龙格-库塔法

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

龙格-库塔法(Runge-Kutta)

数值分析中,龙格-库塔法(Runge-Kutta)是用于模拟常微分方程的解的重要的一类隐式或显式迭代法。这些技术由数学家卡尔·龙格和马丁·威尔海姆·库塔于1900年左右发明。

经典四阶龙格库塔法

龙格库塔法的家族中的一个成员如此常用,以至于经常被称为“RK4”或者就是“龙格库塔法”。令初值问题表述如下。

则,对于该问题的RK4由如下方程给出:

其中

这样,下一个值(yn+1)由现在的值(yn)加上时间间隔(h)和一个估算的斜率的乘积决定。该斜率是以下斜率的加权平均:

k1是时间段开始时的斜率;

k2是时间段中点的斜率,通过欧拉法采用斜率k1来决定y在点tn + h/2的值;

k3也是中点的斜率,但是这次采用斜率k2决定y值;

k4是时间段终点的斜率,其y值用k3决定。

当四个斜率取平均时,中点的斜率有更大的权值:

RK4法是四阶方法,也就是说每步的误差是h5阶,而总积累误差为h4阶。

注意上述公式对于标量或者向量函数(y可以是向量)都适用。

显式龙格库塔法

显示龙格-库塔法是上述RK4法的一个推广。它由下式给出

其中

(注意:上述方程在不同著述中由不同但却等价的定义)。

要给定一个特定的方法,必须提供整数s (阶段数),以及系数aij (对于1 ≤ j < i ≤ s), bi (对于i = 1, 2, ..., s)和ci (对于i = 2, 3, ..., s)。这些数据通常排列在一个助记工具中,称为龙格库塔表:

c2 a21

c3 a31 a32

cs as1 as2 as,s ? 1

b1 b2 bs ? 1 bs

龙格库塔法是自洽的,如果

如果要求方法有精度p则还有相应的条件,也就是要求舍入误差为O(hp+1)时的条件。这些可以从舍入误差本身的定义中导出。例如,一个2阶精度的2段方法要求b1 + b2 = 1, b2c2 = 1/2, 以及b2a21 = 1/2。

相关文档
最新文档