高等数学建模题目及答案
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(cosx
i
sin
Leabharlann Baidu
x)
(it
(
( 1) 1)
t
)
x [0,2 ], t [0,1]
IC : u(x,0) 0, BC:u(0,t) t 2, u(2 ,t) t 2
exact solution: u(x,t) t (cosx i sin x)
解题原理:
误差图:
结束~谢谢!
分数阶谱方法
1.分数阶积分/导数的定义 2.第一种形式的谱方法 3.第二种形式的谱方法 4.多区域谱方法 5.数值例子
1.分数阶积分/导数的定义
思考:
① 联想数学分析中的泰勒级数展开,对于简单函数u, 可以直接计算并讨论它的收敛性、连续性、可微性和 可积性,但对于复杂函数u,无法直接讨论它的以上 性质。解决方法是用泰勒级数逼近u,通过讨论级数 的性质代替讨论u的性质。
典型谱方法的缺点:
当解u存在奇异点时,典型谱方法在奇异点 处不收敛,这时需要加密在奇异点附近的离散点。 对于奇异解的问题,多区域谱方法可以解决。
以下介绍多区域谱方法。
4.多区域谱方法
① p-refinement (M固定,N不固定)
x∈[-1,1],先将[-1,1]等分为M个均分小区间, 再将每个小区间分为Ni (i=1,2,...M) 个小区间,分 别求M个小区间上的求导矩阵,然后按照相应规 则组装。
5. 数值例子
例1.
0.3 , x[0,1]
C
0
Dx
u
(
x)
x1
N k 1
(1)k x2k
(2k 2 )
BC : u(0) 0
exact solution: u(x) sin(x)
解题原理:
MATLAB求解:
误差图:
例2.
i
C0Dt u(x, t)
2u( x, t ) x 2
② 同样,对于简单函数u,可以利用定义直接计算它 的分数阶积分/导数,但是对于复杂函数u,无法利用 定义求解其分数阶积分/导数。解决方法是用正交多 项式逼近u,通过求正交多项式的分数阶积分/导数代 替求u的分数阶积分/导数。
2.第一种形式的谱方法
其中,正交系数Cij的求法如下:
3.第二种形式的谱方法
② h-refinement (N固定,M不固定) x∈[-1,1],先将[-1,1]分为M个不等小区间,每
个小区间再等分为N个均分小区间,分别求M个小 区间上的求导矩阵,然后按照相应规则组装。
p-refinement
1 2 3 4
5
1
2
3
4
5 i为M个均分的小区间, i 为小区间上的拉格朗日
插值多项式