机床电气控制4.1 三相异步电动机的点动电气控制

合集下载

三相交流异步电动机点动控制01(精)

三相交流异步电动机点动控制01(精)

点动控制线路图
(b)中增加了一个符合按钮SB3实现点动 与长动的控制线路。点动控制时,按下 SB3,其常开触点闭合,此时接触器KM 线圈得电,主触点闭合,电动机得电运行; 松开SB3,触点恢复到原来的状态,KM 线圈不得电,主触点打开,电动机停止。 若需要电动机连续运行,需要按下SB2。
点动控制线路图
点动的含义: 操作者按下起动按钮后, 电动机起动运转,松开按钮时, 电动机就停止转动,即点一下, 动一下,不点则不动。
点动控制线路图
(a)是最基本的点动控制线路,按下 启动按钮SB时,接触器KM通电吸合, 主触点闭合,电动机得电运行;松开 启动按钮SB时,接触器KM断电,主 触点打开,电动机得失电停止。
若需要电动机连续运行需要按下sb2常开触点闭合继电器k线圈得电其常开触点闭合并联在sb2两端的常开触点实现自锁k的另一个常开触点使得接触器km线圈得电主触点闭合电动机得电运行
电动机点动 控制
生产机械在正常工作时需要连续控制, 但在试车或进行调整工作时,就需要点动 控制,点动控制也叫短车控制或点车控制。 例如桥式吊车需要经常作调整运动,点动 控制是必不可少的。
(c)是采用中间继电器K实现点动与长动 的控制线路。点动控制时,按下SB3, 其常闭触点打开,常开触点闭合,此 时接触器KM线圈得电,主触点闭合, 电动机得电运行;松开SB3,触点恢复 到原来的状态,KM线圈不得电,主触 点打开,电动机停止。若需要电动机 连续运行,需要按下SB2,常开触点闭 合,继电器K线圈得电,其常开触点闭 合,并联在SB2两端的常开触点实现自 锁,K的另一个常开触点使得接触器 KM线圈得电,主触点闭合,电动机得 电运行。
点动控制线路图
由以上三个控制线路图得知点动控制与长动控制的区别:

电气控制技术实验指导三相异步电动机点动与连续运行控制

电气控制技术实验指导三相异步电动机点动与连续运行控制

实验一三相异步电动机点动与连续运行控制一、实验目的1、熟悉常用低压电器元件(接触器、热继电器和按钮等)的功能及使用方法。

2、掌握自锁作用。

3、培养学生电气控制系统的识图能力和安装调试电气线路的动手能力。

4、培养学生分析实际问题和解决实际问题的能力。

二、实验仪器设备三相异步电动机、接触器、热继电器、一组按钮。

电源、导线若干、万用表等。

三、实验内容三相异步电动机点动与连续运行控制四、实验步骤1、点动控制图1 点动控制主电路和控制电路(1)按图1连接点动控制的主电路和控制电路。

先连接主电路,然后连接控制电路。

(2)运行、调试:合上电源开关QS;起动:按下按钮SB →接触器KM 线圈得电→KM 主触头闭合→电动机M 起动运行;停车:松开按钮SB →接触器KM 线圈失电→KM 主触头断开→电动机M 停转;停止使用时:断开电源开关QS 。

2 、连续运行控制线路图2 连续运行主电路和控制电路(1)按图2连接连续运行控制电路的主电路和控制电路。

先连接主电路,然后连接控制电路。

(2)运行、调试:合上电源开关QS;起动:按下按钮SB2 →接触器KM 线圈得电→KM 主触头闭合→电动机M 起动运行,接触器KM 的辅助常开触头闭合-自锁,使接触器KM线圈保持得电→电动机M 连续运行;停车:按下按钮SB1 →接触器KM 线圈失电→KM 主触头断开→电动机M 停转;保护环节:短路保护、过载保护、失压和欠压保护当电气控制系统中出现短路、过载或失压和欠压等故障现象,保护环节的电器动作,电动机M 停转。

停止使用时:断开电源开关QS 。

五、实验分析1.分析点动控制、连续运行控制电路的特点,比较二者区别。

2.分析电路中常见的故障现象,采取哪些保护措施?3.在实验过程中出现的异常现象,及解决措施。

实验二 三相异步电动机正反转控制一、实验目的1、熟悉常用低压电器元件(按钮、接触器及热继电器)的功能及使用方法。

2、掌握自锁、互锁的作用。

3、培养学生电气控制系统的识图能力和安装调试电气线路的动手能力。

电气控制基本电路 三相异步电动机基本控制电路

电气控制基本电路 三相异步电动机基本控制电路
模块二 电气控制基本电路
1.三相笼型异步电动机直接起动控制
三相异步电动机的基本结构
三相鼠笼式异步电动机的结构组成
1、单向直接启动控制
点动 图2-1 单向点动线路图
起动:
闭合QS 按下SB
KM线圈通电
KM 主触头闭合 电动机通电旋转。
停止: 松开SB KM线圈失电 电动机断电停止。
KM 主触头断开
图2-2 连续控制电路
连续 控制
起动: 闭合QS 按下SB 1 KM线圈通电 1 主触头闭合 电动机通电旋转。
常开辅助触头闭合,自保
停止: 按下SB 2
K触头断开
1 KM 辅助触头断开
电路中的保护: (1)短路保护:FU1 FU2 (2)过载保护:FR (3)欠压、失压保护:KM
课后请同学们复习今天所学的几个知识点: 1. 什么是自保? 2. 电路中常用的保护措施有哪些?

三相异步电动机接触器点动控制原理说明

三相异步电动机接触器点动控制原理说明

三相异步电动机接触器点动控制原理说明下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!三相异步电动机接触器点动控制原理说明在工业生产中,三相异步电动机广泛应用于各种设备和机械中,其控制方式多样。

三相异步电动机的点动控制实验

三相异步电动机的点动控制实验
三相异步电动机的点动控制实验
三相异步电动机的点动控制实验1、实验目的⑴熟悉三相异步电动机的结构和铭牌数据。⑵熟悉电动机常用控制电器的结构与动作原理。⑶学会三相异步电动机的点动控制的接线和操作方法。2、预习内容及要求⑴兆欧表的使用当需测量高值电阻或绝缘电阻(100KΩ~500KΩ或>0.5MΩ)时,一般用兆欧表进行测量。如检测线路、电机绕组、电缆和变压器等电气设备的绝缘电阻时,应采用兆欧表进行。⑵电动机绕组绝缘电阻的测定电动机在安装或投入运行前,应对其绕组进行绝缘电阻的检测,其测量项目包括各绕组的相间绝缘电阻和各绕组对外壳(地)的绝缘电阻。一般情况下,其绝缘电阻应大于0.5兆欧以上,具体测试方法步骤参见“三相异步电动机实验”。⑶三相异步电动机的点动控制线路及电路的组成点动正转控制线路是用按钮、接触器来控制电动机运转的较简单的正转控制线路。所谓点动控制是指:按下按钮,电动机就得电运转;松开按钮,电动机就失电停转。三相异步电动机的点动控制电气原理图如图3-1(a)所示。点动正转控制线路是由转换开关QS、熔断器FU、启动按钮SB、接触器KM及电动机M组成。其中以转换开关QS作电源隔离开关,熔断器FU作短路保护,按钮SB控制接触器KM的线圈得电、失电,接触器KM的主触头控制电动机M的启动与停止。⑷三相异步电动机的点动控制的控制原理当电动机需要点动时,先合上转换开关QS,此时电动机M尚未接通电源。按下启动按钮SB,接触器KM的线圈得电,带动接触器KM的三对主触头闭合,电动机M便接通电源启动运转。当电动机需要停转时,只要松开启动按钮SB,使接触器KM的线圈失电,带动接触器KM的三对主触头恢复断开,电动机M失电停转。 3、实验器材 代号 名称 型号 规格 数量M三相异步电动机Y-112M-44KW、380V、Δ接法1QS组合开关HZ10-25-3三极额定电流25安1FU1螺旋式熔断器RL1-60/25500V、60安配熔体额定电流25安3FU2螺旋式熔断器RL1-15/2500V、15安配熔体额定电流2安2KM交流接触器CJ10-2020安、线圈电压380V1SB按钮LA10-3H保护式、按钮数31XT端子排JX2-101510安、15节1木板(控制板)650×500×50毫米1万用表14、实验操作步骤⑴实验准备工作①电器的结构及动作原理在连接控制实验线路前,应熟悉按钮开关、交流接触器的结构形式、动作原理及接线方式和方法。②记录实验设备参数将所使用的主要实验电器的型号规格及额定参数记录下来,并理解和体会各参数的实际意义。③电动机的外观检查实验接线前应先检查电动机的外观有无异常。如条件许可,可用手盘动电动机的转子,观察转子转动是否灵活,与定子的间隙是否有磨擦现象等。④电动机的绝缘检查采用“三相异步电动机实验”介绍的方法和步骤,使用兆欧表依次测量电动机绕组与外壳间及各绕组间的绝缘电阻值,并将测量数据记录于表3-1中,同时应检查绝缘电阻值是否符合要求。 表3-1相间绝缘 绝缘电阻(MΩ) 各相对地绝缘 绝缘电阻(MΩ)U相与V相U相对地V相与W相V相对地W相与U相W相对地⑵安装接线①检查电器元件质量 应在不通电的情况下,用万用表检查各触点的分、合情况是否良好。检查接触器时,应拆卸灭弧罩,用手同时按下三副主触点并用力均匀;同时应检查接触器线圈电压与电源电压是否相符。②安装电器元件 在木板上将电器元件摆放均匀、整齐、紧凑、合理,电器布置图如图3-1(b)所示。并用螺丝进行安装。注意组合开关、熔断器的受电端子应安装在控制板的外侧,并使熔断器的受电端为底座的中心端;紧固各元件时应用力均匀,紧固程度适当。③板前明线布线 主电路采用BV1.5毫米2(黑色),控制电路采用BV1毫米2(红色);按钮线采用BVR0.75毫米2(红色),接地线采用BVR1.5毫米2(绿/黄双色线)。布线时要符合电气原理图,先将主电路的导线配完后,再配控制回路的导线;布线时还应符合平直、整齐、紧贴敷设面、走线合理及接点不得松动等要求,具体注意以下几点:a.走线通道应尽可能少,同一通道中的沉底导线,按主、控电路分类集中,单层平行密排,并紧贴敷设面。b.同一平面的导线应高低一致或前后一致,不能交叉。当必须交叉时,该根导线应在接线端子引出时,水平架空跨越,但必须属于走线合理。c.布线应横平竖直,变换走向应垂直。d.导线与接线端子或线桩连接时,应不压绝缘层、不反圈及不露铜过长。并做到同一元件、同一回路的不同接点的导线间距离保持一致。e.一个电器元件接线端子上的连接导线不得超过两根,每节接线端子板上的连接导线一般只允许连接一根。f.布线时,严禁损伤线芯和导线绝缘。g.布线时,不在控制板上的电器元件要从端子排上引出。④按图3-1检验控制板布线正确性。 用万用表进行检查时,应选用电阻档的适当倍率,并进行校零,以防错漏短路故障。a.检查控制电路,可将表棒分别搭在U1、V1线端上,读数应为“∞”,按下时读数应为接触器线圈的直流电阻阻值。b.检查主电路时,可以手动来代替接触器受电线圈励磁吸合时的情况进行检查。⑤接电源、电动机等控制板外部的导线。⑶控制实验 经教师检查后,通电试车。①接通电源。合上电源开关QS。②起停实验。按下启动按钮SB,接触器KM线圈得电,KM主触头闭合,电动机M启动运转,观察线路和电动机运行有无异常现象;松开启动按钮SB,接触器KM线圈失电,KM主触头断开,电动机停转,这就是所谓的点动控制电路。⑷实验结束①实验工作结束后,应切断电动机的三相交流电源。②拆除控制线路、主电路和有关实验电器。③将各电气设备和实验物品按规定位置安放整齐。5、实验报告⑴画出三相异步电动机的点动控制电气原理图。⑵记录仪器和设备的名称、规格和数量。⑶根据实验操作,简要写出实验步骤。⑷总结实验结果。⑸写出本次实验的心得体会。6、实验注意事项①电动机和按钮的金属外壳必须可靠接地。接至电动机的导线必须穿在导线通道内加以保护,或采用坚韧的四芯橡皮线或塑料护套线进行临时通电校验。②电源进线应接在螺旋式熔断器底座的中心端上,出线应接在螺纹外壳上。③按钮内接线时,用力不能过猛,以防螺钉打滑。④接线时一定要认真仔细,不可接错。⑤接电前必须经教师检查无误后,才能通电操作。⑥实验中一定要注意安全操作。

电器原理实验一——三相异步电机的点动、自锁与正反转控制

电器原理实验一——三相异步电机的点动、自锁与正反转控制

课程名称:电器原理指导老师:_ 孙丹_______成绩:__________________ 实验名称:三相异步电机的点动、自锁与正反转控制实验类型:__同组学生姓名:一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的和要求1.通过对三相异步电动机点动控制和自锁控制线路的实际安装接线,掌握由电气原理图变换成安装接线图的知识;2.通过实验进一步加深理解点动控制和自锁控制的特点以及在机床控制中的应用。

3.掌握三相异步电动机正反转的原理和方法,加深对电气控制系统各种保护、自锁、互锁等环节的理解;4.掌握接触器联锁正反转、按钮联锁正反转控制线路的不同接法,并熟悉在操作过程中有哪些不同之处;5.通过对三相鼠笼式异步电动机延时正反转控制线路的安装接线,掌握由电气原理图接成实际操作电路的方法。

6.学会分析、排除继电--接触控制线路故障的方法.二、实验内容和原理1.继电接触控制在各类生产机械中获得广泛的应用,交流电动机继电接触控制电路的主要设备是交流接触器,其主要构造为:(1) 电磁系统─铁心、吸引线圈和短路环;(2) 触头系统─主触头和辅助触头,还可按吸引线圈得电前后触头的动作状态,分动合(常开)、动断(常闭)两类;(3) 消弧系统─在切断大电流的触头上装有灭弧罩以迅速切断电弧;(4) 接线端子,反作用弹簧等。

2.在控制回路中常采用接触器的辅助触头来实现自锁和互锁控制。

要求接触器线圈得电后能自动保持动作后的状态,这就是自锁,通常用接触器自身的动合触头与起动按钮相并联来实现,以达到电动机的长期运行,这一动合触头称为“自锁触头”。

使两个电器不能同时得电动作的控制,称为互锁控制,如为了避免正、反转两个接触器同时得电而造成三相电源短路事故,必须增设互锁控制环节。

为操作的方便,也为防止因接触器主触头长期大电流的烧蚀而偶发触头粘连后造成的三相电源短路事故,通常在具有正、反转控制的线路中采用既有接触器的动断辅助触头的电气互锁,又有复合按钮机械互锁的双重互锁的控制环节。

三相异步电动机的电气控制

三相异步电动机的电气控制

三相异步电动机的电气控制项目情境创设在各行各业广泛使用的电气设备和生产机械中,其自动控制线路大多以各类电动机或者其他执行电器为被控对象。

根据一定的控制方式用导线把继电器、接触器、按钮、行程开关、保护元件等器件连接起来组成的自动控制线路,通常称作电器控制线路。

其作用是对被控对象实现自动控制,以满足生产工艺的要求和实现生产过程自动化。

三相笼型异步电动机由于结构简单、价格便宜、坚固耐用等优点获得了广泛应用。

在生产实际中,它的应用占到了使用电机的80%以上。

所以本章主要讲解三相笼型异步电动机的控制线路。

三相笼型异步电动机的控制线路大都由继电器、接触器和按钮等有触点的电器组成。

下面介绍基本的控制线路。

一、项目基本技能根据生产机械的工作性质及加工工艺要求,利用各种控制电器的功能,实现对电动机的控制,其控制线路是多种多样的。

然而任何控制线路,包括最复杂的线路都是由一些比较简单的、基本的控制线路所组成的,所以熟悉和掌握基本控制线路是学习、阅读和分析电气控制线路的基础。

常见的基本控制线路的主要任务是承担电动机的供电和断电,另外还担负着电动机的保护任务。

当电动机或电源发生故障时,控制电路应能发出信号或自动切除电源,以避免事故进一步扩大。

任务一电动机的点动与连续运行控制一、电动机的点动控制机械设备中如机床在调整刀架、试车,吊车在定点放落重物时,常常需要电机短时的断续工作,即需要按下按钮,电动机就转动,松开按钮,电动机就停转。

实现这种动作特点的控制就叫点动控制。

如图2-1所示为采用带有灭弧装置的交流接触器的点动控制线路图。

此电路是由刀开关QS,熔断器FU,启动按钮SB,接触器KM及电动机M组成的。

接触器的主触头是串接在主线路中的。

工作原理:合上开关QS,按下启动按钮SB,接触器线圈KM得电,,使衔铁吸合,带动接触器常开主触头闭合,电机运转;当松开启动按钮SB,接触器线圈断电,电机停止转动。

图2-1 点动控制线路二、电动机的自锁连续控制图2-2 自锁连续控制线路在要求电动机启动后能连续运转时,采用点动正转控制就不行,为实现电动机的连续运转,可采用接触器自锁正转控制线路。

三相异步电动机点动长动控制原理

三相异步电动机点动长动控制原理

(a) 未过载时
(b) 过载发热
图2-61 热继电器结构示意图
1-发热元件;2-双金属片;3-推杆;4-温度补偿片;5-拨叉;6-调节弹簧;7-复位弹簧;8-复位按钮;9-调节螺钉;10-支架
《机床电气控制系统运行与维护》
(2)热继电器的动作原理 当电动机过载时,通过发热元件1的电流使双金属片2向左弯曲,
《机床电气控制系统运行与维护》
若对图2-57作相应的改进,如图2-60所示。在主电路中 串接入热继电器的热元件,同时将热继电器的动断触点串联 到控制回路中,当电动机长时间过载后,热元件感测到后, 随着发热增多,位移增大,热继电器动作,其动断触点可使 KM线圈回路断开,KM主触点断开,电动机停转,从而达到 过载保护的目的。
《机床电气控制系统运行与维护》
1)结构和工作原理
(1)热继电器的结构
如图2-61所示为热继电器的结构示意图。它主要由发热元件、双金属片、触头和动作 机构组成。发热元件1用镍铬合金丝等材料制成,直接串接在被保护的电动机的主电路内, 它随电流I的大小和时间的长短而发出不同的热量,从而加热双金属片2。双金属片由两种 不同膨胀系数的金属片碾压而成,右层为高膨胀系数的材料(如铜或铜镍合金),左层 为低膨胀系数的材料(如瓦钢片)。双金属片2的一端固定,另一端为自由端,过度发热 会向左弯曲。
图2-57 三相异步电动机长动基本控制线路
《机床电气控制系统运行与维护》 电路控制原理如下: 首先合上电源开关QF。 启动流程如图2-58所示。
停止流程如图2-59所示。
图2-58 电动机启动流程
用符号法分析如下: 启动:SB2±——KM+自——M+ 停止:SB1±——KM-——M-
图2-59 电动机停止流程

三相异步电动机的电气控制

三相异步电动机的电气控制
顺c)序实起现动了、M1逆起序动停后止,。M2才能起动,而M2停止后,M1才能停止的的控制要求,即
11
主电路实现的顺序的控制电路
12
控制电路实现顺序控制的控制电路
13
多地控制
概念
能在两地或多地控制同一台电动机的控制方式叫电动机的多地控制。
特点
两地的起动按钮并联在一起,停止按钮串联在一起。这样就可以分别在 甲、乙两地起、停同一台电动机,达到操作方便的目的。
互锁作用:正转时,SB3不起作用;反转时,SB2 不起作用。从而避免两接触器同时工作造成主回路 短路。
7
带有双重互锁的正反转控制
含有双重互锁的正反转控制
FR
SB1
SB2
SB3 KMR KMF
KM1 SB3
KMR
KMF KMR
SB2
机械 互锁
电气 互锁
8
自动往返控制
控制要求:
按下起动按钮后,电动机根据撞快1或2可以自动实现正反转的循环运动,并具 有零压、欠压、短路和过载保护。
21
Y-∆降压起动控制电路
控制电路
工作原理
KM1线圈得电
按下SB2
KM3线圈得电
KT线圈通电
KM2主触头闭合 KM2自锁触头闭合
KM2互锁触头分断
KM1自锁触头闭合 KM1主触头闭合 KM3主触头闭合 KM3互锁触头分断 KT常闭触头延时闭合
KM3主触头分断
KM3互锁触头闭合 KT常开触头延时闭合
电动机△形联结全压运行
KT线圈断电
KT触头分断
电动机Y形起动
KM3线圈得电 电动机暂时断电 电动机暂时断电
KM2线圈得电
22
Y-∆降压起动控制电路

第二节 三相异步电动机的点动、长动电气控制

第二节  三相异步电动机的点动、长动电气控制

2. 工作原理
(1)合上电源开关QS,按下起动按钮 SB2,交流接触器 KM的线圈得电,其动 合主触点闭合,电动机M通电起动旋转。 同时与起动按钮 SB2并联的自锁触点KM 也闭合。
(2)松开起动按钮SB2后,SB2复位 断开,接触器KM的线圈通过其自锁触点 继续保持得电,从而保证电动机M能连续 长时间的运转。
(2)松开点动按钮SB,点动按钮SB在反 力弹簧的作用下复位断开,接触器KM的线
圈失电,点动控制电路的动合主触点断开, 图4-4
电动机M断电停止转动。
电动机点动控制电路
二、电动机的长动控制
如果要求电动机在起动后能连续地运行,这时采 用点动控制电路就不合理了,因为操作人员的手始 终不能离开点动按钮,否则,电动机立即断电停转。 为克服这种现象,我们采用了另一种具有自锁环节 的控制电路,即电动机的长动控制电路 。最基本 的电动机长动控制电路如图4-5所示。
第四章 机床电气控制基本环节
第二节 三相异步电动机的点动、长动 电气控制
第二节 三相异步电动机的点动、 长动电气控制
【教学目标】 1.了解三相异步电动机点动、长动控制的意义; 2. 掌握三相异步电动机点动、长动控制电路的画 法和控制原理; 3. 掌握“自锁”的概念; 4. 学会分析不同形式的实现三相异步电动机点动 与长动控制的电路; 5. 能初步判断电气控制原理图的正误并改正错误。
图4-7 具有过载保护的控制电路
第二节 三相异步电动机的点动、 长动电气控制
【课堂练习】
教材“复习思考题”4-3。
第二节 三相异步电动机的点动、 长动电气控制
【课堂小结】
1. “自锁”的概念; 2. 点动与长动电路的根本区别:
电路中是否有“自锁”环节 。

1.实验一 三相异步电动机的启、点动控制实验

1.实验一    三相异步电动机的启、点动控制实验

4、主电路采用AC380V 供电,控制电路根据所选电器 是380V 或220 V 的线圈电压来确定。本次实验是选3 80 V 供电,如选220 V 供电,则控制回路的一端应接 在三相四线制的零线上。
三、实验内容及步骤
1、三相电动机的起动 ① 将空气开关(QF)手柄位置置于“关”位置。 ② 按图6.1.1接线。在连线时通过转动插头将接插件 自行锁紧,使接点牢固、可靠。 ③ 在图6.1.1 和图6.1.2 的两个实验中电动机都 采用星形接法。 ④ 接线完毕后需经指导教师检查线路后,方能接通电源。 ⑤ 合上空气开关QF,按下起动按钮SB1,观察电动机转 动情况。 ⑥ 按下停止按钮SB2,观察电动机是否停止。 ⑦ 先切断电源(拉下空气开关QF),再拆线,主电路仍 保留。
3、实验结束,先切断电源(拉断空气开关QF) ,再拆线, 并将实验器材整理好。
四、实验器材
1、机床电气控制实验台 2、电动机实验台 3、连接导线
一台 一台 若干
五、实验报告要求
1、按照一定的格式书写实验报告。 2、画出实验电路图,叙述实验操作步骤。 3、回答如下问题: ① 为什么在主回路当中没有采用热继电器进行过载保护? ② 在点动控制线路实验中,当SB1 按下,电动机处在运转 状态,此时按下SB3(注意不要按到底)会出现什么状况?
实验一 三相异步电动机的起动、点动控制实验
一、实验目的
1、熟悉一些常用的控制电器和保护电器。 2、学会三相异步电动机的起停和控制线路,加深理解这 些基本控制线路的工作原理。
二、实验原理和电路
1、三相异步电动机的起动有全压起动和降压起动。一般在 小功率情况下采用全压起动,而对于大功率电动机均采用降 压起动方法。这里介绍全压起动的方法,图6.1.1 所示为 三相异步电动机的起停主电路及控制线路,图6.1.2 所示 为三相异步电动机的点动和长动主电路及图6.1.2接线,步骤和以上相同。 ② 接线完毕后需经老师检查后,方能接通电源。 ③ 按下SB1电动机为起动,按下SB2电动机停止,按下SB3 电动机为点动。分别记录电动机转动情况。 ④ 按下SB1电动机运转,此时SB3若按下(注意不要按到 底) ,观察电动机运转情况。

三相异步电动机的点动与长动控制实验

三相异步电动机的点动与长动控制实验

系统化需要一个漫长个过程。

系统化就是程序化,咱们现在的系统是一个教练一个系统,每个人的教学方法都不一样,所以这样很难形成一个系统,咱们可以每个分院驻点一个公司自己培养的主教练,三相异步电动机的点动与长动控制一、实验目的1、了解按钮、中间继电器、接触器的结构、工作原理及使用方法。

2、熟悉电气控制实验装置的结构及元器件分布。

3、掌握三相异步电动机点动与长动控制的工作原理和接线方法。

4、掌握电气控制线路的故障分析及排除方法。

二、实验仪器电气控制实验装置 1台电动机 Y801-4 0.55kw 1 台;万用表 1只电工工具及导线三、实验线路与原理图(a)为用按钮实现长动与点动的控制电路,点动按钮SB3的常闭触点作为连接触点串联在接触器KM 的自锁触点电路中。

当长动时按下起动按钮SB2,接触器KM 得电自锁;当点动工作时按下按钮SB3,其常开触点闭合,接触器KM 得电。

但SB3的常闭触点KM 的自锁电路切断,手一离开按钮,接触器KM 失电,从而实现了点动控制。

若接触器外的释放时间大于按钮恢复时间,则点动结束SB3常闭触点复位时,接触器KM 的常开触尚未断开,使接触器自锁电路继续通电,线路就无法实现点动控制。

这种现象称为“触点竞争”。

在实际应用中应保证接触器KM释放时间大于按钮恢复时间,从而实现可靠的点动控制。

图(b)为用开关SA实现长动与点动转换的控制电路。

当转换开关SA闭合,按下按钮SB2,接触器KM得电并自锁,从而实现了长动;当转换开关SA 断开时,由于接触器KM的自锁电路被切断,所以这时按下按钮SB2是点动控制。

这种方法避免了(b)图中“触点竞争”现象,但在操作上不太方便。

图(c)为用中间继电器实现长动与点动的控制电路。

长动控制时按下按钮SB2,中间继电器KA得电并自锁。

点动工作时按下按钮SB3,由于不能自锁从而可靠地实现点动工作。

这种方法克服了(a)图和(b)图的缺点,但因为多用了一个继电器KA,所以成本增加。

三相异步电动机的点动和自锁控制

三相异步电动机的点动和自锁控制

三相异步电动机的点动和自锁控制一、实验目的1.进一步熟悉三相异步电动机、交流接触器、热继电器、按钮的结构、作用和接线。

2.培养电气线路安装接线并进行操作的能力。

3.加深理解点动和自锁控制的原理。

二、实验原理 1.点动控制点动控制是用按钮和接触器控制三相异步电动机的最简单的控制线路,其原理如图1所示。

线路的动作原理如下: 合上电源开关QS起动:按住按钮SB (不松手) 接触器KM 线圈得电KM 主触点闭合 电动机M 接通三相交流电源,起动运转。

停止:松开按钮SB 接触器KM 线圈失电 KM 主触点断开 电动机M 脱离三相交流电源,自然停转。

2.具有过载保护的自锁控制电动机经过按钮起动后,要想在松开按钮后仍能连续运转,则必须在电路中加入“自锁”功能。

电动机在运转过程中,如果长期负载过大、频繁操作、或断相运行等都会引起电动机绕组过热,影响电动机的使用寿命,甚至会烧坏电动机。

因此,对电动机要采用过载保护,一般采用热继电器作为过载保护元件。

具有过载保护的自锁控制线路原理图如图2所示。

(1)自锁控制 线路的动作原理如下: 合上电源开关QS图1 点动控制线路 图2 具有过载保护的自锁控制线路辅助常开触点闭合自锁起动:按下SB2 KM线圈得电主触点闭合电动机M运转松开起动按钮SB2,由于并在SB2两端的KM辅助常开触点闭合自锁,控制回路仍保持接通,KM线圈依然通电,电动机M不会停转。

辅助常开触点断开,解除自锁停止:按下SB1 KM主触点断开电动机M停转(2)过载保护线路动作原理如下:电动机在运行过程中由于过载或其它原因使负载电流超过额定值时,经过一定时间,串接在主回路中的热继电器的热元件因受热弯曲,使串在控制回路中的常闭触点断开,切断控制回路,接触器KM的线圈断电,其主触点断开,电动机M脱离电源停止转动,达到了过载保护的目的。

三、实验设备四、实验内容与步骤1.点动控制实验(1) 开起控制屏上的“电源总开关”,按下“开”按钮,向顺时针方向旋转控制屏左侧端面上的调压器旋钮,将三相调压器电源输出的线电压调到220V,以后保持不变。

第二节 三相异步电动机的点动、长动电气控制

第二节  三相异步电动机的点动、长动电气控制
(2)欠压和失压保护 当电源电压突然严重下降(欠压)或消失(失压)时, 接触器KM线圈电磁吸力不足,动铁心(衔铁)在反作用弹簧的作用下释放,其 自锁触点断开,失去自锁;同时主触点也断开,使电动机停转,得到保护。而 且由于接触器KM的自锁触点和主触点在停电时均已断开,所以在恢复供电时, 控制电路和主电路不会自行接通,电动机不会自行起动,预防了事故的发生。
电动机的点动控制电路
1. 主电路
主电路由电源开关QS、熔断器FU1、 接触器KM的主触点及电动机M组成。
2. 控制电路
控制电路由熔断器FU2、点动按钮SB、 接触器KM的线圈组成。
3. 工作原理
(1)合上电源开关QS,按下点动按钮 SB,接触器 KM的线圈得电,其动合主触点 闭合,电动机M通电起动旋转。
【课后作业】
教材“复习思考题”4-5。
Байду номын сангаас
第四章 机床电气控制基本环节
第二节 三相异步电动机的点动、长动 电气控制
第二节 三相异步电动机的点动、 长动电气控制
【教学目标】 1.了解三相异步电动机点动、长动控制的意义; 2. 掌握三相异步电动机点动、长动控制电路的画 法和控制原理; 3. 掌握“自锁”的概念; 4. 学会分析不同形式的实现三相异步电动机点动 与长动控制的电路; 5. 能初步判断电气控制原理图的正误并改正错误。
图4-6 点动与长动控制电路
第二节 三相异步电动机的点 动、 长动电气控制
例题 4-1
如图4-7所示为某学生设计 的具有过载保护的控制电路, 要求能完成:
(1)起动和停止控制; (2)具有过载保护。试分 析该控制电路的错误。
图4-7 具有过载保护的控制电路
第二节 三相异步电动机的点 动、 长动电气控制

南昌大学机床电气控制技术及PLC课后题答案_(1)

南昌大学机床电气控制技术及PLC课后题答案_(1)

第一章常用低压电器1-1开关设备通断时,触头间的电弧是怎样产生的?通常哪些灭弧措施?答:当开关电器的触头分离时,触头间的距离很小,触头间电压即使很低,但电场强度很大(E=U/d),在触头表面由于强电场发射和热电子发射产生的自由电子,逐渐加速运动,并在间隙中不断与介质的中性质点产生碰撞游离,使自由电子的数量不断增加,导致介质被击穿,引起弧光放电,弧隙温度剧增,产生热游离,不断有大量自由电子产生,间隙由绝缘变成导电通道,电弧持续燃烧。

(1)吹弧(2)拉弧(3)长弧割短弧(4)多断口灭弧(5)利用介质灭弧(6)改善触头表面材料1-2 写出下列电器的作用、图形符号和文字符号:答:(1)熔断器作用:严重过载和短路保护图形符号:文字符号:FU作用:用于机床上作电源的引入开关,也可用来接通和分断小电流电路。

图形符号:文字符号:SA(3)按钮开关作用:在控制电路发出手动控制信号图形符号:文字符号:SB(a) (b) (c) (d) (e) (f) (g) (h)(a) 线圈一般符号 (b) 通电延时线圈 (c) 断电延时线圈 (d) 通电延时闭合动合(常开)触点 (e) 通电延时断开动断(常闭)触点 (f )断点延时断开动合(常开)触点 (g )断点延时闭合动断(常闭)触点(h )瞬动触点作用:在电路正常工作条件下作为线路的不频繁接通和分断用 ,并在电路发生过载、短路及失压时能自动分断电路。

图形符号:作用:主要用于电动机的过载保护、断相保护、电流不平衡运行的保护, 图形符号:热元件 常闭触点 文字符号:FR (7)时间继电器作用:按照所需时间间隔,接通或断开被控制的电路 图形符号:文字符号:KT作用:以旋转的速度信号的快慢为指令信号,与接触器配合实现对电动机的反接制动。

图形符号:文字符号:KS1-3 在电动机的控制线路中,熔断器和热继电器能否相互代替?为什么?答:二者不能相互替换,热继电器和熔断器在电动机保护电路中的作用是不相同的。

实验一三相异步电动机点动和自锁控制

实验一三相异步电动机点动和自锁控制

实验一三相异步电动机点动和自锁控制实验一:三相异步电动机点动和自锁控制一、实验目的1.掌握三相异步电动机点动控制原理和实现方法。

2.掌握三相异步电动机自锁控制原理和实现方法。

3.理解点动与自锁控制在实际应用中的差异及其适用场合。

二、实验原理1.点动控制:通过手动开关或按钮控制电动机的启动和停止,适用于短时间、临时性的控制。

其特点是操作简单,但容易误操作,不安全。

2.自锁控制:利用接触器的辅助触点与启动按钮串联,实现电动机的连续运转。

当按下启动按钮时,接触器吸合,电动机开始运转;当松开启动按钮时,接触器仍然保持吸合状态,电动机继续运转。

自锁控制在长时间连续运转的场合应用广泛,具有安全可靠的特点。

三、实验步骤1.准备实验器材:三相异步电动机、交流接触器、热继电器、按钮开关、导线等。

2.搭建实验电路:根据点动和自锁控制的原理,设计并搭建实验电路。

电路应包括电源部分、控制部分和负载部分。

3.通电前检查:在通电前,检查电路连接是否正确,是否符合电气安全规范。

特别注意电源与负载的连接是否正确,以及导线是否接触良好。

4.点动控制实验:(1)按照电路图连接好电源、控制和负载部分。

(2)按下按钮开关,观察电动机是否启动。

(3)松开按钮开关,观察电动机是否停止。

5.自锁控制实验:(1)在点动控制电路的基础上,添加接触器的辅助触点与启动按钮串联。

(2)按照电路图连接好电源、控制和负载部分。

(3)按下按钮开关,观察电动机是否启动并持续运转。

(4)松开按钮开关,观察电动机是否继续运转。

6.观察与记录:在实验过程中,观察并记录各种操作下的电动机状态,以及接触器的吸合与释放情况。

7.整理实验数据:根据实验观察和记录的数据,分析点动控制和自锁控制在不同场合的适用性。

8.清理实验现场:在实验结束后,断开电源,拆除电路连接,并整理好实验器材。

四、实验结果与分析1.点动控制实验结果表明,当按下按钮时,电动机启动;松开按钮时,电动机停止。

机床电气控制与PLC 第2版 项目一 三相异步电动机单向起动控制电路

机床电气控制与PLC 第2版 项目一 三相异步电动机单向起动控制电路

图1-2 HD系列、HS系列刀开关外形 a) HD系列刀开关 b) HS系列刀开关
图1-3 刀开关的图形、文字符号 a) 单极 b) 双极 c) 三极
任务一 单向手动控制电路安装与调试
选择刀开关时应考虑以下两个方面: (1)刀开关结构形式的选择 应根据刀开关的作用和装置的安装形式来选择是否带灭弧装置,若分断负 载电流时,应选择带灭弧装置的刀开关。根据装置的安装形式来选择,是否是正面、背面或侧面操作形式, 是直接操作还是杠杆传动,是板前接线还是板后接线的结构形式。 (2)刀开关的额定电流的选择 一般应等于或大于所分断电路中各个负载额定电流的总和。对于电动机 负载,应考虑其起动电流,所以应选用额定电流大一级的刀开关。若再考虑电路出现的短路电流,还应选 用额定电流更大一级的刀开关。
任务一 单向手动控制电路安装与调试
(二)熔断器 熔断器是一种广泛应用的,简单、有效的保护电器,在电路中主要用于短路保护。具有结构简单、体
积小、重量轻、使用维护方便、价格低廉等优点。熔断器的主体是低熔点金属丝或金属薄片制成的熔体, 串联在被保护的电路中。在正常情况下,熔体相当于一根导线,当发生短路或过载时,电流很大,熔体因 过热熔化而切断电路。
本任务要求识读单向手动控制电路,并掌握其工作原理,能对 电路进行正确的安装接线和通电试验。
任务一 单向手动控制电路安装与调试
知识准备
(一)刀开关 刀开关是手动电器中结构最简单的一种,主要用作隔离电源,也可用来非频繁地接通和分断容量较小的
低压配电线路。在安装刀开关时,手柄要向上,不得平装和倒装,避免重力自动下落,引起误动合闸。接线 时,应将电源线接在上端,负载接在下端,这样拉闸后刀片与电源隔离,及便于更换熔丝,又可防止可能发 生的意外事故。

实验一 三相异步电动机点动和自锁控制线路

实验一 三相异步电动机点动和自锁控制线路

电气控制技术实验指导书亳州职业技术学院实验一三相异步电动机点动和自锁控制线路一、实验目的1、通过对三相异步电动机点动控制和自锁控制线路的实际安装接线,掌握由电气原理图变换成安装接线图的知识。

2、通过实验进一步加深理解点动控制和自锁控制的特点以及在机床控制中的应用。

二、实验设备三、实验方法实验前要检查控制屏左侧端面上的调压器旋钮须在零位。

开启“电源总开关”,按下启动按钮,旋转调压器旋钮将三相交流电源输出端U、V、W的线电压调到220V。

再按下控制屏上的“关”按钮以切断三相交流电源。

以后在实验接线之前都应如此。

1、三相异步电动机点动控制线路:按图1-1接线。

图中SB1、KM1选用D61-2上元器件,Q1、FU1、FU2 、FU3 、FU4选用D62-2上元器件,电机选用WDJ24(△/220V)。

接线时,先接主电路,它是从220V三相交流电源的输出端U、V、W开始,经三刀开关Q1、熔断器FU1、FU2、FU3、接触器KM1主触点到电动机M的三个线端A、B、C 的电路,用导线按顺序串联起来,有三路。

主电路经检查无误后,再接控制电路,从熔断器FU4插孔V开始,经按钮SB1常开、接触器KM1线圈到插孔W。

线接好,图1-1 点动控制线路经指导老师检查无误后,按下列步骤进行实验:(1)按下控制屏上“开”按钮;(2)先合Q1,接通三相交流220V电源;(3)按下启动按钮SB1,对电动机M进行点动操作,比较按下SB1和松开SB1时电动机M的运转情况。

2、三相异步电动机自锁控制线路:按下控制屏上的“关”按钮以切断三相交流电源。

按图1-2接线,图中SB1、SB2、KM1、FR1选用D61-2挂件,Q1、FU1、FU2 、FU3 、FU4选用D62-2挂件,电机选用WDJ24(△/220V)。

检查无误后,启动电源进行实验:(1) 合上开关Q1,接通三相交流220V电源;(2) 按下启动按钮SB2,松手后观察电动机M运转情况;(3) 按下停止按钮SB1,松手后观察电动机M运转情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

任务一 三相异步电动机的点动电气控制
电气控制系统图 电气控制系统在机械设备中起着中枢作用,为了便于分析系统的工作原理, 便于安装、调试及检修,采用统一的电气符号、图线来表示系统中各电气 设备、装置、元器件的相互连接关系,这样绘制出的图称为电气控制系统 图。电气控制系统图主要包括:电气控制原理图和电气设备安装图。
任务实施
一、任务实施器材
(1)钢丝钳、尖嘴钳、剥线钳、电工刀 一套/组
(2)接线板、万用表
一套/组
(3)任务所需电气元件及设备
一套/组
二、任务实施步骤
1、列一列 元器件清单
请根据给出的安装三相异步电动机点动控制线路所需的元器件及导线,
将每种的型号、规格和数量填入表4-1-1中,并检查元器件的质量。
电气安装接线图主要用来表示各电器元件之间的接线 关系,是实际安装接线、线路检查、线路维修和故障处理的 重要依据,是遵循布置合理、经济的原则来安排的。
任务一 三相异步电动机的点动电气控制
点动控制线路基本知识
三相异步电动机点动控制是指需要电动机短时断续工作时,只要按下按钮电
动机就松动,松开按钮电动机就停止动作的控制。它是用按钮、接触器来控
制电动机运转的最简单的正转控制线路,如工厂中使用的电动葫芦和机床快
速移动装置等。
电气原理作原理 合上电源开关QS 启动:按下SB→KM线圈得电→KM主触点闭合→电动机M启动运转; 停车:松开SB→KM线圈失电→KM主触点断开→电动机M失电停转。 停止使用时,断开电源开关QS。 技巧 实现点动控制可以将点动按钮直接与交流接触器的线圈串联,电动机的运 行时间由按钮按下的时间决定。 线路对电动机的保护功能 短路保护:由熔断器FU1、FU2分别对主电路和控制电路实行短路保护。 由于点动控制电路启动较为频繁且启动电流较大,故不宜在电路中利用热继 电器设置过载保护。
(3)电气控制原理图中,各电器元件的导电部件如线圈和触点的位置,应根 据便于阅读和分析的原则来安排,绘在它们完成作用的地方。同一电器元件的各 个部件可以不画在一起。
(4)电气控制原理图中所有电器元件的触点,都按没有通电或不受外力作用 时的断开或闭合状态画出。如继电器、接触器的触点,按线圈未得电时状态画; 按钮、行程开关的触点,按不受到外力作用时的状态画;主令控制电器元件,按 手柄处于“零位”时的状态画。
任务八 三相异步电动机机械制动控制 任务九 三相异步电动机能动制动控制 任务十 三相异步电动机反接制动控制
任务十一 可编程控制器的控制
项目分析
➢掌握三相异步电动机点动、长动控制电路的画 法和控制原理;学会分析不同形 式的实现三相异步电动机点动与长动控制的电路;能初步判断电气控制原理图的 正误并改正错误。 ➢掌握三相异步电动机正、反转控制电路的画法和控制原理;掌握“互锁”和 “联锁”的概念;学会分析不同形式的三相异步电动机正、反转 控制电路; 能初步判断电气控制原理图的正误并改正错误。 ➢掌握工作台自动往复循环电气控制电路的画法和控制原理;进一步熟悉“自锁” 和“互锁”的概念; ➢掌握星形-三角形降压起动控制电路的画法和控制原理;理解自耦变压器降压 起动控制电路的画法和控制原理; ➢理解电磁式机械制动控制电路的控制原理;掌握能耗制动和反接制动控制电路 的工作原理;能正确选用本节课所学的几种控制方法。
(5)电气控制原理图中,有直接联系的交叉导线的连接点,要用黑圆点表示; 否则,不能画黑圆点。
(6)电气控制原理图中,无论是主电路还是辅助电路,各电器元件一般应按 动作顺序从上到下或从左到右依次排列。
任务一 三相异步电动机的点动电气控制
对较复杂的电气控制电路,可画出电气设备安装图来表示电气控制系 统中各种电气设备的实际安装位置和接线情况。电气设备安装图包括电器 布置图和电气安装接线图两种,图4-2和4-3所示分别为CW6132型卧式机床 的电器布置图和电气安装接线图。
在分析和设计电气控制系统图时,应遵循一定的规则,只 有掌握了这些绘图的规则,才能快速、准确地识图。
任务一 三相异步电动机的点动电气控制
(1)在电气控制原理图中,各电器元件不画实际的外形图,而采用国家规定 的统一标准图形符号来画,其文字符号也要符合国家标准。
(2)电气控制原理图一般分为主电路和控制电路两部分画出。一般主电路画 在左边;控制电路画在右边。
1、电气控制原理图 电气控制原理图是根据电路的工作原理,遵循便于阅读、分析的原则, 采用电器元件展开的形式绘制成的表示电气控制电路工作原理的图形。 电气控制原理图一般分为主电路和辅助电路。图4-1-1所示为CW6132型 卧式机床的电气控制原理图。
任务一 三相异步电动机的点动电气控制
图4-1 CW6132型卧式机床的电气控制原理图
图4-2 CW6132型卧式机床 电器布置图
图4-3 CW6132型卧式机床电 气安装接线图
任务一 三相异步电动机的点动电气控制
1. 电器布置图
电器布置图主要用来表示电动机和电器元件的实际位置, 图中各电器元件的符号和相关电器原理控制图上的符号保持一致, 各电器元件之间留有导线槽的位置。
2. 电气安装接线图
任务实施
表4-1-1 元器件清单
序号 1 2 3 4 5 6 7 8 9 10 11
机床电气控制技术与技能
项目四 掌握机床电气控制基本环节
任务一 三相异步电动机点动电气控制 任务二 三相异步电动机长动电气控制 任务三 三相异步电动机接触器互锁正反转控制 任务四 三相异步电动机接触器互锁正反转控制 任务五 工作台的自动往复循环电气控制
项目四 掌握机床电气控制基本环节
任务六 三相异步电动机Y-△的降压控制 任务七 三相异步电动机自耦变压器起动控制
任务一 三相异步电动机的点动电气控制
1. 电气控制原理图组成
电气控制原理图包括主电路和辅助电路两大部分。主电路是 指从电源到电动机大电流通过的电路。辅助电路包括控制电路、照 明电路以及保护电路。它们主要由接触器或继电器的线圈、触点、 按钮、照明灯及控制变压器等电器元件组成。
2. 电气控制原理图绘制基本原则
相关文档
最新文档