考研数学高数公式函数与极限
高数基础知识总结
( ) sin x
=
x−
x3 3!
+
x5 5!
+Λ
+ (−1)n
x 2n+1
(2n +1)!
+
0
x 2n+1
( ) cos x = 1−
x2 2!
+
x4 4!
−Λ
+ (−1)n
x 2n
(2n)!
+
0
x 2n
( ) ln(1 + x) = x − x2 + x3 − Λ + (− )1 n+1 xn + 0 xn
连续,则 f (x) 必在 [a,b]上有界。
定理 2.(最大值和最小值定理)如果函数 f (x) 在闭
区间 [a,b]上连续,则在这个区间上一定存在最大值 M 和
最小值 m 。 其中最大值 M 和最小值 m 的定义如下:
定义 设 f (x0 ) = M 是区间 [a,b]上某点 x0 处的函数
(log a
lim
f (x) g(x)
=
A
(或
∞
)
7.利用导数定义求极限
基本公式: lim ∆x→0
f (x0 + ∆x) −
∆x
f (x0 ) =
f ′(x0 )
[如果
值,如果对于区间 [a,b]上的任一点 x ,总有 f (x) ≤ M ,
则称 M 为函数 f (x) 在 [a,b]上的最大值。同样可以定义最
整数),则
lim
n→∞
xn
=
A 存在,且 A ≤
M
准则 2.(夹逼定理)设 g(x) ≤ f (x) ≤ h(x)
考研数学高数公式:函数与极限解读
考研数学高数公式:函数与极限第一章:函数与极限第一节:函数函数属于初等数学的预备知识,在高数的学习中起到铺垫作用,直接考察的内容比较少,但是如果这章节有所缺陷对以后的学习都会有所影响。
基础阶段:1.理解函数的概念,能在实际问题的背景下建立函数关系;2.掌握并会计算函数的定义域、值域和解析式;3.了解并会判断函数的有界性、单调性、周期性、奇偶性等性质;4.理解复合函数和反函数的概念,并会应用它们解决相关的问题;强化阶段:1.了解函数的不同表现形式:显式表示,隐式表示,参数式,分段表示;2.掌握基本初等函数的性质及其图形,了解初等函数的概念。
冲刺阶段:1.综合应用函数解决相关的问题;2.掌握特殊形式的函数(含极限的函数,导函数,变上限积分,并会讨论它们的相关性质。
第二节:极限极限可以说是高等数学的基础,极限的计算也是高等数学中最基本的运算。
在考试大纲中明确要求考生熟练掌握的基本技能之一。
虽在考试中站的分值不大。
但是在其他的试题中得到广泛应用。
因此这部分学习直接营销到整个学科的复习结果基础阶段1.了解极限的概念及其主要的性质。
2.会计算一些简单的极限。
3.了解无穷大量与无穷小量的关系,了解无穷小量的比较方法,记住常见的等价无穷小量。
强化阶段:1.理解极限的概念,理解函数左右极限的概念及其与极限的关系(数一数二/了解数列极限和函数极限的概念(数三;▲2.掌握计算极限的常用方法及理论(极限的性质,极限的四则运算法则,极限存在的两个准则,两个重要极限,等价无穷小替换,洛必达法则,泰勒公式;3.会解决与极限的计算相关的问题(确定极限中的参数;4.理解无穷大量和无穷小量的概念及相互关系,会进行无穷小量的比较,记住常见的等价无穷小量并能在计算极限时加以应用(数一数二/理解无穷小量的概念,会进行无穷小量的比较,记住常见的等价无穷小量并能在计算极限时加以应用,了解无穷大量的概念及其与无穷小量的关系(数三。
冲刺阶段:深入理解极限理论在微积分中的中心地位,理解高等数学中其它运算(求导,求积分与极限之间的关系,建立完整的理论体系。
考研数学高数知识点归纳
考研数学高数知识点归纳考研数学是众多考研科目中的重要一环,高等数学作为数学基础课程,其知识点广泛且深入。
以下是对考研数学高数知识点的归纳:一、函数、极限与连续性- 函数的概念、性质和分类- 极限的定义、性质和求法- 无穷小的比较和等价无穷小替换- 函数的连续性、间断点及其分类- 连续函数的性质和应用二、导数与微分- 导数的定义、几何意义和物理意义- 基本初等函数的导数公式- 高阶导数和隐函数的求导法则- 微分的概念、几何意义和应用- 导数的四则运算和复合函数的求导法则三、微分中值定理与导数的应用- 罗尔定理、拉格朗日中值定理和柯西中值定理- 泰勒公式和麦克劳林公式- 导数在几何上的应用,如曲线的切线、法线和弧长- 导数在物理上的应用,如速度、加速度和变力做功四、不定积分与定积分- 不定积分的定义和基本计算方法- 定积分的定义、性质和计算- 牛顿-莱布尼茨公式- 定积分在几何和物理上的应用,如面积、体积和功五、多元函数微分学- 多元函数的概念和极限- 偏导数和全微分- 多元函数的极值问题- 多元函数的泰勒展开六、重积分与曲线积分、曲面积分- 二重积分和三重积分的定义和计算方法- 曲线积分和曲面积分的计算- 格林公式、高斯公式和斯托克斯定理七、无穷级数- 常数项级数的收敛性判别- 幂级数和函数的泰勒级数展开- 函数项级数的一致收敛性- 傅里叶级数和傅里叶变换八、常微分方程- 一阶微分方程的求解方法,如分离变量法、变量替换法等- 高阶微分方程的求解,如常系数线性微分方程- 微分方程的物理背景和应用结束语:考研数学高数部分要求考生不仅要掌握基础概念和计算方法,还要能够灵活运用这些知识解决实际问题。
通过对上述知识点的系统学习和深入理解,考生可以为考研数学的高数部分打下坚实的基础。
希望每位考生都能在考研数学的征途上取得优异的成绩。
考研高数公式
考研高数公式在考研数学中,高等数学是一个重要的科目。
而在高等数学中,高数公式是备考考研的关键因素之一。
掌握高数公式不仅有助于解题,还能提升解题效率。
本文将介绍一些考研高数中常用的公式,并对其应用进行简单说明。
一、导数的基本公式1. 基本导数公式(1) 常数导数公式:常数c的导数为0,即d(c)/dx = 0。
(2) 幂函数导数公式:对于 y = x^n,其中n为常数,导数为 dy/dx =n*x^(n-1)。
(3) 指数函数导数公式:对于 y = a^x,其中a为常数且不等于1,导数为 dy/dx = a^x * ln(a)。
(4) 对数函数导数公式:对于 y = log_a(x),其中a为常数且不等于1,导数为 dy/dx = 1 / (x * ln(a))。
(5) 三角函数导数公式:- 正弦函数导数:d(sin(x))/dx = cos(x)。
- 余弦函数导数:d(cos(x))/dx = -sin(x)。
- 正切函数导数:d(tan(x))/dx = sec^2(x)。
(6) 反三角函数导数公式:- 反正弦函数导数:d(arcsin(x))/dx = 1 / sqrt(1 - x^2)。
- 反余弦函数导数:d(arccos(x))/dx = -1 / sqrt(1 - x^2)。
- 反正切函数导数:d(arctan(x))/dx = 1 / (1 + x^2)。
2. 基本函数导数运算法则(1) 线性运算法则:对于函数 f(x) 和 g(x),以及常数 c1 和 c2,有以下公式:- d(c1*f(x) ± c2*g(x))/dx = c1*df(x)/dx ± c2*dg(x)/dx- d(c*f(x))/dx = c*df(x)/dx (其中c为常数)(2) 乘积法则:对于函数 f(x) 和 g(x),有以下公式:- d(f(x) * g(x))/dx = f(x) * dg(x)/dx + g(x) * df(x)/dx(3) 商积法则:对于函数 f(x) 和 g(x),有以下公式:- d(f(x) / g(x))/dx = (g(x) * df(x)/dx - f(x) * dg(x)/dx) / g(x)^2(4) 链式法则:对于复合函数 y = f(g(x)),有以下公式:- dy/dx = df(g(x))/dg(x) * dg(x)/dx二、积分的基本公式1. 基本积分公式(1) 幂函数的积分公式:对于 y = x^n,其中n不等于-1,积分为∫x^n dx = (1 / (n+1)) * x^(n+1) + C。
考研数学公式大全(高数、线代、概率论应有尽有)
dx
1
x
arctg C
a2 x2 a
a
dx
1 xa
ln
C
x2 a2 2a x a
dx
1 ax
ln
C
a2 x2 2a a x
dx
x
arcsin C
a2 x2
a
dx
cos 2 x
sec 2 xdx
tgx
C
dx sin 2
x
csc 2
xdx
ctgx
C
sec x tgx dx sec x C
csc x ctgxdx csc x C a x dx a x C
ln a
shxdx chx C
chxdx shx C
dx
ln( x
x2 a2
x2 a2 ) C
I n
2
sin n xdx
2
cos n xdx
n 1 I n2
n
0
0
x 2 a 2 dx x 2
2
2
1 cos 1 cos
sin
1 cos 1 cos
sin
tg
ctg
2
1 cos
sin
1 cos
2
1 cos
sin
1 cos
·正弦定理: a b c 2 R
sin A sin B sin C
·余弦定理: c 2 a 2 b 2 2 ab cos C
f f 函数 z f ( x , y ) 在一点 p ( x , y )的梯度: grad f ( x , y ) i j
x y
它与方向导数的关系是 单位向量。
考研数学常用公式整理
考研数学常用公式整理数学公式在考研数学中起着至关重要的作用,熟练掌握常用公式不仅可以提高解题效率,还能够避免因记忆错误而导致的失分。
本文将整理一些考研数学中常用的公式,帮助考生们更加系统地学习和理解数学知识。
一、初等数学常用公式1. 二项式定理当整数n为任意一个非负整数时,对任意实数a、b有:(a+b)^n = C(n,0)*a^n*b^0 + C(n,1)*a^(n-1)*b^1 + ... +C(n,n)*a^0*b^n2. 勾股定理在直角三角形中,设直角边长度分别为a和b,斜边长度为c,则有:c^2 = a^2 + b^23. 对数公式(1) 对任意大于0且不等于1的实数a和b,有以下对数运算公式:log(a*b) = loga + logblog(a/b) = loga - logb(2) 换底公式:loga(x) = logb(x) / logb(a)4. 排列组合(1) 排列公式:P(n,m) = n! / (n-m)!(2) 组合公式:C(n,m) = n! / (m! * (n-m)!)5. 三角函数(1) 正弦函数和余弦函数间的关系:sin^2(x) + cos^2(x) = 1(2) 余弦函数的和差公式:cos(a ± b) = cos(a)cos(b) ∓ sin(a)sin(b)(3) 正切函数的和差公式:tan(a ± b) = (tan(a) ± tan(b)) / (1 ∓ tan(a)tan(b))二、高等数学常用公式1. 极限公式(1) 基本极限:lim(x→0) sin(x) / x = 1lim(x→∞) (1 + 1/x)^x = e(2) 自然对数e的定义:e = lim(n→∞) (1 + 1/n)^n2. 导数公式(1) 基本导数:(a^n)' = n*a^(n-1)(sin(x))' = cos(x)(cos(x))' = -sin(x)(2) 导数运算法则:(f(x) ± g(x))' = f'(x) ± g'(x)(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)(f(x)/g(x))' = (f'(x)g(x) - f(x)g'(x)) / (g(x))^23. 积分公式(1) 基本积分:∫(x^n)dx = (x^(n+1))/(n+1) + C (C为常数)∫sin(x)dx = -cos(x) + C∫cos(x)dx = sin(x) + C(2) 积分运算法则:∫(f(x) ± g(x))dx = ∫f(x)dx ± ∫g(x)dx∫(af(x))dx = a∫f(x)dx (a为常数)4. 微分方程常用公式(1) 一阶线性微分方程的通解:y(x) = ∫[u(x)*v(x)dx + C (C为常数)(2) 微分方程dy/dx = f(x)的通解:y(x) = ∫f(x)dx + C (C为常数)以上是一些考研数学中常用的公式整理,希望能够对考生们的备考有所帮助。
考研数学考前公式
考研数学考前公式
考研数学考试的内容主要涉及高等数学、线性代数和概率论与数理统计三大部分,每个部分包含的内容和公式如下:
高等数学部分:
1. 极限公式:
对数函数极限:lim(log(1+x)/x)=1,当x趋于0时
三角函数极限:lim(sin(x)/x)=1,当x趋于0时;lim((1-cos(x))/x)=0,当x趋于0时
2. 牛顿-莱布尼茨公式:∫abf(x)dx=F(b)-F(a),其中F(x)是f(x)的一个原函数
3. 泰勒公式:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+...+f^n(a)(x-
a)^n/n!+Rn(x),其中,Rn(x)是余项,有Lagrange余项和Cauchy余项两种形式。
线性代数部分:
1. 向量公式:
向量的模:a=√(x1^2+x2^2+...+xn^2)
向量的点积:a·b=x1y1+x2y2+...+xnyn
向量的叉积:a×b=(y1z2-y2z1)i-(x1z2-x2z1)j+(x1y2-x2y1)k
2. 矩阵公式:
矩阵的乘积:C=AB,其中Cij=∑(k=1到n)AikBkj
矩阵的逆:若A是可逆矩阵,则A的逆矩阵A^-1满足AA^-1=A^-
1A=E
矩阵的秩:矩阵的秩是指它的行与列的最大线性无关组数,也就是矩阵中含有的一个最大的非零子式的阶数。
概率论与数理统计部分:
这部分的公式涉及的内容较多,可以查阅考研数学大纲或者相关教辅书来获取更全面的信息。
以上信息仅供参考,如有需要,建议查阅考研数学大纲或咨询专业教师。
考研数学高数1极限与函数
第一讲:极限与函数数列极限:数列极限的严格定义不需要掌握,但需要理解如下定理:lim {}n n n x a x a →∞=⇔-是无穷小量数列极限的四则运算:设lim n n x x →∞=,lim n n y y →∞=,则:lim()n n n x y x y →∞±=±、lim()n n n x y xy →∞=、lim()(0)n n n x xy y y→∞=≠ 推论:若lim 0n n x →∞=,数列{}n y 有界,则lim 0n n n x y →∞=例:计算下列极限n n n n n 323)1(lim ++-∞→ )12(lim --+∞→n n n n数列极限的性质唯一性:如果数列{}n x 收敛,则其期限必唯一 有界性:如果数列{}n x 收敛,则该数列必定有界保序性:设数列{}n x 、{}n y 均收敛,且当n 足够大时,有n n x y >,则必有lim lim n n n n x y →∞→∞≥保序性的推论(保号性):设数列{}n x 收敛,且当n 足够大时,有0n x >,则必有lim 0n n x →∞≥注意:1、后面的不等式并不是严格的不等号;2、保序性的逆命题不一定成立思考:求如下几个数列的极限:1111{sin }{sin }{sin }n n n n n n、、数列极限的三个常用定理:数列与其子列的关系:如果数列{}n x 收敛,则其任意子列均收敛,且收敛于同一极限lim n n x →∞;如果数列{}n x 中存在两个子列收敛于不同的极限,或是一个收敛一个发散到无穷大,则{}n x必发散。
例:计算(1)1lim[]nn n n-→∞+夹逼准则:如果当n 足够大时,数列{}n x 、{}n y 、{}n z 满足不等式n n n x y z ≤≤,且{}n x 、{}n z 收敛于同一极限,则{}n y 必收敛于该极限例:计算下列极限1、设0>>>c b a ,nn n n n c b a x ++=,求222111lim (1)(2)nn n n →∞⎡⎤+++⎢⎥+⎣⎦2、2lim n n →∞⎛⎫+++ 3、222111lim (1)(2)n n n n →∞⎡⎤+++⎢⎥+⎣⎦4、(思考)⎪⎪⎭⎫⎝⎛++++++∞→22222212111lim n n n n n (需要用定积分来求)单调有界数列必收敛定理:如果数列{}n x 单调递增且有上界,或是单调递减且有下界,则{}n x 必收敛。
考研极限公式范文
考研极限公式范文1.常见的基本极限:- $\lim_{n\to\infty}(1+\frac{1}{n})^n=e$- $\lim_{n\to\infty}{\frac{1}{n^p}}=0$ ($p>0$)- $\lim_{n\to\infty}{\sqrt[n]{a}}=1$ ($a>0$)2.三角函数的极限:- $\lim_{x\to0}\frac{\sin x}{x}=1$- $\lim_{x\to0}\frac{\tan x}{x}=1$- $\lim_{x\to0}\frac{1-\cos x}{x^2}=\frac{1}{2}$3. $e^x$和$\ln x$的极限:- $\lim_{x\to0}\frac{e^x-1}{x}=1$- $\lim_{x\to+\infty}(1+\frac{1}{x})^x=e$- $\lim_{x\to0}\frac{\ln(1+x)}{x}=1$4.可用洛必达法则求解的一些极限:- $\lim_{x\to0}\frac{\sin x}{x}=1$- $\lim_{x\to+\infty}\ln x=x$- $\lim_{x\to0}\frac{\ln(1+x)}{x}=1$5.无穷小形式:- $\sin x \sim x$- $\tan x \sim x$- $1-\cos x \sim \frac{1}{2}x^2$需要说明的是,这些极限公式只是考研数学中的一部分公式,掌握它们可以帮助我们在解题时更快地得到结果,但并不是解题的核心。
在考研数学中,重要的是掌握解题的思路和方法,理解题目的要求,合理运用公式和定理。
综合运用各种公式和解题方法,灵活解决各种题目才是最关键的。
考研数学常用公式总结
考研数学常用公式总结数学作为考研的一项重要科目,对于考生来说是一个重要的挑战。
在备考过程中,熟悉常用公式是必不可少的。
本文将总结一些考研数学中常用的公式,并介绍其应用和推导过程,帮助考生更好地理解和记忆。
1. 高等数学公式1.1 高斯积分公式高斯积分公式的形式为:∫e^(-x^2)dx = π^0.5这个公式在高等数学中常用于求解概率密度函数的积分形式,比如正态分布的概率密度函数。
1.2 洛必达法则洛必达法则可用于计算不定型的极限,其公式为:lim(x→a) f(x)/g(x) = lim(x→a) f'(x)/g'(x)这个公式在高等数学的微积分中经常被用到,用于解决极限计算问题。
2. 线性代数公式2.1 矩阵的逆矩阵公式设A是一个n阶非奇异矩阵,那么A的逆矩阵的计算公式为:A^(-1) = (adjA)/|A|其中adjA表示A的伴随矩阵,|A|表示A的行列式。
这个公式在线性代数中经常被用到,用于计算矩阵的逆矩阵。
2.2 矩阵的特征方程公式设A是一个n阶方阵,lambda是变量,那么A的特征方程为:|A-λE| = 0其中E表示n阶单位矩阵。
这个公式在线性代数中用于求解矩阵的特征值和特征向量,是计算矩阵特征值的基本公式。
3. 概率论与数理统计公式3.1 期望的线性性质设X和Y是两个随机变量,c是常数,那么期望具有如下线性性质:E(cX) = cE(X)E(X+Y) = E(X) + E(Y)这个公式在概率论与数理统计中用于计算随机变量的期望。
3.2 切比雪夫不等式设X是一个随机变量,E(X)表示X的期望,Var(X)表示X的方差,那么切比雪夫不等式表示为:P(|X-E(X)| ≥ k) ≤ Var(X)/k^2其中k>0是一个常数。
这个公式在概率论与数理统计中用于计算随机变量的概率范围。
4. 数学分析公式4.1 泰勒公式泰勒公式用于近似计算函数的值,其形式为:f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2! + ... + f^n(a)(x-a)^n/n! + Rn(x)其中Rn(x)为剩余项。
考研高数公式总结
考研高数公式总结高等数学是考研数学中的一门重要课程,也是考研数学中需要记住大量公式和定理的科目之一、下面是我总结的一些高等数学中常用的公式和定理,希望对考研学子们的备考能有所帮助。
一、极限和连续1.重要的基本极限公式- $\lim\limits_{x\to0}\frac{\sin{x}}{x}=1$- $\lim\limits_{x\to0}\frac{e^x-1}{x}=1$- $\lim\limits_{x\to+\infty}(1+\frac{1}{x})^x=e$2.微分中的基本极限- $\lim\limits_{\Delta x\to0}\frac{\Delta y}{\Deltax}=\frac{dy}{dx}$- $\lim\limits_{\Delta x\to0}\frac{e^{\Delta x}-1}{\Delta x}=1$3.连续性定理-函数$f(x)$在$x_0$处连续的充分必要条件是:- $\lim\limits_{x\to x_0} f(x)=f(x_0)$- $\lim\limits_{x\to x_0^-} f(x)=\lim\limits_{x\to x_0^+} f(x)=f(x_0)$二、导数和微分1.基本导数公式-$(c)'=0$- $(x^n)'=nx^{n-1}$ (n为自然数)-$(e^x)'=e^x$- $(\ln{x})'=\frac{1}{x}$2.常见运算法则-$(u+v)'=u'+v'$- $(uv)'=u'v+uv'$- $(\frac{u}{v})'=\frac{u'v-uv'}{v^2}$ (v≠0)3.高阶导数-若$f'(x)$存在,则$f''(x)=(f'(x))'$4.微分公式- $dy=f'(x)dx$三、积分与微积分基本定理1.基本积分公式- $\int 0dx=C$- $\int x^ndx=\frac{1}{n+1}x^{n+1}+C$ (n≠-1)2.基本积分的线性运算- $\int kf(x)dx=k\int f(x)dx$- $\int (f(x)+g(x))dx=\int f(x)dx+\int g(x)dx$3.二次换元法- $\int f(g(x))g'(x)dx=\int f(u)du$4.牛顿-莱布尼茨公式- $\int_a^bf(x)dx=F(b)-F(a)$四、级数1.等差数列-$a_n=a_1+(n-1)d$- $S_n=\frac{n}{2}[2a_1+(n-1)d]$- $a_n=\frac{a_{n-1}+a_{n+1}}{2}$2.等比数列-$a_n=a_1q^{n-1}$(q≠0)- $S_n=\frac{a_1(q^n-1)}{q-1}$ (q≠1)3.幂级数- $S_n=\sum\limits_{k=1}^{n} a_k=a_1+a_2+a_3+...+a_n$五、数列和函数的收敛性1.收敛与极限-数列$\{a_n\}$的收敛定义:当无论取多大的正数$ε$,都存在一个正整数$N$,当$n>N$时,总有$,a_n-A,<ε$成立,则称$\{a_n\}$收敛于$A$。
考研高数知识点总结
考研高数知识点总结高等数学是考研数学中的重要一部分,对于考研学生来说,掌握高等数学的知识点是非常重要的。
下面是对高等数学知识点的总结,希望对考研学生有所帮助。
一、函数与极限1. 函数的概念:函数的定义域、值域和图像2. 函数的性质:奇偶性、周期性等3. 极限的概念:数列极限和函数极限4. 极限的性质:极限的四则运算、夹逼定理等5. 单调性与有界性:单调递增、单调递减、有界二、导数与微分1. 导数的概念:导数的定义、几何意义、物理意义2. 导数的运算法则:加法减法法则、乘法法则、复合函数法则等3. 高阶导数与隐函数求导4. 微分与微分近似三、高阶导数与泰勒公式1. 高阶导数的定义与运算法则2. 泰勒展开式与泰勒公式四、不定积分与定积分1. 不定积分的概念与运算法则2. 反常积分:可积性、柯西准则、比较判别法等3. 定积分的概念与性质:函数积分的线性性、可加性、区间可加性等4. 牛顿-莱布尼茨公式与定积分的应用五、多元函数与偏导数1. 多元函数的定义与性质:定义域、值域、图像等2. 偏导数的概念:一阶偏导数、高阶偏导数3. 隐函数求导与全微分的概念4. 多元函数的极值与条件极值六、重积分与曲线曲面积分1. 二重积分的概念与计算方法:极坐标法、换元法、直角坐标系下的积分法2. 三重积分的概念与计算方法:柱面坐标法、球面坐标法、直角坐标系下的积分法3. 曲线积分与曲面积分的概念与计算方法七、常微分方程1. 常微分方程的基本概念:初值问题、解的存在唯一性2. 高阶线性常微分方程与常系数齐次线性方程3. 常微分方程的解法:分离变量法、齐次方程法、一阶线性非齐次方程法等4. 常微分方程的应用:动力学模型、电路网络分析等八、级数1. 级数的概念与基本性质:收敛、发散、极限、级数的四则运算等2. 正项级数与比较判别法、比值判别法、根值判别法等3. 幂级数与泰勒级数展开高等数学知识点总结完毕,以上知识点对考研的高等数学考试来说是基础中的基础。
2023考研数学高数重要定理:函数与极限
2023考研数学高数重要定理:函数与极限2023考研数学高数重要定理:函数与极限函数与极限1、函数的有界性在定义域内有f〔x〕-geK1那么函数f 〔x〕在定义域上有下界,K1为下界假如有f〔x〕-leK2,那么有上界,K2称为上界。
函数f〔x〕在定义域内有界的充分要条件是在定义域内既有上界又有下界。
2、数列的极限定理〔极限的性〕数列xn不能同时收敛于两个不同的极限。
定理〔收敛数列的有界性〕假如数列xn收敛,那么数列xn一定有界。
假如数列xn无界,那么数列xn一定发散但假如数列xn 有界,却不能断定数列xn一定收敛,例如数列1,-1,1,-1,〔-1〕n+1…该数列有界但是发散,所以数列有界是数列收敛的要条件而不是充分条件。
定理〔收敛数列与其子数列的关系〕假如数列xn收敛于a,那么它的任一子数列也收敛于a.假如数列xn有两个子数列收敛于不同的极限,那么数列xn是发散的,如数列1,-1,1,-1,〔-1〕n+1…中子数列x2k-1收敛于1,xnk收敛于-1,xn却是发散的同时一个发散的数列的子数列也有可能是收敛的。
3、函数的极限函数极限的定义中定理〔极限的部分保号性〕假如lim〔x-rarrx0〕时f 〔x〕=A,而且A》0〔或A0〔或f〔x〕》0〕,反之也成立。
函数f〔x〕当x-rarrx0时极限存在的充分要条件是左极限右极限各自存在并且相等,即f〔x0-0〕=f〔x0+0〕,假设不相等那么limf〔x〕不存在。
一般的说,假如lim〔x-rarr-infin〕f〔x〕=c,那么直线y=c是函数y=f〔x〕的图形程度渐近线。
假如lim〔x-rarrx0〕f〔x〕=-infin,那么直线x=x0是函数y=f〔x〕图形的铅直渐近线。
4、极限运算法那么定理:有限个无穷小之和也是无穷小有界函数与无穷小的乘积是无穷小常数与无穷小的乘积是无穷小有限个无穷小的乘积也是无穷小定理假如F1〔x〕-geF2〔x〕,而limF1〔x〕=a,limF2〔x〕=b,那么a-geb.5、极限存在准那么:两个重要极限lim〔x-rarr0〕〔sinx/x〕=1lim〔x-rarr-infin〕〔1+1/x〕x=1.夹逼准那么假如数列xn、yn、zn满足以下条件:yn-lexn-lezn且limyn=a,limzn=a,那么limxn=a,对于函数该准那么也成立。
考研高数讲解新高等数学上册辅导讲解第一章上课资料
第一章函数与极限第 1 页第一节映射与函数一、集合常用数集:自然数集:整数集:有理数集:实数集:开区间:闭区间:半开区间:;邻域:去心邻域:二、函数定义:都有唯一与之对应,记为。
三、函数性质讨论函数:,讨论区间:1、有界性有界:假设,使得,称在区间上有界无界:对,总,使得,那么称在区间上无界上界、下界:假设,使得,,称在区间上有上界;假设,使得,,称在区间上有下界定理:假设在区间上有界在区间上有上界也有下界。
2、单调性严格单调增〔减〕:假设,且,恒有广义单调增〔减〕:假设,恒有,3、奇偶性偶函数:奇函数:常见奇函数:等常见偶函数:等4、周期性周期函数:,对,有,且,那么称为周期为周期函数。
常见周期函数:等【例1】〔87二〕是〔〕(A)有界函数. 〔B〕单调函数.〔C〕周期函数. 〔D〕偶函数.四、复合函数与反函数1、复合函数设定义域为,定义域为,值域为,且,在定义域上有复合函数。
【例2】〔88一二〕,且,求并写出它定义域.2、反函数将函数称为直接函数,函数称为反函数。
与图形关于直线对称。
五、初等函数第二节数列与函数极限一、数列极限定义数列:,,称为整标函数。
其函数值:叫做数列〔序列〕。
数列每一个数称为项,第项称为数列一般项。
简记数列为数列极限:已给数列与常数,如果对于,都,使得对于,不等式恒成立,那么称当时,以为极限,或收敛于,记为或。
反之,假设无极限,说发散。
二、函数极限定义〔1〕:设函数在内有定义,为一常数,假设对于,都,使有,那么称当时,以为极限,记为或。
单侧极限:左极限:。
右极限:定理:〔2〕:设函数在充分大时有定义,为一常数,假设对于,都,使都有,那么称当时,以为极限,记为或。
单侧极限:;定理:【例1】设〔为常数〕,求值,使得存在。
三、极限性质性质1 〔极限唯一性〕数列——假设存在,那么极限值是唯一。
函数——假设存在,那么其极限值是唯一。
性质2 〔有界性〕数列——如果收敛,那么一定有界。
高等数学考研知识点总结
第一讲函数、极限与连续一、考试要求1.理解函数的概念,掌握函数的表示方法,会建立应用问题的函数关系。
2.了解函数的奇偶性、单调性、周期性和有界性。
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念。
4.掌握基本初等函数的性质及其图形,了解初等函数的概念。
5.理解(了解)极限的概念,理解(了解)函数左、右极限的概念以及函数极限存在与左、右极限之间的关系。
6.掌握(了解)极限的性质,掌握四则运算法则。
7.掌握(了解)极限存在的两个准则,并会利用它们求极限,掌握(会)利用两个重要极限求极限的方法。
8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。
9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型 10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。
11.掌握(会)用洛必达法则求未定式极限的方法。
二、内容提要 1、函数(1)函数的概念: y=f(x),重点:要求会建立函数关系.(2)复合函数: y=f(u), u=ϕϕ()[()]x y f x ⇒=,重点:确定复合关系并会求复合函数的定义域.(3)分段函数: 注意,)}(),(min{)},(),(max{,)(x g x f x g x f x f 为分段函数. (4)初等函数:通过有限次的四则运算和复合运算且用一个数学式子表示的函数。
(5)函数的特性:单调性、有界性、奇偶性和周期性 *注:1、可导奇(偶)函数的导函数为偶(奇)函数。
特别:若)(x f 为偶函数且)0(f '存在,则0)0(='f 2、若)(x f 为偶函数,则⎰xdt t f 0)(为奇函数;若)(x f 为奇函数,则⎰xadt t f )(为偶函数;3、可导周期函数的导函数为周期函数。
特别:设)(x f 以T 为周期且)(0x f '存在,则)()(00x f T x f '=+'。
考研必看考研数学基础知识点梳理(高数篇)
考研数学基础知识点梳理(高数篇) 第一章函数、极限与连续1、函数的有界性2、极限的定义(数列、函数)3、极限的性质(有界性、保号性)4、极限的计算(重点)(四则运算、等价无穷小替换、洛必达法则、泰勒公式、重要极限、单侧极限、夹逼定理及定积分定义、单调有界必有极限定理)5、函数的连续性6、间断点的类型7、渐近线的计算第二章导数与微分1、导数与微分的定义(函数可导性、用定义求导数)2、导数的计算(“三个法则一个表”:四则运算、复合函数、反函数,基本初等函数导数表;“三种类型”:幂指型、隐函数、参数方程;高阶导数)3、导数的应用(切线与法线、单调性(重点)与极值点、利用单调性证明函数不等式、凹凸性与拐点、方程的根与函数的零点、曲率(数一、二)) 第三章中值定理1、闭区间上连续函数的性质(最值定理、介值定理、零点存在定理)2、三大微分中值定理(重点)(罗尔、拉格朗日、柯西)3、积分中值定理4、泰勒中值定理5、费马引理第四章一元函数积分学1、原函数与不定积分的定义2、不定积分的计算(变量代换、分部积分)3、定积分的定义(几何意义、微元法思想(数一、二))4、定积分性质(奇偶函数与周期函数的积分性质、比较定理)5、定积分的计算6、定积分的应用(几何应用:面积、体积、曲线弧长和旋转面的面积(数一、二),物理应用:变力做功、形心质心、液体静压力)7、变限积分(求导)8、广义积分(收敛性的判断、计算)第五章空间解析几何(数一)1、向量的运算(加减、数乘、数量积、向量积)2、直线与平面的方程及其关系3、各种曲面方程(旋转曲面、柱面、投影曲面、二次曲面)的求法第六章多元函数微分学1、二重极限和二元函数连续、偏导数、可微及全微分的定义2、二元函数偏导数存在、可微、偏导函数连续之间的关系3、多元函数偏导数的计算(重点)4、方向导数与梯度5、多元函数的极值(无条件极值和条件极值)6、空间曲线的切线与法平面、曲面的切平面与法线第七章多元函数积分学(除二重积分外,数一)1、二重积分的计算(对称性(奇偶、轮换)、极坐标、积分次序的选择)2、三重积分的计算(“先一后二”、“先二后一”、球坐标)3、第一、二类曲线积分、第一、二类曲面积分的计算及对称性(主要关注不带方向的积分)4、格林公式(重点)(直接用(不满足条件时的处理:“补线”、“挖洞”),积分与路径无关,二元函数的全微分)5、高斯公式(重点)(不满足条件时的处理(类似格林公式))6、斯托克斯公式(要求低;何时用:计算第二类曲线积分,曲线不易参数化,常表示为两曲面的交线)7、场论初步(散度、旋度)第八章微分方程1、各类微分方程(可分离变量方程、齐次方程、一阶线性微分方程、伯努利方程(数一、二)、全微分方程(数一)、可降阶的高阶微分方程(数一、二)、高阶线性微分方程、欧拉方程(数一)、差分方程(数三))的求解2、线性微分方程解的性质(叠加原理、解的结构)3、应用(由几何及物理背景列方程)第九章级数(数一、数三)1、收敛级数的性质(必要条件、线性运算、“加括号”、“有限项”)2、正项级数的判别法(比较、比值、根值,p级数与推广的p级数)3、交错级数的莱布尼兹判别法4、绝对收敛与条件收敛5、幂级数的收敛半径与收敛域6、幂级数的求和与展开7、傅里叶级数(函数展开成傅里叶级数,狄利克雷定理)。
高数考研重要公式
高数考研重要公式一、导数公式1. 常数的导数公式:若y=k (k为常数),则dy/dx=0。
2. 幂函数的导数公式:若y=x^n(n为正整数),则dy/dx=nx^(n-1)。
3. 指数函数的导数公式:若y=a^x(a>0且a≠1),则dy/dx=a^x * ln(a)。
4. 对数函数的导数公式:若y=log_a(x)(a>0且a≠1),则dy/dx=1/(x * ln(a))。
5. 三角函数的导数公式:若y=sin(x),则dy/dx=cos(x)。
若y=cos(x),则dy/dx=-sin(x)。
若y=tan(x),则dy/dx=sec^2(x)。
若y=cot(x),则dy/dx=-csc^2(x)。
若y=sec(x),则dy/dx=sec(x) * tan(x)。
若y=csc(x),则dy/dx=-csc(x) * cot(x)。
二、积分公式1. 常数的积分公式:∫k dx=kx+C (C为积分常数)。
2. 幂函数的积分公式:∫x^n dx = x^(n+1)/(n+1) + C (n≠-1,C为积分常数)。
3. 指数函数与对数函数的积分公式:∫a^x dx = a^x / ln(a) + C (a>0且a≠1,C为积分常数)。
∫1/x dx = ln|x| + C (C为积分常数)。
4. 三角函数的积分公式:∫sin(x) dx = -cos(x) + C (C为积分常数)。
∫cos(x) dx = sin(x) + C (C为积分常数)。
三、极限公式1. 基本极限:lim(x→∞) [1+1/x]^x = elim(x→0) sin(x)/x = 1lim(x→0) (cos(x) - 1)/x = 02. 已知极限的运算法则:lim(x→a) [f(x)±g(x)] = lim(x→a) f(x) ± lim(x→a) g(x)lim(x→a) [f(x)g(x)] = lim(x→a) f(x) * lim(x→a) g(x)lim(x→a) [f(x)/g(x)] = lim(x→a) f(x) / lim(x→a) g(x) (其中lim(x→a) g(x) ≠ 0)3. 其他常用极限:lim(x→∞) [1 + 1/n]^n = elim(x→0) (e^x - 1)/x = 1l im(x→0) (a^x - 1)/x = ln(a) (a>0且a≠1)四、级数公式1. 等比级数求和公式:若|q|<1,∑(n=0→∞) ar^n=a/(1-r),其中a为首项,r为公比。
考研数二高等数学教材要考的范围
考研数二高等数学教材要考的范围高等数学是考研数学科目中的一项重要内容,数二即高等数学二,是考研数学中的一部分。
要顺利通过考研数二高等数学科目,了解教材要考的范围是非常重要的。
本文将介绍考研数二高等数学教材要考的范围,以帮助考生更好地备考。
一、函数与极限1.1 函数的概念及性质1.2 极限的概念与性质1.3 极限存在准则1.4 函数的连续性与间断点二、导数与微分2.1 导数的概念与性质2.2 微分的概念与性质2.3 函数的求导法则2.4 高阶导数与高阶微分2.5 隐函数与参数方程的导数2.6 高阶导数的应用三、不定积分与定积分3.1 不定积分的概念与性质3.2 基本积分公式与常用积分公式3.3 定积分的概念与性质3.4 定积分的计算方法3.5 反常积分的概念与性质四、级数4.1 数项级数的概念与性质4.2 收敛级数与发散级数4.3 正项级数的审敛法4.4 幂级数的概念与性质五、多元函数与偏导数5.1 多元函数的概念与性质5.2 偏导数的概念与性质5.3 隐函数的求导法则与全微分5.4 多元函数的极值与条件极值六、重积分6.1 二重积分的概念与性质6.2 二重积分的计算方法6.3 三重积分的概念与性质6.4 三重积分的计算方法七、向量与空间解析几何7.1 向量的概念与性质7.2 空间直线与平面的方程7.3 空间曲线与曲面的方程7.4 空间向量的内积与外积八、常微分方程8.1 常微分方程的基本概念8.2 一阶常微分方程的解法8.3 高阶常微分方程的解法上述是考研数二高等数学教材要考的范围,考生在备考时应该系统学习、掌握这些内容。
在学习过程中,可以结合教材中的例题和习题进行练习,以加深对知识点的理解和记忆。
同时,要注重理论与实际的结合,关注数学知识在实际问题中的应用。
此外,通过解析历年真题,了解考研数二高等数学的出题特点,对备考也会有所帮助。
在解题过程中,要注重思维方法的培养,提高解题的效率和准确性。
总之,考研数二高等数学教材要考的范围包括了函数与极限、导数与微分、不定积分与定积分、级数、多元函数与偏导数、重积分、向量与空间解析几何、常微分方程等内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考研数学高数公式:函数与极限
第一章:函数与极限
第一节:函数
函数属于初等数学的预备知识,在高数的学习中起到铺垫作用,直接考察的内容比较少,但是如果这章节有所缺陷对以后的学习都会有所影响。
基础阶段:
1.理解函数的概念,能在实际问题的背景下建立函数关系;
2.掌握并会计算函数的定义域、值域和解析式;
3.了解并会判断函数的有界性、单调性、周期性、奇偶性等性质;
4.理解复合函数和反函数的概念,并会应用它们解决相关的问题;
强化阶段:
1.了解函数的不同表现形式:显式表示,隐式表示,参数式,分段表示;
2.掌握基本初等函数的性质及其图形,了解初等函数的概念。
冲刺阶段:
1.综合应用函数解决相关的问题;
2.掌握特殊形式的函数(含极限的函数,导函数,变上限积分),并会讨论它们的相关性质。
第二节:极限
极限可以说是高等数学的基础,极限的计算也是高等数学中最基本的运算。
在考试大纲中明确要求考生熟练掌握的基本技能之一。
虽在考试中站的分值不大。
但是在其他的试题中得到广泛应用。
因此这部分学习直接营销到整个学科的复习结果
基础阶段
1.了解极限的概念及其主要的性质。
2.会计算一些简单的极限。
3.了解无穷大量与无穷小量的关系,了解无穷小量的比较方法,记住常见的等价无穷小量。
强化阶段:
1.理解极限的概念,理解函数左右极限的概念及其与极限的关系(数一数二)/了解数列极限和函数极限的概念(数三);
▲2.掌握计算极限的常用方法及理论(极限的性质,极限的四则运算法则,极限存在的
两个准则,两个重要极限,等价无穷小替换,洛必达法则,泰勒公式);
3.会解决与极限的计算相关的问题(确定极限中的参数);
4.理解无穷大量和无穷小量的概念及相互关系,会进行无穷小量的比较,记住常见的等价无穷小量并能在计算极限时加以应用(数一数二)/理解无穷小量的概念,会进行无穷小量的比较,记住常见的等价无穷小量并能在计算极限时加以应用,了解无穷大量的概念及其与无穷小量的关系(数三)。
冲刺阶段:
深入理解极限理论在微积分中的中心地位,理解高等数学中其它运算(求导,求积分)与极限之间的关系,建立完整的理论体系。
函数与极限的基本公式与定理
1、函数的有界性在定义域内有f(x)≥K1则函数f(x)在定义域上有下界,K1为下界;如果有f(x)≤K2,则有上界,K2称为上界。
函数f(x)在定义域内有界的充分必要条件是在定义域内既有上界又有下界。
2、数列的极限定理(极限的唯一性)数列{xn}不能同时收敛于两个不同的极限。
定理(收敛数列的有界性)如果数列{xn}收敛,那么数列{xn}一定有界。
如果数列{xn}无界,那么数列{xn}一定发散;但如果数列{xn}有界,却不能断定数列{xn}一定收敛,例如数列1,-1,1,-1,(-1)n+1…该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件。
定理(收敛数列与其子数列的关系)如果数列{xn}收敛于a,那么它的任一子数列也收敛于a.如果数列{xn}有两个子数列收敛于不同的极限,那么数列{xn}是发散的,如数列1,-1,1,-1,(-1)n+1…中子数列{x2k-1}收敛于1,{xnk}收敛于-1,{xn}却是发散的;同时一个发散的数列的子数列也有可能是收敛的。
3、函数的极限函数极限的定义中0<|x-x0|表示x≠x0,所以x→x0时f(x)有没有极限与f(x)在点x0有没有定义无关。
定理(极限的局部保号性)如果lim(x→x0)时f(x)=A,而且A>0(或A<0),就存在着点那么x0的某一去心邻域,当x在该邻域内时就有f(x)>0(或f(x)>0),反之也成立。
函数f(x)当x→x0时极限存在的充分必要条件是左极限右极限各自存在并且相等,即f(x0-0)=f(x0+0),若不相等则limf(x)不存在。
一般的说,如果lim(x→∞)f(x)=c,则直线y=c是函数y=f(x)的图形水平渐近线。
如果lim(x→x0)f(x)=∞,则直线x=x0是函数y=f(x)图形的铅直渐近线。
4、极限运算法则定理有限个无穷小之和也是无穷小;有界函数与无穷小的乘积是无穷小;
常数与无穷小的乘积是无穷小;有限个无穷小的乘积也是无穷小;定理如果F1(x)≥F2(x),而limF1(x)=a,limF2(x)=b,那么a≥b.
5、极限存在准则两个重要极限lim(x→0)(sinx/x)=1;lim(x→∞)(1+1/x)x=1.夹逼准则如果数列{xn}、{yn}、{zn}满足下列条件:yn≤xn≤zn且limyn=a,limzn=a,那么limxn=a,对于函数该准则也成立。
单调有界数列必有极限。
6、函数的连续性设函数y=f(x)在点x0的某一邻域内有定义,如果函数f(x)当x→x0时的极限存在,且等于它在点x0处的函数值f(x0),即lim(x→x0)f(x)=f(x0),那么就称函数f(x)在点x0处连续。
不连续情形:1、在点x=x0没有定义;2、虽在x=x0有定义但lim(x→x0)f(x)不存在;3、虽在x=x0有定义且lim(x→x0)f(x)存在,但lim(x→x0)f(x)≠f(x0)时则称函数在x0处不连续或间断。
如果x0是函数f(x)的间断点,但左极限及右极限都存在,则称x0为函数f(x)的第一类间断点(左右极限相等者称可去间断点,不相等者称为跳跃间断点)。
非第一类间断点的任何间断点都称为第二类间断点(无穷间断点和震荡间断点)。
定理有限个在某点连续的函数的和、积、商(分母不为0)是个在该点连续的函数。
定理如果函数f(x)在区间Ix上单调增加或减少且连续,那么它的反函数x=f(y)在对应的区间Iy={y|y=f(x),x∈Ix}上单调增加或减少且连续。
反三角函数在他们的定义域内都是连续的。
定理(最大值最小值定理)在闭区间上连续的函数在该区间上一定有最大值和最小值。
如果函数在开区间内连续或函数在闭区间上有间断点,那么函数在该区间上就不一定有最大值和最小值。
定理(有界性定理)在闭区间上连续的函数一定在该区间上有界,即m≤f(x)≤M.定理(零点定理)设函数f(x)在闭区间[a,b]上连续,且f(a)与f(b)异号(即f(a)×f(b)<0),那么在开区间(a,b)内至少有函数f(x)的一个零点,即至少有一点ξ(a<ξ
推论在闭区间上连续的函数必取得介于最大值M与最小值m之间的任何值。
小提示:目前本科生就业市场竞争激烈,就业主体是研究生,在如今考研竞争日渐激烈的情况下,我们想要不在考研大军中变成分母,我们需要:早开始+好计划+正确的复习思路+好的辅导班(如果经济条件允许的情况下)。
2017考研开始准备复习啦,早起的鸟儿有虫吃,一分耕耘一分收获。
加油!。