速度行走;乙以每小时a公里的速度行走一半路程,另一半路程以每小时b公里的速度行走.若a≠b时,则[ ]到达N地.A.二人同时; B.甲先;C.乙先; D.若a>b时,甲先到达,若a<b时,乙先二、填空题:(每题1分,共15分)1.一个角的补角减去这个角的余角,所得的角等于______度.2.有理化分母=______________.3.0x=的解是x=________.4.分解因式:x3+2x2y+2xy2+y3=______.5.若方程x2+(k2-9)x+k+2=0的两个实数根互为相反数,则k的值是______.6.如果2x2-3x-1与a(x-1)2+b(x-1)+c是同一个多项式的不同形式,那么a bc+=__.7.方程x2-y2=1991有______个整数解.8.当m______时,方程(m-1)x2+2mx+m-3=0有两个实数根.9.如图2,在直角△ABC中,AD平分∠A,且BD∶DC=2∶1,则∠B等于______度.(2) (3) (4) 10.如图3,在圆上有7个点,A,B,C,D,E,F,和G,连结每两个点的线段共可作出__条.11.D,E分别是等边△ABC两边AB,AC上的点,且AD=CE,BE与CD交于F,则∠BFC 等于__度.12.如图4,△ABC中,AB=AC=9,∠BAC=120°,AD是△ABC的中线,AE是△ABD的角平分线,DF∥AB交AE延长线于F,则DF的长为______.13.在△ABC中,AB=5,AC=9,则BC边上的中线AD的长的取值范围是______.14.等腰三角形的一腰上的高为10cm,这条高与底边的夹角为45°,则这个三角形的面积是______.15.已知方程x2+px+q=0有两个不相等的整数根,p,q是自然数,且是质数,这个方程的根是______.答案与提示一、选择题提示:1.∵OP=OB-PB=OB-(AB-AP)=6-(8-5)=3.∴选(B).2.∵以2,3代入方程,适合.故选(B).3.∵有两条边相等的三角形是等腰三角形.∴选(D).4.∵a=1,b=-1,c=1.∴选(C).6.∵x=y>5的任何正整数,都可以和10作为三角形的三条边.∴选(D).7.两直线相交所成角可以是直角,故而(A),(D)均不能成立.∴选(C).8.设两个角为α,β.则(α+β)+(α-β)=180°,即α=90°.故选(D).9.∵不论x为何实数,x2+|x|+1总是大于零的.∴选(D).即7a=2b+2,可见a只能为偶数,b+1是7的倍数.故取(A).11.设这11个连续奇数为:2n+1,2n+3,2n+5,…,2n+21.则(2n+1)+(2n+3)+(2n+5)+…+(2n+21)=1991.即 11(2n+11)=1991.解得n=85.∴第六个数是2×85+11=181.故选(B).∴选(A).13.原方程可化为(2x5-20x3+2x)+(x4-10x2+1)=0.即 (2x+1)(x4-10x2+1)=0.即 x4-10x2+1=0.故取(C).14.a<-1时,a3+1<0,a2+1>0,a+1<0.而若方程的两根为x1,x2,则有15.设M,N两地距离为S,甲需时间t1,乙需时间t2,则有∴t1<t2,即甲先.另外:设a=1,b=2,则甲走6小时,共走了9公里,这时乙走的时间为从这个计算中,可以看到,a,b的值互换,不影响结果.故取(B).二、填空题提示:1.设所求角为α,则有(180°-α)-(90°-α)=90°.4.x3+2x2y+2xy3+y3=(x3+y3)+(2x2y+2xy2)=(x+y)(x2-xy+y2)+2xy(x+y)=(x+y)(x2+xy+y2)5.设二根为x1,-x1,则x1+(-x1)=-(k2-9).即k2-9=0.即k=±3.又,要有实数根,必须有△≥0.即 (k2-9)2-4(k+2)>0.显然 k=3不适合上面的不等式,∴k=-3.6.由2x2-3x-1=a(x+1)2+b(x-1)+c是恒等式,故由x=1代入,得c=-2;x2项的系数相等,有a=2,这时再以x=0代入,得-1=a-b+c.即b=1.7.x2-y2=1991,(x-y)(y+x)=11×181可以是9.BD∶DC=2∶1,故有AB∶AC=2∶1,直角三角形斜边与直角边之比为2∶1,则有∠B=30°.10.从A出发可连6条,从B出发可连5条,(因为BA就是AB),从C出发可连4条,…,从F出发可连一条.共计1+2+3+4+5+6=21(条).另法:每个点出发均可连6条,共有42条.但每条都重复过一次,11.如图28.∠F=∠1+∠A+∠2.又:△ADC≌△CEB.∴∠1=∠3.∴∠F=∠3+∠A+∠2=∠B+∠A=120°.12.△ABC是等腰三角形,D为底边的中点,故AD又是垂线,又是分角线,故∠BAD=60°,∠ADB=90°.又:AE是分角线,故∠DAE=∠EAB=30°.又:DF∥AB,∴∠F=∠BAE=30°.在△ADF中,∠DAF=∠F=30°.∴AD=DF.而在△ADB中,AB=9,∠B=30°.13.∵4<BC<14.∴当BC为4时,BD=CD=2,AD<7.当BC=14时,BC=CD=7,有AD>2.∴2<AD<7.14.等腰三角形一腰上的高与底边的夹角是45°,则顶角是90°,高就是腰,其长为10cm.15.设两根为x1,x2.则x1+x2=-p① x1x2=q②由题设及①,②可知,x1,x2均为负整数.q为质数,若q为奇数,则x1,x2均为奇数.从而p为偶数,而偶质数只有2,两个负整数之和为-2,且不相等,这是不可能的.若q为偶数(只能是2),两个负整数之积为2,且不相等,只能是-1和-2.∴方程的根是-1和-2.希望杯第二届(1991年)初中二年级第二试试题一、选择题:(每题1分,共10分)1.如图29,已知B是线段AC上的一点,M是线段AB的中点,N为线段AC的中点,P为NA的中点,Q为MA的中点,则MN∶PQ等于( )A.1 ; B.2; C.3; D.42.两个正数m ,n 的比是t(t >1).若m+n=s ,则m ,n 中较小的数可以表示为( ) A.ts; Bs-ts; C.1ts s +; D.1s t+.3.y>0时( )4.(x+a)(x+b)+(x+b)(x+c)+(x+c)(x+a)是完全平方式,则a ,b ,c 的关系可以写成( )A .a <b <c.B .(a-b)2+(b-c)2=0.C .c <a <b.D .a=b ≠c5.如图30,AC=CD=DA=BC=DE .则∠BAE 是∠BAC 的 ( )A .4倍.B .3倍.C .2倍.D .1倍6.D 是等腰锐角三角形ABC 的底边BC 上一点,则AD ,BD ,CD 满足关系式( )A.AD 2=BD 2+CD 2. B .AD 2>BD 2+CD 2. C .2AD 2=BD 2+CD 2. D .2AD 2>BD 2+CD 27.方程2191()1010x x -=+的实根个数为( ) A .4 B .3. C .2 D .18.能使分式33x y y x-的值为的x 2、y 2的值是( )A.x 2y 2;B. x 2y 2;C. x 2y 2;D. x 2y 2.9.在整数0,1,2,3,4,5,6,7,8,9中,设质数的个数为x ,偶数的个数为y ,完全平方数的个数为z ,合数的个数为u .则x+y+z+u 的值为( )A .17B .15.C .13D .1110.两个质数a ,b ,恰好是x 的整系数方程x 2-21x+t=0的两个根,则b a a b +等于( ) A.2213; B.5821; C.240249; D.36538. 二、填空题(每题1分,共10分)1.1989××.2.分解因式:a 2+2b 2+3c 2+3ab+4ac+5bc=______.3.(a 2+ba+bc+ac):[(b 2+bc+ca+ab):(c 2+ca+ab+bc)]的平方根是______.4.边数为a ,b ,c 的三个正多边形,若在每个正多边形中取一个内角,其和为1800,那么111a b c++=_________. 5.方程组51x ay y x +=⎧⎨-=⎩有正整数解,则正整数a=_______. 6.从一升酒精中倒出13升,再加上等量的水,液体中还有酒精__________升;搅匀后,再倒 出13升混合液,并加入等量的水, 搅匀后,再倒出13升混合液, 并加入等量的水,这时,所得混合液中还有______升酒精.7.如图31,在四边形ABCD 中.AB=6厘米,BC=8厘米,CD=24厘米,DA=26厘米.且∠ABC=90°,则四边形ABCD 的面积是______.8.如图32,∠1+∠2+∠3∠4+∠5+∠6=______. 9.2243x x +++的最小值的整数部分是______.10.已知两数积ab ≠1.且2a 22a b=______. 三、解答题:(每题5分,共10分,要求:写出完整的推理、计算过程,语言力求简明,字迹与绘图力求清晰、工整)1. 已知两个正数的立方和是最小的质数.求证:这两个数之和不大于2.2.一块四边形的地(如图33)(EO ∥FK ,OH ∥KG)内有一段曲折的水渠,现在要把这段水渠EOHGKF 改成直的.(即两边都是直线)但进水口EF 的宽度不能改变,新渠占地面积与原水渠面积相等,且要尽可能利用原水渠,以节省工时.那么新渠的两条边应当怎么作?写出作法,并加以证明.答案与提示一、选择题提示:3.由y>0,可知x<0.故选(C).4.容易看到a=b=c时,原式成为3(x+a)2,是完全平方式.故选(B).5.△ACD是等边三角形,△BCA和△ADE均为等腰三角形.故知∠BAC=30°,而∠BAE=120°,所以选(A).6.以等边三角形为例,当D为BC边上的中点时,有AD2>BD2+CD2,当D为BC 边的端点时,有AD2=BD2+CD2,故有2AD2>BD2+CD2.故选(D).故选(C).∴选(C).9.∵x=4,y=5,z=4,u=4.∴选(A).10.由a+b=21,a,b质数可知a,b必为2与19两数.二、填空题提示:1.1989××(1991×104+1991)-1991(1989×104+1988)=1989×1991-1991×1988=1991.2.原式=a2+b2+c2+2ab+2bc+2ca+b2+2c2+ab+2ac+3bc=(a+b+c)2+(b+c)(b+2c)+a(b+2c)=(a+b+c)2+(b+2c)(a+b+c)=(a+b+c)(a+2b+3c).3.原式=(a+c)(a+b)∶[(b+a)(b+c)∶(c+a)(c+b)]∴平方根为±(a+c).4.正多边形中,最小内角为60°,只有a,b,c均为3时,所取的内角和才可能为180°.5.两式相加有(1+a)y=6,因为a,y均为正整数,故a的可能值为5,这时y=1,这与y-x=1矛盾,舍去;可能值还有a=2,a=1,这时y=2,y=3与y-x=1无矛盾.∴a=1或2.7.在直角三角形ABC中,由勾股定理可知AC=10cm,在△ADC中,三边长分别是10,24,26,由勾股定理的逆定理可△ADC为直角三角形.从而有面积为8.∠1+∠2+∠3+∠4+∠5+∠6,正好是以∠2,∠3,∠5为3个内角的四边形的4个内角之和.∴和为360°.10.由已知条件可知a是方程2x2的一个根,b是方程3y2的一个根,后者还可以看成:三、解答题1.设这两个正数为a,b.则原题成为已知a3+b3=2,求证a+b≤2.证明(反证法):若a+b>2由于a3+b3=2,必有一数小于或等于1,设为b≤1,→a>2?b,这个不等式两边均为正数,→a3>(2-b)3.→a3>8-12b+6b2-b3.→a3+b3>8-12b+6b2.→6b2-12b+6<0.→b2-2b+1<0.→(b-1)2<0.矛盾.∴a+b≤2.即本题的结论是正确的.2.本题以图33为准.由图34知OK∥AB,延长EO和FK,即得所求新渠.这时,HG=GM(都等于OK),且OK∥AB,故△OHG的面积和△KGM的面积相同.即新渠占地面积与原渠面积相等.而且只挖了△KGM这么大的一块地.我们再看另一种方法,如图35.作法:①连结EH ,FG .②过O 作EH 平行线交AB 于N ,过K 作FG 平行线交于AB 于M .③连结EN 和FM ,则EN ,FM 就是新渠的两条边界线.又:EH ∥ON∴△EOH 面积=△FNH 面积.从而可知左半部分挖去和填出的地一样多,同理,右半部分挖去和填出的地也一样多.即新渠面积与原渠的面积相等.由图35可知,第二种作法用工较多(∵要挖的面积较大).故应选第一种方法。
第14届“希望杯”全国数学邀请赛试卷(初二1)试题和详解
6,midline for hypotenuse(斜边)is 1,then
AC•BC= _________ . 17、如图,两点 A、B 在直线 MN 外的同侧,A 到 MN 的距离 AC=8,B 到 MN 的距离 BD=5, CD=4,P 在直线 MN 上运动,则|PA﹣PB|的最大值等于 _________ .
18、如图,等腰梯形 ABCD 中,AB∥CD,∠DAB=60°,AC 平分∠DAB,且 AC=2 ABCD 的周长等于 _________ .
3边形 ABCDEF、 PQRSTU, 其中点 P 位于正六边形 ABCDEF 的中心, 如果它们的面积均为 1,则阴影部分的面积是 _________ .
1 2
)
A、90° B、100° C、110° D、120° 10、2002 年 9 月 28 日,“希望杯”组委会第二次赴俄考查团启程,途经哈巴罗夫斯克和莫斯 科,两地航程约 9000 千米,往返飞行所用的时间并不相同,这是因为在北半球的高纬度地 区,有一股终年方向恒定的西风,人们称它为“高空西风带”.已知往返飞行的时间相差 1.5 小时,飞机在无风天气的平均时速为每小时 1000 千米,那么西风速度最接近( ) A、60 千米/小时 B、70 千米/小时 C、80 千米/小时 D、90 千米/小时 二、填空题(共 15 小题,满分 100 分) 11、设 0<x<1<y<2,则
������﹣������ ≥ 0 ������﹣������ ≥ 0
,
1 ������﹣1 1 ������﹣������ + ������﹣������ + ������﹣ ������ =0+0+ ������ =1﹣������.
故选 A. 点评:本题主要考查了二次根式的意义和性质.
希望杯数学竞赛初二第二试试题(含答案)
第十七届“希望杯’’全国数学邀请赛初二第2试2006年4月16日上午8:30至lO:30 得分___________一、选择题(每小题4分,共40分.)以下每题地四个选项中,仅有一个是正确地,请将表示正确答案地英文字母填在每题后面地圆括号内.1.下列四组根式中,是同类二次根式地一组是( )2.要使代数式有意义,那么实数x地取值范围是( )3.以线段a=13,b=13,c=10,d=6为边作梯形,其中a,c为梯形地两底,这样地梯形( ) (A)能作一个. (B)能作两个. (C)能作无数个. (D)一个也不能作.(英汉词典:Fig.figure地缩写,图;quadrilateral四边形;diagonal对角线;value 数值;variable变量;to depend on取决于;position位置)(A)是完全平方数,还是奇数. (B)是完全平方数,还是偶数.(C)不是完全平方数,但是奇数. (D)不是完全平方数,但是偶数.6.将任意一张凸四边形地纸片对折,使它地两个不相邻地顶点重合,然后剪去纸片地不重合部分,展开纸片,再一次对折,使另外地两个顶点重合,再剪去不重合地部分后展开,此时纸片地形状是( )(A)正方形. (B)长方形. (C)菱形. (D)等腰梯形.7.若a,b,c都是大于l地自然数,且c a=252b,则n地最小值是( )(A)42. (B)24. (C)21 (D)15(英汉词典:two-placed number两位数;number数,个数;to satisfy满足;complete square 完全平方(数);total总地,总数)9.下表是某电台本星期地流行歌曲排行榜,其中歌曲J 是新上榜地歌曲,箭头“↑”或“↓”分别表示该歌曲相对于上星期名次地变化情况,“↑”表示上升,“↓”表示下降,不标注地则表明名次没有变化,已知每首歌地名次变化都不超过两位,则上星期排在第1,5,7名地歌曲分别是( )(A)D,E,H . (B)C,F,I . (C)C,E,I . (D)C,F,H .10.设n(n ≥2)个正整数1a ,2a ,…,n a ,任意改变它们地顺序后,记作1b ,2b ,…,n b ,若P=(1a -1b )(2a -2b )(33b a -)…(n a 一n b ),则( )(A)P 一定是奇数. (B)P 一定是偶数.(C)当n 是奇数时,P 是偶数. (D)当”是偶数时,P 是奇数. 二、填空题(每小题4分,共40分.)11.消防云梯地长度是34米,在一次执行任务时,它只能停在离大楼16米远地地方,则云梯能达到大楼地高度是______米.15.从凸n 边形地一个顶点引出地所有对角线把这个凸n 边形分成了m 个小三角形,若m 等于这个凸n 边形对角线条数地94,那么此n 边形地内角和为_____. 16.某种球形病毒,直径是0.01纳米,每一个病毒每过一分钟就能繁殖出9个与自己同样地病毒,假如这种病毒在人体中聚集到一定数量,按这样地数量排列成一串,长度达到1分米时,人就会感到不适,那么人从感染第一个病毒后,经过_______分钟,就会感到不适.(1米=109纳米)19.如图2,等腰△ABC 中,AB=AC,P 点在BC 边上地高AD 上,且21=PD AP ,BP 地延长线交AC于E,若ABC S ∆=10,则ABE S ∆=______,DEC S ∆=_______.20.一个圆周上依次放有1,2,3,…,20共20个号码牌,随意选定一个号码牌(如8),从它开始,先把它拿掉,然后每隔一个拿掉一个(如依次拿掉8,10,12,…),并一直循环下去,直到剩余两个号码牌时停止,则最后剩余地两个号码地差地绝对值是______或_______.三、解答题(本大题共3小题,共40分.) 要求:写出推算过程. 21.(本小题满分10分)如图3,正方形ABCD 地边长为a,点E 、F 、G 、H 分别在正方形地四条边上,已知EF ∥GH .EF=GH .(1)若AE=AH=a 31,求四边形EFGH 地周长和面积; (2)求四边形EFGH 地周长地最小值.22.(本小题满分15分)已知A 港在B 港地上游,小船于凌晨3:00从A 港出发开往B 港,到达后立即返回,来回穿梭于A 、B 港之间,若小船在静水中地速度为16千米/小时,水流速度为4千米/小时,在当晚23:OO 时,有人看见小船在距离A 港80千米处行驶.求A 、B 两个港口之间地距离.23.(本小题满分15分) 在2,3两个数之间,第一次写上5132=+,第二次在2,5之间和5,3之间分别写上27252=+和4235=+,如下所示:第k 次操作是在上一次操作地基础上,在每两个相邻地数之间写上这两个数地和地k1. (1)请写出第3次操作后所得到地9个数,并求出它们地和;(2)经过k 次操作后所有数地和记为k S ,第k+1次操作后所有数地和记为1+k S ,写出1+k S 与k S 之间地关系式;(3)求6S 地值.第十七届“希望杯”全国数学邀请赛参考答案及评分标准(初中二年级 第2试)一.选择题(每小题4分)二.填空题(每小题4分)三、解答题21.(1)如图1,连结HF .由题知四边形EFGH 是平行四边形,所以又所以所以(3分)所以△AHE 和△DHG 都是等腰直角三角形,故∠EHG=090,四边形EFGH 是矩形.易求得所以四边形EFGH 地周长 为2a 2,面积为294a .(5分)(2)如图2,作点H 关于AB 边地对称点H ',连结H F ',交AB 于E ',连结E 'H .显然,点E 选在E '处时.EH+EF 地值最小,最小值等于H F '. (7分) 仿(1)可知当AE≠AH 时,亦有(8分)所以2.因此,四边形EFGH周长地最小值为2a(10分)22.设A、B两个港口之间地距离为L,显然(1分)(1)若小船在23:00时正顺流而下,则小船由A港到达下游80千米处需用即19:00时小船在A港,那么在3:00到19:00地时间段内,小船顺流行驶地路程与逆流行驶地路程相同,而所用地时间与速度成反比,设小船顺流行驶用了t小时,则逆流行驶用了(16一t)小时,所以解得 t=6 (5分)即顺流行驶了由于所以A、B两个港口之间地距离是120千米.(7分)(2)若小船在23:00时正逆流而上,则小船到达A港需再用即小船在内顺流行驶地路程与逆流行驶地路程相同,而所用地时间与速度成反比,设小船顺流行驶用了t 小时,则逆流行驶用了小时,所以解得 (12分)即顺流行驶了由于所以A 、B 两个港口之间地距离可能是100千米或200千米. (14分)综上所述,A 、B 两港口之间地距离可能是100千米或120千米或200千米.(15分) 23.(1)第3次操作后所得到地9个数为它们地和为255(4分) (2)由题设知0S =5,则(10分)(3)因为所以(15分)。
第九届“新希望杯”全国数学大赛八年级试题(含解答)
第九届“新希望杯”全国数学⼤赛⼋年级试题(含解答)第九届“新希望杯”全国数学⼤赛⼋年级试题(B 卷)(时间:2013年3⽉24⽇满分120分)⼀、选择题(每⼩题4分,共32分) 1. 下列⼏种说法中:(1)⽆理数都是⽆限⼩数;(2)带根号的数是⽆理数;(3)实数分为正实数和负实数;(4)⽆理数包括正⽆理数、零和负⽆理数.正确的有() A.(1) (2) (3) (4) B.(2) (3) C.(1) (4) D.只有(1)2. 2.已知⼀个等腰三⾓形的⼀条边长为8cm ,其中⼀个外⾓等于1200,则它的周长为()A.16cmB.18cmC.24cmD.条件不⾜,⽆法计算3. 把⼀个正⽅形如图对折三次后沿虚线剪下两个⾓,则展开余下部分所得的图形是()DCB A4. 已知a 、b 、c 分别是?ABC 的三边,则()2222224a b c a b +--为()A 正数B 负数C 零D ⽆法确定5. =()A -2B 2C -D 6. ⼀次函数y kx b =+与正⽐例函数y kbx =在同⼀坐标系中的图象可能为()镜⾯合同三⾓形B'B真正合同三⾓形C'B CDCBA7. 在四边形ABCD 中,AD//BC ,AE 、BE 分别平分∠BAD 、∠ABC ,点F 为AB 的中点,连结EF ,则下列结论中,⼀定成⽴的是()A EF=BEB BF=BEC BC=DED AD+BC=2EF (第7题图)8. 如图,已知?ABC 为等腰三⾓形,AB=AC ,F 为AC 上⼀点,点D 为BC 延长线上⼀点,点E 为AB 延长线上⼀点,EF 与BC 相交于点G ,如果∠ABC=2∠D ,∠CAD= ∠BAC ,BE=CF ,那么下列说法中,正确的个数有()A 1个B 2个C 3个D 4个⼆、填空题(每⼩题5分,共40分)9.()44310?= (结果⽤科学计数法表⽰)10. 已知533x y z ++=,2859x y z ++=,则x y z ++的平⽅根为 . 11. 全等三⾓形也叫做合同三⾓形,平⾯内的合同三⾓形分为真正合同三⾓形和镜⾯合同三⾓形.假如?ABC 和?'''A B C 是全等三⾓形,且点A 与点'A 对应,点B 与点'B 对应,点C 与点'C 对应.如下图,当沿周界A →B →C →A 及''''A B C A →→→环绕时,若运动⽅向相同,则称它们是真正合同三⾓形;若运动⽅向相反,则称它们是镜⾯合同三⾓形.下列各组合同三⾓形中,属于镜⾯合同三⾓形的有。
新希望杯八年级数学试题及答案
八年级试题(A 卷)(时间:120分钟 满分:120分)一、选择题(每小题4分,共32分) 1.若()422015+=mA ,则A 的算术平方根是( )A.(m 2+2015)4B.(m 2+2015)2C.m 2+2015D.m+20152.已知等腰三角形的两边长分别为a 、b ,且0243163=-++-+b a b a ,则此三角形的周长是( )A.13B.17C.13或17D.14或163.将一副三角板如下图叠放在一起,则∠1的度数是( )A.105°B.110°C.115°D.120°4.如图,在3×4的正方形网格中,已有3个方格涂色,若再选择一个方格涂色,且使得4个涂色的方格组成轴对称图形,可选择的方格共有( )A.1个B.2个C.3个D.4个5.已知201531+n 是整数,若n 是正整数,则n 的最小值是( )A.31B.59C.65D.1246.某超市购进50千克的散装糖果,决定包装后出售,方式一:1.5千克/盒,包装成本1.2元/个;方式二:1千克/盒,包装盒成本1元/个.根据需要1千克装的糖果数量不能少于1.5千克装的一半,且糖果全部包装完,那么包装盒的总成本最低是( )A.43.4元B.43.1元C.42.8元D.42.5元7.如图,在四边形ABCD 中,对角线AC 、BD 交于点O ,且BO=DO ,点P 在△BCD 内部,下列说法:①S △AOD=S △AOB ;②BC +CD >PB +PD ;③AC +BD >AB +CD ;④AC +BD >AD >CD ,其中正确的有( ) A.1个 B.2个 C.3个 D.4个8.如图,等边三角形ABC 边长为6,点P 从B 点开始在BC 上向点C 运动,运动到点C 停止,以AP 为边在直线BC 的同侧作等边三角形APQ ,得到点Q ,则点Q 的运动路径长( ) A.6 B.33 C.24 D.23π二、填空题:(每小题5分,共40分)9.化简:.________________)2015(201522=+--x x )(10.已知正n 边形的一个内角是一个外角的5倍,则n=____________.11.如图,△ABC 是格点三角形,点D 是异于点A 的一个格点,则使△DBC 和△ABC 全等的D 点共有__________个.12.方程3100820151210071=+-+-xx x 的解是___________________.13.如图,等边三角形的边长为1,现将其各边n(n >2)等分,并以相邻分点为顶点向外作小等边三角形,再将相邻分点之间的线段去掉,得到一个锯齿图形,当n=k 时,锯齿图形的周长为___________.(用含k 的代数式表示).14.将1、2、3、4、5这五个数排成一列,要求第一个数和最后一个数都是偶数,且其中任意三个相邻的数之和都能被这三个数中的第一个数整除,这样的排列方法共有_____________种.15.对于实数m 、n ,定义运算m ※n=m(1-n),下面是关于这种运算的几个结论:①2※3=-4;②若m ※n=0,则n=0;③m ※n=(1-n )※(1-m);④若m+n=1,则(m ※n )-(n ※n)=0.其中正确的是___________. 16.如图,已知点A(1,1),点B (7,3),点P 为x 轴上一个动点,当PA+PB 的值最小时,点P 的坐标为_______________.三、解答题(10+12+12+14=48分)17..)32(32,2,29的值)求(若+--==-y x xy y x18.如图,△ABC 为等边三角形,点D 是BC 延长线上一点,且CD <BC ,BD 的垂直平分线交AC 于E ,过点E 作EF ∥BC 交AB 于F.(1)求证:△AEF 为等边三角形; (2)若BC=3CD ,求ECAE的值.19.某数学俱乐部组织60名会员租车进行自驾游,共有两种车型可供选择,A 型车共有8个座位,B 型车有4个座位,要求租用的车不能空座,也不能超载. (1)共有多少种不同的租车方案?(2)若A 型车的租金是400元/天,B 型车的租金是260元/天,请设计最划算的租车方案,并说明理由.20.已知:直角三角形斜边上的中线等于斜边的一半,如图1,在△ABC 中,∠CAB=90°,D 是BC 的中点,连接AD ,则AD=CD=BD.(1)如图2,过点D作DE⊥AB于E,以E为边作等边三角形AEF,以DF为边作等边三角形DFG,连接AG,求证:AG平分∠FAB.(2)如图3,过点C作CH⊥AF于H,连接DH,求证:DH=FG.1 2 3 4 5 6 7 8C B AD B C D A9 10 11 12 13 14 15 1610 1/2-8060X12 3 1008KK 66-6 ①③④⎪⎭⎫ ⎝⎛0,25。
希望杯数学八年级竞赛真题及答案(1-23届)
1、第一届希望杯初二第1试试题2、第一届希望杯初二第2试试题3、第二届希望杯初二第1试试题4、第二届希望杯初二第2试试题5、第三届希望杯初二第1试试题6、第三届希望杯初二第2试试题7、第四届希望杯初二第1试试题8、第四届希望杯初二第2试试题9、第五届希望杯初二第1试试题10、第五届希望杯初二第2试试题11、第六届希望杯初二第1试试题12、第六届希望杯初二第2试试题13、第七届希望杯初二第1试试题14、第七届希望杯初二第2试试题15、第八届希望杯初二第1试试题16、第八届希望杯初二第2试试题17、第九届希望杯初二第1试试题18、第九届希望杯初二第2试试题19、第十届希望杯初二第1试试题20、第十届希望杯初二第2试试题21、第十一届希望杯初二第1试试题22、第十一届希望杯初二第2试试题23、第十二届希望杯初二第1试试题24、第十二届希望杯初二第2试试题25、第十三届希望杯初二第1试试题26、第十三届希望杯初二第2试试题27、第十四届希望杯初二第1试试题28、第十四届希望杯初二第2试试题28、第十五届希望杯初二第1试试题30、第十五届希望杯初二第2试试题31、第十六届希望杯初二第1试试题32、第十六届希望杯初二第2试试题33、第十七届希望杯初二第1试试题34、第十七届希望杯初二第2试试题35、第十八届希望杯初二第1试试题36、第十八届希望杯初二第2试试题37、第十九届希望杯初二第1试试题38、第十九届希望杯初二第2试试题39、第二十届希望杯初二第1试试题40、第二十届希望杯初二第2试试题41、第二十一届希望杯初二第1试试题42、第二十一届希望杯初二第2试试题43、第二十二届希望杯初二第1试试题44、第二十二届希望杯初二第2试试题45、第二十三届希望杯初二第1试试题46、第二十三届希望杯初二第2试试题希望杯第一届(1990年)初中二年级第一试试题一、选择题:(每题1分,共10分)1.一个角等于它的余角的5倍,那么这个角是 ( )A .45°.B .75°.C .55°.D .65°2.2的平方的平方根是 ( )A .2.B .2. C .±2. D .43.当x=1时,a 0x 10-a 1x 9+a 0x 8-a 1x 7-a 1x 6+a 1x 5-a 0x 4+a 1x 3-a 0x 2+a 1x 的值是( ) A .0B .a 0.C .a 1D .a 0-a 14. ΔABC,若AB=π27则下列式子成立的是( )A .∠A >∠C >∠B;B .∠C >∠B >∠A;C .∠B >∠A >∠C;D .∠C >∠A >∠B 5.平面上有4条直线,它们的交点最多有( ) A .4个B .5个.C .6个.D .76.725-的立方根是[ ] (A )12-. (B )21-.(C ))12(-±. (D )12+.7.把二次根式a a 1-⋅化为最简二次根式是[ ](A) a . (B)a -. (C) a --. (D) a -8.如图1在△ABC 中,AB=BC=CA ,且AD=BE=CF ,但D ,E ,F 不是AB ,BC ,CA 的中点.又AE ,BF ,CD 分别交于M ,N ,P ,如果把找出的三个全等三角形叫做一组全等三角形,那么从图中能找出全等三角形( ) A .2组B .3组.C .4组D .5组。
希望杯初中数学竞赛培训试题(含答案)
希望杯初中数学竞赛培训试题(含答案)一、选择题:(以下每题的4个结论中,仅有一个是正确的.)(5分每题) 1.已知x 1,x 2, x 3的平均数为5,y l ,y 2,y 3的平均数为7,则2x l +3y l ,2x z +3y 2,2x 3+3y 3的平均数为 ( ) (A) 31 (B) 331 (C) 593(D) 172.如图,三个天平的托盘中形状相同的物体质量相等.图(1)、图(2)所示的两个天平处于平衡状态,要使第三个天平也保持平衡,则需在它的右盘中放置 ( )(A) 3个球 (B) 4个球 (C) 5个球 (D) 6个球3.当x 分别取值20071,20061,20051,…,21,1,2,…,2005,2006,2007时,计算代数式2211xx +-的值,将所得的结果相加,其和等于( ) (A )-1. (B )1. (C )0. (D )2007.4、当5个整数从小到大排列后,其中位数为4,如果这组数据的惟一众数是6,那么这5个数最大的和可能是( )A 、21B 、22C 、23D 、245.已知一列数a l ,a 2,a 3,…,a n ,…中,a 1=0,a 2=2a l +1,a 3=2a 2+1,···,a n+l =2a n +l,···. 则a 2004-a 2003的个位数字是( )(A) 2 (B) 4 (C) 6 (D) 86.如图是正方形方格,将其中两个方格涂黑有若干种涂法.约定沿正方形ABCD的对称轴翻折能重合的图案或绕正方形ABCD 中心旋转能重合的图案都视为同一种图案,例如左图中就视为同一种图案,则不同的涂法有 ( ) (A)4种 (B)6种 (C)8种 (D)12种 二、填空题:(5分每题)7.一个多边形的对角线的条数等于边数的5倍, 则这个多边形是___________边形.8.a,b,c 为△ABC 的三边3a 3+6a 2b-3a 2c-6abc=O, 则△ABC 的形状为_____________________. 9.如图,四边形ABCD 为正方形,AB 为边向正方形外 作等边三角形ABE .CE 与DB 相交于点F, 则∠AFD=____________度.10.若有理数x 、y(y≠0)的积、商、差相等, 即xy=yx=x-y,则x=_________,y=____________. 11.有3堆硬币,每枚硬币的面值相同.小李从第1堆取出和第2堆一样多的硬币放入第2堆;又从第2堆中取出和第3堆一样多的硬币放人第3堆;最后从第3堆中取出和现存的第1堆一样多的硬币放人第1堆,这样每堆有16枚硬币,则原来第1堆有硬币________枚,第2堆有硬币__________枚,第3堆有硬币___________枚.12.甲、乙、丙三人进行智力抢答活动,规定:第一个问题由乙提出,由甲、丙抢答.以后在抢答过程中若甲答对1题,就可提6个问题,乙答对1题就可提5个问题,丙答对1题就可提4个问题,供另两人抢答.抢答结束后,总共有16个问题没有任何人答对,则甲、乙、丙答对的题数分别是___________________.三、解答题:13.已知a,b,c为实数,且a+b+│c-1 -1│=4a-2 +2b+1 -4,求:a+2b-3c的值.……………10分题14.如图,横向或纵向的两个相邻格点的距离都是1.若六边形(可以是凸的或凹的)的顶点都在格点上,且面积为6,画出三个形状不同的这样的六边形. …………10分题15.如图,△ABC中,AD⊥BC于D,∠B=2∠C.求证:DC=BD+AB ……10分题A16.如图,四边形ABCD中,∠A=∠C=90°,AB=AD,BC+CD=10, (1)求四边形ABCD的面积;(2)若∠ADC=60°,求四边形ABCD的周长. (10)分题CABD参考答案一、选择题: 1、A 2、C 3、C 4、A 5、B 6、C 二、填空题:7.十三 8.等腰三角形 9.60 10.一21,一l 11.22,14,12 12.(1,1,2)或(0,3,1) 注:填对1个只给2分. 三、解答题:13.把a+b+│c-1 -1│=4a-2 +2b+1 -4变形得: [(a-2)-4a-2 +4]+[(b+1)-2b+1 +1]+ │c-1 -1│=0 即(a-2 -2)2+(b+1 -1)2+│c-1 -1│=0∴a-2 -2=0,b+1 -1=0,c-1 -1=0 ∴a=6,b=0,c=2 ∴a+2b-3c =014.注:符合条件的六边形有许多. 15.连BD(1)四边形ABCD 的面积=S △ABD +S △BCD =12 AB ·AD+12 BC ·CD=12 AB 2+12 BC ·CD=14 BD 2+12 BC ·CD=14 ( BD 2+2BC ·CD) =14 ( BC 2+CD 2+2BC ·CD)= 14 (BC+CD)2=14 ×102=25(2)延长AB 和DC 交于点E. 设AB=AD=x,∵∠ADC=60°,∴DE=2x,AE= 3 x C BE∴BE=( 3 -1)x 在Rt △BCE 中,∵∠E=30° ∴BC=3-12x, EC= 3 BC=3-32 x ∴CD=DE-EC=2x-3-32 x=3+12 x∵BC+CD=10, ∴3-12 x+3+12 x=10,即 3 x=10 ∴x=1033 ∴四边形ABCD 的周长=2x+10=203 3 +1016、(1)证明:在BC 上取点E,使BD=DE,∵AD ⊥BC,∴AB=AE,∴∠AEB=∠ABC=2∠C ∴∠C=∠∴EC=EA=AB, ∴CD=DE+EC=BD+AB(2)由(1)得:∵a 2-4bc=(b+c)2-4bc=(b-c )2又c>b,即c ≠b,∴(b-c )2>0,∴方程x 2-ax+bc=0有两个不相等的实数根 (3)设方程的两根为k,2k,代入得k 2-ak+bc=0①及4k 2-2ak+bc=0②,由②-4×①得k=3bc 2a ,代入①得(3bc 2a )2-a ·3bc 2a +bc=0,化简得9bc=2a 2,又∵a 2=(b+c)2代入得2b 2-5bc+2c 2=0,(2b-c)(b-2c)=0∵b<c ∴c=2b∵AD ⊥BC ∴∠B=60°∴∠C=30°,∴∠BAC=90°∴△ABC 为直角三角形.。
【精品】八年级希望杯决赛真题与标准答案.doc
4.已知三角形三个内角的度数之比为x : y : z ,且x+yvz, 则这个三角形是()(A )锐角三角形. (B )直角三角形. (C )钝角三角形. (D )等腰三角形.5.如图1, 一个凸六边形的六个内角都是120。
,六条边的长分a, b, c, d, e, f,则下列等式中成立的是)(D)a+c=b+d.(英汉词典:integer 整数)(A)a+b+c=d+e+f .(B)a+c+e=b+d+f . (C)a+b=d+e.6. 在三边互不相等的三角形中,最长边的长为a,最长的中线的长为m,最长的高线的长 为h,则() (A )a>m>h .(B )a>h>m .(C )m>a>h.(D )h>m>a .7. 某次足球比赛的计分规则是:胜一场得3分,平一场得1分,负一场得O 分,某球队参赛15场,积33分,若不考虑比赛顺序,则该队胜、平、负的情况可能有()(A ) 15 种.(B ) 11 种.(C )5 种.(D )3 种.第二十一届“希望杯”全国数学邀请赛初二 第2试(2010 年 4 月 11 U 上午 9:00 至 11:00)得分—一、选择题(每小题4分,共40分.)以下每题的四个选项中,仅有一个是正确的,请将 表示正确答案的英文字母写在每题后面的圆括号内. 1 .计算2,2X 59,得数是()(A )9位数. (B ) 10位数. (C ) 11位数.(D) 12位数.2.若三=1,Or + v — ]8则代数式 一的值()9x-y-\S 7 (A )等于;・55 7(B )等于+(C )等写或不存在.(D )等专或不存在.3. The integer solutions of the inequalities about x3(x — q) + 22 2(1 — 2x — ci)x b b — xarcl,2,3,--- < -----then the number of integer pairs (a,b) (A)32.(B)35.(C)40.(D)48.(A)2.(B)— 2. (C)4.(D) 一4.8.若 xy *O,x+y *0,—+ —与 x+y 成反比,则(x + y)2与亍+)=()工 )'(A )成正比.(B )成反比.(C )既不成正比,也不成反比. (D )的关系不 确定.2k9.如图2,已知函数y - —(X > 0),y = —(x < 0),点A 在正y 轴上,过点A 作BC//x 轴, x x交两个函数的图象于点B 和C,若AB:AC = 1:3,则k 的值是()(A )6.(B )3.(C )— 3.(D )— 6.10. 10个人围成一圈做游戏.游戏的规则是:每个人心里都想一个数,并把目己想的数告许与他相邻的两个人,然后每个人将与他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图3所示,则报出来的数是3的人心里想的数是()110 2 9 3二、填空题(每小题4分,共40分.) 11 .若 了 _ 2A /7X + 2 = 0,则 X 4—24X 2=12. 如图4,已知点A (a, b ), 0是原点,OA=OA|, OA ± OA },则点A 〕的坐标是 13.已 知 ab + 0 , 并 且 a + b >。
第11届“希望杯”全国数学邀请赛试卷初二第2试
2000 年第 11 届“希望杯”全国数学邀请赛试卷(初二第2 试)一、选择题(共 10 小题,每题 3 分,满分 30 分)1.( 3 分),﹣ ,﹣ ,﹣这四个数从小到大的摆列次序是( )A .﹣ <﹣ <﹣ <﹣B .﹣ <﹣ <﹣ <﹣C .﹣ <﹣ <﹣ <﹣D .﹣<﹣<﹣<﹣2.( 3 分)一个三角形的三条边长分别是a ,b ,c ( a , b , c 都是质数),且 a+b+c =16,则这个三角形的形状是( )A .直角三角形B .等腰三角形C .等边三角形D .直角三角形或等腰三角形3.( 3 分)已知 25x = 2000, 80y = 2000,则 等于( )A .2B .1C .D .4.( 3 分)设 a+b+c =0, abc > 0,则 的值是()A .﹣ 3B .1C . 3 或﹣ 1D .﹣ 3 或 15.( 3 分)设实数 a 、 b 、 c 知足 a <b < c ( ac < 0),且 |c|< |b|< |a|,则 |x ﹣ a|+|x ﹣ b|+|x+c|的 最小值是( )A .B .|b|C . c ﹣ aD .﹣ c ﹣a6.( 3 分)若一个等腰三角形的三条边长均为整数,且周长为 10,则底边的长为()A .全部偶数B .2 或 4 或 6 或 8C . 2 或 4 或 6D . 2 或 4 7.( 3 分)三元一次方程 x+y+z = 1999 的非负整数解的个数有( )A .20001999 个B .19992000 个C . 2001000 个D . 2001999 个8.( 3 分)如图,梯形 ABCD 中, AB ∥ CD ,且 CD = 3AB ,EF ∥CD ,EF 将梯形 ABCD 分红面积相等的两部分,则 AE : ED 等于( )A .2B .C.D.9.( 3 分)如图,一个边长分别为3cm、 4cm、 5cm 的直角三角形的一个极点与正方形的顶点 B 重合,另两个极点分别在正方形的两条边AD 、DC 上,那么这个正方形的面积是()A .B .C.D.10.( 3 分)已知 p+q+r = 9,且,则等于()A .9B .10C. 8D. 7二、填空题(共10 小题,每题 4 分,满分40 分)11.(4 分)化简:=.12.( 4 分)若多项式2 2能够分解为( x+2y+m)( 2x﹣ y+n)的形式,则2x +3xy﹣2y ﹣ x+8y﹣6=.13.( 4 分)△ ABC 中, AB> AC, AD、 AF 分别是BC 边上的中线和∠ A 的均分线,则 AD 和 AF 的大小关系是AD AF.(填“>”、“<”或“=”)14.( 4 分)如图,锐角△ABC 中, AD 和 CE 分别是 BC 和 AB 边上的高,若AD 与 CE 所夹的锐角是58°,则∠ BAC +∠BCA 的大小是.15.( 4 分)设,,则4 4 4 2 2 2 2 2 2的值等a +b +c ﹣ a b ﹣ b c ﹣ c a于.16.( 4 分)已知 x 为实数,且2 3的值是.x + = 3,则 x +17(. 4 分)已知 n为正整数,若是一个既约分数,那么这个分数的值等于.18.( 4 分)如图,在△ABC 中, AC= 2, BC= 4,∠ ACB= 60°,将△ ABC 折叠,使点 B 和点 C 重合,折痕为DE,则△ AEC 的面积是.19.( 4 分)已知非负实数a、 b、c 知足条件: 3a+2b+c= 4, 2a+b+3c= 5,设 S= 5a+4b+7c 的最大值为m,最小值为n,则 n﹣ m 等于.20.( 4 分)设 a、b、c、d 为正整数,且a 7=b6,c3= d2,c﹣a= 17,则 d﹣b 等于.三、解答题(共 3 小题,满分30 分)21.( 10 分)已知实数a、 b 知足条件 |a﹣ b|=<1,化简代数式(﹣),将结果表示成只含有字母 a 的形式.22.( 10 分)如图,正方形ABCD 中, AB=,点E、F分别在BC、CD上,且∠ BAE=30°,∠ DAF =15°,求△ AEF 的面积.23.( 10 分)将编号为1,2,3,4,5 的五个小球放入编号为1,2,3,4,5 的五个盒子中,每个盒子只放入一个,① 一共有多少种不一样的放法?②若编号为 1 的球恰巧放在了 1 号盒子中,共有多少种不一样的放法?③ 若起码有一个球放入了同号的盒子中(即对号放入),共有多少种不一样的放法?2000 年第 11 届“希望杯” 全国数学邀请赛试卷(初二第2试)参照答案与试题分析一、选择题(共 10 小题,每题 3 分,满分30 分)1.( 3 分),﹣,﹣,﹣这四个数从小到大的摆列次序是()A .﹣<﹣<﹣<﹣B .﹣<﹣<﹣<﹣C.﹣<﹣<﹣<﹣D .﹣<﹣<﹣<﹣【剖析】本题中各数的数值较大,假如先通分在比较大小则会惹起繁琐的计算,故可利用,再依据负数比较大小的原则进行比较.【解答】解:设为真分数,则b﹣ a< 0,∴﹣=﹣==< 0,∴<,于是<<<,∴﹣<﹣<﹣<﹣.应选: A.【评论】本题考察的是有理数的大小比较,解答本题的重点是熟知有理数比较大小的方法,利用<是解题的重点.2.( 3 分)一个三角形的三条边长分别是a, b, c( a, b, c 都是质数),且 a+b+c=16,则这个三角形的形状是()A.直角三角形B.等腰三角形C.等边三角形D.直角三角形或等腰三角形【剖析】 把 a , b , c 中的两个字母的和看作一个整体,因为a+b+c = 16,16 是偶数,根据偶数 +偶数=偶数,奇数 +奇数=偶数, 偶数 +奇数=奇数,而 2 是独一的偶质数, 得出a , b ,c 中有一个是 2,不如设 a =2,则 b+c = 14,且 b 、 c 都是奇质数,再依据三角形三边关系定理得出b 、c 的值,从而得出结果.【解答】 解:∵ a+b+c = 16,a ,b ,c 都是质数,则 a ,b ,c 的值必定是: 1 或 2 或 3 或 5或 7 或 11 或 13.∴ a , b , c 中有一个是 2,不如设 a = 2.∴ b+c =14,且 b 、c 都是奇质数,又∵ 14= 3+11= 7+7,而 2+3 <11,∴以 2,3, 11 为边不可以构成三角形;2+7 > 7,∴以 2,7, 7 为边能构成三角形.∴这个三角形是等腰三角形.【评论】 本题考察了奇偶数、质数的有关知识及三角形三边关系定理.难度较大,此中对于奇偶数、质数的有关知识考察属于比赛题型,高出教材大纲领求范围.3.( 3 分)已知 25x = 2000, 80y = 2000,则 等于( )A .2B .1C .D .【剖析】 由 25x = 2000, 80y = 2000,可得 25x = 25× 80, 80y = 25×80,推出 25x ﹣1= 80,80y ﹣1= 25,推出( 80y ﹣ 1)x ﹣ 1= 80,推出( y ﹣ 1)( x ﹣1)= 1,即 xy = x+y ,由 xy ≠ 0,推出= 1,由此即可解决问题.【解答】 解:∵ 25x= 2000 ,80y=2000,∴ 25x = 25× 80, 80y= 25× 80, ∴ 25x ﹣ 1= 80, 80y ﹣1= 25,∴( 80y ﹣1)x ﹣ 1= 80,∴( y﹣1)( x ﹣ 1)= 1,∴ xy ﹣ x ﹣y+1= 1,∴ xy = x+y ,∵ xy ≠ 0,∴= 1,∴ + = 1.应选: B .方法二: 25x= 2000∴ 25xy = 2000y =( 25× 80) y = 25y ?80y =25y ?25x = 25x+y ,∴ xy = x+y ,∴ + = 1,应选: B .【评论】 本题考察了同底数幂的乘法运算法例,幂的乘方与积的乘方等知识,解题的关键是灵巧运用所学知识解决问题,学会用整体的思想思虑问题,属于中考常考题型.4.( 3 分)设 a+b+c =0, abc > 0,则的值是()A .﹣ 3B .1C . 3 或﹣ 1D .﹣ 3 或 1【剖析】 由 a+b+c = 0,abc > 0,可知 a 、b 、c 中二负一正,将 b+c =﹣ a ,c+a =﹣ b ,a+b=﹣ c 代入所求代数式,可判断, , 中二正一负.【解答】 解:∵ a+b+c = 0,abc > 0,∴ a 、 b 、 c 中二负一正,又 b+c =﹣ a , c+a =﹣ b , a+b =﹣ c ,∴=++ ,而当 a > 0 时, =﹣ 1,当 a < 0 时, = 1,∴, ,的结果中有二个 1,一个﹣ 1,∴ 的值是 1.应选: B .【评论】 本题考察了分式的加减,绝对值的运算,判断 a 、 b 、 c 的符号是解题的重点.5.( 3 分)设实数 a 、 b 、 c 知足 a <b < c ( ac < 0),且 |c|< |b|< |a|,则 |x ﹣ a|+|x ﹣ b|+|x+c|的 最小值是( )A .B .|b|C . c ﹣ aD .﹣ c ﹣a【剖析】 依据 ac < 0 可知, a ,c 异号,再依据 a < b <c ,以及 |c|< |b|< |a|,即可确立 a ,b ,依据数轴即可确立.【解答】解:∵ ac< 0∴a,c 异号∴a< 0, c> 0又∵ a< b< c,以及 |c|< |b|< |a|∴a< b<﹣ c< 0< c|x﹣ a|+|x﹣ b|+|x+c|表示到 a,b,﹣ c 三点的距离的和.当 x 在表示 b 点的数的地点时距离最小,即 |x﹣ a|+|x﹣ b|+|x+c|最小,最小值是 a 与﹣ c 之间的距离,即﹣ c﹣ a.应选: D .【评论】本题解决的重点是依据条件确立a,b, c,﹣ c 之间的大小关系,把求式子的最值的问题转变为距离的问题.6.( 3 分)若一个等腰三角形的三条边长均为整数,且周长为10,则底边的长为()A .全部偶数B .2 或 4 或 6 或 8C. 2 或 4 或 6D. 2 或 4【剖析】设腰长为x,则底边为10﹣ 2x,依据三角形三边关系可获得腰长可取的值,从而不难求得底边的长.【解答】解:设腰长为x,则底边为10﹣ 2x.∵10﹣2x﹣ x< x< 10﹣2x+x,∴ 2.5<x< 5,∵三边长均为整数,∴ x 可取的值为: 3 或 4,∴当腰长为 3 时,底边为 4;当腰长为 4 时,底边为 2;应选: D .【评论】本题主要考察等腰三角形的性质及三角形三边关系的综合运用.7.( 3 分)三元一次方程x+y+z= 1999 的非负整数解的个数有()A .20001999 个B .19992000 个C. 2001000 个D. 2001999 个【剖析】先设 x= 0,y+z= 1999,y 分别取 0,1,2,1999 时,z 取 1999,1998,,0,有2000 个整数解;当 x= 1 时,y+z= 1998,有 1999 个整数解;当 x= 1999 时,y+z= 0,只有 1 组整数解,依此类推,而后把个数加起来即可.【解答】解:当 x=0 时,y+z= 1999,y 分别取 0,1,2,1999 时,z 取 1999,1998,,当x= 1 时, y+z= 1998,有 1999 个整数解;当x= 2 时, y+z= 1997,有 1998 个整数解;当x= 1999 时, y+z= 0,只有 1 组整数解,故非负整数解的个数有 2000+1999+1998+ +3+2+1 =2001000 (个),应选: C.【评论】本题考察了三元一次不定方程的解,解题的重点是确立x、 y、 z 的值,分类讨论.8.( 3 分)如图,梯形ABCD 中, AB∥ CD,且 CD= 3AB,EF ∥CD ,EF 将梯形 ABCD 分红面积相等的两部分,则AE: ED 等于()A .2B .C.D.【剖析】依据 EF 将梯形 ABCD 分红面积相等的两部分的性质能够求得EF 与的长度,设CD= 3,AB =1,设 AE: ED= x,则依据梯形ABEF 面积是梯形ABCD 面积的一半即可解题.【解答】解:设梯形高为h,设 CD= 3, AB= 1,设 AE: ED= x: 1,则AM :AN =x:( x+1 ),则 AM =?h,EH=×(CD﹣AB),则梯形 ABEF 的面积为??h?[(CD﹣AB)+AB+AB]=?(? AB+CD)?h解得 x=,∴ AE: ED =.第 9 页(共 21 页)应选: C .【评论】 本题考察了梯形面积的计算,考察了相像梯形对应边比值相等的性质,本题中依据 x 的关系式求 x 的值是解题的重点.9.( 3 分)如图,一个边长分别为3cm 、 4cm 、 5cm 的直角三角形的一个极点与正方形的顶点 B 重合,另两个极点分别在正方形的两条边 AD 、DC 上,那么这个正方形的面积是 ( )A .B .C .D .【剖析】 如图,由△ BEF 的三边为 3、 4、 5,依据勾股定理逆定理能够证明其是直角三角形,利用正方形的性质能够证明△FDE ∽△ ECB ,而后利用相像三角形的性质能够得到 DE :CB = 3:4,设 DE 为 3x ,则 BC 是 4x ,依据勾股定理即可求出 x 2=,也就求出了正方形的面积.【解答】 解:如图,∵△ BEF 的三边为 2223、 4、 5,而 3 +4 = 5 ,∴△ BEF 为直角三角形,∴∠ FEB =90°,而四边形 ABCD 为正方形,∴∠ D =∠ C = 90°,∴△ FDE ∽△ ECB ,∴ DE : CB =EF : EB ,即 DE : CB = 3:4,∴设 DE 为 3x ,则 BC 是 4x ,∴ EC 是 x ,∵三角形 EBC 为直角三角形,22 2 ∴ EB = EC +BC ,22∴ 16=x +( 4x ) ,∴ x 2=,∵ S 正方形 ABCD =( 4x )2= cm 2.应选: D .【评论】 本题考察了正方形的性质、直角三角形的性质、相像三角形的性质与判断、勾股定理等知识,综合性比较强,对于学生的能力要求比较高.10.( 3 分)已知 p+q+r = 9,且 ,则 等于( )A .9B .10C . 8D . 7【剖析】 本题能够利用已知条件表示 p 、 q 、 r ,而后借助因式分解达到约分的目的.【解答】 解:设= k ,2 2 2则 p =( x ﹣ yz ) k , q =( y ﹣ zx ) k , r =( z ﹣ xy ) k .已知 p+q+r = 9,则( x 2﹣ yz ) k+( y 2﹣ zx )k+( z 2﹣ xy ) k = 9,即 k ( x 2﹣ yz+y 2﹣ zx+z 2﹣ xy )= 9.原式==k ( x 2﹣ yz+y 2﹣ zx+z 2﹣xy )= 9.应选: A .【评论】 本题考察了因式分解的运用,在碰到等比的时候,要擅长用设k 的方法.33 3222﹣xy ). 注意: x +y +z ﹣ 3xyz =( x+y+z )( x ﹣ yz+y ﹣ zx+z 二、填空题(共 10 小题,每题4 分,满分 40 分)11.(4 分)化简: = 1 .【剖析】 本题可对根号内的项进行配方,变换成平方形式,而后进行开方,化简即可.【解答】 解:原式====== 1【评论】 本题考察二次根式的化简求值,计算时联合(a+b ) 2,注意配方联合各项之间的关系.12.( 4 分)若多项式2 2能够分解为( x+2y+m)( 2x﹣ y+n)的形式,则2x +3xy﹣2y ﹣ x+8y﹣6=﹣.【剖析】由题意多项式2 2﹣ x+8y﹣ 6 能够分解为( x+2y+m)( 2x﹣ y+n)的形式,2x +3xy﹣ 2y将整式( x+2y+m)( 2x﹣ y+n)相乘,而后依据系数相等求出m 和 n,从而求解.【解答】解:∵多项式2 2能够分解为(x+2y+m)(2x﹣ y+n)的形式,2x +3 xy﹣ 2y ﹣ x+8y﹣ 6∴( x+2y+m)( 2x﹣ y+n)= 2x 2 2 2 2 +3 xy﹣ 2y +( 2m+n)x+(2n﹣ m) y+mn= 2x +3xy﹣ 2y ﹣x+8 y﹣ 6,∴2m+n=﹣ 1, 2n﹣ m= 8, mn=﹣ 6,解得 m=﹣ 2, n= 3,∴==﹣,故答案为:﹣.【评论】本题主要考察因式分解的意义,紧扣因式分解的定义,是一道基础题.13.( 4 分)△ ABC 中, AB> AC, AD、 AF 分别是BC 边上的中线和∠ A 的均分线,则 AD 和 AF 的大小关系是AD>AF.(填“>”、“<”或“=”)【剖析】设 AB 的中点是 E,连结 DE.依据三角形的中位线定理,得DE∥ AC,DE=AC,联合已知条件,得DE < AE,则∠ ADE >∠ DAE ,又∠ ADE =∠ CAD ,则∠ CAD >∠DAE,故 AF 在 AD 的右边,依据大角对大边即可证明.【解答】解:设 AB 的中点是 E,连结 DE .依据三角形的中位线定理,得DE ∥ AC, DE = AC,又AB>AC,则 DE < AE,∴∠ADE>∠DAE,又∠ ADE=∠ CAD,∴∠ CAD>∠ DAE,故 AF 在 AD 的右边,则 AD > AF.【评论】 本题综合运用了三角形的中位线定理和大角对大边、大边对大角的性质.14.( 4 分)如图,锐角△ABC 中, AD 和 CE 分别是 BC 和 AB 边上的高,若 AD 与 CE 所夹的锐角是 58°,则∠ BAC +∠BCA 的大小是122°.【剖析】 依据直角三角形的两个锐角互余,求得∠BAD =∠ BCE = 90°﹣ 58°= 32°,依据三角形的外角的性质,求得∠DAC +∠ DCA = 58°,从而求解.【解答】 解:∵ AD 和 CE 分别是 BC 和 AB 边上的高, ∴∠ BAD =∠ BCE =90°﹣ 58°= 32°, 又∠ DAC+∠ DCA = 58°,∴∠ BAC+∠ BCA = 32°× 2+58°= 122°. 故答案为 122°.【评论】 本题综合运用了三角形的内角和定理的推论:直角三角形的两个锐角互余;三 角形的一个外角等于和它不相邻的两个内角的和.15(. 4 分)设 ,4 4 42 22 22 2.,则 a +b +c ﹣ a b ﹣ b c ﹣ c a 的值等于 5 【剖析】 把所给代数式整理为和 a 2﹣ b 2,b 2﹣ c 2,a 2﹣ c 2有关的形式,把有关数值代入求值即可.【解答】 解:∵① ;② ;∴ ① +② 得: a 2﹣ c 2= 2,∴原式=== 5,故答案为 5.【评论】 考察代数式的求值,把所给代数式整理为和 a 2﹣b 2, b 2﹣ c 2,a 2﹣ c 2有关的形式是解决本题的重点.16.( 4 分)已知 x 为实数,且2 3的值是± 2 .x + = 3,则 x +2= 3,可求出3 2与+x 的形式【剖析】依据 x + +x 的值,把 x + 变形为含有 x + 即可.【解答】解:∵ x 2+ =﹣ 2= 3,故 +x=±,3=( x+ 2)=±× 2又∵ x + )( x ﹣ 1+=± 2 .故答案为:± 2 .【评论】本题考察了完整平方公式,属于基础题,重点是利用完整平方公式进行变形求解.17(. 4 分)已知 n为正整数,若是一个既约分数,那么这个分数的值等于.【剖析】第一把分式的分子分母进行因式分解,发现有公因式(n﹣2),又知是一个既约分数,故可解得n 的值,从而获得分式的值.【解答】解: n 2+3n﹣ 10=( n﹣ 2)( n+5),2n +6n﹣16=( n﹣ 2)( n+8)分子分母有公因子(n﹣ 2),又知是一个既约分数,只好 n﹣ 2= 1,即 n=3,故==.故答案为.【评论】本题主要考察分式等式证明的知识点,解答本题的重点是娴熟掌握即约分数的观点,本题难度一般.18.( 4 分)如图,在△ABC 中, AC= 2, BC= 4,∠ ACB= 60°,将△ ABC 折叠,使点 B 和点 C 重合,折痕为DE,则△ AEC 的面积是.【剖析】连结 AD ,判断出△ ADC 为正三角形,从而判断出△ABC 为直角三角形,经过翻折不变性得出△AEC≌△ DEC 、△ BED ≌△ DEC,从而获得△ AEC 和△ ABC 的面积比,求出△ABC 的面积即可求出△AEC 的面积.【解答】解:连结AD ,∵AC= DC= 2,∠ ACB=60°,∴△ ADC 是等边三角形.∵BD= DC=DA ,∠ ADC= 60°,∴∠ BAD= 30°,∴∠ BAC= 90°.在Rt△AEC 和 Rt△ DEC 中,∵ AC= DC,EC= EC,∴△AEC≌△ DEC( HL ).依据翻折不变性可知,∴△ BED≌△ DEC,于是 S△AEC= S△ABC;又∵ AB==2,∴ S△AEC=S△ABC=×AC?AB=×× 2× 2=.故答案为.【评论】本题考察了翻折变换,波及正三角形的判断、直角三角形的判断和性质等内容,构想奇妙,是一道好题.19.( 4 分)已知非负实数a、 b、c 知足条件: 3a+2b+c= 4, 2a+b+3c= 5,设 S= 5a+4b+7c 的最大值为m,最小值为n,则 n﹣ m 等于﹣2.【剖析】已知, 3a+2b+c=4, 2a+b+3c= 5,可经过转变用 c 表示出a、 b, a= 6﹣5c, b = 7c﹣7,又已知非负实数a、 b、 c,所以可得,a≥0, b≥ 0,即6﹣ 5c≥ 0, 7c﹣7≥ 0,得 c 的取值范围是1≤ c≤,再用c表示出S=10c+2,依据c的取值范围,可求出S 的最大值和最小值,解答即可.【解答】解:已知, 3a+2 b+c= 4① ,2a+b+3c=5② ,② × 2﹣①得, a+5 c= 6, a= 6﹣ 5c,① × 2﹣② × 3 得, b﹣ 7c=﹣ 7, b= 7c﹣7,又已知 a、 b、 c 为非负实数,所以, 6﹣ 5c≥ 0, 7c﹣ 7≥ 0,可得, 1≤ c≤,S= 5a+4b+7 c,=5×( 6﹣ 5c)+4×( 7c﹣7) +7c,=10c+2,所以 10≤ 10c≤ 12,12≤ 10c+2= S≤ 14,即m= 14, n= 12,n﹣ m=﹣ 2,故答案为﹣ 2.【评论】本题主要考察了一次函数的性质,要掌握它们的性质才能灵巧解题;本题用非负实数 c 表示出 a、 b,并求出s 的取值范围,是解答本题的核心.7 6 3 2,c﹣a= 17,则 d﹣b 等于 601 .20.( 4 分)设 a、b、c、d 为正整数,且 a =b ,c = d【剖析】将 a 7= b6,c3=d2转变为对于同一底数幂的形式,再代入c﹣a=17中试解即可.7 6 6 7 【解答】解:因为 a = b ,所以 a 只好是 m , b 只好是 m .由c﹣ a= 17,得2 6,n ﹣ m = 17( n+m 3)( n ﹣m 3)= 17,故 n+m 3= 17,n ﹣ m 3= 1,所以 n = 9, m = 2.所以 a = 64, b =128, c =81. d = 729,d ﹣ b =601.【评论】 本题考察了整数问题的综合运用,将题目条件进行转变,再进行试解是解题的重点,表现了转变思想在解题中的应用. 三、解答题(共 3 小题,满分 30 分)21.( 10 分)已知实数 a 、 b 知足条件 |a ﹣ b|= < 1,化简代数式(﹣ ),将结果表示成只含有字母a 的形式.【剖析】 由已知可得 a ﹣ b ﹣ 1=(a ﹣ b )﹣ 1< 0,据此把代数式化简,又因为要将结果表 示成只含有字母 a 的形式,依据|a ﹣ b|= ,分状况议论,得出用 a 表示 b 的代数式,代入化简即可.【解答】 解:∵ |a ﹣ b|= < 1,∴ a 、b 同号,且 a ≠ 0, b ≠ 0, ∴ a ﹣ b ﹣ 1=( a ﹣ b )﹣ 1< 0,∴( ﹣ )=( ﹣ ) [1﹣( a ﹣ b ) ] = .① 若 a 、b 同为正数,由< 1,得 a > b ,∴ a ﹣ b =, a 2﹣ ab = b ,解得 b = ,∴( ﹣ ) ===﹣ ? =﹣=﹣;② 若 a 、b 同为负数,由 < 1,得 b > a ,∴ a ﹣ b =﹣ , a 2﹣ ab =﹣ b ,解得 b =,∴()====.综上所述,当a、b 同为正数时,原式的结果为﹣;当a、b同为负数时,原式的结果为.【评论】本题考察二次根式的化简求值,利用了(a≥ 0)的性质,要充分利用已知条件,难度较大.22.( 10 分)如图,正方形ABCD 中, AB=,点E、F分别在BC、CD上,且∠ BAE=30°,∠ DAF =15°,求△ AEF 的面积.【剖析】将△ ADF 绕 A 点顺时针方向旋转 90°到△ ABG 的地点,获得△ ABG,求证:△AEF ≌△ AEG,要求△ AEF 的面积求△ AEG 即可,且 AB 为底边上的高, EG 为底边.【解答】解:将△ ADF 绕 A 点顺时针方向旋转 90°到△ ABG 的地点,∴AG= AF,∠ GAB =∠ FAD =15°,∠ GAE= 15° +30°= 45°,∠ EAF = 90°﹣( 30° +15 °)= 45°,∴∠ GAE=∠ FAE ,又 AE= AE,∴△ AEF ≌△ AEG ,∴ EF=EG,∠ AEF =∠ AEG = 60°,在 Rt△ABE 中, AB=,∠ BAE=30°,∴∠ AEB=60°, BE=AB ?tan30°= 1,在Rt△EFC 中,∠ FEC = 180°﹣( 60°+60 °)= 60°,EC= BC﹣ BE=﹣1,EF=2(﹣1),∴ EG= 2(﹣1),S△AEG=EG?AB= 3﹣,∴S△AEF= S△AEG= 3﹣.【评论】本题考察了全等三角形的证明,考察了正方形各边各内角均相等的性质,解本题的重点是奇妙地建立△ABG ,而且求证△ AEF ≌△ AEG.23.( 10 分)将编号为 1,2,3,4,5 的五个小球放入编号为1,2,3,4,5 的五个盒子中,每个盒子只放入一个,① 一共有多少种不一样的放法?②若编号为 1 的球恰巧放在了 1 号盒子中,共有多少种不一样的放法?③ 若起码有一个球放入了同号的盒子中(即对号放入),共有多少种不一样的放法?【剖析】① 先放入,有 5 种不一样的方法,再放第二个球,这时以4 种不一样的放法,依此类推,能够求出不一样的放法,②一个小球固定 1 号盒,其他的四个球任意放,它们挨次有4、 3、 2、1 种不一样的放法,于是能够求出不一样的放法,③解法一:在这 120 种放法中,清除去所有不对号的放法,剩下的就是起码有一个球放入了同号的盒子中的放法种数,解法二:从五个球中选定一个球,有 5 种选法,将它放入同号的盒子中(如将 1 号球放入 1 号盒子),其他的四个球任意放,有24 种放法,这样共有 5× 24= 120 种放法,而后去掉重复的放法的种数就是起码有一个球放入了同号的盒子中的放法种数.【解答】解:①将第一个球先放入,有 5 种不一样的方法,再放第二个球,这时以 4 种不同的放法,依此类推,放入第三、四、五个球,分别有3、 2、 1 种放法,所以总合有 5 × 4× 3× 2× 1=120 种不一样的放法.②将 1 号球放在 1 号盒子中,其他的四个球任意放,它们挨次有4、3、2、1 种不一样的放法,这样共有4× 3× 2×1= 24 种不一样的放法.③ (解法一)在这 120 种放法中,清除去所有不对号的放法,剩下的就是起码有一个球放入了同号的盒子中的放法种数.为研究所有不对号的放法种数的计算法,设A1为只有一个球放入一个盒子,且不对号的放法种数,明显 A1= 0,A2为只有二个球放入二个盒子,且不对号的放法种数,∴ A2=1,A3为只有三个球放入三个盒子,且都不对号的放法种数,A3= 2, A n为有 n 个球放入n 个盒子,且都不对号的放法种数.下边我们研究A n+1的计算方法,考虑它与A n及 A n﹣1的关系,假如此刻有n 个球已经按所有不对号的方法放好,种数为A n.取此中的任意一种,将第n+1 个球和第n+1 个盒子拿来,将前面n 个盒子中的任一盒子(如第m 个盒子)中的球(必定不是编号为m 的球)放入第n+1 个盒子,将第n+1 个球放入方才空出来的盒子,这样的放法都是合理的.共有nA n种不一样的放法.可是,在方才的操作中,忽视了编号为m 的球放入第n+1 个盒子中的状况,即还有这样一种状况,编号为m 的球放入第n+1 个盒子中,且编号为n+1 的球放入第m 个盒子中,其他的 n﹣ 1 个球也都不对号.于是又有了nA n﹣1种状况是合理的.综上所述得A n+1= nA n +nA n﹣1= n( A n+A n﹣1).由A1=0, A2= 1,得 A3= 2( 1+0)= 2, A4= 3(2+1 )= 9, A5= 4( 9+2 )= 44.所以起码有一个球放入了同号的盒子中的放法种数为所有放法的种数减去五个球都不对号的放法种数,即 120﹣44= 76 种.(解法二)从五个球中选定一个球,有 5 种选法,将它放入同号的盒子中(如将 1 号球放入 1 号盒子),其他的四个球任意放,有24 种放法,这样共有5× 24= 120 种放法.但这些放法中有很多种放法是重复的,如将两个球放入同号的盒子中(比如 1 号球和 2 号球分别放入 1 号盒子、 2 号盒子中)的放法就计算了两次,这样从总数中应减去两个球放入同号的盒子中的状况,得120﹣C52P33= 120﹣ 60(种).很明显,这样的计算中,又使得将三个球放入同号的盒子中(比如 1 号球、 2 号球和 3 号球分别放入 1 号盒子、 2 号盒子和 3 号盒子中)的放法少计算了一次,于是前面的式子3 2中又要加入 C5 P2 = 20 种,4 1 5C 5 P 1 ,最后加上五个球放入同号中的状况 C 5 .整个式子为120﹣ C 5 2 35 3 2 4 15﹣ 5+1=76 (种).P 3 +C P 2﹣C 5 1+C 5 = 120﹣ 60+20P【评论】 本题主要考察计数方法的知识点,解答本题的重点是掌握计数原理,特别是第三问的解法不只一种,请同学们娴熟掌握.。
第二十届希望杯全国数学邀请赛初二第2试参考答案及评分标准(WORD版)
第二十届“希望杯”全国数学邀请赛参考答案及评分标准初二 第2试(每小题4分)(每小题4分,含两个空的小题,每空2分)三、解答题21.设所求的最简分数是n m ,()1,=n m ,n m <<0,15<n , 则 nn m n m 52552-=-, 因为52≠n m ,且m ,n 是正整数, 所以 125≥-n m .(1)当125=-n m 时,有125=-n m (当52>n m 时),或125-=-n m (当52<n m 时), 所以 512+=n m 或512-=n m . 由m 是整数,知2n +1或2n -1(n <15)是5的倍数.(5分) 要使nn m 5152=-最小,则n 应最大. 由2n +1或2n -1(n <15)是5的倍数,知n 最大取13,对应的m=5,此时65152=-n m .(8分) (2)当125>-n m 时,因为n <15,m ,n 是正整数,所以nnm n m 52552-=-≥6513511452>=⨯. 综上可知,52-n m 的最小值是651,此时对应的m =5,n =13, 故135是最接近52,但分母小于15的最简分数. (10分)22.(1)依题意,函数y =3-x +3的图象与x 轴、y 轴分别交于点A 、B ,当y =0时,x =1;当x =0时,y =3,所以点A 的坐标是(1,0),点B 的坐标是(0,3) 于是 AB =22OB OA +=2. 在Rt △ABC 中,∠ABC =30º,AB =2.设AC =x ,则BC =2x ,由勾股定理,得222)2(2x x =+,得342=x ,332=x .所以 AC =332, S △ABC =21AB ·AC =332. (5分)(2)点P 在第二象限内,且P ⎪⎪⎭⎫ ⎝⎛23,m , 则m<0,S 四边形AOPB = S △AOB +S △BOP =21×1×3+21×3×(-m )=()m -123. 又S △APB = S 四边形AOPB - S △AOP =()23121123⨯⨯--m =()m 2143-, 由△APB 与△ABC 的面积相等,得()3322143=-m ,解得 65-=m . (10分) (3)这样的点存在,一共有6个,分别是:以AB 为底边的等腰三角形有两个,这时,Q 点的坐标是(-1,0)或(0,33); 以AB 为一条腰的等腰三角形有四个,这时,Q 点的坐标是(0,23+),(0,23-),(0,3-),(3,0). (15分)23.点A 和点B 之间的距离是5,所以它们之间的连线是直角三角形的斜边,设点C 的坐标是(a ,b ),则()()⎪⎩⎪⎨⎧=-+=+-.163942222b a b a , ① 或者()()⎪⎩⎪⎨⎧=-+=+-.931642222b a b a ,② (5分) 对于①,有⎪⎩⎪⎨⎧=+-+=+-+.169691682222b b a a b a ,两式相减,得 01468=--b a ,因此 )74(31-=a b , 将它代入①的第二个式子,得0)2825)(4(91=--a a ,解得 4=a ,或2528=a ,对应的b 的值是3或2521-,所以点C 的坐标是(4,3)或⎪⎭⎫ ⎝⎛-25212528,. 对应的k 的值是12或625588-. (10分) 对于②,有⎪⎩⎪⎨⎧=+-+=+-+.996161682222b b a a b a ,两式相减,得 068=-b a ,因此 a b 34=,将它代入②的第一个式子,得0)7225(91=-a a , 解得 =a 0,或2572=a ,对应的b 的值是0或2596.因为原点不可能在反比例函数的图象上,所以点C 的坐标是⎪⎭⎫⎝⎛25962572,, 对应的k 的值是6256912. 综上所述,k 的值是12或625588-或6256912. (15分)。
希望杯初中数学竞赛试卷
一、选择题(每题5分,共50分)1. 下列各数中,不是有理数的是()A. 0.333...(循环小数)B. √2C. 3D. -1/42. 已知a、b、c是三角形的三边,且a+b>c,b+c>a,c+a>b,则下列结论正确的是()A. a=b=cB. a、b、c都是正数C. a、b、c都是整数D. 无法确定3. 一个等腰三角形的底边长为6cm,腰长为8cm,则这个三角形的面积是()A. 24cm²B. 32cm²C. 36cm²D. 40cm²4. 若x²-5x+6=0,则x的值为()A. 2或3B. 1或4C. 1或2D. 3或45. 下列函数中,是奇函数的是()A. f(x) = x²B. f(x) = |x|C. f(x) = x³D. f(x) = x⁴6. 在平面直角坐标系中,点A(-2,3)关于原点对称的点B的坐标是()A. (-2,-3)B. (2,-3)C. (2,3)D. (-2,3)7. 下列各数中,绝对值最小的是()A. -3B. 0C. 1/2D. -1/28. 一个数的平方根是-5,那么这个数是()A. 25B. -25C. 0D. 无法确定9. 下列各数中,不是正数的是()A. 0.001B. -0.001C. 0.01D. -0.0110. 下列各数中,有最小正整数解的是()A. 2x+1=0B. 3x-2=0C. 4x-3=0D. 5x-4=0二、填空题(每题5分,共50分)11. 若a、b、c是等差数列的连续三项,且a+b+c=24,则b的值为______。
12. 已知函数f(x) = 2x+3,则f(-1)的值为______。
13. 在平面直角坐标系中,点P(2,-3)到原点的距离是______。
14. 若x²-4x+4=0,则x的值为______。
15. 下列函数中,是偶函数的是______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十八届“希望杯”全国数学邀请赛初二 第二试2007年4月15日 上午8:30至10:30一、 选择题(本大题共10小题,每小题4分,菜40分。
)以下每题的四个选项中,仅有一个是正确的,请将正确答案的英文字母写在每题后面的圆括号内。
1、红丝带是关注艾滋病防治问题的国际性标志,人胶将红丝带剪成小段,并用别针将折叠好的红丝带加紧在胸前,如图1所示,红丝带重叠部分形成的图形是( ) (A )正方形 (B )矩形 C )菱形 (D )梯形2、设a 、b 、C 是不为零的实数,那么||||||a b c x a b c =+-的值有( ) (A )3种 (B )4种 (C )5种 (D )6种3、ABC ∆的边长分别是21a m =-,21b m =+,()20c m m =>,则ABC ∆是( )(A )等边三角形 (B )钝角三角形 (C )直角三角形 (D )锐角三角形4、古人用天干和地支记序,其中天干有10个;甲乙丙丁戊己庚辛壬癸,地支有12个;子丑寅卯辰巳午未申酉戌亥,将天干的10个汉字和地支的12个汉字对应排列成如下两行; 甲乙丙丁戊己庚辛壬癸甲乙丙丁戊己庚辛壬癸甲乙丙丁…… 子丑寅卯辰巳午未申酉戌亥子丑寅卯辰巳午未申酉戌亥……从左向右数,第1列是甲子,第2列是乙丑,第3列是丙寅……,我国的农历纪年就是按这个顺序得来的,如公历2007年是农历丁亥年,那么从今年往后,农历纪年为甲亥年的那一年在公历中( )(A )是2019年, (B )是2031年, (C )是2043年, (D )没有对应的年号5、实数 a 、b 、m 、n 满足a<b, -1<n<m, 若1a mb M m +=+,1a nbN n+=+,则M 与N 的大小关系是( )(A )M>N (B)M=N (C)M<N (D)无法确定的。
6、若干个正方形和等腰直角三角形拼接成如图2所示的图形,若最大的正方形的边长是7cm ,则正方形A 、B 、C 、D 的面积和是( )(A )214cm (B )242cm (C )249cm (D )264cm7、已知关于x 的不等式组230320a x a x +>⎧⎨-≥⎩恰有3个整数解,则a 的取值范围是( )(A )23≤a ≤32 (B)43≤a ≤32 (C)43<a ≤32 (D)43≤a <328 、The number of intersection point of the graphs of function||k y x=and function (0)y kx k =≠ is( ) (A)0 (B)1 (C)2 (D)0 or 2.9、某医药研究所开发一种新药,成年人按规定的剂量限用,服药后每毫升血液中的含药量y (毫克)与时间t (小时)之间的函数关系近似满足如图3所示曲线,当每毫升血液中的含药量不少于0.25毫克时治疗有效,则服药一次治疗疾病有效的时间为( ) (A )16小时 (B )7158小时 (C )151516小时 (D )17小时 )10、某公司组织员工一公园划船,报名人数不足50人,在安排乘船时发现,每只船坐6人,就剩下18人无船可乘;每只船坐10人,那么其余的船坐满后内参有一只船不空也不满,参加划船的员工共有( )(A )48人 (B )45人 (C )44人 (D )42人 二、填空题(本大题共10小题,每小题4分,共40分)11、已知a b c ⋅⋅o 为ABC ∆三边的长,则化简|a b c -+|+2()a b c -+的结果是___ 12、自从扫描隧道显微镜发明后,世界上便诞生了一间新科学,这就是“纳米技术”,已知1毫米微米,1微米纳米,那么2007纳米的长度用科学记数法表示为__米。
13、若不等式组2123x a x b -<⎧⎨->⎩中的未知数x 的取值范围是11x -<<,那么(1a +)(1b -)的值等于___14、已知123a a a ⋅⋅⋅…⋅2007a 是彼此互不相等的负数,且122006232007()()M a a a a a a =++++++,122007232006()()N a a a a a a =++++++那么M 与N 的大小关系是M __N15、∣a c bd|叫做二阶行列式,它的算法是:ad bc -,将四个数2、3、4、5排成不同的二阶行列式,则不同的计算结果有__个,其中,数值最大的是___。
16、如图4,一只小猫沿着斜立在墙角的木板往上爬,木板底端距离墙角0。
7米,当小猫从木板底端爬到顶端时,木板底端向左滑动了1.3米,木板顶端向下滑动了0.9米,则小猫在木板上爬动了__米。
17、Xiao Ming says to Xiao Hua that my age add your age.add your age when Lwas your age is 48.The age of Xiao Hua is __ now.(英汉词典:age 年龄:add 加上;when 当……时)18、长方体的长、宽、高分别为正整数a b c ⋅⋅,且满足2006a b c ab bc ac abc ++++++=,那么这个长方体的体积为__。
19、已知a 为实数,且26a +与126a-都是整数,则a 的值是__。
20、为确保信息安全,信息传输需加密,发送方由明文→密文(加密)。
现规定英文26个字母的加密规则是:26年字母按顺序分别对应整数0到25,例子如,英文a b c d ⋅⋅⋅,写出它们的明文(对应整数0,1,2,3),然后将这4个字母对应的整数(分别为 1.2,3,4x x x x )按1231112323x x x x x x ++⋅计算,得到密文,即a b c d 四个字母对应的密文分别是2.3.8.9.现在接收方收到的密文为35.42.23.12.则解密得到的英文单词为___。
三、解答题(本大题共3小题,共40分)要求:写出推算过程 21、(本题满分10分)如图5,一个大的六角星形(粗实线)的顶点是周围六个全等的小六角星形(细线型)的中心,相邻的两个小六角星形各有一个公共顶点,如果小六角星形的顶点C 到中心A 的距离为a ,求:(1) 大六角星形的顶点A 到其中心O 的距离 (2) 大六角星形的面积(3) 大六角星形的面积与六个小六角星形的面积之和的比值 (注:本题中的六角星形有12个相同的等边三角形拼接而成的)22、(本题满分15分)甲、乙两车分别从A 地将一批物品运往B 地,再返回A 地,图6表示两车离A 地的距离s (千米)随时间t (小时)变化的图象,已知乙车到达B 地后以30千米/小时的速度返回。
请根据图象中的数据回答:(1)甲车出发多长时间后被乙车追上?(2)甲车与乙车在距离A 地多远处迎面相遇?(3)甲车从A 地返回的速度多大时,才能比乙车先回到A 地?23、(本题满分15分)平面上有若干个点,其中任意三点都不在同一直线上,将这些点分成三组,并按下面的规则用线段连接:①在同一组的任意两点间都没有线段连接;②不在同一组的任意两点间一定有线段连接。
(1) 若平面上恰好有9个点,且平均分成三组,那么平面上有多少条线段?(2) 若平面上恰好有9个点,且点数分成2,3,4三组,那么平面上有多少条线段? (3) 若平面上共有192条线段,那么平面上至少有多少个点? 答案:三、解答题21(1)连接CO ,易知△AOC 是直角三角形,90,30ACO AOC ∠=∠= 所以22AO AC a ==(2)如图1,大六角星形的面积是等边△AMN 面积的12倍 因为2222()()22AM a AM =+ 解得3AM = 所以大六角星形的面积是21122S a =⨯⨯=(3)小六角星形的顶点C 到其中心A 的距离为a ,大六角星形的顶点A 到其中心O 的距离为2a ,所以大六角星形的面积是一个小六角星形的面积的4倍,所以,大六角星形的面积:六个小六角星形的面积和=2:3 22.(1)由图知,可设甲车由A 地前往B 地的函数解析式为s kt = 将(2.4,48)代入,解得20k = 所以20s t =由图可知,在距A 地30千米处,乙车追上甲车,所以当30s =千米时,301.52020s t ===(小时)。
即甲车出发1.5小时后被乙车追上 (2)由图知,可设乙车由A 地前往B 地函数的解析式为s pt m =+ 将(1.0,0)和(1.5,30)代入,得030 1.5p m p m =+⎧⎨=+⎩,解得6060p m =⎧⎨=-⎩所以6060s t =-当乙车到达B 地时,48s =千米。
代入6060s t =-,得 1.8t =小时 又设乙车由B 地返回A 地的函数的解析式为30s t n =-+ 将(1.8,48)代入,得4830 1.8n =-⨯+,解得102n = 所以30102s t =-+当甲车与乙车迎面相遇时,有3010220t t -+=解得 2.04t =小时 代入20s t =,得40.8s =千米 即甲车与乙车在距离A 地40.8千米处迎面相遇(3)当乙车返回到A 地时,有301020t -+= 解得 3.4t =小时 甲车要比乙车先回到A 地,速度应大于48483.4 2.4=-(千米/小时)23.(1)平面上恰好有9个点,且平均分成三组,每组3个点,其中每个点可以与另外两组的6个点连接,共有线段69272⨯=(条) (2)若平面上恰好有9个点,且点数分成2,3,4三组,则平面上共有线段1[2(34)3(24)4(23)]262⨯++⨯++⨯+=(条) (3)设第一组有a 个点,第二组有b 个点,第三组有c 个点,则平面上共有线段 1[()()()]2a b c b a c c a b ab bc ac +++++=++(条) 若保持第三组点数不变,将第一组中的一个点划归到第二组,则平面上线段的条数为(1)(1)(1)(1)1a b b c a c ab bc ca a b -++++-=+++--与原来线段的条数的差是1a b --,即当a b >时,10a b --≥,此时平面上的线段条数不减少 当a b ≤时,10a b --<此时平面上的线段条数一定减少 由此可见,当平面上由点数较多的一组中划出一个点到点数较少的一组中时,平面上的线段条数不减少,所以当三组中点数一样多(或基本平均)时,平面上线段的条数最多 设三组中都有x 个点,则线段条数为23192x = 解得8x = 所以 平面上至少有24个点。