2.3幂函数知识点归纳与练习(含详细答案)

合集下载

幂函数知识点归纳总结

幂函数知识点归纳总结

幂函数知识点归纳总结嘿,咱今儿就来好好唠唠幂函数!幂函数啊,就像是数学世界里的小精灵,可有意思啦!先说说幂函数的定义哈,那就是形如 y=x^a 的函数,这里的 a 可是个关键角色呢!它决定了幂函数的各种特性。

咱就拿 y=x^2 来说吧,这可是个大家常见的幂函数呢!它的图像就像个开口向上的抛物线,多形象啊!当 x 取正数的时候,y 也跟着越来越大;当 x 取负数的时候呢,y 还是正数哦,是不是挺神奇的?这就好比你走在路上,迎着阳光走,影子就会在身后,背着阳光走,影子就会在身前,幂函数也有它自己的“小脾气”呢!再说说 y=x^3 ,这个幂函数就更有个性啦!它的图像可不像抛物线那么“温柔”,而是有点“刚硬”呢!随着 x 的变化,y 的变化速度也不一样,这就像跑步,有时候跑得快,有时候跑得慢,但一直都在前进。

那幂函数的单调性呢,可不能小瞧哦!当 a 大于 0 的时候,幂函数在定义域上是单调递增的,就像小火箭一样蹭蹭往上窜;当 a 小于 0的时候,幂函数在定义域上是单调递减的,就像泄了气的皮球慢慢往下落。

你说这幂函数是不是很有个性呀?还有幂函数的奇偶性呢,这也是个很有趣的特点哦!有的幂函数是奇函数,有的是偶函数,还有的既不是奇函数也不是偶函数呢!这就好像人有不同的性格一样,有的开朗,有的内向,有的则是二者兼有。

哎呀,幂函数的知识点可真不少呢!咱可得好好记住,不然做题的时候就抓瞎啦!就像你要去一个陌生的地方,不提前了解路线,那不就迷路了嘛!总之呢,幂函数虽然看起来简单,但是里面的学问可大着呢!咱们要像探索宝藏一样,一点点去发现它的奥秘,去感受数学的魅力。

你想想,要是你能把幂函数玩得团团转,那多有成就感呀!是不是?所以呀,大家可别小瞧了幂函数,好好学,好好研究,一定能发现更多有趣的地方!。

2024年新高一数学初升高衔接《幂函数》含答案解析

2024年新高一数学初升高衔接《幂函数》含答案解析

第12讲 幂函数模块一 思维导图串知识模块二 基础知识全梳理(吃透教材)模块三 核心考点举一反三模块四 小试牛刀过关测1.了解幂函数的概念;2.结合幂函数y =x ,y =x 2,y =x 3,y =x -1,12y x 的图象,掌握它们的性质;3.能利用幂函数的单调性比较幂的大小.知识点 1 幂函数的概念1、幂函数的定义:一般地,函数y =x α叫做幂函数,其中x 是自变量,α是常数.2、幂函数的特征:(1)x α的系数是1;(2)x α的底数x 是自变量;(3)x α的指数α为常数.只有满足这三个条件,才是幂函数.对于形如y =(2x )α,y =2x 5,y =x α+6等的函数都不是幂函数.知识点 2 幂函数的图象与性质1、五个具体幂函数的图象当11,2,312α=-,时,可得到五个幂函数y =x ,y =x 2,y =x 3,y =x -1,12y x =,在同一直角坐标系中,通过秒点发得到五个幂函数的图象,如下图所示.2、五个具体幂函数的性质观察上图,可以得到五个幂函数的性质如下:函数y x=2y x=3y x =12y x=1y x -=定义域R RR [0,)+∞(,0)(0,)-∞+∞ 值域R[0,)+∞R[0,)+∞(,0)(0,)-∞+∞ 奇偶性奇函数偶函数奇函数非奇非偶函数奇函数单调性增函数在(0,)+∞上递增,在(,0]-∞上递减增函数增函数在(,0)-∞和(0,)+∞上递减过定点点(1,1)3、一般幂函数的性质(1)所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1);(2)如果α>0,那么幂函数的图象过原点,并且在区间[0,+∞)上单调递增;(3)如果α<0,那么幂函数的图象在区间(0,+∞)上单调递减,在第一象限内,当x 从右边趋向于原点时,图象在y 轴右方无限接近y 轴,当x 从原点趋向于+∞时,图象在x 轴上方无限接近x 轴;(4)在(1,+∞)上,随幂指数的逐渐增大,图象越来越靠近y 轴.知识点 3 作幂函数图象的步骤第一步:画出第一象限的部分。

幂的运算知识要点归纳及答案解析

幂的运算知识要点归纳及答案解析

幂的运算知识要点归纳及答案解析【要点概论】要点一、同底数幂的乘法特点+⋅=m n m n a a a (其中,m n 都是正整数).即同底数幂相乘,底数不变,指数相加.要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式.(2)三个或三个以上同底数幂相乘时,也具有这一特点,即mnpm n pa a a a++⋅⋅=(,,m n p 都是正整数).(3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数与原来的底数相同,它们的指数之和等于原来的幂的指数。

即m n m n a a a +=⋅(,m n 都是正整数).要点二、幂的乘方法则 ()=m nmna a(其中,m n 都是正整数).即幂的乘方,底数不变,指数相乘.要点诠释:(1)公式的推广:(())=m n pmnpa a(0≠a ,,,m n p 均为正整数)(2)逆用公式: ()()nmmnm n aa a ==,根据题目的需要常常逆用幂的乘方运算能将某些幂变形,从而解决问题.要点三、积的乘方法则()=⋅n n n ab a b (其中n 是正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.要点诠释:(1)公式的推广:()=⋅⋅nnnnabc a b c (n 为正整数).(2)逆用公式:()n n na b ab =逆用公式适当的变形可简化运算过程,尤其是遇到底数互为倒数时,算法更简便.如:1010101122 1.22⎛⎫⎛⎫⨯=⨯= ⎪ ⎪⎝⎭⎝⎭重点四、注意事项(1)底数可以是任意实数,也可以是单项式、多项式.(2)同底数幂的乘法时,只有当底数相同时,指数才可以相加.指数为1,算法时不要遗漏.(3)幂的乘方运算时,指数相乘,而同底数幂的乘法中是指数相加.(4)积的乘方运算时须注意,积的乘方要将每一个因式(特别是系数)都要分别乘方. (5)灵活地双向应用运算特点,使运算更加方便、简洁. (6)带有负号的幂的运算,要养成先化简符号的习惯. 【典型例题解析】类型一、同底数幂的乘法特点1、算法:(1)234444⨯⨯;(2)3452622a a a a a a ⋅+⋅-⋅; (3)11211()()()()()nn m n m x y x y x y x y x y +-+-+⋅+⋅+++⋅+.【标准答案与解析】 解:(1)原式234944++==.(2)原式34526177772222aa a a a a a +++=+-=+-=.(3)原式11211222()()()()2()n n m n m n m n m n m x y x y x y x y x y +++-++-+++=+++=+++=+.【总结升华】(2)(3)小题都是混合运算,算法时要注意运算顺序,还要正确地运用相应的运算法则,并要注意区别同底数幂的乘法与整式的加减法的运算法则.在第(2)小题中a 的指数是1.在第(3)小题中把x y +看成一个整体. 举一反三: 【变式】算法:(1)5323(3)(3)⋅-⋅-; (2)221()()ppp x x x +⋅-⋅-(p 为正整数);(3)232(2)(2)n⨯-⋅-(n 为正整数).【标准答案】解:(1)原式532532532103(3)333333++=⋅-⋅=-⋅⋅=-=-.(2)原式22122151()ppp p p p p x x x x x +++++=⋅⋅-=-=-. (3)原式525216222(2)22nn n +++=⋅⋅-=-=-.2、已知2220x +=,求2x 的值.【思路点拨】同底数幂乘法的逆用:22222x x +=⋅ 【标准答案与解析】 解:由2220x +=得22220x ⋅=.∴ 25x=.【总结升华】(1)本题逆用了同底数幂的乘法法则,培养了逆向思维能力.(2)同底数幂的乘法法则的逆运用:m nm n aa a +=⋅.类型二、幂的乘方法则3、算法:(1)2()m a ;(2)34[()]m -;(3)32()m a-.【思路点拨】此题是幂的乘方运算,(1)题中的底数是a ,(2)题中的底数是m -,(3)题中的底数a 的指数是3m -,乘方以后的指数应是2(3)62m m -=-. 【标准答案与解析】解:(1)2()m a 2m a =.(2)34[()]m -1212()m m =-=. (3)32()m a-2(3)62m m a a --==.【总结升华】运用幂的乘方法则进行算法时要注意符号的算法及处理,一定不要将幂的乘方与同底数幂的乘法混淆.幂的乘方法则中的底数仍可以为单个数字、字母,也可以是单项式或多项式.4、已知25mx=,求6155m x -的值.【标准答案与解析】 解:∵ 25mx=,∴ 62331115()55520555m m x x -=-=⨯-=.【总结升华】(1)逆用幂的乘方法则:()()mnm n n m a a a ==.(2)本题培养了学生的整体思想和逆向思维能力. 举一反三:【变式1】已知2a x =,3b x =.求32a bx +的值.【标准答案】 解:32323232()()238972a ba b a b xx x x x +===⨯=⨯=g g .【变式2】已知84=m,85=n,求328+m n的值.【标准答案】 解:因为3338(8)464===mm , 2228(8)525===n n .所以323288864251600+=⨯=⨯=m nm n .类型三、积的乘方法则5、指出下列各题算法是否正确,指出错误并说明原因:(1)22()ab ab =; (2)333(4)64ab a b =; (3)326(3)9x x -=-. 【标准答案与解析】解:(1)错,这是积的乘方,应为:222()ab a b =. (2)对.(3)错,系数应为9,应为:326(3)9x x -=.【总结升华】(1)应用积的乘方时,特别注意观察底数含有几个因式,每个因式都分别乘方. (2)注意系数及系数符号,对系数-1不可忽略.【典型例题】类型一、同底数幂的乘法特点1、算法:(1)35(2)(2)(2)b b b +⋅+⋅+; (2)23(2)(2)x y y x -⋅- . 【标准答案与解析】解:(1)353519(2)(2)(2)(2)(2)b b b b b +++⋅+⋅+=+=+.(2)23235(2)(2)(2)[(2)](2)x y y x x y x y x y -⋅-=-⋅--=--. 【总结升华】(1)同底数幂相乘时,底数可以是多项式,也可以是单项式.(2)在幂的运算中,经常用到以下变形:()()(),n n n a n a a n ⎧⎪-=⎨-⎪⎩为偶数,为奇数 ()()()()()nnnb a n a b b a n ⎧-⎪-=⎨--⎪⎩为偶数为奇数. 类型二、幂的乘方法则 2、算法:(1)23[()]a b --; (2)32235()()2y y y y +-g ; (3)22412()()m m xx -+⋅; (4)3234()()x x ⋅.【标准答案与解析】解:(1)23[()]a b --236()()a b a b ⨯=--=--.(2)32235()()2y y y y +-⋅666662220y y y y y =+-=-=. (3)22412()()m m xx -+⋅4(22)2(1)8822106m m m m m x x x x x -+-+-=⋅=⋅=.(4)3234()()x x ⋅61218x xx =⋅=.【总结升华】(1)运用幂的乘方法则进行算法时要注意符号的算法及处理,一定不要将幂的乘方与同底数幂的乘法混淆.(2)幂的乘方的法则中的底数仍可以为单个数字、字母,也可以是单项式或多项式.3、已知84=m ,85=n ,求328+m n的值.【思路点拨】由于已知8,8mn的值,所以逆用同底数幂的乘法和幂的乘方把328+m n变成323288(8)(8)m n m n ⨯=⨯,再代入算法.【标准答案与解析】 解:因为3338(8)464===mm , 2228(8)525===n n .所以323288864251600+=⨯=⨯=m nm n .【总结升华】运用整体的观念看待数学问题,是一种重要的数学思维方法.把8,8mn当成一个整体问题就会迎刃而解.同时看到灵活地双向应用运算特点,使运算更加方便、简洁. 举一反三: 【变式】已知322,3mm ab ==,则()()()36322mm m m a b a b b +-⋅= .【标准答案】-5;提示:原式()()()()23223232m m m m ab a b =+-⋅∵∴ 原式=23222323+-⨯=-5.类型三、积的乘方法则4、算法:(1)24(2)xy - (2)24333[()]a a b -⋅- 【思路点拨】利用积的乘方的运算特点进行算法. 【标准答案与解析】解:(1)24442448(2)(1)2()16xy x y x y -=-⋅⋅⋅=-. (2)24333[()]a a b -⋅-231293636274227()()()a a b a a ba b =-⋅-=-⋅-⋅=.【总结升华】(1)应用积的乘方时,特别注意观察底数含有几个因式,每个因式都分别乘方.(2)注意系数及系数符号,对系数-1不可忽略. 举一反三:【变式】下列等式正确的个数是( ).①()3236926x yx y -=- ②()326m m a a -= ③()36933a a =④()()57355107103510⨯⨯⨯=⨯ ⑤()()1001001010.520.522-⨯=-⨯⨯A. 1个B. 2个C. 3个D. 4个 【标准答案】A ;提示:只有⑤正确;()3236928x yx y -=-;()326m maa -=-;()3618327aa =;()()57121351071035103.510⨯⨯⨯=⨯=⨯同底数幂的除法【要点梳理】要点一、同底数幂的除法法则同底数幂相除,底数不变,指数相减,即m n m na a a -÷=(a ≠0,m n 、都是正整数,并且m n >)要点诠释:(1)同底数幂乘法与同底数幂的除法是互逆运算.(2)被除式、除式的底数相同,被除式的指数大于除式指数,0不能作除式. (3)当三个或三个以上同底数幂相除时,也具有这一特点. (4)底数可以是一个数,也可以是单项式或多项式. 要点二、零指数幂任何不等于0的数的0次幂都等于1.即01a =(a ≠0)要点诠释:底数a 不能为0,00无意义.任何一个常数都可以看作与字母0次方的积.因此常数项也叫0次单项式.要点三、负整数指数幂任何不等于零的数的n -(n 为正整数)次幂,等于这个数的n 次幂的倒数,即1nna a -=(a ≠0,n 是正整数).引进了零指数幂和负整数指数幂后,指数的范围已经扩大到了全体整数,以前所学的幂的运算特点仍然成立.m n m n a a a +=(m 、n 为整数,0a ≠);()mm m ab a b =(m 为整数,0a ≠,0b ≠)()nm mn a a =(m 、n 为整数,0a ≠).要点诠释:()0na a -≠是n a 的倒数,a 可以是不等于0的数,也可以是不等于0的代数式.例如()1122xy xy -=(0xy ≠),()()551a b a b -+=+(0a b +≠). 要点四、科学记数法的一般形式(1)把一个绝对值大于10的数表示成10na ⨯的形式,其中n 是正整数,1||10a ≤<(2)利用10的负整数次幂表示一些绝对值较小的数,即10na -⨯的形式,其中n 是正整数,1||10a ≤<.用以上两种形式表示数的方法,叫做科学记数法. 【典型例题】类型一、同底数幂的除法1、算法:(1)83x x ÷;(2)3()a a -÷;(3)52(2)(2)xy xy ÷;(4)531133⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭.【思路点拨】利用同底数幂相除的法则算法.(2)、(4)两小题要注意符号. 【标准答案与解析】解:(1)83835x x xx -÷==.(2)3312()a a aa --÷=-=-.(3)5252333(2)(2)(2)(2)8xy xy xy xy x y -÷===.(4)535321111133339-⎛⎫⎛⎫⎛⎫⎛⎫-÷-=-=-= ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭. 【总结升华】(1)运用法则进行算法的关键是看底数是否相同.(2)运算中单项式的系数包括它前面的符号.2、算法下列各题:(1)5()()x y x y -÷- (2)125(52)(25)a b b a -÷- (3)6462(310)(310)⨯÷⨯ (4)3324[(2)][(2)]x y y x -÷-【思路点拨】(1)若被除式、除式的底数互为相反数时,先将底数变为相同底数再算法,尽可能地去变偶次幂的底数,如1212(52)(25)a b b a -=-.(2)注意指数为1的多项式.如x y -的指数为1,而不是0. 【标准答案与解析】解:(1)5514()()()()x y x y x y x y --÷-=-=-.(2)1251257(52)(25)(25)(25)(25)a b b a b a b a b a -÷-=-÷-=- (3)64626426212(310)(310)(310)(310)910-⨯÷⨯=⨯=⨯=⨯.(4)3324[(2)][(2)]x y y x -÷-9898(2)(2)(2)2x y x y x y x y -=-÷-=-=-.【总结升华】底数都是单项式或多项式,把底数作一个整体利用同底数幂的除法法则进行算法.3、已知32m =,34n =,求129m n+-的值.【标准答案与解析】解: 121222222221222244449(3)33333(3)399(3)33(3)(3)m m m m m m m nn n n n n n ++++-======g g g . 当32m=,34n=时,原式224239464⨯==. 【总结升华】逆用同底数除法公式,设法把所求式转化成只含3m ,3n的式子,再代入求值.本题是把除式写成了分数的形式,为了便于观察和算法,我们可以把它再写成除式的形式. 举一反三:【变式】已知2552mm⨯=⨯,求m 的值. 【标准答案】解:由2552m m ⨯=⨯得1152m m --=,即11521m m --÷=,1512m -⎛⎫= ⎪⎝⎭,∵ 底数52不等于0和1, ∴ 15522m -⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭,即10m -=,1m =. 类型二、负整数次幂的运算4、算法:(1)223-⎛⎫- ⎪⎝⎭;(2)23131()()a b a b ab ---÷.【标准答案与解析】解:(1)222119434293-⎛⎫-=== ⎪⎝⎭⎛⎫- ⎪⎝⎭; (2)2313123330()()a b a b ab a b a b ab a b b -----÷===g g .【总结升华】要正确理解负整数指数幂的意义. 举一反三:【变式】算法:4513012222( 3.14)2π----⎛⎫++⨯⨯+- ⎪⎝⎭.【标准答案】解: 4513012222( 3.14)2π----⎛⎫++⨯⨯+- ⎪⎝⎭ 45311111122116212223228=++⨯⨯+=++⨯⨯+ 1151611732832=+++= 5、 已知1327m =,1162n⎛⎫= ⎪⎝⎭,则n m 的值=________. 【标准答案与解析】解: ∵ 331133273m -===,∴ 3m =-. ∵ 122n n -⎛⎫= ⎪⎝⎭,4162=,∴ 422n -=,4n =-. ∴ 4411(3)(3)81n m -=-==-. 【总结升华】先将127变形为底数为3的幂,122n n -⎛⎫= ⎪⎝⎭,4162=,然后确定m 、n 的值,最后代值求nm .举一反三: 【变式】算法:(1)1232()a b c --;(2)3232312b c b c ---⎛⎫⨯ ⎪⎝⎭; 【标准答案】 解:(1)原式424626b a b c a c --==. (2)原式8236981212888b b c b cb c c---=⨯==. 类型三、科学记数法6、用科学记数法表示下列各数:(1)0.00001;(2)0.000000203;(3)-0.000135;(4)0.00067【标准答案与解析】解:(1)0.00001=510-;(2)0.000000203=72.0310-⨯;(3)-0.000135=41.3510--⨯;(4)0.00067=46.710-⨯.【总结升华】注意在10n a -⨯中n 的取值是这个数从左边起第一个不是零的数前面零的个数(包括小数点前边的零).【巩固练习】一.选择题1. ()()35c c -⋅-的值是( ).A. 8c -B. ()15c -C. 15cD.8c 2.2n n a a +⋅的值是( ).A. 3n a +B. ()2n n a +C. 22n a +D. 8a 3.下列算法正确的是( ).A.224x x x +=B.347x x x x ⋅⋅=C. 4416a a a ⋅=D.23a a a ⋅=4.下列各题中,算法结果写成10的幂的形式,其中正确的是( ).A. 100×210=310B. 1000×1010=3010C. 100×310=510D. 100×1000=4105.下列算法正确的是( ).A.()33xy xy =B.()222455xy x y -=-C.()22439x x -=-D.()323628xy x y -=-6.若()391528m n a b a b =成立,则( ).A. m =6,n =12B. m =3,n =12C. m =3,n =5D. m =6,n =5二.填空题7. 若26,25m n ==,则2m n +=____________.8. 若()319x a a a ⋅=,则x =_______.9. 已知35n a =,那么6n a =______.10.若38m a a a ⋅=,则m =______;若31381x +=,则x =______.11. ()322⎡⎤-=⎣⎦______; ()33n ⎡⎤-=⎣⎦ ______; ()523-=______.12.若n 是正整数,且210n a =,则3222()8()n n a a --=__________.三.解答题13. 判断下列算法的正误.(1)336x x x += ( ) (2) 325()y y -=- ( )(3)2224(2)2ab a b -=- ( ) (4) 224()xy xy = ( )14.(1) 3843()()x x x ⋅-⋅-; (2)2333221()()3a b a b -+-;(3)3510(0.310)(0.410)-⨯-⨯⨯⨯; (4)()()3522b a a b --;(5)()()2363353a a a -+-⋅;15.(1)若3335n n x x x +⋅=,求n 的值.(2)若()3915n m a b b a b ⋅⋅=,求m 、n 的值.【标准答案与解析】一.选择练习题1. 【标准答案】D ;【解析】()()()()353588c c c c c +-⋅-=-=-=. 2. 【标准答案】C ;【解析】2222n n n n n a a a a ++++⋅==.3. 【标准答案】D ;【解析】2222x x x +=;348x x x x ⋅⋅=;448a a a ⋅=.4. 【标准答案】C ;【解析】100×210=410;1000×1010=1310;100×1000=510.5. 【标准答案】D ;【解析】()333xy x y =;()2224525xy x y -=;()22439x x -=.6. 【标准答案】C ;【解析】()333915288,39,315m n m n a ba b a b m n ====,解得m =3,n =5. 二.填空题7. 【标准答案】30;【解析】2226530m n m n +==⨯=g .8. 【标准答案】6;【解析】3119,3119,6x a a x x +=+==.9. 【标准答案】25;【解析】()2632525n n a a ===. 10.【标准答案】5;1;【解析】338,38,5m m a a a a m m +⋅==+==;3143813,314,1x x x +==+==.11.【标准答案】64;9n -;103-;12.【标准答案】200;【解析】()()32322222()8()81000800200n n n n a a a a --=-=-=. 三.解答题13.【解析】解:(1)×;(2)×;(3)×;(4)×14.【解析】解:(1)3843241237()()x x x x x xx ⋅-⋅-=-⋅⋅=-; (2)233322696411()()327a b a b a b a b -+-=-+; (3)3535810(0.310)(0.410)0.30.4101010 1.210-⨯-⨯⨯⨯=⨯⨯⨯⨯=⨯;(4)()()()()()3535822222b a a b a b a b a b --=---=--; (5)()()236331293125325272aa a a a a a -+-⋅=-⋅=-. 15.【解析】解:(1)∵3335n n x xx +⋅= ∴ 4335n x x +=∴4n +3=35∴n =8(2)m =4,n =3解:∵()3915n m a b ba b ⋅⋅= ∴ 333333915n m n m a b b a b a b +⋅⋅=⋅=∴3n =9且3m +3=15∴n =3且m =4就这么多了,祝大家思修不挂科!!!页眉设计。

根据幂指函数知识点及题型归纳总结

根据幂指函数知识点及题型归纳总结

根据幂指函数知识点及题型归纳总结
一、幂函数的性质:
1. 幂函数的定义:幂函数是指以变量 x 为底数,以常数 a 为指
数的函数,一般形式为 f(x) = a^x。

2. 幂函数的图像:幂函数的图像随着底数 a 的取值不同而有所
变化,底数 a 大于 1 时,函数图像上升趋势较为陡峭;底数 a 在 0
和 1 之间,函数图像下降趋势较为陡峭。

3. 幂函数的性质:幂函数具有对称性,即 f(x) = f(-x);a^x 的
值随 x 的变化而变化,当 x 增大时,a^x 增大,当 x 减小时,a^x
减小。

二、指数函数的性质:
1. 指数函数的定义:指数函数是指以变量 x 为指数的函数,一
般形式为 f(x) = a^x(a > 0,且a ≠ 1)。

2. 指数函数的图像:指数函数的图像具有与幂函数相反的特点,当底数 a 大于 1 时,函数图像上升趋势较为平缓;底数 a 在 0 和 1
之间,函数图像下降趋势较为平缓。

3. 指数函数的性质:指数函数的图像经过点 (0, 1);指数函数
具有增长态势,即随着 x 的增大,函数值也增大。

三、幂指函数的题型:
1. 计算幂指函数的值:根据给定的幂指函数和 x 的值,求出函数的值。

2. 求幂指函数的定义域:根据幂指函数的特点,确定该函数的定义域范围。

3. 求幂指函数的变化趋势:根据底数的取值范围和指数的正负性,确定函数的增减性和图像的走势。

4. 解幂指函数的方程:根据幂指函数的性质和方程的条件,求出满足方程的变量值。

以上是根据幂指函数的知识点及题型进行的归纳总结,希望能对您的学习和应试有所帮助。

幂函数知识归纳及习题(含答案)

幂函数知识归纳及习题(含答案)

自主梳理1.幂函数的概念形如________的函数叫做幂函数,其中____是自变量,____是常数. 2.幂函数的性质(1)五种常见幂函数的性质,列表如下: 定义域 值域 奇偶性 单调性 过定点y =x R R 奇 Z (1,1)y =x 2 R [0,+∞)偶 [0,+∞)Z (-∞,0][y =x 3R R 奇 ZY =x 12[0,+∞) [0,+∞) 非奇 非偶 [0,+∞)Z Y =x -1(-∞,0) ∪(0,+∞)(-∞,0) ∪(0,+∞)奇(-∞,0)[(0,+∞)[(2)所有幂函数在________上都有定义,并且图象都过点(1,1),且在第____象限无图象. (3)α>0时,幂函数的图象通过点____________,并且在区间(0,+∞)上是________,α<0时,幂函数在(0,+∞)上是减函数,图象______原点.1.已知幂函数y =f (x )的图像经过点⎝⎛⎭⎫4,12,则f (2)=( ) A.14 B .4C.22D. 2 2.下列函数中,其定义域与值域不同的函数是( ) A .y =x 12B .y =x -1 C .y =x 13D .y =x 23.已知f (x )=x 12,若0<a <b <1,则下列各式中正确的是( )A .f (a )<f (b )<f ⎝⎛⎭⎫1a <f ⎝⎛⎭⎫1b B .f ⎝⎛⎭⎫1a <f ⎝⎛⎭⎫1b <f (b )<f (a ) C .f (a )<f (b )<f ⎝⎛⎭⎫1b <f ⎝⎛⎭⎫1a D .f ⎝⎛⎭⎫1a <f (a )<f ⎝⎛⎭⎫1b <f (b )4.已知f (x )=x 2+bx +c 且f (-1)=f (3),则( ) A .f (-3)<c <f ⎝⎛⎭⎫52 B .f ⎝⎛⎭⎫52<c <f (-3) C .f ⎝⎛⎭⎫52<f (-3)<cD .c <f ⎝⎛⎭⎫52<f (-3)5.(2013·蚌埠二中调研)设二次函数f (x )=ax 2+bx +c ,如果f (x 1)=f (x 2)(x 1≠x 2),则f (x 1+x 2)=( )A .-b2aB .-baC .c D.4ac -b 24a6.若f (x )=x 2-x +a ,f (-m )<0,则f (m +1)的值( ) A .正数 B .负数 C .非负数D .与m 有关 7.对于函数y =x 2,y =x 12有下列说法:①两个函数都是幂函数;②两个函数在第一象限内都单调递增; ③它们的图像关于直线y =x 对称; ④两个函数都是偶函数; ⑤两个函数都经过点(0,0)、(1,1); ⑥两个函数的图像都是抛物线型. 其中正确的有________.8.(2012·北京西城二模)已知函数f (x )=x 2+bx +1是R 上的偶函数,则实数b =________,不等式f (x -1)<x 的解集为________.9.(2012·无锡联考)设函数f (x )=mx 2-mx -1,若f (x )<0的解集为R ,则实数m 的取值范围是________.10.如果幂函数f (x )=x -12p 2+p +32(p ∈Z)是偶函数.且在(0,+∞)上是增函数.求p的值,并写出相应的函数f (x )的解析式.11.已知二次函数f(x)的图像过点A(-1,0)、B(3,0)、C(1,-8).(1)求f(x)的解析式;(2)求f(x)在x∈[0,3]上的最值;(3)求不等式f(x)≥0的解集.12.设f(x)是定义在R上的偶函数,当0≤x≤2时,y=x,当x>2时,y=f(x)的图像是顶点为P(3,4),且过点A(2,2)的抛物线的一部分.(1)求函数f(x)在(-∞,-2)上的解析式;(2)在下面的直角坐标系中直接画出函数f(x)的草图;(3)写出函数f (x )的值域.1.已知y =f (x )是偶函数,当x >0时,f (x )=(x -1)2,若当x ∈⎣⎡⎦⎤-2,-12时,n ≤f (x )≤m 恒成立,则m -n 的最小值为( )A.13B.12 C.34D .12.(2013·青岛质检)设f (x )与g (x )是定义在同一区间[a ,b ]上的两个函数,若函数y =f (x )-g (x )在x ∈[a ,b ]上有两个不同的零点,则称f (x )和g (x )在[a ,b ]上是“关联函数”,区间[a ,b ]称为“关联区间”.若f (x )=x 2-3x +4与g (x )=2x +m 在[0,3]上是“关联函数”,则m 的取值范围为________.3.(2012·滨州模拟)已知函数f (x )=ax 2+bx +c (a >0,b ∈R ,c ∈R).(1)若函数f (x )的最小值是f (-1)=0,且c =1,F (x )=⎩⎪⎨⎪⎧f (x ),x >0,-f (x ),x <0,求F (2)+F (-2)的值;(2)若a=1,c=0,且|f(x)|≤1在区间(0,1]上恒成立,试求b的取值范围.答 案 课时跟踪检测(九)A 级1.选C 设f (x )=x α,因为图像过点⎝⎛⎭⎫4,12,代入解析式得:α=-12, ∴f (2)=2-12=22.2.选D 对A ,定义域、值域均为[0,+∞);对B ,定义域、值域均为(-∞,0)∪(0,+∞);对C ,定义域值域均为R ;对D ,定义域为R ,值域为[0,+∞).3.选C 因为函数f (x )=x 12在(0,+∞)上是增函数,又0<a <b <1b <1a ,故f (a )<f (b )<f ⎝⎛⎭⎫1b <f ⎝⎛⎭⎫1a . 4.选D 由已知可得二次函数图像关于直线x =1对称,又f (-3)=f (5),c =f (0)=f (2),二次函数在区间(1,+∞)上单调递增,故有f (-3)=f (5)>f ⎝⎛⎭⎫52>f (2)=f (0)=c .5.选C 由题意得:a ≠0,x 1+x 22=-b 2a ,x 1+x 2=-b a .得f (x 1+x 2)=f ⎝⎛⎭⎫-b a =a ·b 2a 2-b 2a +c =c .6.选B 法一:∵f (x )=x 2-x +a 的对称轴为x =12,而-m ,m +1关于12对称,∴f (m +1)=f (-m )<0.法二:∵f (-m )<0,∴m 2+m +a <0,∴f (m +1)=(m +1)2-(m +1)+a =m 2+m +a <0. 7.①②⑤⑥8.解析:因为f (x )=x 2+bx +1是R 上的偶函数,所以b =0,则f (x )=x 2+1,解不等式(x -1)2+1<x ,即x 2-3x +2<0得1<x <2.答案:0 {x |1<x <2}9.解析:若m =0,显然-1<0恒成立, 若m ≠0,则⎩⎨⎧m <0,Δ<0.∴-4<m <0.故所求范围为:-4<m≤0.答案:(-4,0]10.解:∵f(x)在(0,+∞)上是增函数,∴-12+p+32>0,2p即p2-2p-3<0.∴-1<p<3.又∵f(x)是偶函数且p∈Z,∴p=1,故f(x)=x2.11.解:(1)由题意可设f(x)=a(x+1)(x-3),将C(1,-8)代入得-8=a(1+1)(1-3),得a=2.即f(x)=2(x+1)(x-3)=2x2-4x-6.(2)f(x)=2(x-1)2-8,当x∈[0,3]时,由二次函数图像知,f(x)min=f(1)=-8,f(x)max=f(3)=0.(3)f(x)≥0的解集为{x|x≤-1,或x≥3}.12.解:(1)设顶点为P(3,4)且过点A(2,2)的抛物线的方程为y=a(x-3)2+4,将(2,2)代入可得a=-2,则y=-2(x-3)2+4,即x>2时,f(x)=-2x2+12x-14.当x<-2时,即-x>2.又f(x)为偶函数,f(x)=f(-x)=-2×(-x)2-12x-14,即f(x)=-2x2-12x-14.所以函数f(x)在(-∞,-2)上的解析式为f(x)=-2x2-12x-14.(2)函数f(x)的图像如图,(3)由图像可知,函数f (x )的值域为(-∞,4].B 级1.选D 当x <0时,-x >0,f (x )=f (-x )=(x +1)2, ∵x ∈⎣⎡⎦⎤-2,-12, ∴f (x )min =f (-1)=0,f (x )max =f (-2)=1, ∴m ≥1,n ≤0,m -n ≥1.2.解析:由题意知,y =f (x )-g (x )=x 2-5x +4-m 在[0,3]上有两个不同的零点.在同一坐标系下作出函数y =m 与y =x 2-5x +4(x ∈[0,3])的图像如图所示,结合图像可知,当x ∈[2,3]时,y =x 2-5x +4∈⎣⎡⎦⎤-94,-2,故当m ∈⎝⎛⎦⎤-94,-2时,函数y =m 与y =x 2-5x +4(x ∈[0,3])的图像有两个交点.答案:⎝⎛⎦⎤-94,-2 3.解:(1)由已知c =1,a -b +c =0,且-b2a =-1,解得a =1,b =2.则f (x )=(x +1)2.则F (x )=⎩⎪⎨⎪⎧(x +1)2,x >0,-(x +1)2,x <0.故F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8.(2)由题意得f (x )=x 2+bx ,原命题等价于-1≤x 2+bx ≤1在(0,1]上恒成立,即b ≤1x -x且b ≥-1x-x 在(0,1]上恒成立.又当x ∈(0,1]时,1x -x 的最小值为0,-1x -x 的最大值为-2,故-2≤b ≤0.。

高一数学上册 第二章初等函数之幂函数知识点及练习题(含答案)

高一数学上册 第二章初等函数之幂函数知识点及练习题(含答案)

〖2.3〗幂函数(1)幂函数的定义 一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). ③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当q pα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q py x=是奇函数,若p 为奇数q 为偶数时,则q py x=是偶函数,若p 为偶数q 为奇数时,则qpy x=是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.2.3幂函数的图象及性质1.下列函数中,其定义域和值域不同的函数是( )A .y =x 13 B .y =x -12 C .y =x 53D .y =x 232.如图,图中曲线是幂函数y =x α在第一象限的大致图象.已知α取-2,-12,12,2四个值,则相应于曲线C1,C 2,C 3,C 4的α的值依次为( )A .-2,-12,12,2B .2,12,-12,-2C .-12,-2,2,12D .2,12,-2,-123.以下关于函数y =x α当α=0时的图象的说法正确的是( )A .一条直线B .一条射线C .除点(0,1)以外的一条直线D .以上皆错 4.函数f(x)=(1-x)0+(1-x)12的定义域为________. 5.已知幂函数f(x)的图象经过点(2,22),则f(4)的值为( ) A .16 B.116 C.12D .26.下列幂函数中,定义域为{x|x >0}的是( ) A .y =x 23 B .y =x 32 C .y =x -13D .y =x -347.已知幂函数的图象y =x m2-2m -3(m ∈Z ,x≠0)与x ,y 轴都无交点,且关于y 轴对称,则m 为( )A .-1或1B .-1,1或3C .1或3D .3 8.下列结论中,正确的是( )①幂函数的图象不可能在第四象限②α=0时,幂函数y =x α的图象过点(1,1)和(0,0) ③幂函数y =x α,当α≥0时是增函数④幂函数y =x α,当α<0时,在第一象限内,随x 的增大而减小 A .①② B .③④ C .②③ D .①④9.在函数y =2x 3,y =x 2,y =x 2+x ,y =x 0中,幂函数有( )A .1个B .2个C .3个D .4个10.幂函数f(x)的图象过点(3,3),则f(x)的解析式是________ .11.函数f(x)=(m 2-m -5)x m -1是幂函数,且当x ∈(0,+∞)时,f(x)是增函数,试确定m 的值.12.已知函数f(x)=(m 2+2m)·x m2+m -1,m 为何值时,f(x)是:(1)正比例函数;(2)反比例函数;(3)二次函数;(4)幂函数?13.已知幂函数y =x m2-2m -3(m ∈Z)的图象与x 、y 轴都无公共点,且关于y 轴对称,求m 的值,并画出它的图象.答案1. 解析:选D.y =x 23=3x 2,其定义域为R ,值域为[0,+∞),故定义域与值域不同. 2.解析:选B.当x =2时,22>212>2-12>2-2,即C 1:y =x 2,C 2:y =x 12,C 3:y =x -12,C 4:y =x -2.3.解析:选C.∵y =x 0,可知x≠0,∴y =x 0的图象是直线y =1挖去(0,1)点.4.解析:⎩⎪⎨⎪⎧1-x≠01-x≥0,∴x<1.答案:(-∞,1)5 解析:选C.设f(x)=x n ,则有2n =22,解得n =-12,即f(x)=x -12,所以f(4)=4-12=12.6 解析:选D.A.y =x 23=3x 2,x ∈R ;B.y =x 32=x 3,x≥0;C.y =x -13=13x,x≠0;D.y =x-34=14x 3,x >0.7 解析:选B.因为图象与x 轴、y 轴均无交点,所以m 2-2m -3≤0,即-1≤m≤3.又图象关于y 轴对称,且m ∈Z ,所以m 2-2m -3是偶数,∴m =-1,1,3.故选B.8 解析:选D.y =x α,当α=0时,x≠0;③中“增函数”相对某个区间,如y =x 2在(-∞,0)上为减函数,①④正确.9 解析:选B.y =x 2与y =x 0是幂函数.10 解析:设f(x)=x α,则有3α=3=312⇒α=12.答案:f(x)=x 1211 解:根据幂函数的定义得:m 2-m -5=1,解得m =3或m =-2,当m =3时,f(x)=x 2在(0,+∞)上是增函数;当m =-2时,f(x)=x -3在(0,+∞)上是减函数,不符合要求.故m =3.12 解:(1)若f(x)为正比例函数,则⎩⎪⎨⎪⎧m 2+m -1=1m 2+2m≠0⇒m =1. (2)若f(x)为反比例函数,则⎩⎪⎨⎪⎧m 2+m -1=-1m 2+2m≠0⇒m =-1. (3)若f(x)为二次函数,则⎩⎪⎨⎪⎧m 2+m -1=2m 2+2m≠0⇒m =-1±132.(4)若f(x)为幂函数,则m 2+2m =1,∴m =-1±213 解:由已知,得m 2-2m -3≤0,∴-1≤m≤3. 又∵m ∈Z ,∴m =-1,0,1,2,3.当m =0或m =2时,y =x -3为奇函数,其图象不关于y 轴对称,不适合题意. ∴m =±1或m =3.当m =-1或m =3时,有y =x 0,其图象如图(1).当m =1时,y =x -4,其图象如图(2)..。

人教A版数学必修一2.3 幂函数

人教A版数学必修一2.3 幂函数

高中数学学习材料(灿若寒星 精心整理制作)2.3 幂函数一、填空题1.在函数222123y y x y x x y x x=,=,=+,=中,幂函数的个数为_______个. 解析 显然,根据幂函数定义可知,只有21y x=是幂函数. 答案 12. 在幂函数y =x 4,y =x 14,y =x -3,y =x -12,y =x -2中,是奇函数的有____________;是偶函数的是____________;没有奇偶性的是________. 解析 由幂函数的性质容易得出答案.答案 y =x -3 y =x 4;y =x -2 y =x 14;y =x -123.设a =0.1270b ,=.128c ,=log 30.7,则a ,b ,c 的大小关系是________. 解析 ∵幂函数12y x =在(0),+∞上是增函数,∴0<a <b .∵log 30.7<0,∴c <a <b .答案 c <a <b4.已知幂函数f (x )=k ·x α的图象过点⎝ ⎛⎭⎪⎫12,22,则k +α=________. 解析 ∵f (x )=k ·x α是幂函数,∴k =1.又f (x )的图象过点⎝ ⎛⎭⎪⎫12,22, ∴⎝ ⎛⎭⎪⎫12α=22,∴α=12.∴k +α=1+12=32.答案 325.设α∈⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1,1,12,3,则使函数y =x α的定义域为R 且为奇函数的所有α值为________.解析 当α=1,3时,y =x α的定义域为R 且为奇函数,符合要求;当α=-1时,y =1x 的定义域为{x |x ≠0,x ∈R },不符合要求;当α=12时,y =x 12的定义域为[0,+∞),不符合要求.答案 1,36.已知点(2,2)在幂函数y =f (x )的图象上,点⎝⎛⎭⎪⎫-2,14在幂函数y =g (x )的图象上,则f (2)+g (-1)=________.解析 设f (x )=x m ,g (x )=x n ,则由2=(2)m 得m =2,由14=(-2)n ,得n =-2,所以f (2)+g (-1)=22+(-1)-2=5.答案 57.幂函数y =xm 2-2m -3(m ∈Z )的图象关于y 轴对称,且当x >0时,函数是减函数,则m 的值为________.解析 由m 2-2m -3<0,得-1<m <3,又m ∈Z ,∴m =0,1,2.∵m 2-2m -3为偶数,经验证m =1符合题意.答案 18.已知点(2,2)在幂函数y =f (x )的图象上,点⎝⎛⎭⎪⎫-2,12在幂函数y =g (x )的图象上,若f (x )=g (x ),则x =________.解析 由题意,设y =f (x )=x α,,则2=(2)α,得α=2,设y =g (x )=x β,则12=(-2)β,得β=-2,由f (x )=g (x ),即x 2=x -2,解得x =±1. 答案 ±19.给出关于幂函数的以下说法:①幂函数的图象都经过(1,1)点;②幂函数的图象都经过(0,0)点;③幂函数不可能既不是奇函数也不是偶函数;④幂函数的图象不可能经过第四象限;⑤幂函数在第一象限内一定有图象;⑥幂函数在(-∞,0)上不可能是递增函数.其中正确的说法有________.解析 命题①显然正确;只有当α>0时幂函数的图象才能经过原点(0,0),若α<0,则幂函数的图象不过原点,故命题②错误;函数y =x 12就是一个非奇非偶函数,故命题③错误;由于在y =x α(α∈R )中,只要x >0,必有y >0,所以幂函数的图象不可能在第四象限,故命题④正确,命题⑤也正确;幂函数y =x 3在 (-∞,0)上是递增函数,故命题⑥错误.因此正确的说法有①④⑤. 答案 ①④⑤10 .若1122(1)(32)a a --+<-,则a 的取值范围是 .解析 令12()f x x -=,则f (x )在(0),+∞上是减函数,故得10320132a a a a +>,⎧⎪->,⎨⎪+>-,⎩解得3232a <<. 答案 32()32, 11.下列命题:①幂函数的图象都经过点(1,1)和点(0,0);②幂函数的图象不可能在第四象限;③n =0时,函数y =x n 的图象是一条直线;④幂函数y =x n ,当n >0时是增函数;⑤幂函数y =x n ,当n <0时,在第一象限内函数值随x 值的增大而减小. 其中正确的是________.解析 幂函数y =x n ,当n <0时,不过(0,0)点,①错误;当n =0时,y =x n 中x ≠0,故其图象是去掉(0,0)点的一条直线,③错;y =x 2在(-∞,0)上是减函数,(0,+∞)上是增函数,④错.答案 ②⑤12.若函数f (x )=1212020(3)0x x x x x -⎧,>,⎪⎪-,=,⎨⎪⎪+,<,⎩则f (f (f (0)))= .解析 f (f (f (0)))=f (f (-2))=f (12(23)-+)12(1)11f -===.答案 113.设函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增函数,则实数a 的取值范围是________.解析 a =0显然成立.a ≠0时,二次函数对称轴为x =-1a ,所以a <0且-1a≥4,解得-14≤a <0,综上,得-14≤a ≤0. 答案 ⎣⎢⎡⎦⎥⎤-14,0 二、解答题14.幂函数f (x )=(m 2-3m +3)xm 2-m -2的图象不经过原点,求实数m 的值. 解析 因为函数是幂函数,所以m 2-3m +3=1,∴m 2-3m +2=0,∴m =1或m =2.当m =1或m =2时,函数的图象都不经过原点,所以m =1或m =2.15.方程2210mx mx ++=有一根大于1,另一根小于1,求实数m 的取值范围. 解析:令2()21f x mx mx =++,当m >0时,f (1)=3m +1<0, 即13m <-,舍去. 当m <0时,3m +1>0,即13m >-. ∴103m -<<. 16.已知函数y =415-2x -x 2.(1)求函数的定义域、值域;(2)判断函数的奇偶性;(3)求函数的单调区间.解析 这是复合函数问题,利用换元法.令t =15-2x -x 2,则y =4t .(1)由15-2x -x 2≥0,得-5≤x ≤3,故函数的定义域为[-5,3],∴t =16-(x +1)2∈[0,16],∴函数的值域为[0,2].(2)∵函数的定义域为[-5,3],不关于原点对称,∴函数既不是奇函数也不是偶函数.(3)∵函数的定义域为[-5,3],对称轴为x =-1,∴x ∈[-5,-1]时,t 随x 的增大而增大;x ∈(-1,3]时,t 随x 的增大而减小.又∵函数y =4t 在t ∈[0,16]时,y 随t 的增大而增大,∴函数y =415-2x -x 2的单调增区间为[-5,-1],单调减区间为(-1,3].17.不等式2(2)2(2)a x a -+-x -4<0对一切x ∈R 恒成立,求a 的取值范围是. 解析 当a -2=0,即a =2时,-4<0恒成立;当20a -≠时,2204(2)16(2)0a a a -<,⎧⎨∆=-+-<,⎩解之得-2<a <2.∴a 的取值范围是22a -<≤.18.f (x )=-x 2+ax +12-a 4在区间[0,1]上的最大值为2,求a 的值. 解析 f (x )=-⎝⎛⎭⎪⎫x -a 22+12-a 4+a 24. ①当a 2∈[0,1],即0≤a ≤2时,f (x )max =12-a 4+a 24=2, 则a =3或a =-2,不合题意.②当a 2>1时,即a >2时,f (x )max =f (1)=2⇒a =103. ③当a 2<0时,即a <0时,f (x )max =f (0)=2⇒a =-6. 综上,f (x )在区间[0,1]上的最大值为2时a =103或-6.。

高中数学2.3幂 函 数 (2)

高中数学2.3幂 函 数 (2)

α 为指数 底数
y 幂值 幂值
知识点2 幂函数的图象及性质 观察图形,回答下列问题:
问题1:观察上述图象.在第一象限,它们有何特点? 问题2:这些图象有何对称性?奇偶性如何?
【总结提升】 1.幂函数y=xα 在第一象限内的图象特征 (1)指数大于1,在第一象限为抛物线型(下凸). (2)指数等于1,在第一象限为上升的射线(去掉端点). (3)指数大于0小于1,在第一象限为抛物线型(上凸). (4)指数等于0,在第一象限为水平的射线(去掉端点). (5)指数小于0,在第一象限为双曲线型.
2.3 幂函数
【知识提炼】 1.幂函数的概念 函数_y_=_x_α_叫做幂函数,其中自变量是_x_,_α__是常数.
2.幂函数的图象和性质 (1)五个幂函数的图象:
(2)幂函数的性质:
幂函数 y=x
y=x2
y=x3
1
y x2
y=x-1
定义域 _R_
_R_
_R_ [_0_,_+_∞__)__ _(_-_∞__,_0_)_∪__(_0_,_+_∞__)_
3.如图,图中曲线是幂函数f(x)=xα 在第一象限内的大致图象,已知
α
取-2,-
1,
2
1 2
,2四个值,则相应于曲线C1,C2,C3,C4的α
的值依次

.
【解题探究】1.典例1中的函数y=
m
xn
的定义域和值域分别是什么?
提示:由图象可以看出,定义域是全体实数,而值域是非负数,由此可得
m是偶数,n是奇数.
53
5
3
(2)因为幂函数y=x-1在(-∞,0)上是单调递减的,
又 2 3,所以( 2)1 ( 3)1.

第二章 2.3 幂函数

第二章 2.3  幂函数

§2.3 幂函数学习目标 1.了解幂函数的概念.2.掌握y =x α⎝⎛⎭⎫α=-1,12,1,2,3的图象与性质.3.理解和掌握幂函数在第一象限的分类特征,能运用数形结合的方法处理幂函数的有关问题.知识点一 幂函数的概念一般地,函数y =x α叫做幂函数,其中x 是自变量,α是常数. 知识点二 五个幂函数的图象与性质1.在同一平面直角坐标系内函数(1)y =x ;(2)y =12x ;(3)y =x 2;(4)y =x -1;(5)y =x 3的图象如图.2.五个幂函数的性质知识点三 一般幂函数的图象特征一般幂函数特征:(1)所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1); (2)当α>0时,幂函数的图象通过原点,并且在区间[0,+∞)上是增函数.特别地,当α>1时,幂函数的图象下凸;当0<α<1时,幂函数的图象上凸; (3)当α<0时,幂函数的图象在区间(0,+∞)上是减函数;(4)幂指数互为倒数的幂函数在第一象限内的图象关于直线y =x 对称;(5)在第一象限,作直线x =a (a >1),它同各幂函数图象相交,按交点从下到上的顺序,幂指数按从小到大的顺序排列.1.y =-1x 是幂函数.( × )2.当x ∈(0,1)时,x 2>x3.( √ )3.32y x =与64y x = 定义域相同.( × )4.若y =x α在(0,+∞)上为增函数,则α>0.( √ )题型一 幂函数的概念 例1 (1)下列函数:①y =x 3;②y =⎝⎛⎭⎫12x ;③y =4x 2;④y =x 5+1;⑤y =(x -1)2;⑥y =x ;⑦y =a x(a >1).其中幂函数的个数为( ) A.1 B.2 C.3 D.4 答案 B解析 幂函数有①⑥两个. (2)已知y =22222()m x m m -+- +2n -3是幂函数,求m ,n 的值.考点 幂函数的概念 题点 由幂函数定义求参数值解 由题意得⎩⎪⎨⎪⎧m 2+2m -2=1,2n -3=0,解得⎩⎪⎨⎪⎧ m =-3,n =32或⎩⎪⎨⎪⎧m =1,n =32.所以m =-3或1,n =32.反思感悟 幂函数与指数函数、对数函数的定义类似,只有满足函数解析式右边的系数为1,底数为自变量x ,指数为常数这三个条件,才是幂函数.如:y =3x 2,y =(2x )3,y =⎝⎛⎭⎫x 24都不是幂函数.跟踪训练1 (1)已知幂函数f (x )=k ·x α的图象过点⎝⎛⎭⎫12,22,则k +α等于( )A.12B.1C.32 D.2 答案 C解析 由幂函数的定义知k =1. 又f ⎝⎛⎭⎫12=22,所以⎝⎛⎭⎫12α=22, 解得α=12,从而k +α=32.(2)已知f (x )=ax 2a +1-b +1是幂函数,则a +b 等于( )A.2B.1C.12 D.0答案 A解析 因为f (x )=ax 2a +1-b +1是幂函数,所以a =1,-b +1=0, 即a =1,b =1,则a +b =2. 题型二 幂函数的图象及应用例2 若点(2,2)在幂函数f (x )的图象上,点⎝⎛⎭⎫-2,14在幂函数g (x )的图象上,问当x 为何值时,(1)f (x )>g (x );(2)f (x )=g (x );(3)f (x )<g (x ). 考点 幂函数的图象 题点 幂函数的图象与性质解 设f (x )=x α,因为点(2,2)在幂函数f (x )的图象上,所以,将点(2,2)代入f (x )=x α中,得2=(2)α,解得α=2,则f (x )=x 2. 同理可求得g (x )=x -2.在同一坐标系中作出函数f (x )=x 2和g (x )=x -2的图象(如图所示),观察图象可得:(1)当x >1或x <-1时,f (x )>g (x ); (2)当x =1或x =-1时,f (x )=g (x ); (3)当-1<x <1且x ≠0时,f (x )<g (x ). 延伸探究若对于本例中的f (x ),g (x ),定义h (x )=⎩⎪⎨⎪⎧f (x ),f (x )≤g (x ),g (x ),f (x )>g (x ),试画出h (x )的图象.解 h (x )的图象如图所示:反思感悟 由幂函数的定义确定函数解析式,掌握幂函数的图象特点,数形结合可求解关于幂函数的不等式与方程.跟踪训练2 (1)如图所示,C 1,C 2,C 3为幂函数y =x α在第一象限内的图象,则解析式中的指数α依次可以取( )A.43,-2,34B.-2,34,43C.-2,43,34D.34,43,-2 答案 C(2)下列关于函数y =x α与y =αx ⎝⎛⎭⎫α∈⎩⎨⎧⎭⎬⎫-1,12,2,3的图象正确的是( )答案 C题型三 利用幂函数的性质比较大小 例3 设212333222,,335a b c ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则a ,b ,c 的大小关系是( ) A.a >b >c B.b >a >c C.b >c >aD.c >b >a考点 比较幂值的大小 题点 利用单调性比较大小 答案 B解析 ∵y =⎝⎛⎭⎫23x 在R 上为减函数,∴23132323⎛⎫<⎛⎫ ⎝⎪⎪⎭⎝⎭,即a <b ;∵f (x )=23x 在(0,+∞)上为增函数, ∴23232325⎛⎫>⎛⎫⎝⎪⎪⎭⎝⎭,即a >c .∴b >a >c .故选B. 反思感悟 此类题在构建函数模型时要注意幂函数的特点:指数不变.比较大小的问题主要是利用函数的单调性,特别是要善于应用“搭桥”法进行分组,常数0和1是常用的中间量. 跟踪训练3 比较下列各组数中两个数的大小: (1)⎝⎛⎭⎫250.3与⎝⎛⎭⎫130.3; (2)⎝⎛⎭⎫-23-1与⎝⎛⎭⎫-35-1; (3)⎝⎛⎭⎫250.3与25(0.3). 考点 比较幂值的大小 题点 利用中间值比较大小 解 (1)∵0<0.3<1,∴y =x 0.3在(0,+∞)上为增函数. 又25>13,∴⎝⎛⎭⎫250.3>⎝⎛⎭⎫130.3. (2)∵y =x-1在(-∞,0)上是减函数,又-23<-35,∴⎝⎛⎭⎫-23-1>⎝⎛⎭⎫-35-1. (3)∵y =x 0.3在(0,+∞)上为增函数, ∴由25>0.3,可得⎝⎛⎭⎫250.3>0.30.3.① 又y =0.3x 在(-∞,+∞)上为减函数, ∴0.30.3>250.3.② 由①②知⎝⎛⎭⎫250.3>250.3.幂函数性质的应用典例 已知幂函数y =x 3m -9 (m ∈N *)的图象关于y 轴对称且在(0,+∞)上单调递减,求满足33(3(1)2)m m a a --<-+ 的a 的取值范围.考点 幂函数的性质题点 利用幂函数的性质解不等式解 因为函数在(0,+∞)上单调递减,所以3m -9<0, 解得m <3.又因为m ∈N *,所以m =1,2. 因为函数的图象关于y 轴对称, 所以3m -9为偶数,故m =1. 则原不等式可化为1133(31))(2a a --<-+.因为13y x-= 在(-∞,0),(0,+∞)上单调递减,所以a +1>3-2a >0或3-2a <a +1<0或a +1<0<3-2a , 解得23<a <32或a <-1.故a 的取值范围是⎩⎨⎧⎭⎬⎫a ⎪⎪a <-1或23<a <32. [素养评析] (1)幂函数y =x α中只有一个参数α,幂函数的所有性质都与α的取值有关,故可由α确定幂函数的定义域、值域、单调性、奇偶性,也可由这些性质去限制α的取值. (2)通过具体事例抽象出幂函数的概念和性质,并应用单调性求解,所以,本典例体现了数学中数学抽象与直观想象的核心素养.1.下列幂函数中,定义域不是R 的是( ) A.y =x B.32y x = C.25y x = D.35y x = 答案 B2.以下结论正确的是( )A.当α=0时,函数y =x α的图象是一条直线B.幂函数的图象都经过(0,0),(1,1)两点C.若幂函数y =x α的图象关于原点对称,则y =x α在定义域内y 随x 的增大而增大D.幂函数的图象不可能在第四象限,但可能在第二象限 考点 幂函数的综合问题 题点 幂函数的综合问题 答案 D3.若a <0,则0.5a ,5a ,5-a的大小关系是( )A.5-a <5a <0.5aB.5a <0.5a <5-aC.0.5a <5-a <5aD.5a <5-a <0.5a答案 B解析 5-a =⎝⎛⎭⎫15a ,因为a <0时,函数y =x a 在(0,+∞)上单调递减,且15<0.5<5,所以5a <0.5a<5-a.4.已知幂函数f (x )的图象过点(4,2),则f ⎝⎛⎭⎫18=________________________________________. 答案24解析 设幂函数f (x )=x α. ∵f (4)=4α=2, ∴α=12.即f (x )=12x . ∴f ⎝⎛⎭⎫18=1218⎛⎫ ⎪⎝⎭=24. 5.若幂函数2223()(1)m m f x m m --=--在(0,+∞)上是减函数,则实数m =________.答案 2解析 令m 2-m -1=1得:m =2或m =-1. 当m =2时,m 2-2m -3=-3符合要求. 当m =-1时,m 2-2m -3=0不符合要求.1.幂函数y =x α(α∈R ),其中α为常数,其本质特征是以幂的底x 为自变量,指数α为常数,这是判断一个函数是不是幂函数的重要依据和唯一标准.2.幂函数y =x α的图象与性质由于α的值不同而比较复杂,一般从两个方面考查:(1)当α>0时,图象过点(0,0),(1,1),在第一象限的图象上升;当α<0时,图象不过原点,在第一象限的图象下降,反之也成立.(2)曲线在第一象限的凹凸性,当α>1时,曲线下凸;当0<α<1时,曲线上凸;当α<0时,曲线下凸.3.在具体应用时,不一定是y =x α,α=-1,12,1,2,3这五个已研究熟的幂函数,这时可根据需要构造幂函数,并针对性地研究某一方面的性质.一、选择题1.下列函数中是幂函数的是( ) A.y =x 4+x 2 B.y =10x C.y =1x3D.y =x +1考点 幂函数的概念 题点 判断函数是否为幂函数 答案 C解析 根据幂函数的定义知,y =1x 3是幂函数,y =x 4+x 2,y =10x ,y =x +1都不是幂函数.2.已知y =(m 2+m -5)x m 是幂函数,且在第一象限内是单调递减的,则m 的值为( ) A.-3 B.2 C.-3或2 D.3 考点 幂函数的性质 题点 幂函数的单调性 答案 A解析 由y =(m 2+m -5)x m 是幂函数,知m 2+m -5=1,解得m =2或m =-3.∵该函数在第一象限内是单调递减的,∴m <0.故m =-3. 3.已知幂函数()2232()2n nf x n n x-=+-(n ∈Z )的图象关于y 轴对称,且在(0,+∞)上是减函数,则n 的值为( ) A.-3 B.1 C.2 D.1或2 考点 幂函数的性质 题点 幂函数的单调性答案 B 解析 由于f (x )为幂函数,所以n 2+2n -2=1, 解得n =1或n =-3,经检验只有n =1符合题意,故选B. 4.已知f (x )=12x ,若0<a <b <1,则下列各式中正确的是( ) A.f (a )<f (b )<f ⎝⎛⎭⎫1a <f ⎝⎛⎭⎫1b B.f ⎝⎛⎭⎫1a <f ⎝⎛⎭⎫1b <f (b )<f (a ) C.f (a )<f (b )<f ⎝⎛⎭⎫1b <f ⎝⎛⎭⎫1a D.f ⎝⎛⎭⎫1a <f (a )<f ⎝⎛⎭⎫1b <f (b )考点 比较幂值的大小 题点 利用单调性比较大小答案 C 解析 因为函数f (x )=12x 在(0,+∞)上是增函数, 又0<a <b <1b <1a,故f (a )<f (b )<f ⎝⎛⎭⎫1b <f ⎝⎛⎭⎫1a ,故选C. 5.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的是( ) A.y =x -2B.y =x -1C.y =x 2D.y =13x 答案 A6.在同一坐标系内,函数y =x a (a ≠0)和y =ax -1a的图象可能是( )考点 幂函数的图象题点 幂函数有关的知图选式问题 答案 C解析 选项A 中,幂函数的指数a <0,则直线y =ax -1a 应为减函数,A 错误;选项B 中,幂函数的指数a >1,则直线y =ax -1a应为增函数,B 错误;选项D 中,幂函数的指数a <0,则-1a >0,直线y =ax -1a 在y 轴上的截距为正,D 错误.7.设a =2535⎛⎫⎪⎝⎭,b =3525⎛⎫⎪⎝⎭,c =2525⎛⎫⎪⎝⎭,则a ,b ,c 的大小关系是( ) A.a >c >b B.a >b >c C.c >a >b D.b >c >a 答案 A解析 因为y =25x (x >0)为增函数,所以a >c . 因为y =⎝⎛⎭⎫25x(x ∈R )为减函数,所以c >b ,所以a >c >b . 8.已知幂函数y =223m m x --(m ∈Z )的图象与x 轴和y 轴没有交点,且关于y 轴对称,则m 等于( )A.1B.0,2C.-1,1,3D.0,1,2 答案 C解析 ∵幂函数y =223m m x--(m ∈Z )的图象与x 轴、y 轴没有交点,且关于y 轴对称,∴m 2-2m -3≤0,且m 2-2m -3(m ∈Z )为偶数, 由m 2-2m -3≤0,得-1≤m ≤3,又m ∈Z , ∴m =-1,0,1,2,3.当m =-1时,m 2-2m -3=1+2-3=0,为偶数,符合题意; 当m =0时,m 2-2m -3=-3,为奇数,不符合题意; 当m =1时,m 2-2m -3=1-2-3=-4,为偶数,符合题意; 当m =2时,m 2-2m -3=4-4-3=-3,为奇数,不符合题意; 当m =3时,m 2-2m -3=9-6-3=0,为偶数,符合题意. 综上所述,m =-1,1,3. 二、填空题9.函数y =12x 与函数y =x -1的图象交点坐标为________.答案 (1,1)解析 由⎩⎪⎨⎪⎧y =12x ,y =x -1,得⎩⎪⎨⎪⎧x =1,y =1.10.函数f (x )=(x +3)-2的单调增区间是________.考点 幂函数的性质 题点 幂函数的单调性 答案 (-∞,-3)解析 y =x -2=1x2的单调增区间为(-∞,0),单调减区间为(0,+∞),y =(x +3)-2是由y =x-2向左平移3个单位得到的.∴y =(x +3)-2的单调增区间为(-∞,-3).11.已知幂函数f (x )=21m x -(m ∈Z )的图象与x 轴、y 轴都无交点,且关于原点对称,则函数f (x )的解析式是________.考点 求幂函数的解析式 题点 求幂函数的解析式 答案 f (x )=x -1解析 ∵函数的图象与x 轴、y 轴都无交点, ∴m 2-1<0,解得-1<m <1. ∵图象关于原点对称,且m ∈Z , ∴m =0,∴f (x )=x -1.三、解答题12.点(3,3)与点⎝⎛⎭⎫-2,-12分别在幂函数f (x ),g (x )的图象上,问当x 分别为何值时,有f (x )>g (x );f (x )=g (x );f (x )<g (x )?解 设f (x )=x α,g (x )=x β.因为(3)α=3,(-2)β=-12, 所以α=2,β=-1,所以f (x )=x 2,g (x )=x -1. 分别作出它们的图象,如图所示.由图象知,当x ∈(-∞,0)∪(1,+∞)时,f (x )>g (x );当x =1时,f (x )=g (x );当x ∈(0,1)时,f (x )<g (x ).13.已知幂函数f (x )的图象过点(25,5).(1)求f (x )的解析式;(2)若函数g (x )=f (2-lg x ),求g (x )的定义域、值域.考点 幂函数的综合问题题点 幂函数的综合问题解 (1)设f (x )=x α,则由题意可知25α=5,∴α=12,∴f (x )=12x . (2)∵g (x )=f (2-lg x )=2-lg x ,∴要使g (x )有意义,只需2-lg x ≥0,即lg x ≤2,解得0<x ≤100.∴g (x )的定义域为(0,100],又2-lg x ≥0,∴g (x )的值域为[0,+∞).14.已知函数f (x )=⎩⎪⎨⎪⎧a x ,x ≤0,3a -12x ,x >0(a >0,且a ≠1)是R 上的减函数,则实数a 的取值范围是________.考点 幂函数的性质题点 幂函数的单调性答案 ⎝⎛⎦⎤0,13解析 当x ≤0时,由f (x )=a x 为减函数,知0<a <1;当x >0时,由f (x )=3a -12x 为减函数,知a ∈R ,且要满足a 0≥3a ,解得a ≤13.综上可知,实数a 的取值范围为⎝⎛⎦⎤0,13. 15.已知幂函数f (x )=223m m x--(m ∈Z )在(0,+∞)上单调递减,且为偶函数. (1)求f (x )的解析式;(2)讨论F (x )=af (x )+(a -2)x 5·f (x )的奇偶性,并说明理由.考点 幂函数的综合问题题点 幂函数的综合问题解 (1)由于幂函数f (x )=223m m x --在(0,+∞)上单调递减,所以m 2-2m -3<0,求得-1<m <3, 因为m ∈Z ,所以m =0,1,2.因为f (x )是偶函数,所以m =1,故f (x )=x -4. (2)F (x )=af (x )+(a -2)x 5·f (x )=a ·x -4+(a -2)x . 当a =0时,F (x )=-2x (x ≠0),对于任意的x ∈(-∞,0)∪(0,+∞)都有F (x )=-F (-x ), 所以F (x )=-2x (x ≠0)是奇函数;当a =2时,F (x )=2x 4,对于任意的x ∈(-∞,0)∪(0,+∞)都有F (x )=F (-x ), 所以F (x )=2x 4是偶函数; 当a ≠0且a ≠2时,F (1)=2a -2,F (-1)=2,因为F (1)≠F (-1),F (1)≠-F (-1),所以F (x )=a x 4+(a -2)x 是非奇非偶函数.。

根据幂函数的求导知识点及题型归纳总结

根据幂函数的求导知识点及题型归纳总结

根据幂函数的求导知识点及题型归纳总结一、求导规则幂函数是指形如 f(x) = a*x^n 的函数,其中 a 是常数,n 是实数。

根据幂函数的求导规则,对于任意的幂函数,可以按照以下方法进行求导:1.对于 f(x) = x^n,其中 n 是实数,对 x 求导时,通过将幂指数放到前面,并降低指数一次来求导。

即:f'(x) = n*x^(n-1)。

2.对于 f(x) = a*x^n,其中 a 是常数,n 是实数,对 x 求导时,先将常数 a 乘到指数 n 上,然后按照第一条规则对 x 求导。

即:f'(x) = a*n*x^(n-1)。

二、常见题型1.求导基础题型1)求 f(x) = x^2 的导数。

解析:根据求导规则,f'(x) = 2*x^(2-1) = 2*x。

2)求 f(x) = 3*x^4 的导数。

解析:根据求导规则,f'(x) = 3*4*x^(4-1) = 12*x^3.2.指数为分数的求导题型1)求 f(x) = x^(1/2) 的导数。

解析:根据求导规则,f'(x) = (1/2)*x^((1/2)-1) = (1/2)*x^(-1/2) = (1/2)/√x。

2)求 f(x) = 2*x^(-1/3) 的导数。

解析:根据求导规则,f'(x) = 2*(-1/3)*x^((-1/3)-1) = -2/3*x^(-4/3) = -2/(3*x^(4/3))。

以上是根据幂函数的求导知识点及题型的归纳总结。

掌握这些规则和题型,可以更好地应对幂函数的求导相关问题。

幂函数知识点及题型归纳总结

幂函数知识点及题型归纳总结

幂函数知识点及题型归纳总结知识点精讲一、幂函数的定义一般地,函数()y x R αα=∈叫做幂函数,其中x 是自变量,α是常数.注:判断一个函数是否为幂函数,关键是看其系数是否为1,底数是否为变量x .二、幂函数的图像幂函数的图像一定会出现在第一象限内,一定不会出现在第四项县内,至于是否出现在第二、三象限内,要看函数的奇偶性;幂函数的图像如果与坐标轴相交,则交点一定是原点. 当11,2,3,,12α=-时,在同一坐标系内的函数图像如图2-18所示.三、幂函数的性质当0α>时,幂函数y x α=在(0,)+∞上是增函数,当1α>时,函数图像是向下凸的;当01α<<时,图像是向上凸的,恒过点(0,0)(1,1)和;当0α<时,幂函数y x α=在(0,)+∞上是减函数.幂函数y x α=的图像恒过点(1,1).题型归纳及思路提示题型1 幂函数的定义及其图像思路提示确定幂函数y x α=的定义域,当α为分数时,可转化为根式考虑,是否为偶次根式,或为则被开方式非负.当0α≤时,底数是非零的.例2.68函数2223()(1)a a f x a a x --=--为幂函数(a 为常数),且在(0,)+∞上是减函数,则a =______. 分析根据幂函数的定义及单调性求解a .解析依题意,得2211230a a a a ⎧--=⎪⎨--<⎪⎩,解得2a =. 变式1 函数32204(42)(1)y mx x m x mx -=++++-+的定义域为R ,求实数m 的取值范围.变式2 幂函数()y f x =的图像经过点1(2,)8--,则满足()27f x =的x 的值是______.. 变式3 设11,1,,32a ⎧⎫∈-⎨⎬⎩⎭,则使函数y x α=为奇函数且定义域为R 的所有α的值为( ) .1,3A .1,1B - .1,3C - .1,1,3D -题型2 幂函数性质的综合应用思路提示紧扣幂函数y x α=的定义、图像、性质,特别注意它的单调性在不等式中的作用,这里注意α为奇数时,x α为奇函数,α为偶数时,x α为偶函数.例2.69已知幂函数223()()m m f x x m Z --=∈为偶函数,且在区间(0,)+∞上是减函数.(1)求函数()f x 的解析式;(2)求满足33(1)(32)mma a --+<-的a 的取值范围.分析利用函数()f x 在区间(0,)+∞上是减函数且为偶函数求m ,从而得到()f x 的解析式.解析(1)因为幂函数在区间(0,)+∞上是减函数,所以2230m m --<得 13,m m Z -<<∈又,当0m =时,2233m m --=-;当1m =时,2234m m --=-;当2m =时,2233m m --=-.又因为()f x 为偶函数,所以4()f x x -=.(2)由1m =得1133(1)(32)a a --+<-. 即113311132a a ⎛⎫⎛⎫< ⎪ ⎪+-⎝⎭⎝⎭又13y x =在R 上单调递增,故11132a a <+-,整理得 (1)(32)(23)0a a a +--<,解得23132a a <-<<或,如图所示.故a 的取值范围为23(,1)(,)32-∞-. 评注突破点为由单调性得m 的取值范围,进而验证满足偶函数的值,若从偶函数的条件入手,则不易向下转化.分类讨论时,确定分类标准,做到不重不漏.变式1 已知函数2()f x x =,设函数[]()()(21)()1g x qf f x q f x =-+-+,问是否存在实数(0)q q <,使()g x 在区间(],4-∞-上是减函数,且在区间(4,0)-上是增函数?若存在,求出q ;若不存在,请说明理由.最有效训练题1.下列函数中,既是偶函数又在(,0)-∞上是增函数的是( )43.A y x =32.B y x = 2.C y x -= 14.D y x = 2.幂函数2232()m m y x m Z --=∈的图像如图2-20所示,则m 的值为( ).1A .2B .3C.4D3.幂函数()f x 的图像经过点11(,)42A ,则它在点A 处的切线方程为( ) .4410A x y ++= .4410B x y -+= .20C x y -=.20D x y += 4.若幂函数()f x 的图像经过点13,9⎛⎫⎪⎝⎭则其定义域为( ){}.,0A x x R x ∈> {}.,0B x x R x ∈< {}.,0C x x R x ∈≠ .D R 5.设232555322,,555a b c ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则,,a b c 的大小关系是( ) .Aa c b >>.B a b c >> .C c a b >> .Db c a >> 6.设1112,1,,,,1,2,3232a ⎧⎫∈---⎨⎬⎩⎭,则使y x α=为奇函数且在(0,)+∞上单调递减的α值的个数为( ) .1A .2B .3C .4D7.已知幂函数()y f x =的图像过点(2,2),则(8)f 的值为_______.8.已知幂函数265()()m m f x x m Z -+=∈为奇函数,且在区间(0,)+∞上是减函数,则()f x 的解析式为32 231- 图 2-19_______.9.已知函数12()f x x =,且(21)(3)f x f x -<,则x 的取值范围是_______.10.设函数()1()f x x Q αα=+∈的定义域为[][],,b a a b --,其中0a b <<,若函数()f x 在区间[],a b 上的最大值为6,最小值为3,则()f x 在[],b a --上的最大值与最小值的和为_______.11.已知函数12()f x x =,给出下列命题:①若1()1x f x >>则;②若120x x <<,则2121()()f x f x x x ->-;③若120x x <<,则2112()()x f x x f x <;④若120x x <<,则1212()()22f x f x x x f ++⎛⎫< ⎪⎝⎭. 其中,所有正确命题的序号是_______.12.点在幂函数()f x 的图像上,点12,4⎛⎫- ⎪⎝⎭在幂函数()g x 的图像上,问当x 为何值时有: (1)()()(2)()()(3)()()f xg x f x g x f x g x >=<。

高一数学人教A版必修1课后训练:2.3 幂函数 Word版含解析

高一数学人教A版必修1课后训练:2.3 幂函数 Word版含解析

课后训练基础巩固1.若幂函数f (x )=x α在(0,+∞)上是增函数,则( ) A .α>0B .α<0 C .α=0D .不能确定2.下列函数是偶函数,且在(-∞,0)上是减函数的是( ) A .13y x =B .y =x 2C .y =x 3D .y =x -23.已知幂函数f (x )满足f =⎝⎭f (x )的表达式是( ) A .f (x )=x -3B .f (x )=x 3C .f (x )=3-x D .f (x )=3x4.如果幂函数y =(m 2-3m +3)·xm 2-m -2的图象不过原点,则m 的取值是( ) A .-1≤m ≤2 B .m =1或m =2 C .m =2 D .m =15.幂函数的图象经过点12,4⎛⎫ ⎪⎝⎭,则它的单调增区间是( ) A .(0,+∞) B .[0,+∞) C .(-∞,0) D .(-∞,+∞)6.函数43y x =的图象是( )7.23112T ⎛⎫=⎪⎝⎭,23215T ⎛⎫= ⎪⎝⎭,13312T ⎛⎫= ⎪⎝⎭,则下列关系式正确的是( )A .T 1<T 2<T 3B .T 3<T 1<T 2C .T 2<T 3<T 1D .T 2<T 1<T 38.若249y x αα--=是偶函数,并且在(0,+∞)上是减函数,则整数α=__________. 9.设幂函数y =x α的图象经过点(8,4),则函数y =x α的值域是__________.10.函数y =x -3在区间[-4,-2]上的最小值是__________.11.求下列函数的定义域: (1)1132(32)(23) y x x -=-+-;(2)1212x y -+⎛⎫=-⎪⎝⎭. 12.已知函数f (x )=(m 2-m -1)x -5m -3,m 为何值时,(1)f (x )是正比例函数; (2)f (x )是反比例函数; (3)f (x )是二次函数; (4)f (x )是幂函数. 能力提升13.如图所示,曲线是幂函数y =x α在第一象限内的图象,已知α取±2,12±四个值,则对应于曲线C 1,C 2,C 3,C 4的指数α依次为( )A .-2,12-,12,2 B .2,12,12-,-2C .12-,-2,2,12D .2,12,-2,12-14.三个数a =30.7,b =0.73,c =log 30.7的大小顺序为( )A .a <b <cB .b <a <cC .c <b <aD .b <c <a15.若x ∈(0,1),则下列结论正确的是( ) A .2x>12x >lg x B .2x>lg x >12x C .12x >2x >lg x D .lg x >12x >2x 16.(压轴题)已知f (x )=11335x x --,g (x )=11335x x -+.(1)求证:f (x )是奇函数,并求f (x )的单调区间;(2)分别计算f (4)-5f (2)g (2)和f (9)-5f (3)g (3)的值,由此概括出涉及函数f (x )和g (x )对所有不等于零的实数x 都成立的一个等式,并加以证明.错题记录参考答案1.A 点拨:当α>0时,幂函数f (x )=x α在(0,+∞)上是增函数. 2.B 点拨:∵y =x 2是偶函数且在(0,+∞)上为增函数,∴y =x 2在(-∞,0)上为减函数.也可以画图观察,可知选B .3.A 点拨:设f (x )=x α,∵由题意知α=⎝⎭132233α-=,∴α=-3.∴f (x )=x -3.4.B 点拨:由已知2233120m m m m ⎧-+=⎪⎨--≤⎪⎩,,得m =1或m =2.5.C 点拨:设幂函数f (x )=x α,将12,4⎛⎫⎪⎝⎭代入得α=-2,所以f (x )=21x ,易知其单调增区间为(-∞,0).6.A 点拨:f (-x )=4433()x x -====f (x ),又函数的定义域为R ,故f (x )为偶函数.又43>1,所以当x ∈(1,+∞)时,x <43x . 7.D 点拨:构造函数23y x =,此函数在[0,+∞)上是增函数,则223311>25⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,即T 2<T 1;构造函数12xy ⎛⎫=⎪⎝⎭,此函数在R 上是减函数,则213311<22⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,即T 1<T 3. 故T 2<T 1<T 3.8.-1,5,3,1点拨:由函数249y x αα--=的图象关于y 轴对称,即f (x )是偶函数且在(0,+∞)上为减函数,可得α2-4α-9=2k (k 为负整数).当k =-2时,解得α=5或α=-1;当k =-6时,解得α=3或α=1.故α的值为-1,5,3,1.9.[0,+∞)点拨:∵幂函数y =x α的图象经过点(8,4),∴8α=4,则23α=. ∴23y x ==∴函数y =x α的值域是[0,+∞). 10.18-点拨:∵函数y =x -3=31x 在(-∞,0)上单调递减,∴当x =-2时,y min =(-2)-3=311(2)8=--. 11.解:(1)要使函数有意义,x 的取值需满足320230.x x -≥⎧⎨-≠⎩,解得23x >,即所求函数的定义域为2,3⎛⎫+∞⎪⎝⎭. (2)要使函数有意义,x 的取值需满足12x +->0,解得x <-1,即所求函数的定义域为(-∞,-1).12.解:(1)若f (x )是正比例函数,则-5m -3=1,解得45m =-,此时m 2-m -1≠0,故45m =-. (2)若f (x )是反比例函数,则-5m -3=-1,解得25m =-,此时m 2-m -1≠0,故25m =-.(3)若f (x )是二次函数,则-5m -3=2,解得m =-1,此时m 2-m -1≠0,故m =-1.(4)若f (x )是幂函数,则m 2-m -1=1,即m 2-m -2=0,解得m =2或m =-1.13.B 点拨:随着α的增大,幂函数y =x α的图象在直线x =1的右侧由低向高分布.从图中可以看出,直线x =1右侧的图象,由高向低依次为曲线C 1,C 2,C 3,C 4,所以对应于曲线C 1,C 2,C 3,C 4的指数α依次为2,12,12-,-2. 14.C 点拨:由于a ,b >0,c <0,故c 最小.又30.7>0.70.7>0.73,所以a >b .故a >b >c .15.A 点拨:易知当x ∈(0,1)时,2x和12x 的值都大于0,lg x 的值小于0,得lg x 最小. 在同一坐标系中作出函数y =2x与y =12x 的图象, 如下图所示,由图可知2x>12x ,故选A .16.解:(1)证明:函数f (x )的定义域是{x |x ∈R ,且x ≠0}. ∵f (-x )=11113333()()55x x x x ------=-=-f (x ),∴f (x )是奇函数. 设0<x 1<x 2,则f (x 1)-f (x 2)=11113333112211()()55x x x x -----=11331211331211()15x x x x ⎛⎫ ⎪-+ ⎪ ⎪⎝⎭<0,即f (x 1)<f (x 2).∴f(x)在(0,+∞)上是增函数.又f(x)是奇函数,∴f(x)在(-∞,0)上也是增函数.(2)f(4)-5f(2)g(2)=1111111111 3333333333 4422224444555555-------+---⋅⋅=-=0.同理f(9)-5f(3)g(3)=0.猜想:f(x2)-5f(x)g(x)=0.证明:∵f(x2)-5f(x)g(x)=2211112222 3333333333555555x x x x x x x x x x -------+---⋅⋅=-=0(x≠0),∴f(x2)-5f(x)g(x)=0成立.。

幂函数考点和题型归纳

幂函数考点和题型归纳

幂函数考点和题型归纳一、基础知识1.幂函数的概念一般地,形如y=xα(α∈R)的函数称为幂函数,其中底数x是自变量,α为常数.幂函数的特征(1)自变量x处在幂底数的位置,幂指数α为常数;(2)xα的系数为1;(3)只有一项.2.五种常见幂函数的图象与性质函数特征性质y=x y=x2y=x3y=x12y=x-1图象定义域R R R{x|x≥0}{x|x≠0}值域R{y|y≥0}R{y|y≥0}{y|y≠0}奇偶性奇偶奇非奇非偶奇单调性增(-∞,0)减,(0,+∞)增增增(-∞,0)和(0,+∞)减公共点(1,1)二、常用结论对于形如f(x)=x nm(其中m∈N*,n∈Z,m与n互质)的幂函数:(1)当n为偶数时,f(x)为偶函数,图象关于y轴对称;(2)当m,n都为奇数时,f(x)为奇函数,图象关于原点对称;(3)当m为偶数时,x>0(或x≥0),f(x)是非奇非偶函数,图象只在第一象限(或第一象限及原点处).考点一 幂函数的图象与性质[典例] (1)(2019·赣州阶段测试)幂函数y =f (x )的图象经过点(3,33),则f (x )是( ) A .偶函数,且在(0,+∞)上是增函数 B .偶函数,且在(0,+∞)上是减函数 C .奇函数,且在(0,+∞)上是增函数 D .非奇非偶函数,且在(0,+∞)上是减函数 (2)已知幂函数f (x )=(n 2+2n -2)x 23-n n(n ∈Z)的图象关于y 轴对称,且在(0,+∞)上是减函数,则n 的值为( )A .-3B .1C .2D .1或2[解析] (1)设f (x )=x α,将点(3,33)代入f (x )=x α,解得α=13,所以f (x )=x 13,可知函数f (x )是奇函数,且在(0,+∞)上是增函数,故选C.(2)∵幂函数f (x )=(n 2+2n -2)x23-n n在(0,+∞)上是减函数,∴⎩⎪⎨⎪⎧n 2+2n -2=1,n 2-3n <0,∴n =1,又n =1时,f (x )=x -2的图象关于y 轴对称,故n =1. [答案] (1)C (2)B[解题技法] 幂函数y =x α的主要性质及解题策略(1)幂函数在(0,+∞)内都有定义,幂函数的图象都过定点(1,1).(2)当α>0时,幂函数的图象经过点(1,1)和(0,0),且在(0,+∞)内单调递增;当α<0时,幂函数的图象经过点(1,1),且在(0,+∞)内单调递减.(3)当α为奇数时,幂函数为奇函数;当α为偶数时,幂函数为偶函数.(4)幂函数的性质因幂指数大于零、等于零或小于零而不同,解题中要善于根据幂指数的符号和其他性质确定幂函数的解析式、参数取值等.[题组训练]1.[口诀第3、4、5句]下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的为( ) A .y =x -4 B .y =x -1 C .y =x 2D .y =x 13解析:选A 函数y =x -4为偶函数,且在区间(0,+∞)上单调递减;函数y =x -1为奇函数,且在区间(0,+∞)上单调递减;函数y =x 2为偶函数,且在区间(0,+∞)上单调递增;函数y =x 13为奇函数,且在区间(0,+∞)上单调递增.2.[口诀第2、3、4句]已知当x ∈(0,1)时,函数y =x p 的图象在直线y =x 的上方,则p 的取值范围是________.解析:当p >0时,根据题意知p <1,所以0<p <1;当p =0时,函数为y =1(x ≠0),符合题意;当p <0时,函数y =x p 的图象过点(1,1),在(0,+∞)上为减函数,符合题意.综上所述,p 的取值范围是(-∞,1).答案:(-∞,1)考点二 比较幂值大小[典例] 若a =⎝⎛⎭⎫1223,b =⎝⎛⎭⎫1523,c =⎝⎛⎭⎫1213,则a ,b ,c 的大小关系是( ) A .a <b <c B .c <a <b C .b <c <aD .b <a <c[解析] 因为y =x 23在第一象限内是增函数,所以a =⎝⎛⎭⎫1223>b =⎝⎛⎭⎫1523,因为y =⎝⎛⎭⎫12x 是减函数,所以a =⎝⎛⎭⎫1223<c =⎝⎛⎭⎫1213,所以b <a <c . [答案] D[题组训练]1.若a =⎝⎛⎭⎫3525,b =⎝⎛⎭⎫2535,c =⎝⎛⎭⎫2525,则a ,b ,c 的大小关系是( ) A .a >b >c B .a >c >b C .c >a >bD .b >c >a解析:选B 因为y =x 25在第一象限内为增函数,所以a =⎝⎛⎭⎫3525>c =⎝⎛⎭⎫2525,因为y =⎝⎛⎭⎫25x是减函数,所以c =⎝⎛⎭⎫2525>b =⎝⎛⎭⎫2535,所以a >c >b .2.若(a +1)12<(3-2a )12,则实数a 的取值范围是________. 解析:易知函数y =x 12的定义域为[0,+∞),在定义域内为增函数, 所以⎩⎪⎨⎪⎧a +1≥0,3-2a ≥0,a +1<3-2a ,解得-1≤a <23.答案:⎣⎡⎭⎫-1,23 [课时跟踪检测]1.若幂函数y =f (x )的图象过点(4,2),则f (8)的值为( ) A .4 B.2 C .22D .1解析:选C 设f (x )=x n ,由条件知f (4)=2,所以2=4n ,n =12,所以f (x )=x 12,f (8)=812=2 2.2.若幂函数f (x )=x k 在(0,+∞)上是减函数,则k 可能是( ) A .1 B .2 C.12D .-1解析:选D 由幂函数的性质得k <0,故选D. 3.已知幂函数f (x )=(m 2-3m +3)x m +1为偶函数,则m =( )A .1B .2C .1或2D .3解析:选A ∵函数f (x )为幂函数,∴m 2-3m +3=1,即m 2-3m +2=0,解得m =1或m =2.当m =1时,幂函数f (x )=x 2为偶函数,满足条件;当m =2时,幂函数f (x )=x 3为奇函数,不满足条件.故选A.4.(2018·邢台期末)已知幂函数f (x )的图象过点⎝⎛⎭⎫2,14,则函数g (x )=f (x )+x 24的最小值为( )A .1B .2C .4D .6解析:选A 设幂函数f (x )=x α.∵f (x )的图象过点⎝⎛⎭⎫2,14,∴2α=14,解得α=-2. ∴函数f (x )=x -2,其中x ≠0. ∴函数g (x )=f (x )+x 24=x -2+x 24=1x 2+x 24≥21x 2·x 24=1, 当且仅当x =±2时,g (x )取得最小值1. 5.(2019·安徽名校联考)幂函数y =x |m -1|与y =x 23-m m (m ∈Z)在(0,+∞)上都是增函数,则满足条件的整数m 的值为( )A .0B .1和2C .2D .0和3解析:选C由题意可得⎩⎪⎨⎪⎧|m -1|>0,3m -m 2>0,m ∈Z ,解得m =2.6.已知a =345,b =425,c =1215,则a ,b ,c 的大小关系为( ) A .b <a <c B .a <b <c C .c <b <aD .c <a <b解析:选C 因为a =8115,b =1615,c =1215,由幂函数y =x 15在(0,+∞)上为增函数,知a >b >c ,故选C.7.设x =0.20.3,y =0.30.2,z =0.30.3,则x ,y ,z 的大小关系为( ) A .x <z <y B .y <x <z C .y <z <xD .z <y <x解析:选A 由函数y =0.3x 在R 上单调递减,可得y >z .由函数y =x 0.3在(0,+∞)上单调递增,可得x <z .所以x <z <y .8.已知幂函数f (x )=(m -1)2x242-+m m 在(0,+∞)上单调递增,函数g (x )=2x -k ,当x∈[1,2)时,记f (x ),g (x )的值域分别为集合A ,B ,若A ∪B =A ,则实数k 的取值范围是( )A .(0,1)B .[0,1)C .(0,1]D .[0,1]解析:选D ∵f (x )是幂函数,∴(m -1)2=1,解得m =2或m =0.若m =2,则f (x )=x -2在(0,+∞)上单调递减,不满足条件.若m =0,则f (x )=x 2在(0,+∞)上单调递增,满足条件,即f (x )=x 2.当x ∈[1,2)时,f (x )∈[1,4),即A =[1,4);当x ∈[1,2)时,g (x )∈[2-k,4-k ),即B =[2-k,4-k ).∵A ∪B =A ,∴B ⊆A ,∴2-k ≥1且4-k ≤4,解得0≤k ≤1.9.若f (x )是幂函数,且满足f (9)f (3)=2,则f ⎝⎛⎭⎫19=________. 解析:设f (x )=x α,∵f (9)f (3)=9α3α=3α=2,∴f ⎝⎛⎭⎫19=⎝⎛⎭⎫19α=⎝⎛⎭⎫132α=132α=122=14. 答案:1410.已知函数f (x )=(m 2-m -5)x m 是幂函数,且在(0,+∞)上为增函数,则实数m 的值是________.解析:由f (x )=(m 2-m -5)x m 是幂函数⇒m 2-m -5=1⇒m =-2或m =3.又f (x )在(0,+∞)上是增函数,所以m =3.答案:311.当0<x <1时,f (x )=x 2,g (x )=x 12,h (x )=x -2,则f (x ),g (x ),h (x )的大小关系是________________.解析:分别作出y =f (x ),y =g (x ),y =h (x )的图象如图所示,可知h (x )>g (x )>f (x ).答案:h (x )>g (x )>f (x )12.(2019·银川模拟)已知幂函数f (x )=x 12-,若f (a +1)<f (10-2a ),则a 的取值范围是________.解析:由题意得,幂函数f (x )=x -12的定义域为(0,+∞),且函数f (x )在(0,+∞)上单调递减,由f (a +1)<f (10-2a ),得⎩⎪⎨⎪⎧a +1>10-2a ,a +1>0,10-2a >0,解得3<a <5.答案:(3,5)13.已知幂函数f (x )=x ()21-+m m (m ∈N *)的图象经过点(2,2).(1)试确定m 的值;(2)求满足条件f (2-a )>f (a -1)的实数a 的取值范围. 解:(1)∵幂函数f (x )的图象经过点(2,2), ∴2=2()21-+m m ,即212=2()21-+m m .∴m 2+m =2,解得m =1或m =-2. 又∵m ∈N *,∴m =1. (2)由(1)知f (x )=x 12,则函数的定义域为[0,+∞),并且在定义域上为增函数. 由f (2-a )>f (a -1),得⎩⎪⎨⎪⎧2-a ≥0,a -1≥0,2-a >a -1,解得1≤a <32.∴a 的取值范围为⎣⎡⎭⎫1,32.。

幂函数练习题及答案

幂函数练习题及答案

幂函数练习题及答案幂函数练习题及答案幂函数是数学中常见的一种函数形式,它的表达式为y = ax^n,其中a和n为常数,x为自变量。

幂函数在实际问题中具有广泛的应用,例如物理学中的力学问题、经济学中的需求曲线等。

下面将给出一些幂函数的练习题及其答案,帮助读者更好地理解和掌握幂函数的性质和应用。

1. 练习题:已知函数y = 2x^3,求当x取值为2时,y的值是多少?解答:将x = 2代入函数表达式中,得到y = 2*(2^3) = 2*8 = 16。

因此,当x取值为2时,y的值为16。

2. 练习题:已知函数y = 5x^(-2),求当x取值为0.5时,y的值是多少?解答:将x = 0.5代入函数表达式中,得到y = 5*(0.5^(-2)) = 5*(1/0.5^2) =5*(1/0.25) = 5*4 = 20。

因此,当x取值为0.5时,y的值为20。

3. 练习题:已知函数y = 3x^2,求当y取值为12时,x的值是多少?解答:将y = 12代入函数表达式中,得到12 = 3*(x^2)。

将方程两边同时除以3,得到4 = x^2。

再开平方根,得到x = ±2。

因此,当y取值为12时,x的值为±2。

4. 练习题:已知函数y = 4x^(-1/2),求当y取值为2时,x的值是多少?解答:将y = 2代入函数表达式中,得到2 = 4*(x^(-1/2))。

将方程两边同时除以4,得到1/2 = x^(-1/2)。

两边同时取倒数,得到2 = x^(1/2)。

再平方,得到4 = x。

因此,当y取值为2时,x的值为4。

通过以上练习题的解答,我们可以看到幂函数的特点和性质。

首先,幂函数的自变量可以取任意实数值,但要注意当指数为负数时,自变量不能取0。

其次,幂函数的图像在正数指数时呈现出上升趋势,指数越大,曲线上升得越快;而在负数指数时,图像则呈现下降趋势。

此外,幂函数的图像在指数为偶数时,始终位于x轴的上方,而在指数为奇数时,图像则会穿过x轴。

高中数学:2.3幂函数 (11)

高中数学:2.3幂函数 (11)
45分钟课时作业与单元测试 数学 必修 1A
第二章 基本初等函数(Ⅰ)
2.3 幂函数 第23课时 幂函数
掌握几个要点
题点知识巩固
提能达标过关
掌握几个要点
1.明确 1 个概念——幂函数的概念 判断一个函数是否为幂函数的依据是该函数是否为 y=xα(α 为常数)的形式,即函数的解析式为幂的形式,且需满足: (1)指数为常数; (2)底数为自变量; (3)系数为 1.
A.c<a<b
B.a<c<b
C.a<b<c
D.c<b<a
解析:选 A a=20.3=80.1,b=30.2=90.1,c=70.1,由幂函数
y=x0.1 在(0,+∞)上单调递增,可知 c<a<b.故选 A.
8.设 a=2553,b=2525,c=3525,则 a,b,c 的大小关系是( )
A.a>b>c
B.c>a>b
C.a<b<c
D.b>c>a
解析:选 C ∵函数 y=25x在 R 上是减函数, 又35>25,∴2553<2525,即 a<b. 又∵函数 y=x25在 R 上是增函数,且35>25, ∴3525>2552,即 c>b,∴a<b<c.故选 C.
9.已知幂函数 f(x)=xα 的图象过点2,12,函数 g(x)=(x- 2)f(x)12≤x≤1,求函数 g(x)的最大值与最小值.
其中幂函数有________. 解析:其中①⑥是幂函数;②y=2-x=12x是指数函数;③y =3x2 的系数不是 1,④⑤不符合幂函数 y=xα 的定义形式.因此 ②③④⑤都不是幂函数. 答案:①⑥
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2.3 幂函数
课时目标 1.通过具体问题,了解幂函数的概念.2.从描点作图入手,画出y =x ,y =x 2,y =x 3,y =12
x ,y =x
-1
的图象,总结出幂函数的共性,巩固并会加以应用.
1.一般地,______________叫做幂函数,其中x 是自变量,α是常数. 2.在同一平面直角坐标系中,画出幂函数y =x ,y =x 2,y =x 3,y =12
x ,y =x
-1
的图象.
3.结合2中图象,填空.
(1)所有的幂函数图象都过点________,在(0,+∞)上都有定义.
(2)若α>0时,幂函数图象过点____________,且在第一象限内______;当0<α<1时,图象上凸,当α>1时,图象______.
(3)若α<0,则幂函数图象过点________,并且在第一象限内单调______,在第一象限内,当x 从+∞趋向于原点时,函数在y 轴右方无限地逼近于y 轴,当x 趋于+∞时,图象在x 轴上方无限逼近x 轴.
(4)当α为奇数时,幂函数图象关于______对称;当α为偶数时,幂函数图象关于______对称.
(5)幂函数在第____象限无图象.
归纳总结:
1.幂函数在第一象限内指数变化规律:
在第一象限内直线x =1的右侧,图象从上到下,相应的指数由大变小;在直线x =1的左侧,图象从下到上,相应的指数由大变小.
2.求幂函数的定义域时要看指数的正负和指数n m
中的m 是否为偶数;判断幂函数的奇偶性时要看指数n m 中的m 、n 是奇数还是偶数.y =x α,当α=n m
(m 、n ∈N *
,m 、n 互质)时,有:
n
m
y =n m
x 的奇偶性
定义域 奇数 偶数 非奇非偶函数 [0,+∞) 偶数 奇数 偶函数 (-∞,+∞) 奇数
奇数
奇函数
(-∞,+∞)
3.幂函数y =n m
x 的单调性,在(0,+∞)上,n m >0时为增函数,n m
<0时为减函数.
一、选择题
1.下列函数中不是幂函数的是( )
A .y =x
B .y =x 3
C .y =2x
D .y =x -
1
2.幂函数f (x )的图象过点(4,1
2
),那么f (8)的值为( )
A.2
4
B .64
C .2 2 D.1
64
3.下列是y =23
x 的图象的是( )
4.图中曲线是幂函数y =x n 在第一象限的图象,已知n 取±2,±1
2
四个值,则相应于曲线
C 1,C 2,C 3,C 4的n 依次为( )
A .-2,-12,1
2,2
B .2,12,-1
2,-2
C .-12,-2,2,12
D .2,12,-2,-1
2
5.设a =25
35⎛⎫ ⎪⎝⎭
,b =3
525⎛⎫
⎪⎝⎭,c =25
25⎛⎫
⎪⎝⎭
,则a ,b ,c 的大小关系是( ) A .a >c >b B .a >b >c C .c >a >b D .b >c >a
6.函数f (x )=x α,x ∈(-1,0)∪(0,1),若不等式f (x )>|x |成立,则在α∈{-2,-1,0,1,2}的条件下,α可以取值的个数是( )
A .0
B .2
C .3
D .4
二、填空题
7.给出以下结论:
①当α=0时,函数y =x α的图象是一条直线; ②幂函数的图象都经过(0,0),(1,1)两点;
③若幂函数y =x α的图象关于原点对称,则y =x α在定义域内y 随x 的增大而增大; ④幂函数的图象不可能在第四象限,但可能在第二象限. 则正确结论的序号为________.
8.函数y =12
x +x -
1的定义域是____________.
9.已知函数y =x -2m -
3的图象过原点,则实数m 的取值范围是____________________.
三、解答题
10.比较1. 121、121.4、13
1.1的大小,并说明理由.
11.如图,幂函数y =x 3m -
7(m ∈N )的图象关于y 轴对称,且与x 轴、y 轴均无交点,求此函数的解析式.
能力提升
12.已知函数f (x )=(m 2+2m )·21
m m x +-,m 为何值时,函数f (x )是:(1)正比例函数;
(2)反比例函数;(3)二次函数;(4)幂函数.
13.点(2,2)在幂函数f (x )的图象上,点(-2,1
4
)在幂函数g (x )的图象上,问当x 为何值
时,有:(1)f (x )>g (x );(2)f (x )=g (x );(3)f (x )<g (x ).
§2.3 幂函数
知识梳理
1.函数y =x α 3.(1)(1,1) (2)(0,0),(1,1) 递增 下凸 (3)(1,1) 递减 (4)原点 y 轴 (5)四 作业设计
1.C [根据幂函数的定义:形如y =x α的函数称为幂函数,选项C 中自变量x 的系数是2,不符合幂函数的定义,所以C 不是幂函数.]
2.A [设幂函数为y =x α,依题意,1
2
=4α,
即22α=2-
1,∴α=-12.
∴幂函数为y =12
x
-,∴f (8)=12
8
-

18=122=24
.] 3.B [y =23
x =3x 2,∴x ∈R ,y ≥0,f (-x )=3(-x )2=3
x 2
=f (x ),即y =23
x 是偶函数,又∵2
3
<1,∴图象上凸.]
4.B [作直线x =t (t >1)与各个图象相交,则交点自上而下的排列顺序恰好是按幂指数的降幂排列的.]
5.A [根据幂函数与指数函数的单调性直接可以判断出来,y =25
x 在x >0时是增函数,
所以a >c ;y =(2
5
)x 在x >0时是减函数,所以c >b .]
6.B [因为x ∈(-1,0)∪(0,1),所以0<|x |<1. 要使f (x )=x α>|x |,x α在(-1,0)∪(0,1)上应大于0, 所以α=-1,1显然是不成立的. 当α=0时,f (x )=1>|x |;
当α=2时,f (x )=x 2=|x |2<|x |;
当α=-2时,f (x )=x -2=|x |-
2>1>|x |.
综上,α的可能取值为0或-2,共2个.] 7.④
解析 当α=0时,函数y =x α的定义域为{x |x ≠0,x ∈R },故①不正确;当α<0时,函
数y =x α的图象不过(0,0)点,故②不正确;幂函数y =x -
1的图象关于原点对称,但其在定义域内不是增函数,故③不正确.④正确. 8.(0,+∞)
解析 y =12
x 的定义域是[0,+∞),y =x
-1
的定义域是(-∞,0)∪(0,+∞),再取交集.
9.m <-3
2
解析 由幂函数的性质知-2m -3>0,
故m <-3
2
.
10.解 考查函数y =1.1x ,∵1.1>1, ∴它在(0,+∞)上是增函数. 又∵12>1
3,∴1
21.1>1
31.1.
再考查函数y =12x ,∵1
2
>0,
∴它在(0,+∞)上是增函数. 又∵1.4>1.1,∴12
1.4>12
1.1,
∴1
21.4>121.1>13
1.1.
11.解 由题意,得3m -7<0.
∴m <73
.
∵m ∈N ,∴m =0,1或2,
∵幂函数的图象关于y 轴对称, ∴3m -7为偶数.
∵m =0时,3m -7=-7, m =1时,3m -7=-4, m =2时,3m -7=-1.
故当m =1时,y =x -4符合题意.即y =x -
4. 12.解 (1)若f (x )为正比例函数,
则⎩
⎪⎨⎪⎧
m 2+m -1=1,m 2+2m ≠0⇒m =1. (2)若f (x )为反比例函数,
则⎩
⎪⎨⎪⎧
m 2+m -1=-1,m 2+2m ≠0⇒m =-1. (3)若f (x )为二次函数,则 ⎩
⎪⎨⎪⎧
m 2+m -1=2,m 2+2m ≠0⇒m =-1±132.
(4)若f (x )为幂函数,则m 2+2m =1, ∴m =-1±2.
13.解 设f (x )=x α,则由题意,得 2=(2)α,∴α=2,即f (x )=x 2.
设g (x )=x β,由题意,得1
4
=(-2)β,
∴β=-2,即g (x )=x -2
.
在同一平面直角坐标系中作出f (x )与g (x )的图象,如图所示. 由图象可知:
(1)当x >1或x <-1时, f (x )>g (x ); (2)当x =±1时,f (x )=g (x );
(3)当-1<x <1且x ≠0时,f (x )<g (x ).。

相关文档
最新文档