第一章传感器

合集下载

第1章 传感器的基本知识

第1章 传感器的基本知识
2
几何量:
长度、厚度、角度、直径、间距、形状、粗糙度、 硬度、材料 缺陷等
燕山大学电气工程学院
第1章 传感器的基本知识
物体的性质和成分量 :
空气的湿度(绝对、相对)、气体的化学成分、浓度、液体 的粘度、浊度、透明度、物体的颜色
状态量:
工作机械的运动状态(启停等)、生产设备的异常状态(超 温、过载、泄漏、变形、磨损、堵塞、断裂等)
x
△Rmax1正行程的最大重复性偏差, △Rmax2反行程的最大重复性偏差。
重复性误差也常用绝对误差表示。检测时也可选取几个测试点, 对应每一点多次从同一方向趋近,获得输出值系列 yi1 , yi2 , yi3 ,…,yin ,算出最大值与最小值之差或 3σ作为重复性偏差 ΔRi,在几个ΔRi中取出最大值ΔRmax 作为重复性误差。
燕山大学电气工程学院
传感器依赖其结构参数变化 实现信息转换 传感器依赖其敏感元件物理 特性的变化实现信息转换 传感器直接将被测量的能量 转换为输出量的能量 由外部供给传感器能量,而 由被测量来控制输出的能量 输出为模拟量 输出为数字量
第1章 传感器的基本知识
1.1.3 传感器的物理定律
( 1 )守恒定律(能量、动量、电荷量等守恒定律)
燕山大学电气工程学院
第1章 传感器的基本知识
工业检测中涉及的物理量分类 热工量:
温度t(℃ 、K、℉ ) 3 压力(压强)p(Pa)、压差Δ p 、真空度、流量q(t、m )、 流速v(m/s)、物位、液位h(m)
机械量:
直线位移x(m)、角位移α、速度、加速度a( m/s ) 、转速n (r/min)、应变 ε (m/m )、力矩T(Nm)、振动、噪声、质量 (重量)m(kg、t)

第一章 传感器的基本知识

第一章 传感器的基本知识

第一章传感器的基本知识复习思考题1. 简述传感器的概念、作用及组成。

2. 传感器的分类有哪几种?各有什么优缺点?3. 传感器是如何命名的?其代号包括哪几部分?在各种文件中如何应用?4. 传感器的静态性能指标有哪些?其含义是什么?5. 传感器的动态特性主要从哪两方面来描述?采用什么样的激励信号?其含义是什么?1.1 传感器的作用与地位◆世界是由物质组成的,各种事物都是物质的不同形态。

人们为了从外界获得信息,必须借助于感觉器官。

◆人的“五官”——眼、耳、鼻、舌、皮肤分别具有视、听、嗅、味、触觉等直接感受周围事物变化的功能,人的大脑对“五官”感受到的信息进行加工、处理,从而调节人的行为活动。

◆人们在研究自然现象、规律以及生产活动中,有时需要对某一事物的存在与否作定性了解,有时需要进行大量的实验测量以确定对象的量值的确切数据,所以单靠人的自身感觉器官的功能是远远不够的,需要借助于某种仪器设备来完成,这种仪器设备就是传感器。

传感器是人类“五官”的延伸,是信息采集系统的首要部件。

电量和非电量◆表征物质特性及运动形式的参数很多,根据物质的电特性,可分为电量和非电量两类。

◆电量——一般是指物理学中的电学量,例如电压、电流、电阻、电容及电感等;◆非电量——则是指除电量之外的一些参数,例如压力、流量、尺寸、位移量、重量、力、速度、加速度、转速、温度、浓度及酸碱度等等。

◆人类为了认识物质及事物的本质,需要对物质特性进行测量,其中大多数是对非电量的测量。

传感器的作用◆非电量不能直接使用一般的电工仪表和电子仪器进行测量,因为一般的电工仪表和电子仪器只能测量电量,要求输入的信号为电信号。

◆非电量需要转化成与其有一定关系的电量,再进行测量,实现这种转换技术的器件就是传感器。

◆传感器是获取自然或生产中信息的关键器件,是现代信息系统和各种装备不可缺少的信息采集工具。

采用传感器技术的非电量电测方法,就是目前应用最广泛的测量技术。

传感器的地位◆随着科学技术的发展,传感器技术、通信技术和计算机技术构成了现代信息产业的三大支柱产业,分别充当信息系统的“感官”、“神经”和“大脑”,他们构成了一个完整的自动检测系统。

焊接自动化技术及应用1第一章 传感器

焊接自动化技术及应用1第一章 传感器
• 位移传感器是用来测量位移、距离、位置、尺寸、角度和角 位移等几何学量的一种传感器。
• 常见的有电感式传感器、光栅传感器等。
首页
返回 上一页 下一页 结束
1.3 位移传感器
一、 差动变压器式位移传感器
差动变压器式位移传感器是感应式位移传感器中应用最
广的一种。
特点(优点):具 有良好的环境适应性, 结构简单、灵敏度高、
图1-2 电容式接近开关的工作原理
6
首页
返回 上一页 下一页 结束
1.2 位置式传感器
二、电感式接近开关 电感式接近开关是一种开关量输出的位置传感器,它
由LC高频振荡器和放大处理电路组成。当金属物体靠近接 近开关时,探头产生电磁振荡,金属物体内部会产生涡流 。金属物体产生的涡流反作用于接近开关,使接近开关振 荡能量衰减,内部电路的参数发生变化,开关状态发生变 化,从而识别出金属物体。也常称为涡流式接近开关。
返回 上一页 下一页 结束
1.2 位置式传感器
五、位置传感器的应用 • 位置控制在自动焊接中应用非常广泛。在直缝、环形焊缝
自动焊接和焊接生产自动流水线的工件传输,以及焊接工位 的自动转换的控制,都需要采用位置传感器。
图1-5 直缝自动焊
12
图1-6 焊接工位自动转换
首页
返回 上一页 下一页 结束
1.3 位移传感器
5
首页
返回 上一页 下一页 结束
1.2 位置式传感器
一、电容式接近开关 电容式接近开关是利用物体间的电容变化来确定物体
位置。 根据电容的变化检测物体接近程度的方法有多种,但最
简单的方法是将电容器作为振荡电路的一部分,并设计成 只有在传感器的电容值超过预定阈值时才产生振荡,然后 再经过变换,使其成为输出电压,用以确定被检测物体的 位置。

传感器概述

传感器概述

第一章传感器概述1.1 传感器的组成与分类1.1.1 传感器的定义✧传感器是能感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置。

通常由敏感元件和转换元件组成。

敏感元件指传感器中能直接感受被测量的部分,转换元件指传感器中能将敏感元件输出转换为适于传输和测量的电信号部分。

✧传感器输出信号有很多形式,如电压、电流、频率、脉冲等,输出信号的形式由传感器的原理确定。

1.1.2 传感器的组成✧一般讲传感器由敏感元件和转换元件组成。

但由于传感器输出信号一般都很微弱,需要有信号调节与转换电路将其放大或转换为容易传输、处理、记录和显示的形式。

因此调节信号与转换电路及所需电源都应作为传感器组成的一部分。

如图1-1所示。

传感器组成方块图✧常见的调节信号与转换电路有放大器、电桥、振荡器、电荷放大器等,他们分别与相应的传感器相配合。

1.1.3 传感器的分类✧表1-1 按输入量分类、按工作原理分类、按物理现象分类、按能量关系分类和按输出信号分类。

1.2 传感器在科技发展中的重要性1.2.1 传感器的作用与地位将计算机比喻人的大脑,传感器比喻为人的感觉器官。

功能正常完美的感觉器官,迅速准确地采集与转换获得的外界信息,使大脑发挥应有的作用。

自动化程度越高,对传感器的依赖性就越大。

1.2.2 传感器技术是信息技术的基础与支柱现代信息技术的基础是信息采集、信息传输与信息处理,它们就是传感器技术、通信技术和计算机技术。

传感器在信息采集系统中处于前端,它的性能将影响整个系统的工作状态和质量。

1.2.3 科学技术的发展与传感器有密切关系传感器的重要性还体现在已经广泛应用于各个学科领域。

如工业自动化、农业现代化、军事工程、航天技术、机器人技术、资源探测、海洋开发、环境监测、安全保卫、医疗诊断、家用电器等领域。

1.3 传感器技术的发展动向✧传感器技术共性是利用物理定律和物质的物理、化学和生物特性,将非电量转换成电量。

✧传感器技术的主要发展方向一是开展基础研究,发现新现象,开发传感器的新材料和新工艺;二是实现传感器的集成化与智能化。

第一章 传感器的一般特性2zz

第一章   传感器的一般特性2zz

7、漂移

漂移是指传感器的被测量不变,而其输出 量却发生了不希望有的改变。
y 灵敏度漂移
零点漂移 灵敏度漂移 时间漂移(时漂) 温度漂移(温漂)
2 1 零点漂移 O x
8 分辨力和阈值
(1)阈值:当传感器的输入从零开始缓慢增加时, 只有在达到了某一值后,输出才发生可观测的变化,这 个值说明了传感器可测出的最小输入量,称为传感器的 阈值。 (2)分辨力:当传感器的输入从非零的任意值缓慢 增加时,只有在超过某一输入增量后,输出才发生可观 测的变化,这个输入增量称为传感器的分辨力。
取较大者为
RMax
ΔRmax2 ΔRmax1
R ( R Max yFS ) 100%
x
6.稳定性 稳定性表示传感器在较长时间内保持 其性能参数的能力,故又称长期稳定性。 稳定性可用相对误差或绝对误差表示。 表示方式如: 个月不超过 %满量程输 出。有时也采用给出标定的有效期来表示。
第一章 传感器的一般特性
在工程应用中,任何测量装置性能的优劣总要 以一系列的指标参数衡量,通过这些参数可以方便地 知道其性能。这些指标又称之为特性指标。 传感器可看作二端口网络,即有两个输入端和 两个输出端,输出输入特性是其基本特性,可用静态 特性和动态特性来描述。
输入
传感器
输出
1. 1 传感器的静特性
九、抗干扰能力
设计、选用、购买
1、量程和范围
传感器所能测量的最大被测量(输入量)的数值称为测量上
限,最小被测量称为测量下限,上限与下限之间的区间,则 称为测量范围。

量程---测量上限与下限的代数差。
测量范围为-20~+20℃,量程为40℃; 测量范围为-5~+10g,量程为15g; 测量范围为100~1000Pa,量程为900Pa;

第1章传感器概述

第1章传感器概述

第1章传感器概述传感器原理及应用第1章传感器概述主要内容:1.1什么是传感器1.2传感器的作用和地位1.3传感器现状和国内外发展趋势1.4检测系统的组成原理1.5传感器的定义、组成和分类方法1.1什么是传感器在我们日常生活中,使用着各种各样的传感器电冰箱、电饭煲中的温度传感器;空调中的温度和湿度传感器;抽油烟机中的煤气泄漏传感器;电视机和影碟机中的红外遥控器;照相机中的光传感器;汽车中燃料计和速度计等等,不胜枚举。

1.1什么是传感器1.1什么是传感器眼(视觉)耳(听觉)鼻(嗅觉)皮肤(触觉)舌(味觉)1.1什么是传感器如果用机器完成这一过程,计算机相当人的大脑,执行机构相当人的肌体,传感器相当于人的五官和皮肤。

传感器又是人体感官的延长,有人又称传感器为“电五官”,它作为替代补充人的感觉器官功能,传感器为人类客观定量认识世界起到重要作用。

1.1什么是传感器1.1什么是传感器1.2传感器技术的作用和地位1.2传感器技术的作用和地位1.2传感器技术的作用和地位1.2传感器技术的作用和地位第1章传感器概述1.2传感器技术的作用和地位第1章传感器概述第1章传感器概述第1章传感器概述1.2传感器技术的作用和地位第1章传感器概述第1章传感器概述1.2传感器技术的作用和地位1.2传感器技术的作用和地位1.2传感器技术的作用和地位1.2传感器技术的作用和地位1.2传感器技术的作用和地位第1章传感器概述1.3传感器现状和国内外发展趋势1.3传感器现状和国内外发展趋势1.3传感器现状和国内外发展趋势1.3传感器现状和国内外发展趋势使现场数据就近登陆,通过Internet网与用户之间异地交换数据远程控制等。

传感器的数字化和网络化1.4检测系统的组成原理1.4检测系统的组成原理1.4检测系统的组成原理1.4检测系统的组成原理1.4检测系统的组成原理1.4检测系统的组成原理1.4检测系统的组成原理1.5传感器的定义、组成和分类方法1.5传感器的定义、组成和分类方法1.5传感器的定义、组成和分类方法1.5传感器的定义、组成和分类方法1.5传感器的定义、组成和分类方法1.5传感器的定义、组成和分类方法1.5传感器的定义、组成和分类方法1.5传感器的定义、组成和分类方法1.6本课程的特点和研究内容1.6本课程的特点和研究内容传感器原理及应用第1章传感器概述传感器发展趋势传感器的历史远比近代科学来得古老,如‘天平’古埃及开始使用、利用液体热膨胀进行温度测量,在16世纪前后实现的。

第一章 传感器的一般特性

第一章 传感器的一般特性

(2 ~ 3) rR 100% YFS
四、灵敏度与灵敏度误差
传感器的灵敏度指到达稳定工作状态时输出变化量与引起 此变化的输入变化量之比
非线性传感器的灵敏度用
dy dx
表示其数值等于所对应
的最小二乘法拟合直线的斜率 。
五、分辨力与阈值
分辨力是指传感器能检测到的最小的输入增量。分 辨力可用绝对值表示,也可用与满量程的百分数表示。 数字式传感器一般用分辨力为输出的数字指示值最后一 位数字。 在传感器输入零点附近的分辨力称为阈值
y
ΔL1
ΔL2
x
返 回 上一页 下一页
③端点连线拟合

把输出曲线两端点的连线作为拟合直线
y
ΔLmax x


上一页
下一页
④端点连线平移拟合

在端点连线拟合基础上使直线平移,移动距离 为原先的一半 L2 L1 L3 LMax y
ΔLmax
ΔL1 x
返 回 上一页 下一页
最小二乘拟合

理想情况下,阶跃输入信号的大小对过渡过程 的曲线形状是没有影响的。但在实际做过渡过 程实验时,应保持阶跃输入信号在传感器特性 曲线的线性范围内。


上一页
下一页
⑴ 一阶传感器的单位阶跃响应

设x ( t )、y ( t ) 分别为传感器的输入量和输出 量,均是时间的函数,则一阶传感器的传递函 数为
返 回 上一页 下一页
⑵ 一阶传感器的频率特性
将一阶传感器的传递函数中的s用jω代替, 即可得到频率特性表达式
H ( j )
幅频特性
1
( j ) 1
A( )
1 1 ( ) 2

第1章 传感器的特性

第1章 传感器的特性
29
3.重复性(Repeatability) 传感器在同一工 作条件下输入量 按同一方向(同为 正行程或同为反 行程)作全量程连 续多次变动时所 得特性曲线的不 一致程度。
重复性误差:
Rmax R 100% YFS
△Rmax:正(反)行程中的最大重复偏差
特性曲线一致性好, 重复性就好,误差就小。
3
传感器的特性:传感器所有性质的总称。 传感器的基本特性:输出/输入特性。
概述
静态特性 : 被测参量基本不随时间变化或变化很缓慢时,传 感器的输出/输入特性。
动态特性 :
被测参量随时间变化时 ,传感器的输出/输入特 性。
5
传感器的特性
1.1 传感器静态特性方程与特性曲线 1.2 传感器的静态特性 1.3 传感器的动态特性
取2σ或3σ值即为传感器静态误差。静态误差也 可用相对误差表示,即:
3 100% y FS
静态误差是一项综合性指标,基本上包含了前面 叙述的非线性误差、迟滞误差、重复性误差、灵敏度 误差等。所以也可以把这几个单项误差综合而得,即:
L H R S
2 2 2
(3-3)
32
1.2 传感器静态特性的主要指标
• 由于受很多因素的影响,会引起灵敏度变化从而产生灵敏 度误差,习惯上用相对误差表示
s
k k
100%
• 灵敏度的量纲: 输出的量纲/输入的量纲。V/℃、mv/g、A/g、mv/mm
• 能量控制型传感器,灵敏度与供给sensor的电源电压有关。 例如:100(mv/mm.V) 某位移传感器,当电源电压为1V时,每1mm位移的变化量 引起输出电压变化100mv。
|
温度稳定性(温漂):传感器在外界温度变化情况下输 出量发生的变化,又称为温度漂移。 抗干扰能力稳定性:传感器对各种外界干扰的抵抗能力。

第一章传感器技术基础知识

第一章传感器技术基础知识
频带:传感器增益保持在一定值内的频率范围为传感器频带 或通频带,对应有上、下截止频率。
时间常数:用时间常数τ来表征一阶传感器的动态特性。τ越小, 频带越宽。
固有频率:二阶传感器的固有频率ωn表征了其动态特性。
传感器的选用原则
与测量条件有关的因素 (1)测量的目的 (2)被测试量的选择 (3)测量范围 (4)输入信号的幅值,频带宽度 (5)精度要求 (6)测量所需要的时间
相应的响应曲线 :
传感器存在惯性,它的输出不能立即复现输入信号,而是从零开 始,按指数规律上升,最终达到稳态值。 理论上传感器的响应只在t趋于无穷大时才达到稳态值,但实际上 当t=4τ时其输出达到稳态值的98.2%,可以认为已达到稳态。 τ越小,响应曲线越接近于输入阶跃曲线, 因此,τ值是一阶传感器重要的性能参数。
测量
测量是指人们用实验的方法,借助于一定的仪器或 设备,将被测量与同性质的单位标准量进行比较,
并确定被测量对标准量的倍数,从而获得关于被测
量的定量信息。
xnu或
x——被测量值;
n x u
u——标准量,即测量单位;
n——比值,含有测量误差。
测量过程
传感器从被测对象获取被测量的信息,建立起 测量信号,经过变换、传输、处理,从而获得 被测量量值的过程。
线性传感器
S y x
灵敏度是它的静态特性的斜率,即S为常数。
非线性传感器
它的灵敏度S为一变量,用下式表示。
S dy dx
传感器的灵敏度如图1-3所示。
Y
Y
S y - y0
Yo
x
X O
a)线形传感器
Байду номын сангаас
Y dy
dx S dy dx X

第1章传感器概述

第1章传感器概述
水的硬度与洗涤剂分配有关,水的硬度测量是利用测量 电导率的传感器来实现的。由于水中的盐类影响,测量 结果还不够精确。
泡沫也是可以测量的,近年来使用相对便宜的红外线传 感器,通过记录红外光的衰减进行泡沫浑浊度测量。但 是,这一领域的最大进步还未到来。
LED 泡沫 管子
感光晶体管
浑浊度传感器测量泡沫质量的工作原理

感官
大脑
肌体



传感器
计算机
执行机构
第1章 传感器概述
1.1 什么是传感器
传感与检测技术
对于各种各样的被测量,有着各种各样的传感器。 下面请看几个传感器应用实例:
智 能 远 程 数 字 压 力 表 机械式弹簧压力表
第1章 传感器概述
1.1 什么是传感器
传感与检测技术
智 能 数 字 压 力 表
传感与检测技术
(3)烘干机: 温度 —— NTC 湿度 —— 电导传感器
(4)制冷机: 温度
(5)烤箱: 温度 —— pt100
(6)微波炉: 温度 —— NTC 湿度 —— 陶瓷传感器 气体
第1章 传感器概述 传感与检测技术
1.2 传感器技术的作用和地位
家用电器
( 7 ) 吹风机: 温度 —— NTC 温度(非接触)—— 红外线热电偶 气流
现代工业生产,尤其是自动化生产过程中,每个生产环 节都需要用各种传感器监视和控制生产过程的各个参数, 一是保证产品达到最好的质量,二是保证设备工作在最 佳状态。传感器是自动控制系统的关键基础器件,直接 影响到自动化技术的水平。
背投电视生产线
调试系统
空调生产线
网络产品生产线
液晶产品生产线
全国最大的插件机群

传感器的概述

传感器的概述

第一章 传感器的概述1.传感器的定义能感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置叫做传感器。

2.传感器的共性:利用物理定律或物质的物理、化学、生物等特性,将非电量(位移、速度、加速度、力等)转换成 电量(电压、电流、电容、电阻等)输出。

3.传感器的组成:传感器由有敏感元件、转换元件、信号调理电路、辅助电源组成。

传感器基本组成有敏感元件和 转换元件两部分,分别完成检测和转换两个基本功能。

第二章 传感器的基本特性1.传感器的基本特性:静态特性、动态特性。

2.衡量传感器静态特性的主要指标有:线性度 、灵敏度 、分辨率迟滞 、重复性 、漂移。

3.迟滞产生原因:传感器机械部分存在摩擦、间隙、松动、积尘等。

4.产生漂移的原因:①传感器自身结构参数老化;②测试过程中环境发生变化。

5.例题:1.用某一阶环节传感器测量100Hz 的正弦信号,如要求幅值误差限制在±5%以内,时间常数应取多少?如果用该传感器测量50Hz 的正弦信号,其幅值误差和相位误差各为多少? 解:一阶传感器的频率响应特性: 幅频特性:2.在某二阶传感器的频率特性测试中发现,谐振发生在频率为216Hz 处,并得到最大福祉比为1.4比1,试估算该传感器的阻尼比和固有频率的大小。

3.玻璃水银温度计通过玻璃温包将热量传给水银,可用一阶微分方程来表示。

现已知某玻璃水银温度计特性的微分方1)(1)(+=ωτωj j H )(11)(ωτω+=A s rad f n n /135********.014.121)(A )(4)(1)(A n max n 21222=⨯=======⎭⎬⎫⎩⎨⎧+⎥⎦⎤⎢⎣⎡-=-ππωωξξωωωωωξωωω所以,时共振,则当解:二阶系统程是x y dtdy310224-⨯=+ ,y 代表水银柱的高度,x 代表输入温度(℃)。

求该温度计的时间常数及灵敏度。

解:原微分方程等价于:x y dt dy3102-=+所以:时间常数T=2S, 灵敏度Sn=10-3第三章 电阻式传感1.应变式电阻传感器的特点: 1)优点:①结构简单,尺寸小,质量小,使用方便,性能稳定可靠;②分辨力高,能测出极微小的应变;③灵敏度 高,测量范围广,测量速度快,适合静、动态测量;④易于实现测试过程自动化和多点同步测量、远距离 测量和遥测;⑤价格便宜,品种多样,工艺较成熟,便于选择和使用,可以测量多种物理量。

第一章传感器原理与检测技术ppt课件

第一章传感器原理与检测技术ppt课件
为了更好地掌握传感器, 需要对测量的基本概念 测量系统的特性, 测量误差及数据处理等方面的 理论及工程方法进行学习和研究, 只有了解和掌 握了这些基本理论, 才能更有效地完成检测任务
第1章 传感与检测技术的理念基础
测量概论
一、测量 测量是以确定被测量的值或获取测量结果
为目的的一系列操作。
由测量所获得的被测的量值叫测量结果。 测量结果可用一定的数值表示, 也可以用一条 曲线或某种图形表示。但无论其表现形式如何, 测量结果应包括两部分:比值和测量单位。 确 切地讲, 测量结果还应包括误差部分。
测量概论 二、测量方法
2、偏差式测量、 零位式测量与微差式测量 电位差计式测量:
UX:传感器信号 (未知量)
UK:标准量信号 (已知量)
D: 检零计 (电压表)
平衡:UK=UX
测量概论 二、测量方法
2、偏差式测量、 零位式测量与微差式测量 微差式测量是综合了偏差式测量与零位式测量的
传感器世界
中国传感器
第1章 传感与检测技术的理念基础 测量概论.
表征物质特性或其运动形式的参数很多,总的 可分为电量和非电量两大类,电量一般是物理 学中的电学量(电压、电流等)。非电量是指 电量之外的一些参数(压力、流量等)。
法测量; 根据被测量变化快慢可分为静态测量与 动态测量等。
测量概论 二、测量方法
1、直接测量、间接测量与组合测量
直接测量:
在使用仪表或传感器进行测量时, 对仪表读 数不需要经过任何运算就能直接表示测量 所需要的结果的测量方法称为直接测量。
例如,用磁电式电流表测量电路的某一支路 电流, 用弹簧管压力表测量压力等, 都属于 直接测量。直接测量的优点是测量过程简 单而又迅速, 缺点是测量精度不高

第1章 传感器的一般特性

第1章 传感器的一般特性

1.2.1 动态特性的一般数学模型

1、零阶传感器的数学模型
a0Y (t ) b0 X (t )
Y (t )
b0 X (t ) KX (t ) a0
例3 图1-8所示线性电位器是一个 图1-8 线性电位器 零阶传感器。设电位器的阻值 沿长度L是线性分布的,则输出电压和电刷位移之间的关系为
0
1
1 2
1 2 2 1 2
1 d 2T1 2 dT1 T1 T0 2 2 0 dt 0 dt
1.2.2 传递函数
传递函数是输出量和输入量之间关系的数学表示。如 果传递函数已知,那么由任一输入量就可求出相应输出量。 传递函数的定义是输出信号与输入信号之比。 (an Dn an1Dn1 a1D a0 )Y (t )
根据一阶线性微分方程,如果已知T0的变化规律,求出微 分方程式的解,就可以得到热电偶对介质温度的时间响应。
1.2.1 动态特性的一般数学模型

3、二阶传感器的数学模型
( D2
d 2Y (t ) d Y (t ) a2 a1 a0Y (t ) b0 X (t ) 2 dt dt a0 b0 a1 / 2 a0 a2 0 K a2 a0
i 1
n
2
n 1
重复性所反映的是测量结果 偶然误差的大小,而不表示与真值 之间的差别。有时重复性虽然很好, 但可能远离真值。
图1-7 传感器的重复性
1.1.2 静态特性指标


7、零点漂移 传感器无输入(或某一输入值不变)时,每隔一段时间进 行读数,其输出偏离零值(或原指示值),即为零点漂移。 Y0 零漂 100% YFS 8、温漂 温漂表示温度变化时,传感器输出值的偏离程度。一般 以温度变化1 ℃输出最大偏差与满量程的百分比来表示。

第1章-传感器的特性

第1章-传感器的特性

j=1, 2, …, m;
n ——
yji的含义是,若输入值x=xj,则在相同条件下进行n次 重复试验,获得n个输出值yj1~yjn
i —— y j ——算术平均值。

S Wn dn
(1.9)
第1章
式中: Wn——极差,是指某一测量点校准数据的最大
dn——极差系数。 极差系数可根据所用数据的数目n由表1.4查得。理 论与实践证明,n不能太大,如n大于12,则计算精度变差, 这时要修正dn 。
第1章 表1.4
第1章
3.
迟滞表明传感器在正(输入量增大)、反(输入
量减小)行程期间,输出-输入曲线不重合的程度。也就 是说,对应于同一大小的输入信号,传感器正、反行程的 输出信号大小不相等。迟滞是传感器的一个性能指标, 它反映了传感器的机械部分和结构材料方面不可避免
的弱点,如轴承摩擦、灰尘积塞、间隙不适当,元件磨蚀、
Δi=yi-(b+kxi)
第1章
n
按 最 小 二 乘 法 原 理 , 应 使 i2 最 小 。 故
n
n
i 1
由 i2 [ yi (kxi b)]2 min ,分别对k和b求一阶
偏导i数1 并令i其1 等于零,即可求得k和b:
n
k
n
xi yi xi2 (
xi xi )2
n b
设ai≥0, a0≥0。
1) 这种情况见图1.2(a)。此时
a0=a2=a3=…=an=0 于是
y=a1x
(1.2)
因为直线上任何点的斜率都相等,所以传感器的灵
敏度为
a1= y =k=常数(1.3 x
第1章
2) 输出这种情况见图1.2(b)。此时,在原点附近相当范 围内曲线基本成线性,式(1.1)只存在奇次项:

第1章传感器与检测技术概述

第1章传感器与检测技术概述

第1章传感与检测技术概述
第1章 传感器与检测技术概述
1.1 传感器的概念、组成和分类 1.2 传感器的基本特性
返回主目录
第1章传感与检测技术概述
第1章 传感器与检测技术的理论 基础
1.1 传感器的概念、组成和分类
一、传感器的概念、组成与应用
1、 现代信息技术的三大要素:信息获取————传感器技术
第1章传感与检测技术概述
传感器的主要应用
需要量
111 110 103 81 61 47 34 31 31 78 70 61 55 59 47 111 76 93
36
27
26
21 24 20 14
信 息 处 理
电 信 电 话
科 技 测 试
设 备 控 制
交 通 控 制
输 机 机 家 照 汽 飞 船 气海 环 医防光 热 机 电 床 器 用 相 车 机 舶 象洋 境 疗火能 能 械 人 电 机 系 污 利 利 能 统 器 染 用 用 利 用
划的研究也大大促进了对酶、免疫、微生物、 体液组份以及血气、血压、血流量、脉搏等
传感器的研究。
第1章传感与检测技术概述
第1章传感与检测技术概述
光纤流速传感器 生物酶血样分析传感器 荧光材 料制作 的电子 鼻传感 器
热/光
电量
第1章传感与检测技术概述
传感器与航空及航天
第1章传感与检测技术概述
陀螺仪、阳光传
第1章传感与检测技术概述
软驱:速度,位置伺服
麦克风:电容传声器
第1章传感与检测技术概述
楼宇控制与安全防护
为使建筑物成为安全、健康、舒适、温馨的生活、工作环
境,并能保证系统运行的经济性和管理的智能化。在楼宇中应 用了许多测试技术,如闯入监测、空气监测、温度监测、电梯 运行状况。

第1章 传感器的一般特性-2

第1章 传感器的一般特性-2

31
(3) 传感器的时域动态性能指标 :
①上升时间tr ②峰值时间tp ③调节时间ts ④超调量σ%
32
tr-上升时间,系统输出响应从零开始第一次上升到稳态值时间。 tp-峰值时间,系统输出响应从零开始第一次到达峰值时间。 ts-调节时间,系统输出响应达到并保持在稳态值±5%(±2%)误差 33
yt y20 t
6
静态测量不确定度
又称静态误差,指传感器在其全量程内任 一点的输出值与其理论值的可能偏离程度。 常用标准差σ计算
1 n 2 (yi ) n 1 i 1
(2 ~ 3) 100% YFS
7
例子:
• 测控技术与仪器专业——“量子”科技创 新团队研制了一台称重传感器的样机,对 该传感器进行校准实验后获得下表所列的 数据。 • 试根据表中的数据确定该传感器的线性度 、灵敏度、迟滞等静态特性参数指标。
Lmax L 100% YFS
2
• 线性度计算时拟合直线常用的拟合方法有:
– – – – –
y YF S
理论拟合 过零旋转拟合 端点连线拟合 端点平移拟合 最小二乘拟合
Lm ax
y y
y YF S
Lm ax
L1 = Lm ax
YF S
YF S
L3 = Lm ax
28
(2) 二阶传感器的单位阶跃响应
二阶传感器的微分方程为
d 2 y (t ) dy(t ) 2 2 2 y ( t ) 0 0 0 kx(t ) 2 dt dt
设传感器的静态灵敏度k=1,其二阶传感器的传递函数为
2 0 H ( s) 2 2 s 20 s 0
9
例子:热电偶测温
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.发展智能型传感器 智能型传感器是一种带有微处理器并兼有 检测和信息处理功能的传感器。智能型传感器 被称为第四代传感器,使传感器具备感觉、辨 别、判断、自诊断等功能,是传感器发展的主 要方向。
第一章传感器
1.2 检测技术基础 1.2.1 检测技术的概念与作用
检测技术是人们为了对被测对象所包含的信息进 行定性的了解和定量的掌握所采取的一系列技术措施。
实现信号变换.如:水银温度计. 结构型:依靠传感器结构参数的变化实现信号转变.
例如:电容式和电感式传感器.
第一章传感器
5.传感器的命名 由主题词加四级修饰语构成。 主题词——传感器; 第一级修饰语——被测量,包括修饰被测量的定 语; 第二级修饰语——转换原理,一般可后续以“式” 字; 第三级修饰语——特征描述,指必须强调的传感 器结构、性能、材料特征、敏感元件及其它必要 的性能特征,一般可后续以“型”字; 第四级修饰语——主要技术指标(量程、精确度、 灵敏度等)。
第一章传感器
6.传感器的代号 依次为主称(传感器) 被测量—转换原理—序 号 主称——传感器,代号C; 被测量——用一个或两个汉语拼音的第一个大 写字母标记。见附录表2; 转换原理——用一个或两个汉语拼音的第一个 大写字母标记。见附录表3; 序号——用一个阿拉伯数字标记,厂家自定, 用来表征产品设计特性、性能参数、产品系列 等。例:应变式位移传感器: C WY-YB-20; 光纤压力传感器:C Y-GQ-2。
例如,利用某些材料的化学反应制成的能识别气体的“电子 鼻”;利用超导技术研制成功的高温超导磁传感器等。
2.传感器向高精度、一体化、小型化的方向发展。 工业自动化程度越高,对机械制造精度和装配精度要求 就越高,相应地测量程度要求也就越高。因此,当今在传感 器制造上很重视发展微机械加工技术。
第一章传感器
第一章传感器
3. 线性度与非线性误差
线性度是用实测的检测系统输入—输出特性曲
线与拟合直线之间最大偏差与满量程输出的百分比
来表示的,如下图所示。
ymax
线性度可用非线性
误差来表示,计算式为:
1
ΔLmax
Ef
m 100% YFS
2
0
xmax
采取不同的方法选取拟合直线,可以得到不同的
线性度。如使拟合直线通过实际特性曲线的起点和满
0
x
处理测量结果。
第一章传感器
2. 分辨率 分辨率是指检测仪表能够精确检测出被测量 最小变化值的能力。输入量从某个任意值缓慢增 加,直到可以测量到输出的变化为止,此时的输 入量就是分辨率。它可以用绝对值,也可以用量 程的百分数来表示。它说明了检测仪表响应与分 辨输入量微小变化的能力。灵敏度愈高,分辨率 愈好。一般模拟式仪表的分辨率规定为最小刻度 分格值的一半。数字式仪表的分辨率是最后一位 的一个字。
第1章 传感器与检测技术基础知识
本章学习目的要求: 1.了解传感器的作用与工程应用情况 2.了解传感器的分类 3.了解传感器的最新发展动态 4.掌握测量及误差的概念 5.掌握基本测量电路的作用
第一章传感器
1.1 传感器基础知识 1.1.1 概述
1.定义
传感器就是能感知外界信息并能按一定规律将这些信 息转换成可用信号的机械电子装置。如下图所示:
础研究,重点研究传感器的新材料和新工艺;二是实 现传感器的智能化。三是向集成化方向发展,传感器 集成化的一个方向是具有同样功能的传感器集成化。 从而使对一个点的测量变成对一个平面和空间的测量。 例如。利用电荷耦合器件形成的固体图像传感器来进 行的文字和图形识别 。
第一章传感器
1.用物理现象、化学反应和生物效应设计制作各种用途 的ຫໍສະໝຸດ 感器,这是传感器技术的重要基础工作。
第一章传感器
3)按信号变换特征: 能量转换型和能量控制型. 能量转换型:直接由被测对象输入能量使其工作.
例如:热电偶温度计,压电式加速度计. 能量控制型:从外部供给能量并由被测量控制外部
供给能量的变化.例如:电阻应变片.
第一章传感器
4)按敏感元件与被测对象之间的能量关系: 物性型:依靠敏感元件材料本身物理性质的变化来
1
ΔH max
如下式:
2
Et
m 100% YFS
0
xmax
第一章传感器
5. 重复性 重复性是指传感器在检测同一物理量时每次测量的 不一致程度,也叫稳定性。重复性的高低与许多随机因 素有关,也与产生迟滞的原因相似,它可用实验的方法 来测定。
1.1.3 传感器的发展方向 当今,传感器技术的主要发展动向,一是开展基
第一章传感器
1.1.2 传感器的主要特性参数
1.灵敏度
灵敏度是指传感器或检测系统在稳态下输出量
变化和引起此变化的输入量变化的比值。它是输入
与输出特性曲线的斜率,
y
如右图所示,可表示为:
s
dy
一般希望灵敏度s在整个 dx
测量范围内保持为常数。
dy
这样,可得均匀刻度的标尺,
dx
使读数方便,也便于分析和
物理量
电量
第一章传感器
2.传感器的组成 传感器由敏感器件与辅助器件组成。敏感器 件的作用是感受被测物理量,并对信号进行转换 输出。辅助器件则是对敏感器件输出的电信号进 行放大、阻抗匹配,以便于后续仪表接入。如下 图的温度电阻。
d V
第一章传感器
3.传感器的分类
1)按被测物理量分类
常见的被测物理量
检测技术也是自动化系统中不可缺少的组成部分。 检测技术的完善和发展推动着现代科学技术的进步。 检测技术几乎渗透到人类的一切活动领域,发挥着愈 来愈大的作用。
第一章传感器
1.2.2 检测系统的基本组成 一个完整的检测系统或检测装置通常是由传感
量程点,可以得到端基线性度。
第一章传感器
4. 迟滞
迟滞特性表明检测系统在正向和反向行程期间,
输入—输出特性曲线不一致的程度。也就是说,对
同样大小的输入量,检测系统在正、反行程中,往
往对应两个大小不同的输出量,如右下图所示。通
过实验,找出输出量的
y
ymax
这种最大差值,并以满量程
输出YFS的百分数表示,
机械量:长度,厚度,位移,速度,加速度, 旋转角,转数,质量,重量,力, 压力,真空度,力矩,风速,流速, 流量;
声: 声压,噪声. 磁: 磁通,磁场. 温度: 温度,热量,比热. 光: 亮度,色彩
第一章传感器
2)按工作原理分类: 机械式,电气式,光学式,流体式等。
切削力测量应变片
动圈式磁电传感器
相关文档
最新文档