运筹学第四章整数规划与分配问题.ppt
运筹学-整数规划与分配问题PPT
但 z=13 不是最优。实际问题的
最优解为(4 , 1)这时 z*= 14。
逻辑(0-1)变量在建立数学模型中的作用
1. m 个约束条件中只有 k 个起作用
设 m 个约束条件可以表示为:
n
aijxj bi (i1, ,m)
j1
定义逻辑变量
1,假定第 i 个约束条件不起作用 yi 0,假定第 i 个约束条件起作用
第四章 整数规划与分配问题
整数规划的特点及作用 分配问题与匈牙利法 分枝定界法 割平面法 应用举例
1 整数规划的特点及应用
在实际问题中,全部或部分变量取值必须是整数。比如人 或机器是不可分割的,选择地点可以设置逻辑变量等。
在一个线性规划问题中要求全部变量取整数值的,称纯整
数线性规划或简称纯整数规划;只要求一部分变量取整 数值的,称为混合整数规划。
如果完成任务的效率表现为资源消耗,考虑的是如何分配 任务使得目标极小化;如果完成任务的效率表现为生产效 率的高低,则考虑的是如何分配使得目标函数极大化。
在分配问题中,利用不同资源完成不同计划活动的效率常
用表格形式表示为效率表,表格中数字组成效率矩阵。
例2. 有一份说明书,要分别翻译成英、日、德、俄 四种文字,交甲、乙、丙、丁四个人去完成。因各人专长 不同,使这四个人分别完成四项任务总的时间为最小。效 率表如下:
又设 M 为任意大的正数,则约束条件可以改写为:
n
aijxj
bi Myi
j1
y1 y2 ym mk
2. 约束条件的右端项可能是 r 个值中的某一个
n
即
aijxj b1或b2或或br
j1
定义逻辑变量:
yi 10, ,假 其定 它约束右端项b为 i
Chapter04分配问题与整数规划.ppt
19.03.2019
8
一个说明性的例子(构造等价效率矩阵-书P111)
dij 甲 cij 甲 乙 A 3 4 B 5 2 dij 甲 乙
A 0 2 A 0 1
B 2 0 B 3 0
乙
定理4.3 (划线法求独立零元素集合,证明略) 在效率矩阵中,覆盖零元素的最少直线数等于位于不同行 不同列的0元素的最大个数。
19.03.2019 9
※匈牙利法求解分配问题-步骤1
Step1. 效率矩阵每行减去本行的最小元素,再从每列 减去本列的最小元素 ;
7 6 5 4 3 2 1 O 1 2 3 4 5 6 7 (3.25,2.5)
例1. 一个整数线性规划求解 的例子 max z 3x1 2 x2 2 x1 3x2 14 s.t. x1 0.5 x2 4.5 x , x 0, 且均取整数值。 1 2
用凑整数的 枚举法是否 有效呢?
B 29 38 27 42 27
C 31 + 26 + 28 36 28
D 42 20 40 23 23
E 37 33 32 + 45 45
甲 乙 丙 丁 某人
+ 24
34
求解过程大家一起在黑板上完成
18
19.03.2019
整数规划 – 分枝定界法
整数线性规划的特点
① ②
可行解的集合是离散点,有限多个 x2 最优解未必在顶点达到
甲
2 15 13 4
运筹学——.整数规划与分配问题45页PPT
2、要冒一次险!整个生命就是一场冒险。走得最远的人,常是愿意 去做,并愿意去冒险的人。“稳妥”之船,从未能从岸边走远。-戴尔.卡耐基。
梦 境
3、人生就像一杯没有加糖的咖啡,喝起来是苦涩的,回味起来却有 久久不会退去的余香。
运筹学——.整数规划与分配问题 4、守业的最好办法就是不断的发展。 5、当爱不能完美,我宁愿选择无悔,不管来生多么美丽,我不愿失 去今生对你的记忆,我不求天长地久的美景,我只要生生世世的轮 回里有你。
谢谢!
36、自己的鞋子,自己知道紧在哪里。——西班牙
37、我们唯一不会改正的缺点是软弱。——拉罗什福科
xiexie! 38、我这个人走得很慢,但是我从不后退。——亚伯拉罕·林肯
39、勿问成功的秘诀为何,且尽则殆。——孔子
运筹学课件第4章_整数规划与分配问题
街道1 街道2 街道3 街道4 街道5 街道6 10 20 30 30 20 街道1 0 0 25 35 20 10 街道2 10 25 0 15 30 20 街道3 20 35 15 0 15 25 街道4 30 20 30 15 0 14 街道5 30 10 20 25 14 0 街道6 20
40
24
在实际中,许多要求变量取整的 数学模型,称为整数规划。本章 将讨论整数规划求解的基本思路、 0-1变量的用法、分配问题及匈 牙利法,以及利用Excel, Lingo, WinQSB求解的演示。
设 x1,x2表示两种货物装载数量 (整数),依题意有如下数学模型:
max z 5 x1 6 x2 3 x1 8 x2 ≤ 40 4 x 3 x ≤ 24 1 2 x1 , x2 ≥ 0 x , x 取整数 1 2
管理运筹学课件
2013年3月5日星期二
4.1.2 分枝定界法的基本思路*
0 1 2 3 4 5 6 7 8 x2
分枝定界法(Branch and Bound Method)用于求解整数规划问题 ,是在20世纪60年代初,由Land Doig和Dakin等人提出的。
【例4.1】 用图解法求解整数规划
x1 1 x1 令 x2 1 x2 x 1 x 3 3
目标系数升序排序 min w x2 x3 3x1 5 x1 0 2 x2 x3 x1 0 4 x2 x3 x1 2 解得 x2 1 s.t. x 0 x2 +x1 1 3 x1, x2 , x3 0或1
变量取整的 LP 整数规划
运筹第四章整数规划与分配问题
i=1,2
则问题可以表示为
4 用以表示含固定费用的函数 总费用
K j + c j x j ( x j > 0) Cj(xj ) = ( x j = 0) 0
则上述条件可以表示成
r n ∑ aij x j ≤ ∑ b; y + ... + y = 1 m 2 1
3、 两组条件中满足其中的一组 、
若 x1 ≤ 4, 则 x2 ≥ 1
若 x1 > 4, 则 x2 ≤ 3
定义
1 第i组条件不起作用 yi = 0 第i 组 条件 起作 用
0 0 X = 1 0 0 0 1 1 0 0 0 0 0 0 1 0
用矩阵形式表示为: 用矩阵形式表示为: 解矩阵
一般分配问题 设有n项任务 需有n个人去完成 项任务, 个人去完成, 设有 项任务,需有 个人去完成,每个人只能完成一 项任务,每项任务只能由一个人去完成,设第i人完成 项任务,每项任务只能由一个人去完成,设第 人完成 项任务需要的时间是a 第j 项任务需要的时间是 ij , 问如何分配才能使完成任 务的总时间最少? 务的总时间最少? 设
2. 整数规划问题的特征与性质
特征—变 特征 变量整数性要求 来源 问题本身的要求 引入的逻辑变量的需要 性质—可 性质—可行域是离散集合
3. 整数规划的分类
纯整数规划 要求全部决策变量的取值都为整数, 要求全部决策变量的取值都为整数 则称为纯整数规划 (All IP); ; 混合整数规划 仅要求部分决策变量的取值为整数,则称为混合整数规 仅要求部分决策变量的取值为整数, 划(Mixed IP); ; 0-1整数规划 整数规划 要求决策变量只能取0或 值 则称为0-1规划 规划(0-1 要求决策变量只能取 或1值,则称为 规划 Programming)。 。
运筹学基础及应用第4章-整数规划与分配问题
整数规划的特点及应用
解:对每个投资项目都有被选择和不被选择两种可能,因此 分别用0和1表示,令xj表示第j个项目的决策选择,记为:
j投 资 1 对 项 目 xj ( j 1,2,..., n) j不 投 资 0 对 项 目
投资问题可以表示为:
max z
c
j 1
n
j
xj
n a j x j B j 1 x2 x1 s .t x 3 x4 1 x5 x6 x7 2 ) x j 0或者1 (j 1, 2, L n
B1 B2 B3 B4 年生产能力
A1
A2 A3 A4 年需求量
2
8 7 4 350
9
3 6 5 400
3
5 1 2 300
4
7 2 5 150
400
600 200 200
工厂A3或A4开工后,每年的生产费用估计分别为1200万或1500万元。 现要决定应该建设工厂A3还是A4,才能使今后每年的总费用最少。
0-1型整数线性规划:决策变量只能取值0或1的整数线性 规划。
整数规划的特点及应用
整数规划的典型例子
例4.1 工厂A1和A2生产某种物资。由于该种物资供不应求,故需要 再建一家工厂。相应的建厂方案有A3和A4两个。这种物资的需求地 有B1,B2,B3,B4四个。各工厂年生产能力、各地年需求量、各厂至各 需求地的单位物资运费cij,见下表:
例4.3 设整数规划问题如下
max Z x1 x 2 14x1 9 x 2 51 6 x1 3 x 2 1 x , x 0且 为 整 数 1 2
首先不考虑整数约束,得到线性规划问题(一般称为松弛问 题)。
运筹学基础及应用_(第四章_整数规划与分配问题)
(d) 8
(e)1号、
4号、6号、9号开采时不能超过两个,试表示上
述约束条件。
Next
基础教研室
(a)当x8=1 当x8=0 ∴ x8 x6
x6=1,x6≠0 x6=1,x6=0
(b)当x5 =1 当x5 =0 ∴ x5 + x3 1
x3=0, x3 ≠1 x3=0, x3 =1
基础教研室
【例1】求下述整数规划的最优解
Max z= 3x1 + 2x2 st . 2x1 + 3x2 14 x1 + 0.5x2 4.5 x10,x20,且为整数
基础教研室
x2 x1+0.5x2=4.5
4
(3.25, 2.5) 2 2x1+3x2=14
2
4
6
x1
3x1+2x2=6
二、整数规划的求解方法
1 -选择电网供应 设 y1 0 -不选择电网供应
10 d j x j f (1 y1 ) M j 1 10 0.3d j x j p (1 y2 ) M j 1 y1 y2 1 y1 , y2 0或1
基础教研室
【例3】投资决策问题 某公司准备1000万元资金在10个地点中选择若干个建立 工厂(工厂名称用地点名来命名),有关数据如下:
由于各个工厂之间有配套和协作关系,因此必须满足条件: 1、 建工厂1就必须同时建工厂2; 2、 若建工厂2就不允许建工厂3; 3、 工厂4和工厂5至少建一个; 4、 工厂6,7,8恰好建2个; 5、 工厂8,9,10最多建2个; 6、 建工厂4或者建工厂6,就不能建工厂8,反过来也一样; 7、 条件2,3,5最多满足2个。 问选择哪几个地点建厂最有利? Next
运筹学 第4章 整数规划与分配问题
匈牙利法思路:若能在 [Cij] 中找出 n 个位于
不同行不同列的0元素(称为独立0元素),则
令解矩阵[xij]中对应这n个独立0元素的元素
取值为 1 ,其他元素取值为 0 ,则它对应目
标函数zb=0是最小的。这就是以[Cij]为系数
矩阵分配问题的最优解,也得原问题的最
优解。
定理1 若从分配问题效率矩阵[cij]的每一行元素中分别减去 (或加上)一个常数ui(称为该行的位势),从每一列分别减去 (或加上)一个常数vj(称为该列的位势),得到一个新效率矩阵 [bij],若其中bij=cij-ui-vj,则[bij]的最优解等价于[cij]的最优解
第1步:找出效率矩阵每行的最小元素,并分别从每行
中减去。
第2步:再找出矩阵每列的最小元素,并分别从各列中 减去。
2 10 9 7 2 15 4 14 8 4 13 14 16 11 11 4 15 13 9 4
0 8 7 5 11 0 10 4 0 3 5 0 0 11 9 5
表明m个约束条件中有(m-k)个的右端项为( bi+M ),不起约 束作用,因而,只有k个约束条件起作用。 ② 约束条件的右端项可能是r个值b1 , b2 ,, br 中的某一个 即: 定义:
n
aij x j b1 或b2或或br
j 1
1 假定约束右端项为 bi yi 否则 0
现用下例来说明: max z=40x1+90x2 9x1+7x2≤56 7x1+20x2≤70 x1,x2≥0 x1,x2整数 ① ② ③ ④ ⑤
解:先不考虑条件⑤,即解相应的线性规划B,①~④(见图5-2), 得最优解x1=4.81,x2=1.82,z0=356
运筹学PPT 第四章 线性整数规划
s.t.
x
i 1
8
i
5
x1 x2 1
x6 x7 x8 1
x6 x2
xi 0 或 1,i=1, … ,8
2. 指派问题 问题描述:n项任务可由n个人完成,由于专长不同,各人 完成各任务的时间也不同,求最优安排。 要求:每人只能完成一项任务,每项任务只能由一人完成。 例: 有一份中文说明书,需译成英、日、德、俄四种文字, 分别记作任务E、J、G、R,现有甲、乙、丙、丁四人,他们 将中文说明书翻译成不同语种说明书所需的时间如下表所示, 问应指派何人去完成何项任务,使所需总时间最少?
运动员 甲 乙
丙 丁
仰泳 75.5 65.8
67.6 74.0
蛙泳 86.8 66.2
84.3 69.4
蝶泳 66.6 57.0
77.8 60.8
自由泳 58.4 52.8
59.1 57.0
3. 背包问题 问题描述 已知:一个背包最大容量为b公斤;有m件物品供选择,每 件物品重ai公斤,价值为ci(i=1,…,m)。 问题:携带哪些物品可使总价值最大? 一般模型 xi=
解:令 x i=
7
1, Ai被选中
i 1
0, Ai没被选中
bixi≤B ∑ i=1 x1+x2+x3≤2 s.t. x4+x5≥1 x6+x7≥1 x =0或 1,i=1, … ,7
i
7
课堂练习1:
某钻井队要从S1~S10共10个井位中确定五个钻 井探油,如果选Si,估计钻探费用为ci元,并且 井位选择上要满足下列条件: (1)或选择S1和S7,或选择S8 ;
解:令 x i=
运筹学课件--第四章 整数规划
LP0:X=(3.57,7.14),Z0=35.7
x1≤3 x1≥4
LP1:X=(3,7.6) Z1=34.8
x2≤6
LP2:X=(4,6.5) Z2=35.5
x2≥7 无可行解 x1≥5 LP5:X=(5,5) Z5=35
OR:SM OR:SM
LP3:X=(4.33,6) Z3=35.33
10
OR:SM OR:SM
第二节 整数规划求解
【例3.5 】用分枝定界法求解例3.1
max Z 4 x 1 3 x 2 1 . 2 x 1 0 . 8 x 2 10 2 x 1 2 . 5 x 2 25 x 1 , x 2 0 , 且均取整数
【解】先求对应的松弛问题(记为LP0):
7
OR:SM OR:SM
第二节 整数规划求解
一、舍入化整法
为了满足整数解的要求,自然想到“舍入”或“截尾”处理,以得到 与最优解相近的整数解。 这样做除少数情况外,一般不可行,因为化整后的解有可能超出 了可行域,成为非可行解;或者虽是可行解,却不是最优解。
不考虑整数约束则是一个LP问题,称为原整数规划的松弛问题 对于例1的数学模型,不考虑整数约束的最优解:
6
LP1 LP3
LP3:X=(4.33,6),Z3=35.33
C o
14
3
4
10
x1
OR:SM OR:SM
x2 ① ②
10 A
由于 Z 3 Z 1,选择 LP 3 进行分枝,增加约束 x 1 4 及 x 1 5,到线性规划 LP 4 及 LP 5:
max Z 4x1 3x2 LP1:X=(3,7.6),Z1=34.8 1.2x1 0.8x2 10 2x1 2.5x2 25 LP4 : LP4:X=(4,6),Z4=34 x1 4,x2 6,x1 4 x1 , x2 0 即x1 4, 可行域是一条线段 max Z 4x1 3x2
运筹学-4-整数规划ppt课件
.
8
第四章 整数规划 0-1规划
解:设xi
1 0
带第 i件物品
不带第 i件物品 数学模型:
Z表示所带物品的总价值
m
Z ci 带第i件
ci xi
i 1
m
携带物品的总重量 bi x i
i 1
m
max Z ci xi
m i1
s.t
i1
bi xi
b
xi 0,1,
i 1, 2, m
i1
1, 2,..., m
i1
s.t. xij bj j 1, 2 , n
i1
xij
0
,
yi 0,1
混合型整数规划
.
11
第四章 整数规划
例 工厂A1和A2生产某种物资。由于该种物资供不应求,故需要再 建一家工厂。相应的建厂方案有A3和A4两个。这种物资的需求地有 B1,B2,B3,B4四个。各工厂年生产能力、各地年需求量、各厂至各需 求地的单位物资运费cij,见下表:
.
10
第四章 整数规划
解:设 xij表示A 工 i运厂 往B 商 j的店 运量
m
n
则总运费为
c ij x ij
i1 j 1
数学模型:
mn
m
设yi
1 0
则总建厂费为
在第 i个地点建m厂in Z
不在第 i个地点建厂 n
m
fi yi
j1 m
xij
i1
j
ai
1
yi
cij xij
i
fi yi
1 若 建 工 厂 yi 0 若 不 建 工 厂(i3,4)
再设xij为由Ai运往Bj的物资数量,单位为千吨;z表示总费用, 单位万元。
运筹学 第四章 整数规划与分配问题
第四章 整数规划与分配问题
冯大光制作
(4)
沈阳农业大学
第四章 整数规划与分配问题
冯大光制作
第二节 分配问题与匈牙利法
在实际中经常会遇到这样的问题,有n 项不同 的任务,需要n 个人分别完成其中的一项,但由 于任务的性质和各人的专长不同,因此各人去 完成不同的任务的效率(或花费的时间或费用) 也就不同。于是产生了一个问题,应指派哪个 人去完成哪项任务,使完成 n 项任务的总效率 最高(或所需时间最少),这类问题称为指派 问题或分配问题。
种下料方式可以得到各种零件的毛坯数以及每种
零件的需要量,如表所示。问怎样安排下料方式, 使得即满足需要,所用的原材料又最少?
沈阳农业大学
第四章 整数规划与分配问题
冯大光制作
设:xj 表示用Bj (j=1.2…n) 种方式下料根数模型:
x1 … xn
零件 方 个数 式 零件
A1 b1 Am am1 amn bm
沈阳农业大学
第四章 整数规划与分配问题
冯大光制作
逻辑变量的应用
沈阳农业大学
第四章 整数规划与分配问题
冯大光制作
沈阳农业大学
第四章 整数规划与分配问题
冯大光制作
沈阳农业大学
第四章 整数规划与分配问题
冯大光制作
(3)两组条件满足其中一组
若 x1 4,则 x2 1 ;否则(即 x1 4 时) 2 3 x
列的零元素,则只要令这些零元素位置的 xij 1 ,其 n n 余的 xij 0 ,则 z aij xij 就是问题的最优解.
i 1 j 1
沈阳农业大学
第四章 整数规划与分配问题
冯大光制作
如效率 矩阵为
整数规划与分配问题
整数规划与分配问题第四章整数规划与分配问题§4.1整数规划的特点及作⽤⽤单纯形法求解线性规划的结果往往得到分数或⼩数解。
但在很多实际问题中,全部或部分变量的取值必须是整数,如⼈或者机器设备不可分割。
此外还有⼀些问题,如要不要在某地建设⼯⼚,可选⽤⼀个逻辑变量x ,令1x =表⽰在该地建⼚,0x =表⽰不在该地建⼚,逻辑变量也只允许取整数值的⼀类变量。
在⼀个整数规划中要求全部变量取整数值的,称纯整数线性规划或纯整数规划;只要求⼀部分变量取整数值的,称为混合整数(线性)规划;在纯整数规划问题中,若所有变量只允许取0,1两个值,则称其为0-1规划。
有⼈认为,对整数规划问题的求解可以先不考虑对变量的整数约束,作为⼀般线性规划问题来求解,当解为⾮整数时可⽤四舍五⼊或凑整数寻找最优解,其实这种⽅法是不可⾏的,原因有以下两点:⼀、⽤凑整的⽅法计算量很⼤,⽽况还不⼀定能找到最优解。
如某线性规划问题的最优解为()()12 4.6 5.5x x =,⽤凑整数的⽅法时需⽐较与12,x x 的上述数值最接近的四种组合:(4,5),(5,5),(4,6),(5,6)如果问题中有10个变量,就要⽐较1021024=个整数解组合,⽽且最优解还不⼀定在这些组合中。
⼆、放松约束也⽆法求出其最优解例12121212max 322314.0.5 4.5,0,z x x x x s t x x x x =++≤??+≤??≥?整数如果不考虑整数约束,称为上述线性规划问题的松弛问题,松弛问题的最优解为:123.25, 2.5x x ==取整以后123,2x x ==是可⾏解,但1212123,3;4,2;4,3x x x x x x ======都不是可⾏解,⽽123,2x x ==对应的⽬标函数值123213z x x =+=却不是最优解,然⽽最优解是12124,1,max 3214x x z x x ===+=。
直接对松弛问题进⾏求解都⽆法求得整数规划问题的最优解,这就需要对整数线性规划问题有特殊的求解⽅法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
则分配问题的数学模型为
mm
min z
a ij x ij
i1 j1
m
x ij 1 ( i 1 , 2 ,...,
m)
j1
m
x ij 1 ( j 1 , 2 ,...,j
0或
1,( i ,
j
1 , 2 ,...,
m)
2-2 匈牙利法 定理1.如果从分配问题效率矩阵(aij)的每一 行元素中分别减去(或加上)一个常数ui (称为该行的位势);从每一列中分别减去 (或加上)一个常数 vj (称为该列的位 势);得到一个新的效率矩阵bij,其中bij= aij - ui - vj ,则aij的最优解等价于bij的 最优解。
决策变量全部取整数,约束系数和约束常数项 可取非整数的整数线性规划。
纯整数线性规划可化为全整数线性规划。 3. 混合整数线性规划
决策变量中有一部分取整数值,另一部分可取 非整数值的整数线性规划。 4. 0-1整数线性规划
决策变量只能取0或1的整数线性规划。
三、0-1变量(或称逻辑变量)在模型中 的应用
第四步 为产生m个位于不同行不同列的0元素, 用定理一对效率矩阵进行调整,使之生成新的0 元素。方法: 1. 在效率矩阵未被直线覆盖的元素中找出最小 元素k; 2. 效率矩阵未被直线覆盖的行都减k; 3. 效率矩阵被直线覆盖的列都加k; 4. 转回第三步。
2-3 特殊情况的处理 1. 人数多于任务数,加虚拟任务。 设有n人,m项任务,n>m,则增加n-m项任务。 2. 人数少于任务数,加虚拟人员。 设有n人,m项任务,n<m,则增加m-n项任务。
3. 对求最大值问题的处理
设目标函数为
mm
maxz
aijxij
可将其变换为
i1 j1 mm
minz'
(aij)xij
i1 j1
此时,效率矩阵的元素全成为负值,不符合要
求,根据定理1,令 Mma aijx
变换后的效率矩阵每行都加M即可。
作业:P127 4.8(a) 第三节 分枝定界法 一、分枝定界法的基本思想
设原整数规划问题为IP,其松弛问题为L0。 用单纯形法求L0,若L0无可行解,则IP也无可 行解,计算停止。若求得L0为整数解,则得IP 的最优解,停止。否则,转下一步; 第二步 分枝与定界
在L0的解中,任选一个不满足整数条件的 变量xi,设xi = bi ,则做两个子问题
作业:P126 4.1 4.2 4.3(a) 4.4
第四章 整数规划与分配问题
第一节 整数规划的特点及应用
一、整数规划的一般形式 定义:一部分或全部决策变量必须取整数 值的规划问题称为整数规划。不考虑整数 条件,由余下的目标函数和约束条件构成 的规划问题称为该整数规划的松弛问题。 若松弛问题是线性规划,则该整数规划称 为整数线性规划。
整数线性规划的一般形式: n max(或min)z cj xj j 1
n
aij xj ( 或 )bi (i 1,2,...m)
j 1
xj 0( j 1,2,...n),且部分或全部取整数
例1.求下述整数规划问题的最优解
max z 3x1 2x2
2x1 3x2 14 x1 0.5x2 4.5 x1, x2 0,且均取整数值
定理2. 若效率矩阵A的元素可分成0与非0两 部分,则覆盖所有0元素的最少直线数等于位 于不同行不同列的0元素的最大个数。
匈牙利法的步骤: 第一步 效率矩阵每行都减去该行的最小元素; 第二步 效率矩阵每列都减去该列的最小元素;
此时,效率矩阵的每行每列都有0元素。
第三步 寻找位于不同行不同列的0元素,也就是 寻找能覆盖所有0元素的最少直线数。 方法: 1. 从只有一个0元素的行开始,对0元素打上( ) 号,然后对打( )的0元素所在列画一条直线, 依次进行到最后一行; 2. 从只有一个0元素的列开始,对0元素打上( ) 号, 然后对打( )的0元素所在行画一条直线, 依次进行到最后一列;
先不考虑整数解的限制,用单纯形法求 解其松弛问题,如果求得的解恰好是整数解, 则得整数规划最优解,停止计算。否则,将 松弛问题分解为两个子问题(也称后继问 题),每个子问题都是在原松弛问题的基础 上增加一个变量取整数的约束条件,这样就 缩小了原来的可行域,然后用单纯形法求解, 直至得到最终结果。
二、分枝定界法的步骤(最大值问题) 第一步 寻找替代问题并求解
不考虑整数要求时, 最优解为: X=(3.25 ,2.5)T Z=13 (见下页图解法) 考虑整数要求时,最优解为: X=(4 ,1)T Z=14 凑整 (3,2)可行,非最优,Z=13。
(4,3),(4,2),(3,3) 不可行
二、整数规划的分类 1. 全整数线性规划
决策变量全部取整数,约束系数和约束常数项 也取整数的整数线性规划。 2. 纯整数线性规划
整数规划模型对研究管理问题有重
要意义。很多不能归结为线性规划数学 模型的管理问题,却可以通过设置逻辑 变量建立起整数规划数学模型。
第二节 分配问题(指派问题)与匈牙利法 2-1 问题的提出及数学模型
假设有m项任务分配给m个人去完成,并 指定每个人完成其中一项,每项任务也只由 一个人完成,问应如何分配任务,才能使总 效率最高?(或总费用最少,花费的总时间 最少等等。)
设每个人完成不同任务的耗费见下面的 效率矩阵,通常要求aij≥0。
a11 a12 ... a1m
A
aij
mm
a21 ...
a22 ...
...
a2m
... ...
am1 am2 ... amm
又 x ij 设 1 0 ,, 分 不i人 配 分 i人 去 第 配 去 j项 j项 完 第 完 任 任 ( 成 i,j成 务 1 ,2 务 第 ,.第 m .; ).。 ,
3. 重复1.、2.两个步骤,可能出现三种情况: (1)若能找到m个位于不同行不同列的0元素(即 带( )的0元素),则令(0)处的xij=1,求解结 束; (2)若有形成闭回路的0元素,则任选一个打 ( ),然后对每个间隔的0元素打( ),同时 对打( )的0元素所在行(或列)画一条直线。 (3)若位于不同行不同列的0元素[即带( )的0 元素]少于m,转第四步。