江苏泰州2020年高三调研考试-【数学】(含答案及评分细则)

合集下载

【数学】2020届江苏省七市高三下学期第三次调研考试数学试题(解析版)

【数学】2020届江苏省七市高三下学期第三次调研考试数学试题(解析版)

2020届江苏省七市(南通、泰州、扬州、徐州、淮安、连云港、宿迁)高三下学期第三次调研考试数学试题一、填空题1.已知集合A={﹣1,0,1},B={0,2},则A U B=_______.【答案】{﹣1,0,1,2}【解析】直接利用集合的并集运算求解.【详解】解:∵集合A={﹣1,0,1},B={0,2},∴A U B={﹣1,0,1,2}.故答案为:{﹣1,0,1,2}【点睛】本题主要考查集合的并集运算,意在考查学生对该知识的理解掌握水平,属于基础题.2.设复数z满足(3﹣i)z,其中i为虚数单位,则z的模是_______.【答案】1【解析】先利用复数的除法求出复数z,再求复数的模得解.【详解】解:∵(3﹣i)z,∴z====,∴1z==.故答案为:1【点睛】本题主要考查复数的除法运算和复数模的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.3.如图是一个算法流程图,则输出的k的值是____.【答案】5【解析】由已知中的框图可知进入循环的条件为不满足条件2k4k0,->模拟程序的运行结果,即可得到输出的k值【详解】模拟执行程序,可得k=1不满足条件2k4k0,->执行循环体,k=2不满足条件2k4k0,->执行循环体,k=3不满足条件2k4k0,->执行循环体,k=4不满足条件2k4k0,->执行循环体,k=5满足条件2k4k0,->退出循环,输出k的值为5故答案为5【点睛】本题考查程序框图的应用,明确每次循环,准确判断何时结束循环是关键,是基础题4.某校高一、高二、高三年级的学生人数之比为4:4:3,为了解学生对防震减灾知识的掌握情况,现采用分层抽样的方法抽取n名学生进行问卷检测.若高一年级抽取了20名学生,则n的值是_______.【答案】55【解析】根据分层抽样每个个体入样的可能性相同,计算可得;【详解】解:依题意可得20(443)55 4⨯++=.故答案为:55【点睛】本题考查分层抽样的应用,属于基础题.5.今年我国中医药选出的“三药三方”对治疗新冠肺炎均有显著效果,功不可没.“三药”分别为金花清感颗粒、连花清瘟胶囊、血必净注射液;“三方”分别为清肺排毒汤、化湿败毒方、宜肺败毒方,若某医生从“三药三方”中随机选出2种,则恰好选出1药1方的概率是_______.【答案】3 5【解析】根据组合的方法结合古典概型的概率公式求解即可. 【详解】从“三药三方”中随机选出2种共2615C=个基本事件,其中1药1方的事件数有11339C C=个.故概率P=93 155=.故答案为:3 5【点睛】本题主要考查了利用组合的方法解决随机事件的概率问题,属于基础题.6.在平面直角坐标系xOy中,已知抛物线y2=4x的准线是双曲线22212x ya-=(a>0)的左准线,则实数a的值是_______.【解析】根据抛物线以及双曲线的准线方程列式求解即可. 【详解】因为抛物线y2=4x的准线是双曲线22212x ya-=(a>0)的左准线,故21-=,即()()24222210a a a a+=⇒-+=,因为0a>故解得a.【点睛】本题主要考查了抛物线与双曲线的简单性质,属于基础题.7.已知5cos()13αβ+=,3sin5β=,α,β均为锐角,则sinα的值是_______.【答案】33 65【解析】计算得到12sin()13αβ+=,4cos5β=,再利用和差公式计算得到答案.【详解】∵α,β均为锐角,∴()0,αβπ+∈,从而sin()0αβ+>,cos0β>,∵5cos()13αβ+=,3sin5β=,∴12sin()13αβ+=,4cos5β=,∴sin sin[()]sin()cos cos()sinααββαββαββ=+-=+-+124533313513565=⨯-⨯=.故答案为:3365.【点睛】本题考查了三角恒等变换,意在考查学生的计算能力和转化能力.8.公园里设置了一些石凳供游客休息,这些石凳是经过正方体各棱的中点截去8个一样的四面体得到的(如图所示).设石凳的体积为V1,正方体的体积为V2,则12VV的值是_______.【答案】56【解析】设正方体的棱长为2a即可得出V2,再利用总体积减去正方体八个角上的三棱锥的体积求出V1,继而得出12VV即可.【详解】解析:设正方体的棱长为2a,则V2=8a3,23331211420883233V V a a a a a=-⨯⨯⋅=-=,故3132205386aV V a ==. 【点睛】本题主要考查了空间几何体的体积问题,属于基础题. 9.已知x >1,y >1,xy =10,则14lg lg x y+的最小值是_______. 【答案】9【解析】依题意可得lg lg 1x y +=,再由基本不等式计算可得; 【详解】解:∵10xy =,1x >,1y >,∴lg lg 1x y +=,lg 0x >,lg 0>y ,所以1414lg 4lg ()(lg lg )55lg lg lg lg lg lg y x x y x y x y x y +=++=++≥+59=+=,当且仅当lg 4lg lg lg y x x y=,即1310x =时取“=”. 故答案为:9 【点睛】本题考查对数的运算及基本不等式的应用,属于基础题.10.已知等比数列{}n a 的前n 项和为n S ,若24S ,4S ,32S -成等差数列,且232a a +=,则6a 的值是_______. 【答案】32- 【解析】根据等差等比数列的性质列式求解得2q =-,再利用等比数列各项的关系求解6a 即可. 【详解】∵24S ,4S ,32S -成等差数列,∴423242S S S =-,即4223S S S S -=-, 所以343a a a +=-,故432a a =-.∴2q =-. 又232a a +=,则()2122a -=,所以22a =-,46232a a q ==-.故答案为:32- 【点睛】本题主要考查了等比数列的简单性质,等差中项的运用等,属于基础题.11.海伦(Heron ,约公元1世纪)是古希腊亚历山大时期的数学家,以他的名字命名的“海伦公式”是几何学中的著名公式,它给出了利用三角形的三边长a ,b ,c 计算其面积的公式S △ABC =()()()p p a p b p c ---,其中2a b cp ++=,若a =5,b =6,c =7,则借助“海伦公式”可求得△ABC 的内切圆的半径r 的值是_______. 【答案】263【解析】首先根据海伦公式求得三角形ABC 的面积,然后根据三角形内切圆计算公式,计算出三角形ABC 的内切圆. 【详解】567922a b c p ++++===,S △ABC =9(95)(96)(97)66⨯-⨯-⨯-=, 由于()12ABC S a b c r ∆=++⋅,所以2266265673S r a b c ⨯===++++. 故答案为:263【点睛】本小题主要考查三角形面积的计算,考查三角形内切圆半径的计算,属于基础题. 12.如图,△ABC 为等边三角形,分别延长BA ,CB ,AC 到点D ,E ,F ,使得AD =BE =CF .若BA 2AD =u u u r u u u r ,且DE =13,则AF CE ⋅u u u r u u u r的值是_______.【答案】92-【解析】设AD =x ,再在△BDE 中根据余弦定理求解得出1x =,再利用数量积公式求解AF CE ⋅u u u r u u u r即可. 【详解】易知△DEF 也为等边三角形,设AD =x ,则BD =3x , △BDE 中,由余弦定理得:()()221133232x x x x ⎛⎫=+-⨯-⎪⎝⎭,解得x =1, 故BD =3,则9AF CE 33cos1202⋅=⨯⨯︒=-u u u r u u u r .故答案为:92-【点睛】本题主要考查了平面向量数量积以及余弦定理的运用,属于基础题.13.已知函数22(1),0()2,0k x f x xx k x ⎧-<⎪=⎨⎪-≥⎩,若函数()()()g x f x f x =-+有且仅有四个不同的零点,则实数k 的取值范围是_______. 【答案】()27,+∞ 【解析】根据题意可求得222,0()4,02,0kx k x x g x k x k x k x x ⎧+->⎪⎪=-=⎨⎪⎪--<⎩,再分0,0,0k k k =<>三种情况求函数的单调性,进而根据零点存在性定理求出函数的最小值求解不等式即可. 【详解】由题, ()22212,0()22,0221,0k x k x x g x k k x x k k x x ⎧⎛⎫++-> ⎪⎪⎝⎭⎪⎪=--=⎨⎪⎛⎫⎪--+-< ⎪⎪⎝⎭⎩,即222,0()4,02,0kx k x x g x k x k x k x x ⎧+->⎪⎪=-=⎨⎪⎪--<⎩,当k =0时,原函数有且只有一个零点,不符题意,故k ≠0,观察解析式,可知函数()g x 有且仅有四个不同的零点, 可转化为22(),0kg x x k x x=+->有且仅有两个不同的零点, 当k <0,函数()g x 在(0,+∞)单调递增,最多一个零点,不符题意,舍;当k >0,322()(),0x k g x x x -'=>,令()0g x '=有13x k =,故要使()g x 在(0,+∞)有且仅有两个不同的零点, 则1233min 132()()0k g x g k k k k==+-<,因为0k >,故213333k k k <⇒<,解得k >27,综上所述,实数k 的取值范围是(27,+∞).故答案为:(27,+∞) 【点睛】本题主要考查了根据分段函数的零点个数求解参数范围问题,需要根据函数的性质求出单调性以及最值,进而根据零点存在性定理列式求解.属于中档题.14.在平面直角坐标系xOy 中,过点P (2,﹣6)作直线交圆O :x 2+y 2=16于A ,B 两点, C (0x ,0y )为弦AB _______. 【答案】) 【解析】求出点C C (0x ,0y )到点()1,3Q -距离,数形结合即可得解. 【详解】因为C (0x ,0y )为弦AB 的中点,所以OC PC ⊥, 圆O :x 2+y 2=16的圆心为()0,0O ,半径为4, 所以436210OP =+=,OP 的中点()1,3T -,C 在以OP 为直径的圆即圆22:(1)(3)10T x y -++=上,且C 在圆O 内,如图所示,圆T 上的劣弧»EF(不含端点)即为C 的轨迹,2200(1)(3)x y ++-C (0x ,0y )到点()1,3Q -距离,由图可知,min 1010CQ TQ ==联立方程()()2222131016x y x y ⎧-++=⎪⎨+=⎪⎩可得466512265x y ⎧-=⎪⎪⎨--⎪=⎪⎩ 或466512265x y ⎧+=⎪⎪⎨-+⎪=⎪⎩, 所以点4661226E ---⎝⎭,4661226F +-+⎝⎭, 所以224661226(1)(3)4255EQ FQ +-+++-=== 2200(1)(3)x y ++-1042).故答案为:【点睛】本题考查了直线与圆的综合应用,考查了数形结合思想与转化化归思想,属于中档题.二、解答题15.△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若5(sin C sin B)5sin A 8sin Ba b c--=+.(1)求cosC 的值;(2)若A =C ,求sinB 的值. 【答案】(1)45(2)2425【解析】(1)利用正弦定理将角化边,再由余弦定理计算可得; (2)由(1)4cos 5C =,由同角三角函数的基本关系求出sin C ,再由诱导公式及二倍角公式计算可得; 【详解】解:(1)由正弦定理:sin sin sin a b cA B C ==,且5(sin C sin B)5sin A 8sin B a b c--=+得5()58c b a ba b c--=+, 整理得:()22258a b c ab +-=,故由余弦定理:2224cos 25a b c C ab +-==;(2)由(1)4cos 5C =,又C 为△ABC 内角,故3sin 5C ==, A C =,则24sin sin()sin()sin 22sin cos 25B AC A C C C C π=--=+===. 【点睛】本题考查正弦定理、余弦定理的应用,同角三角函数的基本关系,属于基础题. 16.如图,在直三棱柱ABC —A 1B 1C 1中,AC ⏊BC ,D ,E 分别是A 1B 1,BC 的中点.求证:(1)平面ACD ⊥平面BCC 1B 1; (2)B 1E ∥平面ACD .【答案】(1)见解析(2)见解析 【解析】(1)根据直三棱柱的性质,证明1,AC BC AC CC ⊥⊥进而得到AC ⊥平面11BCC B 即可. (2) 取AC 中点F ,连结EF ,DF ,再证明四边形B 1DFE 为平行四边形即可. 【详解】证明:(1)直三棱柱ABC —A 1B 1C 1中,CC 1⊥底面ABC ,又AC ⊂底面ABC 故AC ⊥CC 1,又因为AC ⊥BC ,CC 1∩BC =C CC 1⊂平面BCC 1B 1,BC ⊂平面BCC 1B 1 所以,AC ⊥平面BCC 1B 1,又因为AC ⊂平面ACD 所以,平面ACD ⊥平面BCC 1B 1; (2)取AC 中点F ,连结EF ,DF 因为E ,F 分别为BC ,AC 中点 所以,EF ∥AB ,EF =12AB 三棱柱ABC —A 1B 1C 1中,AB // A 1B 1,AB =A 1B 1 又因为D 为A 1B 1中点,所以B 1D ∥AB ,B 1D =12AB 所以,EF ∥B 1D ,EF =B 1D因此,四边形B 1DFE 为平行四边形所以B 1E //DF ,又因为DF ⊂平面ACD ,B 1E ⊄平面ACD 所以,B 1E ∥平面ACD .【点睛】本题主要考查了根据线面垂直与平行的性质证明面面垂直以及线面垂直等,属于中档题.17.某单位科技活动纪念章的结构如图所示,O 是半径分别为1cm ,2cm 的两个同心圆的圆心,等腰△ABC 的顶点A 在外圆上,底边BC 的两个端点都在内圆上,点O ,A 在直线BC 的同侧.若线段BC 与劣弧»BC所围成的弓形面积为S 1,△OAB 与△OAC 的面积之和为S 2, 设∠BOC =2θ.(1)当3πθ=时,求S 2﹣S 1的值;(2)经研究发现当S 2﹣S 1的值最大时,纪念章最美观,求当纪念章最美观时,cos θ的值.(求导参考公式:(sin 2x )'=2cos 2x ,(cos 2x )'=﹣2sin 2x ) 【答案】(1)5343π- (2cm );(2)152- 【解析】依题意可得2(0,)BOC θπ∠=∈,故(0,)2πθ∈,1sin cos S θθθ=-,22sin S θ=,(1)当3πθ=时,代入计算可得;(2)由2112sin sin 22S S θθθ-=+-,(0,)2πθ∈令1()2sin sin 22f θθθθ=+-,(0,)2πθ∈,利用导数研究函数的单调性,求出函数的最值; 【详解】解:过点O 作OD BC ^于点D ,则D 为BC 的中点,又ABC V 为等腰三角形,所以A 、O 、D 三点共线,BOA AOC πθ∠=∠=-2(0,)BOC θπ∠=∈,故(0,)2πθ∈111211sin 2sin cos 22S OB OC θθθθθ=⋅⋅⋅-⋅=-()21212sin 2sin 2S πθθ=⨯⨯⨯-=(1)3πθ=时,133S π=23S 21343S S π-=-, 答:当3πθ=时,求21S S -533π- (2cm ); (2)2112sin sin 22S S θθθ-=+-,(0,)2πθ∈ 令1()2sin sin 22f θθθθ=+-,(0,)2πθ∈ 2()2cos 2cos 2f θθθ'=+-令()0f θ'=,得15cos 2θ-=或15cos 2θ-= 记015cos θ-+=0(0,)2πθ∈θ()00,θ0θ0,2πθ⎛⎫⎪⎝⎭()f θ'+ 0 - ()f θ单调递增极大值单调递减故0=θθ,即15cos θ-+=时,()f θ最大,即21S S -的值最大, 答:纪念章最美观时,cos θ的值为15-+. 【点睛】本题考查利用导数研究函数的最值,三角形面积公式的应用,属于中档题.18.如图,在平面直角坐标系xOy 中,已知椭圆22221x y a b+=(a >b >0)的左、右焦点分别为F 1,F 2,过点F 2的直线交椭圆于M ,N 两点.已知椭圆的短轴长为22,离心率为63.(1)求椭圆的标准方程;(2)当直线MN 511||||F M F N +的值;(3)若以MN 为直径的圆与x 轴相交的右交点为P (t ,0),求实数t 的取值范围.【答案】(1)22162x y +=(2)1364(3)6[6,23t ∈+.【解析】(1)设焦距2c ,由题得到关于,,a b c 的方程组,解方程组即得解;(2)先求出点,M N 的坐标,再利用两点间的距离公式得解;(3)先讨论当直线MN斜率不存在时,23t =+;再讨论直线MN 斜率存在的情况,联立直线和椭圆方程得到韦达定理,再根据0PM PN ⋅=u u u u r u u u r得到222(6)(31210)0t t t t >⎧⎨--+≥⎩,解不等式组综合即得解. 【详解】解:(1)设焦距2c,222226b b a c a c a⎧⎪=⎪⎪=-∴=⎨⎪⎪=⎪⎩,b =故椭圆的标准方程为:22162x y +=;(2)由(1)知,c =2,则F 2(2,0)2292)436x y x x y y ⎧=⎪⎧=-⎪⎪∴⎨⎨+=⎪⎩⎪=⎪⎩或32x y ⎧=⎪⎪⎨⎪=⎪⎩即93(,(,4422M N -,或93(,),(,4422N M -,因此,11||||F M F N +==; (3)当直线MN 斜率不存在时,MN :x =2,||MN=3, 以MN 为直径的圆方程为:222(2)3x y -+=, 其与x 轴相交的右交点为(23+,0),即23t =+; 当MN 的斜率存在时,设MN :(2)y k x =-,M(1x ,1y ),N(2x ,2y )222222(2)(31)12126036y k x k x k x k x y =-⎧∴+-+-=⎨+=⎩, 所以224(1)k ∆=+,21221231k x x k +=+,212212631k x x k -=+, 则221212121222(2)(2)[2()4]31k y y k x k x k x x x x k =--=-++=-+,因为P 在以MN 为直径的圆上,则0PM PN =u u u u r u u u rg ,所以1212()()0x t x t y y --+= 所以2121212()0x x t x x t y y -+++=所以22222221261220313131k k k t t k k k --⋅+-=+++所以222(31210)6t t k t -+=-, 因为2312100t t -+≠,所以222631210t k t t -=-+. ∵P 是右交点,故t >2, 因此222(6)(31210)0t t t t >⎧⎨--+≥⎩,解得2t ∈+.综合得2t ∈. 【点睛】本题主要考查椭圆标准方程的求法,考查直线和椭圆的位置关系,考查椭圆中的范围问题的求解,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.19.已知{}n a 是各项均为正数的无穷数列,数列{}n b 满足n n n k b a a +=⋅(n N *∈),其中常数k 为正整数.(1)设数列{}n a 前n 项的积(1)22n n nT -=,当k =2时,求数列{}n b 的通项公式;(2)若{}n a 是首项为1,公差d 为整数的等差数列,且21b b -=4,求数列1n b ⎧⎫⎨⎬⎩⎭的前2020项的和;(3)若{}n b 是等比数列,且对任意的n N *∈,22n n k n k a a a ++⋅=,其中k ≥2,试问:{}n a 是等比数列吗?请证明你的结论. 【答案】(1)4n n b =;(2)202020202021S =(3)数列{}n a 是等比数列.证明见解析 【解析】(1)先求出12()n n a n N -*=∈,即得数列{}n b 的通项公式;(2)通过分析得到d =1,得到n a n =,再求出k =1,即得(1)n b n n =+,再利用裂项相消法求数列1n b ⎧⎫⎨⎬⎩⎭的前2020项的和;(3)设{}n b 公比为q 2,则对任意n N *∈,22k n k n k n kn n n kb a a q b a a ++++==,由已知得到k n k na q a +=,证明得到1n n aq a +=,即得数列{}n a 是等比数列.【详解】解:(1)因为(1)22n n nT -=,所以(2)(1)212(2)n n n Tn ---=≥,两式相除,可得(1)(1)(2)1222(2)n n n n n na n -----==≥,当n =1时,111112a T -===,符合上式,所以12()n n a n N -*=∈,当k =2时,112224n n n n n n b a a -++=⋅=⋅=;(2)因为n n n k b a a +=⋅,且11a =,所以1111k k b a a a ++==,2221(1)()k k b a a d a d ++==++, 所以2211(1)4k b b d d a +-=++=,因为{}n a 是各项均为正数的无穷数列,{}n a 是首项为1,公差d 为整数的等差数列, 所以d ,k 均为正整数,所以1d ≥,所以1212k a a d +≥=+≥,所以221(1)43k d d a d d +++=≥+,解得d ≤1,所以d =1,即n a n =. 所以211(1)42k k d d a a ++++==+,即12k a +=,解得k =1,所以1(1)n n n b a a n n +==+,则1111n b n n =-+, 记n b 的前n 项和为n S , 则111111111()()()12233411n S n n n =-+-+-++-=-++L , 所以202012020120212021S =-=; (3)因为{}n b 成等比数列,设公比为q 2,则对任意n N *∈,22k n k n k n kn n n kb a a q b a a ++++==, 因为0n a >,且22n n k n k a a a ++⋅=,所以2n k n k n n k a a a a +++=,所以k n kna q a +=, 因为222111112()kn n n k n n k n n n k n nb a a a q a q b a a a q a +++++++====,所以1n n a q a +=, 所以数列{}n a 是等比数列. 【点睛】本题主要考查数列通项的求法,考查数列的求和问题,考查数列性质的判定,意在考查学生对这些知识的理解掌握水平和分析推理能力.20.已知函数ln ()a xf x x=,ln ()x x a g x e +=,其中e 是自然对数的底数.(1)若函数()f x 的极大值为1e,求实数a 的值;(2)当a =e 时,若曲线()y f x =与()y g x =在0x x =处的切线互相垂直,求0x 的值; (3)设函数()()()h x g x f x =-,若()h x >0对任意的x ∈(0,1)恒成立,求实数a 的取值范围.【答案】(1)a =1;(2)01x =;(3)[1e,+∞). 【解析】(1)利用导数求出()f x 的极大值1()a f e e e==,即得a 的值;(2)由00()()1f x g x ''⋅=-得到000ln x x e e x e +=,设()ln xx xe e x ϕ=+,根据函数的单调性和(1)e ϕ=得到01x =;(3)由题得ln()ln x xae x ae x>对任意x ∈(0,1)恒成立,设ln ()x H x x =,得到x ae x >对任意x ∈(0,1)恒成立,即x x a e >,设()xxG x e=,x ∈(0,1),求出()G x 的最大值得解. 【详解】解:(1)因为ln ()a x f x x=,则2(1ln )()a x f x x -'=,因为ln ()xx ag x e+=,所以a >0, 则当x ∈(0,e )时,()0f x '>,()f x 单调递增, 当x ∈(e ,+∞)时,()0f x '<,()f x 单调递减, 所以当x =e 时,()f x 的极大值1()a f e e e==,解得a =1; (2)当a =e 时,ln ()e x f x x=,1()x x g x e +=,则2(1ln )()e x f x x -'=,()e xxg x -'=,由题意知,0000020(1ln )()()1x e x x f x g x x e--''⋅=⋅=-, 整理得000ln xx e e x e +=,设()ln xx xe e x ϕ=+,则()(1)0xex x e xϕ'=++>,所以()x ϕ单调递增, 因为(1)e ϕ=,所以01x =; (3)由题意可知,ln ln ()0x x a a xh x e x+=->对任意x ∈(0,1)恒成立, 整理得ln()ln x xae xae x>对任意x ∈(0,1)恒成立, 设ln ()xH x x=,由(1)可知,()H x 在(0,1)上单调递增, 且当x ∈(1,+∞)时,()0H x >,当x ∈(0,1)时,()0H x <, 若1x ae x ≥>,则()0()xH ae H x ≥>,若01x ae <<,因为()()x H ae H x >,且()H x 在(0,1)上单调递增,所以x ae x >, 综上可知,x ae x >对任意x ∈(0,1)恒成立,即xx a e >,设()x x G x e =,x ∈(0,1),则1()0xxG x e-'=>,所以()G x 单调递增, 所以1()(1)G x G a e <=≤,即a 的取值范围为[1e,+∞).【点睛】本题主要考查利用导数研究函数的单调性和极值问题,考查利用导数研究不等式的恒成立问题和最值问题,意在考查学生对这些知识的理解掌握水平和分析推理能力. 21.已知m R ∈,11α⎛⎫= ⎪⎝⎭是矩阵121M m ⎛=⎫⎪⎝⎭的一个特征向量,求M 的逆矩阵1M -.【答案】11233M 2133-⎛⎫- ⎪=⎪ ⎪- ⎪⎝⎭. 【解析】根据特征向量定义及矩阵乘法运算,先求得矩阵M ;设矩阵M 的逆矩阵1M a b c d -⎛⎫= ⎪⎝⎭,由矩阵乘法运算可得方程组,解方程组即可确定M 的逆矩阵1M -.【详解】设11α⎛⎫= ⎪⎝⎭是属于特征值n 的一个特征向量,则M n αα=,因为1112113m m M α+⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,11n n n n α⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,所以13m n +==,解得2m =,所以矩阵1221⎛⎫= ⎪⎝⎭M ,设矩阵M 的逆矩阵1M a b c d -⎛⎫= ⎪⎝⎭,则112212210M2201a b a c b d c d a c b d M -⎛⎫ ++⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪++⎝⎝⎭⎭⎝⎪⎭⎝⎭所以21202021a cb d ac bd +=⎧⎪+=⎪⎨+=⎪⎪+=⎩,解得13232313a b c d ⎧=-⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=-⎩,所以11233M 2133-⎛⎫- ⎪=⎪ ⎪- ⎪⎝⎭. 【点睛】本题考查了矩阵特征向量的应用,逆矩阵的求法,属于中档题.22.在极坐标系中,圆C 的方程为()2sin 0r r ρθ=>.以极点为坐标原点,极轴为x 轴正半轴建立平面直角坐标系,直线l的参数方程为1x ty ⎧=⎪⎨=+⎪⎩(t 为参数).若直线l 与圆C 恒有公共点,求r 的取值范围. 【答案】[)2,+∞ 【解析】将圆的极坐标方程化为普通方程,确定圆心和半径,并将直线l 的方程化为一般方程,利用圆心到直线l 的距离不大于r 可得出关于r 的不等式,进而可求得正数r 的取值范围. 【详解】因为圆C 的极坐标方程为2sin r ρθ=,所以22sin r ρρθ=,因为222x y ρ=+,sin y ρθ=,所以222x y ry +=,整理得()222x y r r +-=,即圆C 是圆心为()0,r ,半径为r 的圆,因为直线l的参数方程为1x ty ⎧=⎪⎨=+⎪⎩,消去t20y --=,所以,直线l20y --=,因为直线l 和圆C 有公共点,所以圆心C 到直线l的距离22r d r +==≤,解得2r ≥,因此,r 的取值范围是[)2,+∞.【点睛】本题考查利用直线与圆的位置关系求参数的取值范围,同时也考查曲线的极坐标方程、参数方程与普通方程之间的相互转化,考查计算能力,属于中等题.23.已知1x >,1y >,且4x y +=,求证:22811y x x y +≥--. 【答案】证明见解析【解析】设1x m -=,1y n -=,可得出2m n +=,然后利用基本不等式可证得22811y x x y +≥--. 【详解】设1x m -=,1y n -=,因为1x >,1y >,所以0m >,0n >,且22m n x y +=+-=,()()((2222221144811n m y xn mx y m nmnm n++∴+=+≥+=+≥=--. 当且仅当1m n ==,即2x y ==时,上述等号成立,原命题得证. 【点睛】本题考查利用基本不等式证明不等式,解答的关键在于对代数式进行化简变形,考查推理能力与计算能力,属于中等题.24.某“芝麻开门”娱乐活动中,共有5扇门,游戏者根据规则开门,并根据打开门的数量获取相应奖励.已知开每扇门相互独立,且规则相同,开每扇门的规则是:从给定的6把钥匙(其中有且只有1把钥匙能打开门)中,随机地逐把抽取钥匙进行试开,钥匙使用后不放回.若门被打开,则转为开下一扇门;若连续4次未能打开,则放弃这扇门,转为开下一扇门;直至5扇门都进行了试开,活动结束.(1)设随机变量X 为试开第一扇门所用的钥匙数,求X 的分布列及数学期望()E X ; (2)求恰好成功打开4扇门的概率. 【答案】(1)见解析,()3E X =;(2)80243. 【解析】(1)由题意可知,随机变量X 的可能取值为1、2、3、4,计算出随机变量X 在不同取值下的概率,可得出随机变量X 的概率分布列,利用数学期望公式可求得()E X ;(2)计算出每扇门被打开的概率,然后利用独立重复试验的概率公式可求得所求事件的概率. 【详解】(1)由题意可知,随机变量X 的可能取值为1、2、3、4, 则()116P X ==,()5112656P X ==⨯=, ()541136546P X ==⨯⨯=,()5431543214654365432P X ==⨯⨯⨯+⨯⨯⨯=,所以随机变量X 的分布列为:X1 2 3 4P16161612所以随机变量的数学期望()1111123436662E X =⨯+⨯+⨯+⨯=; (2)由(1)可知,每扇门被打开的概率为54322165433P =-⨯⨯⨯=, 设恰好成功打开四扇门为事件A ,则()445218033243P A C ⎛⎫=⋅=⎪⎝⎭.【点睛】本题考查随机变量及其分布列以及数学期望的计算,同时也考查了独立重复试验概率的计算,考查计算能力,属于中等题.25.如图,在平面直角坐标系xOy 中,已知抛物线()220y px p =>的焦点为F ,准线与x 轴的交点为E .过点F 的直线与抛物线相交于A 、B 两点,EA 、EB 分别与y 轴相交于M 、N 两点,当AB x ⊥轴时,2EA =.(1)求抛物线的方程;(2)设EAB V 的面积为1S ,EMN V 面积为2S ,求12S S 的取值范围. 【答案】(1)2y =;(2)[)4,+∞. 【解析】(1)当AB x ⊥轴时,求出AF ,利用勾股定理可求得正数p 的值,进而可得出抛物线的标准方程;(2)设直线AB的方程为2x my =+,设点()11,A x y 、()22,B x y ,求出点M 、N 的坐标,进而可求得1S 、2S 关于m 的表达式,可得出12S S 关于m 的表达式,利用不等式的基本性质可求得12S S 的取值范围. 【详解】(1)当AB x ⊥轴时,直线AB 的方程为2p x =,联立222p x y px⎧=⎪⎨⎪=⎩,可得y p =, 则AF p =,且EF p =,2EA ∴==,解得p =因此,抛物线的标准方程为2y =; (2)设直线AB的方程为2x my =+,由22y x my ⎧=⎪⎨=+⎪⎩,得220y --=, 设点()11,A x y 、()22,B x y,所以12y y +=,122y y =-,直线AE方程为2y x ⎛⎫=+⎪⎪⎭, 令0x =,得1112M y y y ==,同理2222N y y y ==所以M N y y -===其中(()2222121212224222my mym y y y y m m m ++=++=-++=+,则122121244412M NEF y y S m S EO y y-==+≥-,当0m =时等号成立, 因此12S S 的取值范围为[)4,+∞. 【点睛】本题考查抛物线方程的求解,同时也考查了抛物线中三角形面积比的取值范围的求解,考查计算能力,属于中等题.。

江苏省泰州市2020届高三下学期调研测试数学试题(附答案解析)

江苏省泰州市2020届高三下学期调研测试数学试题(附答案解析)

江苏省泰州市2019—2020学年度第二学期调研测试 高三数学试题第I 卷(必做题,共160分)一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上.)1.已知集合A ={l ,2},B ={2,4,8},则A B = .2.若实数x ,y 满足x +y i =﹣1+(x ﹣y )i (i 是虚数单位),则xy = .3.如图是容量为100的样本的频率分布直方图,则样本数据落在区间[6,18)内的频数为 .4.根据如图所示的伪代码,可得输出的S 的值为 .5.若双曲线22221x y a b-= (a >0,b >0)的一条渐近线方程为2y x =,则该双曲线的离心率为 .6.将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,这两次出现向上的点数分别记为x ,y ,则1x y -=的概率是 . 7.在平面直角坐标系xOy 中,抛物线y 2=4x 上一点P 到焦点F 的距离是它到y 轴距离的3倍,则点P 的横坐标为 .8.我国古代数学名著《增删算法统宗》中有这样一首数学诗:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”它的大意是:有人要到某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都是前一天的一半,一共走了六天到达目的地.那么这个人第一天走的路程是 里. 9.若定义在R 上的奇函数()f x 满足(4)()f x f x +=,(1)1f =,则(6)f +(7)f +(8)f 的值为 .10.将半径为R 的半圆形铁皮卷成一个圆锥的侧面,若圆锥的体积为,则R = .11.若函数2()1x a x a f x x x a+≥⎧=⎨-<⎩,,只有一个零点,则实数a 的取值范围为 .12.在平面直角坐标系xOy 中,已知点A(1x ,1y ),B(2x ,2y )在圆O :224x y +=上,且满足12122x x y y +=-,则1212x x y y +++的最小值是 .13.在锐角△ABC 中,点D ,E ,F 分别在边AB ,BC ,CA 上,若AB 3AD =,AC AF λ=,且BC ED 2EF ED 6⋅=⋅=,ED 1=,则实数λ的值为 .14.在△ABC 中,点D 在边BC 上,且满足AD =BD ,3tan 2B ﹣2tanA +3=0,则BDCD的取值范围为 .二、解答题(本大题共6小题,共计90分,请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.) 15.(本小题满分14分)如图,在三棱锥P— ABC 中,PA ⊥平面ABC ,AB =AC ,点D ,E ,F 分別是AB ,AC ,BC 的中点.(1)求证:BC ∥平面PDE ;(2)求证:平面PAF ⊥平面PDE .16.(本小题满分14分)已知函数21()sin sin cos 2f x x x x =+-,x ∈R . (1)求函数()f x 的最大值,并写出相应的x 的取值集合;(2)若()6f α=,α∈(8π-,38π),求sin2α的值.17.(本小题满分14分)某温泉度假村拟以泉眼C 为圆心建造一个半径为12米的圆形温泉池,如图所示,M ,N 是圆C 上关于直径AB 对称的两点,以A 为四心,AC 为半径的圆与圆C 的弦AM ,AN 分别交于点D ,E ,其中四边形AEBD 为温泉区,I 、II 区域为池外休息区,III 、IV 区域为池内休息区,设∠MAB =θ.(1)当4πθ=时,求池内休息区的总面积(III 和IV 两个部分面积的和);(2)当池内休息区的总面积最大时,求AM 的长.18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆M :22221x y a b+=(a >b >0)的左顶点为A ,过点A 的直线与椭圆M 交于x 轴上方一点B ,以AB 为边作矩形ABCD ,其中直线CD 过原点O .当点B 为椭圆M 的上顶点时,△AOB 的面积为b ,且AB .(1)求椭圆M 的标准方程;(2)求矩形ABCD 面积S 的最大值;(3)矩形ABCD 能否为正方形?请说明理由.19.(本小题满分16分)定义:若一个函数存在极大值,且该极大值为负数,则称这个函数为“YZ 函数”.(1)判断函数()1x xf x e=-是否为“YZ 函数”,并说明理由; (2)若函数()ln g x x mx =-(m ∈R)是“YZ 函数”,求实数m 的取值范围;(3)已知32111()323h x x ax bx b =++-,x ∈(0,+∞),a ,b ∈R ,求证:当a ≤﹣2,且0<b <1时,函数()h x 是“YZ 函数”.20.(本小题满分16分)已知数列{}n a ,{}n b ,{}n c 满足2n n n b a a +=-,12n n n c a a +=+.(1)若数列{}n a 是等比数列,试判断数列{}n c 是否为等比数列,并说明理由; (2)若n a 恰好是一个等差数列的前n 项和,求证:数列{}n b 是等差数列;(3)若数列{}n b 是各项均为正数的等比数列,数列{}n c 是等差数列,求证:数列{}n a 是等差数列.第II 卷(附加题,共40分)21.【选做题】本题包括A ,B ,C 三小题,请选定其中两题作答,每小题10分共计20分,解答时应写出文字说明,证明过程或演算步骤. A .选修4—2:矩阵与变换已知列向量5a ⎡⎤⎢⎥⎣⎦在矩阵M = 3 41 2⎡⎤⎢⎥⎣⎦对应的变换下得到列向量2 b b -⎡⎤⎢⎥⎣⎦,求1M b a -⎡⎤⎢⎥⎣⎦.B .选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,曲线C的参数方程为cos x y αα=⎧⎪⎨=⎪⎩(α为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为sin()4πρθ+=,点P 为曲线C 上任一点,求点P 到直线l 距离的最大值.C .选修4—5:不等式选讲已知实数a ,b ,c 满足a >0,b >0,c >0,2223a b c b c a++=,求证:3a b c ++≤.【必做题】第22题、第23题,每题10分,共计20分,解答时应写出文字说明,证明过程或演算步骤. 22.(本小题满分10分)如图,在多面体ABCDEF 中,平面ADE ⊥平面ABCD ,四边形ABCD 是边长为2的正方形,△ADE 是等腰直角三角形,且∠ADE =2π,EF ⊥平面ADE ,EF =1. (1)求异面直线AE 和DF 所成角的余弦值; (2)求二面角B —DF —C 的余弦值.23.(本小题满分10分)给定n (n ≥3,n N *∈)个不同的数1,2,3,…,n ,它的某一个排列P 的前k (k N *∈,1≤k ≤n )项和为k S ,该排列P 中满足2k n S S ≤的k 的最大值为P k .记这n 个不同数的所有排列对应的P k 之和为n T .(1)若n =3,求3T ;(2)若n =4l +1,l N *∈,①证明:对任意的排列P ,都不存在k (k N *∈,1≤k ≤n )使得2k n S S =;②求n T (用n 表示).2019~2020学年度第二学期调研测试高三数学答案一、填空题1. {}1,2,4,82.123. 804. 85.6.518 7. 128. 192 9. 1- 10. 611. (1](0,1]-∞- 12. - 13. 3 14. (1,2]二、解答题15.(本题满分14分)证明:(1)在ABC ∆中,因为,D E 分别是,AB AC 的中点,所以//DE BC , ……………2分 因为BC PDE ⊄平面,DE PDE ⊂平面,所以//BC PDE 平面. ……………6分(2)因为PA ABC ⊥平面,DE PDE ⊂平面, 所以PA DE ⊥,在ABC ∆中,因为AB AC =,F 分别是BC 的中点,所以AF BC ⊥, ……………8分 因为//DE BC ,所以DE AF ⊥, 又因为AFPA A =,,AF PAF PA PAF ⊂⊂平面平面,所以DE PAF ⊥平面,……………12分因为DE PDE ⊂平面,所以PAF PDE ⊥平面平面. ……………14分16.(本题满分14分)解:(1)因为21()sin sin cos 2f x x x x =+-, 所以1cos 211()sin 2222x f x x -=+-1(sin 2cos 2)2x x =- ……………2分(sin 2cos cos 2sin )244x x ππ=-)24x π=- ……………4分当2242x k πππ-=+(Z)k ∈,即3(8Z)x k k ππ=+∈时,()f x 取最大值2,所以()f x 的最大值为2,此时x 的取值集合为3,8Z x x k k ππ⎧⎫=+∈⎨⎬⎩⎭.………7分(2)因为()6f α=,则)246πα-=,即1sin(2)43πα-=, 因为3(,)88ππα∈-,所以2(,)πππα-∈-,则cos(2)43πα-===,……………10分所以sin 2sin[(2)]sin(2)cos cos(2)sin 444444ππππππαααα=-+=-+-1432326=⋅+=……………14分17.(本题满分14分)解:(1)在Rt ABM ∆中,因为24AB =,4πθ=,所以MB AM ==24cos12124MD π=-=,所以池内休息区总面积1212)144(22S MB DM =⋅⋅==. ……………4分 (2)在Rt ABM ∆中,因为24AB =,MAB θ∠=, 所以24sin ,24cos MB AM θθ==, 24cos 12MD θ=-, 由24sin 0,24cos 120MB MD θθ=>=->得0,3πθ⎛⎫∈ ⎪⎝⎭, ……………6分 则池内休息区总面积1224sin (24cos 12)2S MB DM θθ=⋅⋅=-,0,3πθ⎛⎫∈ ⎪⎝⎭; ……………9分 设()()sin 2cos 1fθθθ=-,0,3πθ⎛⎫∈ ⎪⎝⎭,因为()()22cos 2cos 12sin 4cos cos 20cos f θθθθθθθ'=--=--=⇒=又11cos 82θ+=>,所以00,3πθ⎛⎫∃∈ ⎪⎝⎭,使得01cos 8θ+=, 则当()00,x θ∈时,()()0f f θθ'>⇒在()00,θ上单调增,当0,3x πθ⎛⎫∈ ⎪⎝⎭时,()()0f f θθ'<⇒在()00,θ上单调减, 即()0θf 是极大值,也是最大值,所以()()max 0f fθθ=,此时024cos 3AM θ==+ ……………13分 答:(1)池内休息区总面积为2144(2-m ;(2)池内休息区总面积最大时AM的长为(3AM =+m .………14分18.(本题满分16分)解:(1)由题意:22212ab b a b c =⎪=⎨⎪⎪=+⎩,解得2,a b c ===,所以椭圆M 的标准方程为22142x y +=. ……………4分 (2)显然直线AB 的斜率存在,设为k 且0k >, 则直线AB 的方程为(2)y k x =+,即20kx y k -+=,联立22(2)142y k x x y =+⎧⎪⎨+=⎪⎩得2222(12)8840k x k x k +++-=,解得222412B k x k -=+,2412B k y k=+,所以212AB k ==+, 直线CD 的方程为y kx =,即0kx y -=,所以BC ==,所以矩形ABCD面积2881122k S k k k====++≤所以当且仅当k =时,矩形ABCD 面积S的最大值为11分 (3)若矩形ABCD 为正方形,则AB BC =,=,则322220k k k -+-= (0)k >,令32()222(0)f k k k k k =-+->,因为(1)10,(2)80f f =-<=>,又32()222(0)f k k k k k =-+->的图象不间断,所以32()222(0)f k k k k k =-+->有零点,所以存在矩形ABCD 为正方形.……………16分19.(本题满分16分)解:(1)函数()1xxf x =-e是“YZ 函数”,理由如下: 因为()1x x f x =-e ,则1()x xf x -'=e,当1x <时,()0f x '>;当1x >时,()0f x '<,所以()1xx f x =-e 的极大值1(1)10f =-<e , 故函数()1x xf x =-e是“YZ 函数”. ……………4分(2)定义域为(0,)+∞, 1()g x m x'=-,当0m ≤时,1()0g x m x '=->,函数单调递增,无极大值,不满足题意;当0m >时,当10x m <<时,1()0g x m x '=->,函数单调递增,当1x m >时,1()0g x m x'=-<,函数单调递减,所以()g x 的极大值为111()ln ln 1g m m m m m=-⋅=--,由题意知1()ln 10g m m =--<,解得1m >e. ……………10分(3)证明: 2()h x x ax b '=++,因为2a ≤-,01b <<,则240a b ∆=->,所以2()0h x x ax b '=++=有两个不等实根,设为12,x x ,因为12120x x a x x b +=->⎧⎨=>⎩,所以120,0x x >>,不妨设120x x <<,当10x x <<时,()0h x '>,则()h x 单调递增; 当12x x x <<时,()0h x '<,则()h x 单调递减,所以()h x 的极大值为321111111()323h x x ax bx b =++-, ……………13分 由2111()0h x x ax b '=++=得3211111()x x ax b ax bx =--=--, 因为2a -≤,01b <<, 所以322211111111111111()()323323h x x ax bx b ax bx ax bx b =++-=--++- 221111121121633333ax bx b x bx b =+-≤-+- 2111()(1)033x b b b =--+-<.所以函数()h x 是“YZ 函数”.……………16分(其他证法相应给分)20.(本题满分16分)解:(1)设等比数列{}n a 的公比为q ,则122(21)n n n n n n c a a a q a q a +=+=+=+, 当12q =-时,0n c =,数列{}n c 不是等比数列, ……………2分 当12q ≠-时,因为0n c ≠,所以11(21)(21)n n n n c q a q c q a +++==+,所以数列{}n c 是等比数 列. ……………5分 (2)因为n a 恰好是一个等差数列的前n 项和,设这个等差数列为{}n d ,公差为d , 因为12n n a d d d =+++,所以1121n n n a d d d d ++=++++,两式相减得11n n n a a d ++-=, 因为2n n n a a b +=+,所以1312321()()()()n n n n n n n n n n b b a a a a a a a a +++++++-=---=---312n n d d d ++=-=, 所以数列{}n b 是等差数列. ……………10分 (3)因为数列{}n c 是等差数列,所以321n n n n c c c c +++-=-,又因为12n n n c a a +=+,所以43322112(2)2(2)n n n n n n n n a a a a a a a a ++++++++-+=+-+, 即 423122()()()n n n n n n a a a a a a +++++-=-+-,则212n n n b b b ++=+, 又因为数列{}n b 是等比数列,所以212n n n b b b ++=,则2112n nn n b b b b +++=⋅, 即11()(2)0n n n n b b b b ++-+=,因为数列{}n b 各项均为正数,所以1n n b b +=, ……………13分 则312n n n n a a a a +++-=-, 即321n n n n a a a a +++=+-,又因为数列{}n c 是等差数列,所以212n n n c c c +++=, 即32121(2)(2)2(2)n n n n n n a a a a a a ++++++++=+, 化简得3223n n n a a a +++=,将321n n n n a a a a +++=+-代入得2122()3n n n n n a a a a a ++++-+=,化简得212n n n a a a +++=,所以数列{}n a 是等差数列. ……………16分 (其他证法相应给分)数学Ⅱ(附加题)21. A . [选修4-2:矩阵与变换](本小题满分10分) 解:因为⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡b b a 252143,所以320210a b a b +=-⎧⎨+=⎩,解得64a b =-⎧⎨=⎩,……………4分 设1m p Mn q -⎡⎤=⎢⎥⎣⎦,则34101201m p n q ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即3413402021m n p q m n p q +=⎧⎪+=⎪⎨+=⎪⎪+=⎩,解得112232m n p q =⎧⎪⎪=-⎪⎨=-⎪⎪=⎪⎩, 所以⎥⎥⎦⎤⎢⎢⎣⎡--=-2321211M , ……………8分所以11-2416=13-61122b M a -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦. ……………10分B.[选修4-4:坐标系与参数方程](本小题满分10分)解:由题:直线方程即为(sin coscos sin )44ππρθθ+= 由cos x ρθ=,sin y ρθ=得直线的直角坐标方程为80x y +-=,……………4分 设P点的坐标为()cos αα,∴点P到直线的距离d ==8分 当2()62Z k k ππαπ+=-∈,即22(3Z)k k αππ=-∈时,d取得最大值此时点P 的坐标为13,22⎛⎫-- ⎪⎝⎭. ……………10分C.[选修4-5:不等式选讲](本小题满分10分) 证明:由柯西不等式,得2223()()()a b c a b c b c a b c a++=++++222222]=++++ ………………5分22()a b c =++≥ 所以3a b c ++≤. ………………10分 22.(本小题满分10分)解:因为平面ADE ⊥平面ABCD ,又2ADE π∠=,即DE AD ⊥,因为DE ADE ⊂平面,ADEABCD AD =平面平面, DE ∴⊥平面ABCD ,由四边形ABCD 为边长为2的正方形, 所以,,DA DC DE 两两互相垂直.以D 为坐标原点,{,,}DA DC DE 为一组基底建立如图所示的空间直角坐标系.………2分 由EF ⊥平面ADE 且1EF =,()()()()()()0,0,0,2,0,0,0,0,2,0,2,0,2,2,0,0,1,2,D A E C B F ∴(1)()2,0,2AE =-,()0,1,2DF =,则cos ,2AE DF AE DF AE DF⋅<===⋅>,所以AE 和DF 所成角的余弦值为5. ……………5分 (2)()2,2,0DB =,()0,1,2DF =,设平面BDF 的一个法向量为(),,n x y z =,由2+2020n DB x y n DF y z ⎧⋅==⎨⋅=+=⎩ ,取1z =,得)1,2,2(-=n , 平面DFC 的一个法向量为()1,0,0m =,22cos ,313m n m n m n ⋅∴<>===⋅⨯, 由二面角B DF C --的平面角为锐角,所以二面角B DF C --的余弦值为23.……10分23.(本小题满分10分)解:(1)1,2,3的所有排列为1,2,3;1,3,2;2,1,3;2,3,1;3,1,2;3,2,1,因为36S =,所以对应的P k 分别为2,1,2,1,1,1,所以38T =; ……………3分(2)(i )设n 个不同数的某一个排列P 为12,,,n a a a ⋅⋅⋅,因为41,N n l l *=+∈,所以()()()141212n n n S l l +==++为奇数, 而2k S 为偶数,所以不存在(,1)N k k k n *∈≤≤使得2k n S S =; ……………5分(ii) 因为2k n S S ≤,即1212k k k n a a a a a a ++++⋅⋅⋅+++⋅⋅⋅+≤,又由(i )知不存在(,1)N k k k n *∈≤≤使得2k n S S =,所以1212k k k n a a a a a a ++++⋅⋅⋅+<++⋅⋅⋅+;所以满足2k n S S ≤的最大下标k 即满足1212k k k n a a a a a a ++++⋅⋅⋅+<++⋅⋅⋅+① 且1212k k k n a a a a a a ++++⋅⋅⋅++>+⋅⋅⋅+②, 考虑排列P 的对应倒序排列:P '11,,,n n a a a -⋅⋅⋅,①②即2121n k k k a a a a a a +++⋅⋅⋅+<++⋅⋅⋅++,2121n k k k a a a a a a +++⋅⋅⋅++>+⋅⋅⋅++, 由题意知1P k n k '=--,则1P P k k n '+=-; ……………8分 又1,2,3,,n ⋅⋅⋅,这n 个不同数共有!n 个不同的排列,可以构成!2n 个对应组合(),P P ', 且每组(),P P '中1P P k k n '+=-,所以()!12n n T n =-. ……………10分。

2020学年第一学期高三调研考试数学试题参考答案

2020学年第一学期高三调研考试数学试题参考答案

16. 13
16.
解:由题意知 ∠F1AF2 = 90
,
cos
∠F1BF2
=

3 5
,所以
cos
∠ABF1
=
3 5
,即
AB BF1
= 3, 5
易得 AB : AF1 : BF1 = 3 : 4 : 5 .设 AB = 3 , AF1 = 4 BF1 = 5 , BF2 = x .
由双曲线的定义得: 3 + x − 4 = 5 − x ,解得: x = 3 ,所以 | F1F2 |= 42 + 62 = 4 13 ⇒ c = 13 ,因为 2a = 5 − x = 2 ⇒ a = 1,所以离心率 e = 13 .
因为 AB 为圆 O1 的直径,所以 ∠ACB = 90 ,
中, , 在 Rt∆ABC ∠ABC = 60 AC = 3 ,
所以 BC = AC = 1 , tan 60
中, 所以在 Rt∆FBC FC = BC tan 45 = 1………………………7 分
(方法一)因为 BC ⊥ AC , BC ⊥ FC , AC ∩ FC = C , 所以 BC ⊥ 平面 FAC , 又 FA ⊂ 平面 FAC , 所以 BC ⊥ FA .
=
2
.
所以, an = a1qn−1 = 2 × 2n−1 = 2n .
………………………………4 分 ………………………………5 分
(2)解法一:因为 bn
=
an
log 2
1 2
n
=

n ⋅ 2n
………………………………6 分
所以, −Tn = 1× 2 + 2 × 22 + 3× 23 +⋯ + n × 2n ……①

江苏省泰州市2019-2020学年高考数学教学质量调研试卷含解析

江苏省泰州市2019-2020学年高考数学教学质量调研试卷含解析

江苏省泰州市2019-2020学年高考数学教学质量调研试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.如图,正三棱柱111ABC A B C -各条棱的长度均相等,D 为1AA 的中点,,M N 分别是线段1BB 和线段1CC 的动点(含端点),且满足1BM C N =,当,M N 运动时,下列结论中不正确...的是A .在DMN ∆内总存在与平面ABC 平行的线段B .平面DMN ⊥平面11BCC BC .三棱锥1A DMN -的体积为定值D .DMN ∆可能为直角三角形【答案】D【解析】【分析】A 项用平行于平面ABC 的平面与平面MDN 相交,则交线与平面ABC 平行;B 项利用线面垂直的判定定理;C 项三棱锥1A DMN -的体积与三棱锥1N A DM -体积相等,三棱锥1N A DM -的底面积是定值,高也是定值,则体积是定值;D 项用反证法说明三角形DMN 不可能是直角三角形.【详解】A 项,用平行于平面ABC 的平面截平面MND ,则交线平行于平面ABC ,故正确;B 项,如图:当M 、N 分别在BB 1、CC 1上运动时,若满足BM=CN,则线段MN 必过正方形BCC 1B 1的中心O,由DO 垂直于平面BCC 1B 1可得平面DMN ⊥平面11BCC B ,故正确;C 项,当M 、N 分别在BB 1、CC 1上运动时,△A 1DM 的面积不变,N 到平面A 1DM 的距离不变,所以棱锥N-A 1DM 的体积不变,即三棱锥A 1-DMN 的体积为定值,故正确;D 项,若△DMN 为直角三角形,则必是以∠MDN 为直角的直角三角形,但MN 的最大值为BC 1,而此时DM,DN 的长大于BB 1,所以△DMN 不可能为直角三角形,故错误.故选D【点睛】本题考查了命题真假判断、棱柱的结构特征、空间想象力和思维能力,意在考查对线面、面面平行、垂直的判定和性质的应用,是中档题.2.已知平行于x 轴的直线分别交曲线2ln 21,21(0)y x y x y =+=-≥于,A B 两点,则4AB 的最小值为( )A .5ln 2+B .5ln 2-C .3ln 2+D .3ln 2-【答案】A【解析】【分析】设直线为1122(0),(,)(,)y a a A x y B x y =>,用a 表示出1x ,2x ,求出4||AB ,令2()2ln f a a a =+-,利用导数求出单调区间和极小值、最小值,即可求出4||AB 的最小值.【详解】解:设直线为1122(0),(,)(,)y a a A x y B x y =>,则1ln 21a x =+,11(ln 1)2x a ∴=-, 而2x 满足2221a x =-,2212a x +∴= 那么()()22211144()4ln 122ln 22a AB x x a a a ⎡⎤+=-=--=+-⎢⎥⎣⎦设2()2ln f a a a =+-,则221()a f a a -'=,函数()f a 在0,2⎛ ⎝⎭上单调递减,在2⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增,所以minmin 42()25ln 2AB f a f ===+⎝⎭故选:A .【点睛】本题考查导数知识的运用:求单调区间和极值、最值,考查化简整理的运算能力,正确求导确定函数的最小值是关键,属于中档题.3.下图所示函数图象经过何种变换可以得到sin 2y x =的图象( )A .向左平移3π个单位 B .向右平移3π个单位 C .向左平移6π个单位 D .向右平移6π个单位 【答案】D【解析】【分析】 根据函数图像得到函数的一个解析式为()sin 23f x x π⎛⎫=+⎪⎝⎭,再根据平移法则得到答案. 【详解】设函数解析式为()()sin f x A x b ωϕ=++,根据图像:1,0A b ==,43124T πππ=-=,故T π=,即2ω=, sin 1126f ππϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,2,3k k Z πϕπ=+∈,取0k =,得到()sin 23f x x π⎛⎫=+ ⎪⎝⎭, 函数向右平移6π个单位得到sin 2y x =. 故选:D .【点睛】本题考查了根据函数图像求函数解析式,三角函数平移,意在考查学生对于三角函数知识的综合应用. 4.已知随机变量X 的分布列是 X1 2 3 P 12 13 a则()2E X a +=( )A .53B .73C .72D .236【答案】C【解析】【分析】利用分布列求出a ,求出期望()E X ,再利用期望的性质可求得结果.【详解】 由分布列的性质可得11123a ++=,得16a =,所以,()11151232363E X =⨯+⨯+⨯=, 因此,()()11517222266362E X a E X E X ⎛⎫+=+=+=⨯+= ⎪⎝⎭. 故选:C. 【点睛】本题考查离散型随机变量的分布列以及期望的求法,是基本知识的考查. 5.下列图形中,不是三棱柱展开图的是( )A .B .C .D .【答案】C【解析】【分析】根据三棱柱的展开图的可能情况选出选项.【详解】由图可知,ABD 选项可以围成三棱柱,C 选项不是三棱柱展开图.故选:C【点睛】本小题主要考查三棱柱展开图的判断,属于基础题.6.设函数()()f x x R ∈满足()(),(2)()f x f x f x f x -=+=,则()y f x =的图像可能是A .B .C .D .【答案】B【解析】根据题意,确定函数()y f x =的性质,再判断哪一个图像具有这些性质.由()()f x f x -=得()y f x =是偶函数,所以函数()y f x =的图象关于y 轴对称,可知B ,D 符合;由(2)()f x f x +=得()y f x =是周期为2的周期函数,选项D 的图像的最小正周期是4,不符合,选项B 的图像的最小正周期是2,符合,故选B .7.阿基米德(公元前287年—公元前212年),伟大的古希腊哲学家、数学家和物理学家,他死后的墓碑上刻着一个“圆柱容球”的立体几何图形,为纪念他发现“圆柱内切球的体积是圆柱体积的23,且球的表面积也是圆柱表面积的23”这一完美的结论.已知某圆柱的轴截面为正方形,其表面积为24π,则该圆柱的内切球体积为( )A .43πB .16πC .163πD .323π 【答案】D【解析】【分析】设圆柱的底面半径为r ,则其母线长为2l r =,由圆柱的表面积求出r ,代入圆柱的体积公式求出其体积,结合题中的结论即可求出该圆柱的内切球体积.【详解】设圆柱的底面半径为r ,则其母线长为2l r =,因为圆柱的表面积公式为2=22S r rl ππ+圆柱表,所以222224r r r πππ+⨯=,解得2r =,因为圆柱的体积公式为2=2V Sh r r π=⋅圆柱,所以3=22=16V ππ⨯⨯圆柱,由题知,圆柱内切球的体积是圆柱体积的23, 所以所求圆柱内切球的体积为 2232=16=333V V ππ=⨯圆柱. 故选:D【点睛】本题考查圆柱的轴截面及表面积和体积公式;考查运算求解能力;熟练掌握圆柱的表面积和体积公式是求解本题的关键;属于中档题.8.已知12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,,A B 是C 的左、右顶点,点P 在过1F 且PAB △为等腰三角形,120ABP ∠=︒,则C 的渐近线方程为( )A .12y x =±B .2y x =±C .33y x =±D .3y x =±【答案】D【解析】【分析】根据PAB △为等腰三角形,120ABP ∠=︒可求出点P 的坐标,又由1PF 的斜率为3可得出,a c 关系,即可求出渐近线斜率得解.【详解】 如图,因为PAB △为等腰三角形,120ABP ∠=︒,所以||||2PB AB a ==,60PBM ∠=︒,||cos602,||sin603P P x PB a a y PB a ∴=⋅︒+==⋅︒=, 又130324PF a k a c -==+, 2a c ∴=223a b ∴=,解得3b a= 所以双曲线的渐近线方程为3y x =,故选:D【点睛】本题主要考查了双曲线的简单几何性质,属于中档题.9.已知集合{}2230A x x x =--≤{}2B x x =<,则A B =I ( )A .()1,3B .(]1,3C .[)1,2-D .()1,2-【答案】C【解析】【分析】解不等式得出集合A ,根据交集的定义写出A∩B .【详解】集合A ={x|x 2﹣2x ﹣3≤0}={x|﹣1≤x ≤3}, ={x x<2}B ,{|1<2}A B x x ∴⋂=≤﹣故选C .【点睛】本题考查了解不等式与交集的运算问题,是基础题. 10.已知i 是虚数单位,则(2)i i +=( )A .12i +B .12i -+C .12i --D .12i -【答案】B【解析】【分析】根据复数的乘法运算法则,直接计算,即可得出结果.【详解】 () 22112i i i i +=-=-+.故选B【点睛】本题主要考查复数的乘法,熟记运算法则即可,属于基础题型.11.如图,平面四边形ACBD 中,AB BC ⊥,3AB =,2BC =,ABD △为等边三角形,现将ABD △沿AB 翻折,使点D 移动至点P ,且PB BC ⊥,则三棱锥P ABC -的外接球的表面积为( )A .8πB .6πC .4πD .823【答案】A【解析】【分析】 将三棱锥P ABC -补形为如图所示的三棱柱,则它们的外接球相同,由此易知外接球球心O 应在棱柱上下底面三角形的外心连线上,在Rt OBE V 中,计算半径OB 即可.【详解】由AB BC ⊥,PB BC ⊥,可知BC ⊥平面PAB .将三棱锥P ABC -补形为如图所示的三棱柱,则它们的外接球相同.由此易知外接球球心O 应在棱柱上下底面三角形的外心连线上,记ABP △的外心为E ,由ABD △为等边三角形,可得1BE =.又12BC OE ==,故在Rt OBE V 中,2OB = 此即为外接球半径,从而外接球表面积为8π.故选:A【点睛】本题考查了三棱锥外接球的表面积,考查了学生空间想象,逻辑推理,综合分析,数学运算的能力,属于较难题.12.双曲线2212y x -=的渐近线方程为( ) A .32y x =± B .y x =± C .2y x = D .3y x =【答案】C【解析】【分析】根据双曲线的标准方程,即可写出渐近线方程.【详解】Q 双曲线2212y x -=, ∴双曲线的渐近线方程为2y x =±,故选:C【点睛】本题主要考查了双曲线的简单几何性质,属于容易题.二、填空题:本题共4小题,每小题5分,共20分。

江苏省南通市、泰州市2020届高三上学期期末联考数学学科参考答案)

江苏省南通市、泰州市2020届高三上学期期末联考数学学科参考答案)

南通市2020届高三第一次调研测试数学学科参考答案及评分建议一、填空题:本大题共14小题,每小题5分,共计70分.1.已知集合,,则▲.【答案】2.已知复数满足,其中是虚数单位,则的模为▲.【答案】3.某校高三数学组有5名党员教师,他们一天中在“学习强国”平台上的学习积分依次为,则这5名党员教师学习积分的平均值为▲.【答案】40 a←1 i←14.根据如图所示的伪代码,输出的a的值为▲.While i≤4【答案】11a←a+i i←i+1 End While5.已知等差数列的公差不为0,且成等比数列,Print a 则的值为▲.(第4题)【答案】16.将一枚质地均匀的硬币先后抛掷3次,则恰好出现2次正面向上的概率为▲.【答案】7.在正三棱柱中,,则三棱锥的体积为▲.【答案】8.已知函数.若当时,函数取得最大值,则的最小值为▲.【答案】59.已知函数是奇函数.若对于任意的,关于的不等式恒成立,则实数的取值范围是▲.【答案】10.在平面直角坐标系中,已知点A,B分别在双曲线的两条渐近线上,且双曲线经过线段AB的中点.若点的横坐标为2,则点的横坐标为▲.【答案】11.尽管目前人类还无法准确预报地震,但科学家通过研究,已经对地震有所了解,例如,地震时释放出的能量E(单位:焦耳)与地震里氏震级M之间的关系为.2008年5月汶川发生里氏8.0级地震,它释放出来的能量是2019年6月四川长宁发生里氏6.0级地震释放出来能量的▲倍.【答案】100012.已知△ABC的面积为3,且.若,则的最小值为▲.【答案】13.在平面直角坐标系中,已知圆与圆相交于A,B两点.若圆上存在点,使得△ABP为等腰直角三角形,则实数的值组成的集合为▲.【答案】14.已知函数若关于的方程有五个不相等的实数根,则实数的取值范围是▲.【答案】二、解答题:本大题共6小题,共计90分.15.(本小题满分14分)如图,在三棱锥中,平面,,分别为的中点.求证:(1)AB∥平面;(2)平面平面.【证】(1)在中,因为分别为的中点,所以AB∥DE.……3分又因为平面,平面,所以AB∥平面.……6分(2)因为平面,平面,所以.……8分又因为,平面,,所以平面.……11分因为平面,所以平面平面.……14分16.(本小题满分14分)在△ABC中,已知,,.(1)求的值;(2)求的值.【解】(1)在△ABC中,因为,,由,得.……2分又,,由正弦定理,得,……4分所以.……6分(2)(方法一)由余弦定理,得,……8分即,解得或(舍去).……11分所以.……14分(方法二)在△ABC中,由条件得,所以,所以.所以.……8分所以.……10分由正弦定理,得,所以.……12分所以.……14分17.(本小题满分14分)如图,在平面直角坐标系中,椭圆的焦距为,两条准线间的距离为,分别为椭圆的左、右顶点.(1)求椭圆的标准方程;(2)已知图中四边形是矩形,且,点分别在边上,与相交于第一象限内的点.①若分别是的中点,证明:点在椭圆上;②若点在椭圆上,证明:为定值,并求出该定值.【解】(1)设椭圆的焦距为,则由题意,得解得所以.所以椭圆的标准方程为.……3分(2)①由已知,得,,,.直线的方程为,直线的方程为.联立解得即.……6分因为,所以点在椭圆上.……8分②(解法一)设,,则,.直线的方程为,令,得.……10分直线的方程为,令,得.……12分所以.……14分(解法二)设直线的方程为,令,得.设直线的方程为,令,得.……10分而.……12分设,,则,所以,所以.……14分18.(本小题满分16分)在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转.如图,小卢利用图形的旋转设计某次活动的徽标,他将边长为的正三角形绕其中心逆时针旋转到三角形,且.顺次连结,得到O 六边形徽标.(1)当时,求六边形徽标的面积;(第18题)(2)求六边形徽标的周长的最大值.【解】连结.在正三角形中,,,,.……2分当正三角形绕中心逆时针旋转到正三角形位置时,有,,,所以≌≌,≌≌,所以,.……4分(1)当时,设六边形徽标的面积为,则……6分.答:当时,六边形徽标的面积为.……9分(2)设六边形徽标的周长为,则……11分,.……13分所以当,即时,取最大值.答:六边形徽标的周长的最大值为.……16分19.(本小题满分16分)已知数列满足:,且当时,.(1)若,证明:数列是等差数列;(2)若.①设,求数列的通项公式;②设,证明:对于任意的,当时,都有.【解】(1)时,由,得……2分所以,即(常数),所以数列是首项为1,公差为1的等差数列.……4分(2)时,,时,.①时,所以.……6分所以.又,所以.……8分又,所以(常数).所以数列是首项为,公比为的等比数列,所以数列的通项公式为.……10分②由①知,,.所以,所以.……12分所以.……14分当时,,所以;当时,,所以;当时,,所以.所以若,则.……16分20.(本小题满分16分)设函数,其中为自然对数的底数.(1)当时,求函数的单调减区间;(2)已知函数的导函数有三个零点,,.①求的取值范围;②若,是函数的两个零点,证明:.【解】(1)时,,其定义域为,.令,得,所以函数的单调减区间为.……3分(2)①,设,则导函数有三个零点,即函数有三个非零的零点.又,若,则,所以在上是减函数,至多有1个零点,不符合题意,所以.……5分令,.列表如下:极大值极小值所以即解得.……8分又,所以在上有且只有1个非零的零点.因为当时,,,,且,又函数的图象是连续不间断的,所以在和上各有且只有1个非零的零点.所以实数的取值范围是.……10分②(证法一)由,得设,且,所以.又因为,所以.所以或时,;时,.由①知,.因为,所以,,所以,.……14分所以成立.……16分(证法二)依题设知:,由①知,设,由①知,所以,在上单调递减.……12分又由,得:,即,所以,又,故,.于是(Ⅰ),即,又,,所以;……14分(Ⅱ),即,又,,故,又,所以,即.所以,得证.……16分21.【选做题】本题包括A、B、C三小题,请选定其中两题,并在答题卡相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-2:矩阵与变换](本小题满分10分)已知,向量是矩阵的属于特征值3的一个特征向量.(1)求矩阵;(2)若点在矩阵对应的变换作用下得到点,求点的坐标.【解】(1)因为向量是矩阵的属于特征值3的一个特征向量,所以,即,所以解得所以.……5分(2)设,则,所以解得所以点的坐标为.……10分B.[选修4-4:坐标系与参数方程](本小题满分10分)在平面直角坐标系中,已知直线的参数方程(t为参数),椭圆C的参数方程为(为参数).求椭圆C上的点到直线的距离的最大值.【解】(方法一)直线的普通方程为.……2分设,则点到直线的距离.……8分当,即()时,.……10分(方法二)直线的普通方程为.椭圆C的普通方程为.……4分设与直线平行的直线方程为,由消,得.令,得.……8分所以直线与椭圆相切.当时,点到直线的距离最大,.……10分C.[选修4-5:不等式选讲](本小题满分10分)已知都是正实数,且.证明:(1);(2).【证】(1)因为都是正实数,所以.又因为,所以,即,得证.……4分(2)因为都是正实数,所以,①,②.③……6分由①+②+③,得,所以,又因为,所以,得证.……10分【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)如图,在直四棱柱中,,,.(1)求二面角的余弦值;(2)若点为棱的中点,点在棱上,且直线与平面所成角的正弦值为,求的长.【解】在直四棱柱中,(第22题)因为平面,,平面,所以,.又,以为正交基底,建立如图所示的空间直角坐标系.由,得,.……2分(1),,设平面的一个法向量,则即不妨取,则,,所以.……4分因为平面,所以平面的一个法向量为.设二面角的平面角的大小为,根据图形可知,.所以二面角的余弦值为.……6分(2)设,则.又为的中点,则,,.设平面的一个法向量,由得取,则,,所以.……8分设直线与平面所成角的大小为,则,所以或(舍去).所以.……10分23.(本小题满分10分)一只口袋装有形状、大小完全相同的5只小球,其中红球、黄球、绿球、黑球、白球各1只.现从口袋中先后有放回地取球次,且每次取1只球.(1)当时,求恰好取到3次红球的概率;(2)随机变量表示次取球中取到红球的次数,随机变量求的数学期望(用表示).【解】(1)当时,从装有5只小球的口袋中有放回的取球6次,共有个基本事件.记“恰好取到3次红球”为事件,事件包含基本事件有个.因为上述个基本事件发生的可能性相同,故.答:当时,恰好取到3次红球的概率为.……3分(2)由题意知,随机变量的所有可能取值为.则...……5分所以.……7分令,,则,.,所以.所以.答:的数学期望为.……10分。

江苏省七市(南通泰州扬州徐州淮安连云港宿迁)2020届高三第二次调研考试(4月)数学附答案

江苏省七市(南通泰州扬州徐州淮安连云港宿迁)2020届高三第二次调研考试(4月)数学附答案

江苏省七市2020届高三第二次调研考试数 学(满分160分,考试时间120分钟)2020.4参考公式:柱体的体积公式:V 柱体=Sh ,其中S 为柱体的底面积,h 为高. 锥体的体积公式:V 锥体=13Sh ,其中S 为锥体的底面积,h 为高.一、 填空题:本大题共14小题,每小题5分,共70分.1. 已知集合A ={1,4},B ={a -5,7}.若A ∩B ={4},则实数a 的值是________.2. 若复数z 满足zi =2+i ,其中i 是虚数单位,则z 的模是________.3. 在一块土地上种植某种农作物,连续5年的产量(单位:吨)分别为9.4,9.7,9.8,10.3,10.8,则该农作物的年平均产量是________吨.4. 如图是一个算法流程图,则输出S 的值是________.5. “石头、剪子、布”是大家熟悉的二人游戏,其规则是:在石头、剪子和布中,二人各随机选出一种,若相同则平局;若不同,则石头克剪子,剪子克布,布克石头,甲、乙两人玩一次该游戏,则甲不输的概率是________. (第4题)6. 在△ABC 中,已知B =2A ,AC =3BC ,则A 的值是________.7. 在等差数列{a n }(n ∈N *)中,若a 1=a 2+a 4,a 8=-3,则a 20的值是________.8. 如图,在体积为V 的圆柱O 1O 2中,以线段O 1O 2上的点O 为顶点,上下底面为底面的两个圆锥的体积分别为V 1,V 2,则V 1+V 2V 的值是________.9. 在平面直角坐标系xOy 中,双曲线x 2a 2-y 2b2=1(a >0,b >0)的左顶点为A ,右焦点为F ,过F 作x 轴的垂线交双曲线于点P ,Q.若△APQ 为直角三角形,则该双曲线的离心率是________.10. 在平面直角坐标系xOy 中,点P 在直线y =2x 上,过点P 作圆C :(x -4)2+y 2=8的一条切线,切点为T.若PT =PO ,则PC 的长是________.11. 若x >1,则2x +9x +1+1x -1的最小值是________.12. 在平面直角坐标系xOy 中,曲线y =e x 在点P(x 0,ex 0)处的切线与x 轴相交于点A ,其中e 为自然对数的底数.若点B(x 0,0),△PAB 的面积为3,则x 0的值是________.13. 如图(1)是第七届国际数学教育大会(ICME7)的会徽图案,它是由一串直角三角形演化而成的(如图(2)),其中OA 1=A 1A 2=A 2A 3=…=A 7A 8=1,则A 6A 7→·A 7A 8→的值是________.14. 设函数f(x)=⎩⎪⎨⎪⎧|log 2x -a|,0<x ≤4,f (8-x ),4<x <8.若存在实数m ,使得关于x 的方程f(x)=m 有4个不相等的实根,且这4个根的平方和存在最小值,则实数a 的取值范围是________.二、 解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤. 15. (本小题满分14分)在平面直角坐标系xOy 中,已知向量a =(cos α,sin α),b =(cos (α+π4),sin (α+π4)),其中0<α<π2. (1) 求(b -a )·a 的值;(2) 若c =(1,1),且(b +c )∥a ,求α的值.16.(本小题满分14分)如图,在直三棱柱ABCA 1B 1C 1中,CA =CB ,点P ,Q 分别为AB 1,CC 1的中点.求证:(1) PQ∥平面ABC;(2) PQ⊥平面ABB1A1.如图,在平面直角坐标系xOy 中,已知圆C :(x -3)2+y 2=1,椭圆E :x 2a 2+y 2b2=1(a >b >0)的右顶点A在圆C 上,右准线与圆C 相切.(1) 求椭圆E 的方程;(2) 设过点A 的直线l 与圆C 相交于另一点M ,与椭圆E 相交于另一点N.当AN =127AM 时,求直线l 的方程.18. (本小题满分16分)某公园有一块边长为3百米的正三角形ABC 空地,拟将它分割成面积相等的三个区域,用来种植三种花卉.方案是:先建造一条直道DE 将△ABC 分成面积之比为2∶1的两部分(点D ,E 分别在边AB ,AC 上);再取DE 的中点M ,建造直道AM(如图).设AD =x ,DE =y 1,AM =y 2(单位:百米).(1) 分别求y 1,y 2关于x 的函数关系式;(2) 试确定点D 的位置,使两条直道的长度之和最小,并求出最小值.19. (本小题满分16分)若函数f(x)在x 0处有极值,且f(x 0)=x 0,则称x 0为函数f(x)的“F 点”. (1) 设函数f(x)=kx 2-2ln x(k ∈R ). ① 当k =1时,求函数f(x)的极值; ② 若函数f(x)存在“F 点”,求k 的值;(2) 已知函数g(x)=ax 3+bx 2+cx(a ,b ,c ∈R ,a ≠0)存在两个不相等的“F 点”x 1,x 2,且|g(x 1)-g(x 2)|≥1,求a 的取值范围.在等比数列{a n }中,已知a 1=1,a 4=18.设数列{b n }的前n 项和为S n ,且b 1=-1,a n +b n =-12S n -1(n ≥2,n ∈N *).(1) 求数列{a n }的通项公式;(2) 求证:数列⎩⎨⎧⎭⎬⎫b n a n 是等差数列;(3) 是否存在等差数列{c n },使得对任意n ∈N *,都有S n ≤c n ≤a n ?若存在,求出所有符合题意的等差数列{c n };若不存在,请说明理由.2020届高三模拟考试试卷数学附加题(满分40分,考试时间30分钟)21. 【选做题】 在A ,B ,C 三小题中只能选做两题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修42:矩阵与变换)已知矩阵A =⎣⎢⎡⎦⎥⎤01a 0的逆矩阵A -1=⎣⎢⎡⎦⎥⎤02b 0.若曲线C 1:x 24+y 2=1在矩阵A 对应的变换作用下得到另一曲线C 2,求曲线C 2的方程.B. (选修44:坐标系与参数方程)在极坐标系中,已知曲线C 的方程为ρ=r(r >0),直线l 的方程为ρcos (θ+π4)= 2.设直线l 与曲线C相交于A ,B 两点,且AB =27,求r 的值.C. (选修45:不等式选讲)已知实数x ,y ,z 满足x 21+x 2+y 21+y 2+z 21+z 2=2,求证:x 1+x 2+y 1+y 2+z1+z 2≤ 2.【必做题】 第22,23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 小丽在同一城市开的2家店铺各有2名员工.节假日期间的某一天,每名员工休假的概率都是12,且是否休假互不影响.若一家店铺的员工全部休假,而另一家无人休假,则调剂1人到该店铺维持营业,否则该店就停业.(1) 求发生调剂现象的概率;(2) 设营业店铺数为X ,求X 的分布列和数学期望.23.我们称n(n ∈N *)元有序实数组(x 1,x 2,…,x n )为n 维向量,为该向量的范数.已知n 维向量a =(x 1,x 2,…,x n ),其中x i ∈{-1,0,1},i =1,2,…,n.记范数为奇数的n 维向量a 的个数为A n ,这A n 个向量的范数之和为B n .(1) 求A 2和B 2的值;(2) 当n 为偶数时,求A n ,B n (用n 表示).2020届高三模拟考试试卷(七市联考)数学参考答案及评分标准1. 92. 53. 104. 525. 236. π67. -158. 13 9. 2 10. 13 11. 8 12. ln 613.42714. (-∞,1) 15. 解:(1) 因为向量a =(cos α,sin α),b =(cos (α+π4),sin (α+π4)),所以(b -a )·a =a·b -a 2(2分)=cos αcos (α+π4)+sin αsin (α+π4)-(cos 2α+sin 2α)(4分)=cos(-π4)-1=22-1.(6分)(2) 因为c =(1,1),所以b +c =(cos (α+π4)+1,sin (α+π4)+1).因为(b +c )∥a ,所以[cos (α+π4)+1]sin α-[sin (α+π4)+1]cos α=0.(9分)于是sin α-cos α=sin (α+π4)cos α-cos (α+π4)sin α,从而2sin (α-π4)=sin π4,即sin (α-π4)=12.(12分)因为0<α<π2,所以-π4<α-π4<π4,于是α-π4=π6,即α=5π12.(14分)16. 证明:(1) 取AB 的中点D ,连结PD ,CD.在△ABB 1中,因为点P ,D 分别为AB 1,AB 中点, 所以PD ∥BB 1,且PD =12BB 1.在直三棱柱ABCA 1B 1C 1中,CC 1∥BB 1,CC 1=BB 1.因为点Q 为棱CC 1的中点,所以CQ ∥BB 1,且CQ =12BB 1.(3分)于是PD ∥CQ ,PD =CQ.所以四边形PDCQ 为平行四边形,从而PQ ∥CD.(5分)因为CD ⊂平面ABC ,PQ ⊄平面ABC ,所以PQ ∥平面ABC.(7分) (2) 在直三棱柱ABCA 1B 1C 1中,BB 1⊥平面ABC. 又CD ⊂平面ABC ,所以BB 1⊥CD.因为CA =CB ,点D 为AB 中点,所以CD ⊥AB.(10分) 由(1)知CD ∥PQ ,所以BB 1⊥PQ ,AB ⊥PQ.(12分)因为AB ∩BB 1=B ,AB ⊂平面ABB 1A 1,BB 1⊂平面ABB 1A 1, 所以PQ ⊥平面ABB 1A 1.(14分)17. 解:(1) 记椭圆E 的焦距为2c(c >0).因为右顶点A(a ,0)在圆C 上,右准线x =a 2c 与圆C :(x -3)2+y 2=1相切,所以⎩⎪⎨⎪⎧(a -3)2+02=1,⎪⎪⎪⎪a 2c -3=1,解得⎩⎪⎨⎪⎧a =2,c =1.于是b 2=a 2-c 2=3, 所以椭圆E 的方程为x 24+y 23=1.(4分)(2) (解法1)设N(x N ,y N ),M(x M ,y M ),显然直线l 的斜率存在,设直线l 的方程为y =k(x -2).由方程组⎩⎪⎨⎪⎧y =k (x -2),x 24+y 23=1,消去y ,得(4k 2+3)x 2-16k 2x +16k 2-12=0.所以x N ·2=16k 2-124k 2+3,解得x N =8k 2-64k 2+3.(6分)由方程组⎩⎪⎨⎪⎧y =k (x -2),(x -3)2+y 2=1,消去y ,得(k 2+1)x 2-(4k 2+6)x +4k 2+8=0, 所以x M ·2=4k 2+8k 2+1,解得x M =2k 2+4k 2+1.(8分)因为AN =127AM ,所以2-x N =127(x M -2),(10分)即124k 2+3=127·21+k 2,解得k =±1.(12分) 所以直线l 的方程为x -y -2=0或x +y -2=0.(14分)(解法2)设N(x N ,y N ),M(x M ,y M ),当直线l 与x 轴重合时,不符题意. 设直线l 的方程为x =ty +2(t ≠0).由方程组⎩⎪⎨⎪⎧x =ty +2,x 24+y 23=1,消去x ,得(3t 2+4)y 2+12ty =0,所以y N =-12t3t 2+4.(6分)由方程组⎩⎪⎨⎪⎧x =ty +2,(x -3)2+y 2=1,消去x ,得(t 2+1)y 2-2ty =0,所以y M=2t t 2+1.(8分) 因为AN =127AM ,所以y N =-127y M .(10分)即-12t 3t 2+4=-127·2t t 2+1,解得t =±1.(12分) 所以直线l 的方程为x -y -2=0或x +y -2=0.(14分)18. 解:(1) 因为S △ADE =23S △ABC ,△ABC 是边长为3的等边三角形,又AD =x ,所以12AD ·AE ·sin π3=23(12×32×sin π3),所以AE =6x .(2分)由⎩⎪⎨⎪⎧0<AD =x ≤3,0<AE =x6≤3,得2≤x ≤3. (解法1)在△ADE 中,由余弦定理得DE 2=AD 2+AE 2-2AD·AE·cos π3=x 2+36x2-6. 所以,直道 DE 的长度y 1关于x 的函数关系式为y 1=x 2+36x2-6,x ∈[2,3].(6分)在△ADM 和△AEM 中,由余弦定理得AD 2=DM 2+AM 2-2DM·AM·cos ∠AMD ①, AE 2=EM 2+AM 2-2EM·AM·cos(π-∠AMD) ②.(8分) 因为点M 为DE 的中点,所以DM =EM =12DE.由①+②,得AD 2+AE 2=DM 2+EM 2+2AM 2=12DE 2+2AM 2.所以x 2+(6x )2=12(x 2+36x 2-6)+2AM 2,所以AM 2=x 24+9x 2+32. 所以,直道AM 的长度y 2关于x 的函数关系式为y 2=x 24+9x 2+32,x ∈[2,3].(10分)(解法2)在△ADE 中,因为DE →=AE →-AD →,所以DE →2=AE →2-2AE →·AD →+AD →2=(6x )2-2·6x ·xcos π3+x 2=x 2+36x 2-6.所以,直道DE 的长度y 1关于x 的函数关系式为y 1=x 2+36x2-6,x ∈[2,3].(6分)在△ADE 中,因为点M 为DE 的中点,所以AM →=12(AD →+AE →).(8分)所以AM →2=14(AD →2+AE →2+2AD →·AE →)=14(x 2+36x 2+6).所以,直道AM 的长度y 2关于x 的函数关系式为y 2=x 24+9x 2+32,x ∈[2,3].(10分) (2) 由(1)得,两条直道的长度之和为DE +AM =y 1+y 2=x 2+36x 2-6+x 24+9x 2+32≥2x 2·36x 2-6+2x 24·9x 2+32(12分) =6+322(当且仅当⎩⎨⎧x 2=36x2,x 24=9x 2,即x =6时取“=”).(14分)答:当AD =6百米时,两条直道的长度之和取得最小值(6+322)百米.(16分)19. 解:(1) ① 当k =1时,f(x)=x 2-2ln x(k ∈R ),所以f′(x)=2(x -1)(x +1)x (x >0).令f′(x)=0,得x =1.(2分)列表如下:x (0,1) 1 (1,+∞)f′(x) -0 +f(x)极小值所以函数f(x)在x =1处取得极小值,极小值为1,无极大值.(4分) ② 设x 0是函数f(x)的一个“F 点”(x 0>0).因为f′(x)=2(kx 2-1)x (x >0),所以x 0是函数f′(x)的零点.所以k >0.由f′(x 0)=0,得kx 20=1,x 0=1k. 由f(x 0)=x 0,得kx 20-2ln x 0=x 0,即x 0+2ln x 0-1=0.(6分)设φ(x)=x +2ln x -1,则φ′(x)=1+2x>0,所以函数φ(x)=x +2ln x -1在(0,+∞)上单调递增,注意到φ(1)=0, 所以方程x 0+2ln x 0-1=0存在唯一实数根1,所以x 0=1k=1,得k =1. 根据①知,k =1时,x =1是函数f(x)的极小值点,所以1是函数f(x)的“F 点”. 综上,实数k 的值为1.(9分)(2) 因为g(x)=ax 3+bx 2+cx(a ,b ,c ∈R ,a ≠0), 所以g′(x)=3ax 2+2bx +c(a ≠0).因为函数g(x)存在不相等的两个“F 点”x 1和x 2,所以x 1,x 2是关于x 的方程⎩⎪⎨⎪⎧3ax 2+2bx +c =0,ax 3+bx 2+cx =x 的两个相异实数根.由ax 3+bx 2+cx =x 得x =0,ax 2+bx +c -1=0.(11分) ① 当x =0是函数g(x)一个“F 点”时,c =0且x =-2b3a ,所以a(-2b 3a )2+b(-2b3a )-1=0,即9a =-2b 2.又|g(x 1)-g(x 2)|=|x 1-x 2|=⎪⎪⎪⎪-2b3a -0≥1, 所以4b 2≥9a 2,所以9a 2≤2(-9a). 又a ≠0,所以-2≤a <0.(13分)② 当x =0不是函数g(x)一个“F 点”时,则x 1,x 2是关于x 的方程⎩⎪⎨⎪⎧3ax 2+2bx +c =0,ax 2+bx +c -1=0的两个相异实数根.又a ≠0,所以⎩⎨⎧2b3=b ,c 3=c -1,解得⎩⎪⎨⎪⎧b =0,c =32.所以ax 2=-12,得x 1,2=±-12a. 所以|g(x 1)-g(x 2)|=|x 1-x 2|=2-12a≥1,得-2≤a <0. 综上,实数a 的取值范围是[-2,0).(16分) 20. (1) 解:设等比数列{a n }的公比为q ,因为a 1=1,a 4=18,所以q 3=18,解得q =12.所以数列{a n }的通项公式为a n =(12)n -1.(3分)(2) 证明:由(1)得,当n ≥2,n ∈N *时,(12)n -1+b n =-12S n -1 ①,所以(12)n +b n +1=-12S n ②,②-①,得b n +1-12b n =(12)n ,(5分)所以b n +1(12)n -b n(12)n -1=1,即b n +1a n +1-b n a n =1,n ≥2,n ∈N *.因为b 1=-1,由①得b 2=0,所以b 2a 2-b 1a 1=0-(-1)=1,所以b n +1a n +1-b n a n=1,n ∈N *.所以数列⎩⎨⎧⎭⎬⎫b n a n 是以-1为首项,1为公差为等差数列.(8分)(3) 解:由(2)得b n a n =n -2,所以b n =n -22n -1,S n =-2(a n +1+b n +1)=-2(12n +n -12n )=-n2n -1.假设存在等差数列{c n },其通项c n =dn +c ,使得对任意n ∈N *,都有S n ≤c n ≤a n , 即对任意n ∈N *,都有-n 2n -1≤dn +c ≤12n -1 ③.(10分)首先证明满足③的d =0.若不然,d ≠0,则d >0,或d <0.(ⅰ) 若d >0,则当n >1-c d ,n ∈N *时,c n =dn +c >1≥12n -1=a n ,这与c n ≤a n 矛盾.(ⅱ) 若d <0,则当n >-1+cd,n ∈N *时,c n =dn +c <-1.而S n +1-S n =-n +12n +n2n -1=n -12n ≥0,S 1=S 2<S 3<…,所以S n ≥S 1=-1.故c n =dn +c <-1≤S n ,这与S n ≤c n 矛盾. 所以d =0.(12分)其次证明:当x ≥7时,f(x)=(x -1)ln 2-2ln x >0.因为f′(x)=ln 2-1x >ln 2-17>0,所以f(x)在[7,+∞)上单调递增,所以当x ≥7时,f(x)≥f(7)=6ln 2-2ln 7=ln 6449>0. 所以当n ≥7,n ∈N *时,2n -1>n 2.(14分) 再次证明c =0.(ⅲ) 若c <0时,则当n ≥7,n >-1c ,n ∈N *,S n =-n 2n -1>-1n >c ,这与③矛盾.(ⅳ) 若c >0时,同(ⅰ)可得矛盾. 所以c =0.当c n =0时,因为S n =1-n 2n -1≤0,a n=(12)n -1>0, 所以对任意n ∈N *,都有S n ≤c n ≤a n .所以c n =0,n ∈N *.综上,存在唯一的等差数列{c n },其通项公式为c n =0,n ∈N *满足题设.(16分)2020届高三模拟考试试卷(七市联考) 数学附加题参考答案及评分标准21. A. 解:因为AA -1=E ,所以⎣⎢⎡⎦⎥⎤01a 0⎣⎢⎡⎦⎥⎤02b 0=⎣⎢⎡⎦⎥⎤1001,即⎣⎢⎡⎦⎥⎤b 002a =⎣⎢⎡⎦⎥⎤1001. 所以⎩⎪⎨⎪⎧b =1,2a =1,解得⎩⎪⎨⎪⎧a =12,b =1.所以A =⎣⎢⎢⎡⎦⎥⎥⎤01120.(4分)设P(x′,y ′)为曲线C 1上任一点,则x′24+y′2=1.又设P(x′,y ′)在矩阵A 变换作用下得到点Q(x ,y),则⎣⎢⎢⎡⎦⎥⎥⎤01120⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤x y ,即⎣⎢⎢⎡⎦⎥⎥⎤y′x′2=⎣⎢⎡⎦⎥⎤x y ,所以⎩⎪⎨⎪⎧y′=x ,x ′2=y ,即⎩⎪⎨⎪⎧x′=2y ,y ′=x , 代入x′24+y′2=1,得y 2+x 2=1,所以曲线C 2的方程为x 2+y 2=1.(10分)B. 解:以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系xOy , 于是曲线C :ρ=r(r >0)的直角坐标方程为x 2+y 2=r 2, 表示以原点为圆心,半径为r 的圆.(3分)由直线l 的方程ρcos (θ+π4)=2,化简得ρcos θcos π4-ρsin θsin π4=2,所以直线l 的直角坐标方程为x -y -2=0.(6分) 记圆心到直线l 的距离为d ,则d =|2|2= 2. 又r 2=d 2+(AB2)2,即r 2=2+7=9,所以r =3.(10分)C. 证明:因为x 21+x 2+y 21+y 2+z 21+z 2=2,所以11+x 2+11+y 2+11+z 2=1-x 21+x 2+1-y 21+y 2+1-z 21+z 2=1.(5分)由柯西不等式得(x 21+x 2+y 21+y 2+z 21+z 2)(11+x 2+11+y 2+11+z 2)≥(x 1+x 2+y 1+y 2+z 1+z 2)2,所以(x 1+x 2+y 1+y 2+z 1+z 2)2≤2. 所以x 1+x 2+y 1+y 2+z 1+z 2≤ 2.(10分) 22. 解:(1) 记2家小店分别为A ,B ,A 店有i 人休假记为事件A i (i =0,1,2),B 店有i 人休假记为事件B i (i =0,1,2),发生调剂现象的概率为P ,则P(A 0)=P(B 0)=C 02(12)2=14, P(A 1)=P(B 1)=C 12(12)2=12, P(A 2)=P(B 2)=C 22(12)2=14. 所以P =P(A 0B 2)+P(A 2B 0)=14×14+14×14=18.答:发生调剂现象的概率为18.(4分)(2) 依题意,X 的所有可能取值为0,1,2,则 P(X =0)=P(A 2B 2)=14×14=116,P(X =1)=P(A 1B 2)+P(A 2B 1)=14×12+12×14=14.P(X =2)=1-P(X =0)-P(X =1)=1-116-14=1116.(8分)所以X 的分布列为X 0 1 2 P116141116所以E(X)=2×1116+1×14+0×116=138.(10分)23. 解:(1) 范数为奇数的二元有序实数对有(-1,0),(0,-1),(0,1),(1,0), 它们的范数依次为1,1,1,1,故A 2=4,B 2=4.(3分)(2) 当n 为偶数时,在向量a =(x 1,x 2,x 3…,x n )的n 个坐标中,要使得范数为奇数,则0的个数一定是奇数,所以可按照含0个数为1,3,…,n -1进行讨论:a 的n 个坐标中含1个0,其余坐标为1或-1,共有C 1n ·2n-1个,每个a 的范数为n -1; a 的n 个坐标中含3个0,其余坐标为1或-1,共有C 3n ·2n -3个,每个a 的范数为n -3;…a 的n 个坐标中含n -1个0,其余坐标为1或-1,共有C n -1n ·2个,每个a 的范数为1; 所以A n =C 1n ·2n -1+C 3n ·2n -3+…+C n -1n ·2,B n =(n -1)·C 1n ·2n -1+(n -3)·C 3n ·2n -3+…+C n -1n ·2.(6分) 因为(2+1)n =C 0n ·2n +C 1n ·2n -1+C 2n ·2n -2+…+C n n ①, (2-1)n =C 0n ·2n -C 1n ·2n -1+C 2n ·2n -2-…+(-1)n C n n ②, ①-②2得C 1n ·2n -1+C 3n ·2n-3+…=3n -12, 所以A n =3n -12.(8分)(解法1)因为(n -k)C k n =(n -k)·n !k !(n -k )!=n·(n -1)!k !(n -1-k )!=nC kn -1, 所以B n =(n -1)·C 1n ·2n -1+(n -3)·C 3n ·2n -3+…+C n -1n ·2 =n(C 1n -1·2n -1+C 3n -1·2n -3+…+C n -1n -1·2) =2n(C 1n -1·2n -2+C 3n -1·2n -4+…+C n -1n -1) =2n·(3n -1-12)=n·(3n -1-1).(10分)(解法2)①+②2得C 0n ·2n +C 2n ·2n-2+…=3n +12.因为kC k n =k·n !k !(n -k )!=n·(n -1)!(k -1)!(n -k )!=nC k -1n -1, 所以B n =(n -1)·C 1n ·2n -1+(n -3)·C 3n ·2n -3+…+C n -1n·2 =n(C 1n ·2n -1+C 3n ·2n -3+…+C n -1n ·2)-[C 1n ·2n -1+3·C 3n ·2n -3+…+(n -1)·C n -1n ·2] =nA n -n(C 0n -1·2n -1+C 2n -1·2n -3+…+C n -2n -1·2) =n·(3n -12-3n -1+12)=n·(3n -1-1).(10分)。

2020届江苏七市(南通、泰州、扬州、徐州、淮安、连云港、宿迁)高三下学期第三次调研考试数学试题(解析版)

2020届江苏七市(南通、泰州、扬州、徐州、淮安、连云港、宿迁)高三下学期第三次调研考试数学试题(解析版)

13
5
【答案】 33 65
【解析】
【分析】
计算得到 sin( + ) = 12 , cos = 4 ,再利用和差公式计算得到答案.
13
5
【详解】∵ , 均为锐角,∴ + (0, ) ,从而 sin( + ) 0 , cos 0 ,
∵ cos( + ) = 5 , sin = 3 ,∴ sin( + ) = 12 , cos = 4 ,
江苏省苏北七市 2020 届高三第三次调研考试
数学试题
一、填空题(本大题共 14 小题,每小题 5 分,共计 70 分.不需要写出解答过程,请将答案填 写在答.题.卡.相.应.的.位.置.上..)
1.已知集合 A={﹣1,0,1},B={0,2},则 A B=_______. 【答案】{﹣1,0,1,2} 【解析】 【分析】 直接利用集合的并集运算求解. 【详解】解:∵集合 A={﹣1,0,1},B={0,2}, ∴A B={﹣1,0,1,2}. 故答案为:{﹣1,0,1,2} 【点睛】本题主要考查集合 并集运算,意在考查学生对该知识的理解掌握水平,属于基础题.
故答案为 5 【点睛】本题考查程序框图的应用,明确每次循环,准确判断何时结束循环是关键,是基础题 4.某校高一、高二、高三年级 学生人数之比为 4:4:3,为了解学生对防震减灾知识的掌握情况,现采用
的 分层抽样的方法抽取 n 名学生进行问卷检测.若高一年级抽取了 20 名学生,则 n 的值是_______.
【解析】 【分析】
由已知中的框图可知进入循环的条件为不满足条件 k2 − 4k 0,模拟程序的运行结果,即可得到输出的 k 值
【详解】模拟执行程序,可得 k=1

江苏省泰州市2019-2020学年度第二学期调研测试高三数学试题含附加题

江苏省泰州市2019-2020学年度第二学期调研测试高三数学试题含附加题

y ⎩江苏省泰州市 2019—2020 学年度第二学期调研测试高三数学试题第I 卷(必做题,共 160 分)一、填空题(本大题共 14 小题,每小题 5 分,共 70 分,请将答案填写在答题卷相应的位置上.) 1.已知集合 A ={l ,2},B ={2,4,8},则 A B = . 2. 若实数 x ,y 满足 x +y i =﹣1+(x ﹣y )i (i 是虚数单位),则 xy = .3. 如图是容量为 100 的样本的频率分布直方图,则样本数据落在区间[6,18)内的频数为 .4. 根据如图所示的伪代码,可得输出的 S 的值为 .5.若双曲线 x a 2 2- = 1(a >0,b >0)的一条渐近线方程为 y = 2x ,则该双曲线的离心率b 2为 .6. 将一颗质地均匀的骰子(一种各个面上分别标有 1,2,3,4,5,6 个点的正方体玩具) 先后抛掷 2 次,这两次出现向上的点数分别记为 x ,y ,则 x - y = 1的概率是.7. 在平面直角坐标系 xOy 中,抛物线 y 2=4x 上一点 P 到焦点 F 的距离是它到 y 轴距离的 3倍,则点 P 的横坐标为 .8. 我国古代数学名著《增删算法统宗》中有这样一首数学诗:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”它的大意是:有人要到某关口,路程为 378 里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都是前一天的一半, 一共走了六天到达目的地.那么这个人第一天走的路程是 里. 9.若定义在 R 上的奇函数 f (x ) 满足 f (x + 4) = f (x ) , f (1) = 1,则 f (6) + f (7) + f (8)的值为.10. 将半径为 R 的半圆形铁皮卷成一个圆锥的侧面,若圆锥的体积为9 3π,则 R =.⎧x + a ,x ≥ a 1. 若函数 f (x ) = ⎨x 2 -1,x < a 只有一个零点,则实数 a 的取值范围为.22 12. 在平面直角坐标系 xOy 中,已知点 A( x , y ),B( x , y )在圆 O : x 2 + y 2= 4 上,1122且满足 x 1x 2 + y 1 y 2 = -2 ,则 x 1 + x 2 + y 1 + y 2 的最小值是.13. 在锐角△ABC 中,点 D ,E ,F 分别在边 AB ,BC ,CA 上,若AB = 3AD ,AC = λAF ,且BC ⋅ ED = 2EF ⋅ ED = 6 , ED = 1,则实数λ的值为.14. 在△ABC 中,点 D 在边 BC 上,且满足 AD =BD ,3tan 2B ﹣2tanA +3=0,则BD的取CD值范围为 .二、解答题(本大题共 6 小题,共计 90 分,请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.) 15.(本小题满分 14 分)如图,在三棱锥 P — ABC 中,PA ⊥平面 ABC ,AB =AC ,点 D ,E ,F 分別是 AB ,AC , BC 的中点.(1) 求证:BC ∥平面 PDE ; (2) 求证:平面 PAF ⊥平面 PDE .16.(本小题满分 14 分)已知函数 f (x ) = sin 2x + sin x cos x - 1,x ∈R .2(1)求函数 f (x ) 的最大值,并写出相应的 x 的取值集合;π 3π (2)若 f (α) =,α∈( - , ),求 sin2α的值.6 8 817.(本小题满分14分)某温泉度假村拟以泉眼C 为圆心建造一个半径为12 米的圆形温泉池,如图所示,M,N 是圆C 上关于直径AB 对称的两点,以A 为四心,AC 为半径的圆与圆C 的弦AM,AN 分别交于点D,E,其中四边形AEBD 为温泉区,I、II 区域为池外休息区,III、IV 区域为池内休息区,设∠MAB=θ.(1)当θ=π时,求池内休息区的总面积(III和IV两个部分面积的和);4(2)当池内休息区的总面积最大时,求AM 的长.18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆M:xa2y2+= 1(a>b>0)的左顶点为A,过点b2A的直线与椭圆M交于x轴上方一点B,以AB为边作矩形ABCD,其中直线CD过原点O.当点B 为椭圆M 的上顶点时,△AOB 的面积为b,且AB=3b .(1)求椭圆M 的标准方程;(2)求矩形ABCD 面积S 的最大值;(3)矩形ABCD 能否为正方形?请说明理由.19.(本小题满分16分)2定义:若一个函数存在极大值,且该极大值为负数,则称这个函数为“YZ函数”.(1)判断函数f (x) =xe x-1是否为“YZ函数”,并说明理由;(2)若函数g(x) = ln x -mx (m∈R)是“YZ函数”,求实数m的取值范围;(3)已知h(x) =1x3 +1ax2 +bx -1b ,x∈(0,+∞),a,b∈R,求证:当a≤﹣2,3 2 3且0<b<1时,函数h(x)是“YZ函数”.20.(本小题满分16分)已知数列{a n},{b n},{c n}满足b n=a n+2-a n,c n=2a n+1+a n.(1)若数列{a n}是等比数列,试判断数列{c n}是否为等比数列,并说明理由;(2)若a n恰好是一个等差数列的前n项和,求证:数列{b n}是等差数列;(3)若数列{b n}是各项均为正数的等比数列,数列{c n}是等差数列,求证:数列{a n}是等差数列.第II 卷(附加题,共40 分)2 )+ + = + + ≤ 21.【选做题】本题包括 A ,B ,C 三小题,请选定其中两题作答,每小题 10 分共计 20 分,解答时应写出文字说明,证明过程或演算步骤.A. 选修 4—2:矩阵与变换已知列向量⎡a ⎤ 在矩阵 M = ⎡3 4⎤ 对应的变换下得到列向量⎡b - 2⎤ ,求M -1 ⎡b ⎤ .⎢5 ⎥ ⎢1 2 ⎥ ⎢ b ⎥ ⎢a ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦B. 选修 4—4:坐标系与参数方程⎧⎪x = cos α在平面直角坐标系 xOy 中,曲线 C 的参数方程为⎨⎪⎩ y = (α为参数).以坐标原 3 sin α点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线 l 的极坐标方程为ρsin(θ+ π= 4 , 4点 P 为曲线 C 上任一点,求点 P 到直线 l 距离的最大值.C. 选修 4—5:不等式选讲已知实数 a ,b ,c 满足 a >0,b >0,c >0,a 2b 2c 23 ,求证:a b c 3 . b c a【必做题】第 22 题、第 23 题,每题 10 分,共计 20 分,解答时应写出文字说明,证明过程或演算步骤.22.(本小题满分10分)如图,在多面体ABCDEF 中,平面ADE⊥平面ABCD,四边形ABCD 是边长为2 的π正方形,△ADE 是等腰直角三角形,且∠ADE=,EF⊥平面ADE,EF=1.2(1)求异面直线AE 和DF 所成角的余弦值;(2)求二面角B—DF—C 的余弦值.23.(本小题满分10分)给定n(n≥3,n∈ N*)个不同的数1,2,3,…,n,它的某一个排列P 的前k(k∈ N*,1≤k≤n)项和为Sk ,该排列P 中满足2Sk≤Sn的k 的最大值为kP.记这n 个不同数的所有排列对应的kP 之和为Tn.(1)若n=3,求T3;(2)若n=4l+1,l∈ N*,①证明:对任意的排列P,都不存在k(k∈ N*,1≤k≤n)使得2Sk =Sn;②求Tn(用n 表示).2 2 2 2 12019~2020 学年度第二学期调研测试高三数学答案一、填空题 1. {1, 2, 4,8}2. 12 513. 804. 85.6.7.1828. 192 9. -1 10. 6 11. (-∞ -1] (0,1] 二、解答题12. -2 13. 314. (1, 2]15.(本题满分 14 分)证明:(1)在 ∆ABC 中,因为 D , E 分别是 AB , AC 的中点,所以 DE / / B C , .............................................................................................................. 2 分 因为 BC ⊄ 平面PDE , DE ⊂ 平面PDE ,所以 BC / /平面PDE . ................................................................................................. 6 分 (2)因为 PA ⊥ 平面ABC , DE ⊂ 平面PDE ,所以 PA ⊥ DE ,在∆ABC 中,因为 AB = AC , F 分别是 BC 的中点, 所 以 AF ⊥ BC , ............................................................................................................ 8 分 因为 DE / / BC ,所以 DE ⊥ AF ,又因为 AF PA = A , AF ⊂ 平面PAF , PA ⊂ 平面PAF ,所以 DE ⊥ 平面PAF , .............................................................................................. 12 分因为 DE ⊂ 平面PDE ,所以平面PAF ⊥ 平面PDE . ..................................... 14 分16.(本题满分 14 分)解:(1)因为 f (x ) = sinx + sin x cos x - , 21- c os 2x 所 以 f (x ) = +1 sin 2x - 1 = 1 (sin 2x - cos 2x )……………2 分2 2 2 2 = (sin 2x cos π- cos 2x sin π = sin(2x - π)……………4 分2 4 4 2 4当 2x - π = 2k π+ π(k ∈ Z) ,即 x = k π+3π(k ∈ Z) 时, f (x ) 取最大值 , 4 28252)2 2 2 2 1± 3388 ))) ( ) α- ∈ , ) ) ] ) cos ) sin 所以 f (x ) 的最大值为2 ,此时 x 的取值集合为⎧x x = k π+3π,k ∈ ⎫.………7 分⎨Z ⎬ 2⎩ ⎭(2)因为 f (α) =,则 2 sin(2α- π =,即sin(2α- π = 1 ,6 2 46 4 3因为α∈(- π , 3π ) ,所以 2 π (- π π , 8 8 4 2 2 π π 1 则cos(2α- ) = 1 -sin 2(2α- = 1 - 2 = , ................................. 10 分4 4 3 3所以sin 2α= sin[(2α- π + π = sin(2α- π π+ cos(2α- π π4 4 4 4 4 4= 1⋅ 2 + 2 2 ⋅ 2 = 4 + 2 . ……………14 分 3 2 3 2 617.(本题满分 14 分)解:(1)在 Rt ∆ABM 中,因为 AB = 24 ,θ= π,4所以 MB = AM = 12 , MD = 24 cos π-12 = 12 4-12 ,所以池内休息区总面积 S = 2 ⋅ 1MB ⋅ DM = 12 2(12 2-12) = 144(2 - 2) .(2)在 Rt ∆ABM 中,因为 AB = 24 , ∠MAB =θ, ……………4 分所以 MB = 24sin θ, AM = 24 cos θ, MD = 24 cos θ-12 ,由 MB = 24sin θ> 0, MD = 24 c os θ-12 > 0 得θ∈⎛ 0,π⎫ , .................................... 6 分 3⎪⎝⎭则池内休息区总面积 S = 2 ⋅ 1MB ⋅ DM = 24sin θ(24 cos θ-12) ,θ∈⎛ 0,π⎫; 23 ⎪设 f (θ) = sin θ(2 cos θ-1) ,θ∈⎛ 0,π⎫,因为⎝ ⎭……………9 分3 ⎪ ⎝ ⎭f '(θ) = cos θ(2 cos θ-1) - 2sin 2 θ= 4 cos 2 θ- cos θ- 2 = 0 ⇒ cos θ= ,又cos θ=1+ 33 > 1 ,所以∃θ ∈ ⎛ 0,π⎫,使得cos θ = 1+ 33 , 8 2 0 3 ⎪ 0 8⎝ ⎭则当 x ∈(0,θ0 ) 时, f '(θ) > 0 ⇒ f (θ) 在(0,θ0 )上单调增, 2 2 2a 2+ b 22 4 1+ k 21+ k 21+ k 22 24 1+ k 2 ⎨ 2 ⎩2 当 x ∈⎛θ,π⎫时, f '(θ) < 0 ⇒ f (θ) 在(0,θ ) 上单调减, 0 3 ⎪ 0⎝ ⎭即 f (θ0 )是极大值,也是最大值,所以 f max (θ) =f (θ0 ),此时 AM = 24 cos θ0 = 3+ 3 . ................................................................................ 13 分答:(1)池内休息区总面积为144(2 - 2)m 2;(2)池内休息区总面积最大时 AM 的长为 AM = (3 + 3 33)m .………14 分18.(本题满分 16 分)⎧ = ⎪ 解:(1)由题意: ⎪ 1ab = b ⎪3b ,解得 a = 2, b = c = ,⎪a 2 = b 2 + c 22所以椭圆 M 的标准方程为x+y= 1. ........................................................... 4 分4 2(2) 显然直线 AB 的斜率存在,设为 k 且 k > 0 ,则直线 AB 的方程为 y = k (x + 2),即 kx - y + 2k = 0 ,⎧ y = k (x + 2) ⎪ 2 2 2 2联立⎨ x 2 + y 2 = ⎩ 4 2得(1+ 2k ) x + 8k x + 8k - 4 = 0 ,解得 x B = 2 - 4k 2 1+ 2k 2 , y B = 4k 1+ 2k 2 ,所以 AB = = 1+ 2k 2 ,直线CD 的方程为 y = kx ,即 kx - y = 0 ,所以 BC ==2k ,4 1 + k 22k 8k88所以矩形 ABCD 面积 S =1+ 2k2⋅= = 1+ 2k 21 + 2k k≤ = 2 , 2 2所以当且仅当 k =时,矩形 ABCD 面积 S 的最大值为 2 2(3) 若矩形 ABCD 为正方形,则 AB = BC ,. .............. 11 分 即 1+ 2k 22k ,则 2k 1+ k 23 - 2k 2+ k - 2 = 0 (k > 0) , 33 (x + 2)2 + y 2B B2k 1+ k 22 = 1x 1 2 令 f (k ) = 2k 3 - 2k 2+ k - 2(k > 0) ,因为 f (1) = -1 < 0, f (2) = 8 > 0 ,又 f (k ) = 2k 3- 2k 2+ k - 2(k > 0) 的图象不间断, 所以 f (k ) = 2k 3- 2k 2+ k - 2(k > 0) 有零点,所以存在矩形 ABCD 为正方形.19.(本题满分 16 分)解:(1)函数 f (x ) = -1是“Y Z 函数”,理由如下:e x……………16 分因 为 f (x ) = xe x -1,则f '(x ) =1- x , e x当 x < 1时, f '(x ) > 0 ;当 x > 1 时, f '(x ) < 0 ,x 1所 以 f (x ) = -1的极大值 f (1) = -1 < 0 ,e x e x故函数 f (x ) = -1是“Y Z 函数”. ............................................................ 4 分e x(2)定义域为(0, +∞) , g '(x ) = 1- m ,x当 m ≤ 0 时, g '(x ) = 1- m > 0 ,函数单调递增,无极大值,不满足题意;x 当 m > 0 时,当0 < x <1 时, g '(x ) = 1- m > 0 ,函数单调递增, m x 当 x > 1 时, g '(x ) = 1- m < 0 ,函数单调递减,m x1 1 1所以 g ( x ) 的极大值为 g ( ) = ln - m ⋅ = - ln m -1,m m m1 1由题意知 g ( ) = - ln m -1 < 0 ,解得 m > m . (10)分 e(3)证明: h '(x ) = x 2 + ax + b ,因为 a ≤ -2 , 0 < b < 1,则∆ = a 2 - 4b > 0 ,所以 h '(x ) = x 2+ ax + b = 0 有两个不等实根,设为 x , x ,⎧x 1 + x 2 = -a > 0因为⎨x x = b > 0,所以 x 1 > 0, x 2 > 0 ,不妨设0 < x 1 < x 2 , ⎩ 1 2当0 < x < x 1 时, h '(x ) > 0 ,则 h (x ) 单调递增; 当 x 1 < x < x 2 时, h '(x ) < 0 ,则 h (x ) 单调递减,1 所以 h (x ) 的极大值为 h (x ) = 1x 3+ 1ax 2+ bx - b , .......................... 13 分13 12 113由 h '(x ) = x 2 + ax + b = 0 得 x 3 = x (-ax - b ) = -ax 2- bx ,1 1 1因为 a ≤ -2 , 0 < b < 1,所以 h (x ) = 1x 3+ 1ax 2+ bx 1 1 1 1 1- 1b = 1(-ax 2 - bx ) + 1ax 2 + bx - 1b13 12 1 13 31 1 21 1 3 = 1 ax2 + 2 bx - 1 b ≤ - 1 x 2 + 2 bx - 1 b6 1 3 13 3 1 3 1 3= - 1 (x - b )2 + 1b (b -1) < 0 .3 1 3所以函数 h (x ) 是“Y Z 函数”. ........................................................................ 16 分(其他证法相应给分)20.(本题满分 16 分)解:(1)设等比数列{a n }的公比为 q ,则 c n = 2a n +1 + a n = 2a n q + a n = (2q +1)a n , 当 q = - 1时, c = 0 ,数列{c }不是等比数列, ............................................. 2 分2n n1c n +1(2q +1)a n +1当 q ≠ - 2时,因为 c n ≠ 0 ,所以 c=(2q +1)a = q ,所以数列{c n }是等比数nn列. .............................................................................................................................. 5 分(2) 因为 a n 恰好是一个等差数列的前 n 项和,设这个等差数列为{d n } ,公差为 d ,因为 a n = d 1 + d 2 + + d n ,所以 a n +1 = d 1 + d 2 + + d n + d n +1 , 两式相减得 a n +1 - a n = d n +1 , 因为 a n +2 = a n + b n ,所以b n +1 - b n = (a n +3 - a n +1 ) - (a n +2 - a n ) = (a n +3 - a n +2 ) - (a n +1 - a n ) = d n +3 - d n +1 = 2d ,所以数列{b n }是等差数列. .......................................................................................... 10 分(3) 因为数列{c n }是等差数列,所以c n +3 - c n +2 = c n +1 - c n ,又因为c n = 2a n +1 + a n ,所以 2a n +4 + a n +3 - (2a n +3 + a n +2 ) = 2a n +2 + a n +1 - (2a n +1 + a n ) ,即 2(a n +4 - a n +2 ) = (a n +3 - a n +1) + (a n +2 - a n ) ,则 2b n +2 = b n +1 + b n ,又因为数列{b }是等比数列,所以b= b b,则b = b ⋅ b n +1 + b n ,n即(b n +1 - b n )(2b n +1 + b n ) = 0 ,n +1 n n +2n +1 n 2222 n q 1 2 n q 0 1 ⎪ ⎪ ⎪ ⎦⎪ ⎣ 因为数列{b n }各项均为正数,所以b n +1 = b n , .......................................................... 13 分则 a n +3 - a n +1 = a n +2 - a n , 即 a n +3 = a n +2 + a n +1 - a n ,又因为数列{c n }是等差数列,所以 c n +2 + c n = 2c n +1 , 即(2a n +3 + a n +2 ) + (2a n +1 + a n ) = 2(2a n +2 + a n +1) , 化简得 2a n +3 + a n = 3a n +2 ,将 a n +3 = a n +2 + a n +1 - a n 代入得2(a n +2 + a n +1 - a n ) + a n = 3a n +2 ,化简得 a n +2 + a n = 2a n +1 ,所以数列{a n }是等差数列. .....................................16 分 (其他证法相应给分)数学Ⅱ(附加题)21. A . [选修 4-2:矩阵与变换](本小题满分 10 分)⎡3 解:因为 4⎤⎡a ⎤ = ⎡b - 2⎤ ,所以⎧3a + 20 = b - 2 ,解得⎧a = -6 , .............. 4 分 ⎢1 2⎥⎢5⎥ ⎢ b ⎥⎨ a +10 = b ⎨ b = 4 ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎩ ⎩设 M -1= ⎡m p ⎤ ,则⎡3 4⎤ ⎡m p ⎤ = ⎡1 0⎤ ,⎢⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣⎦ ⎧m = 1⎧3m + 4n = 1 ⎪3 p + 4q = 0 ⎪n = - 1 ⎡ 1 - 2⎤ ⎪ ⎪ 即 ,解得 2 , 所 以 M -1 = ⎢ 13 ⎥ , .............................. 8 分 ⎨m + 2n = 0 ⎪⎩ p + 2q = 1 ⎨ p = -2 ⎪q = 3 ⎢⎣- 2 2 ⎥⎦ ⎩ 2⎡b ⎤ ⎡ 1 -2⎤⎡ 4 ⎤ ⎡ 16 ⎤ 所 以 M -1 ⎢ ⎥ = ⎢ 1 3 ⎥ ⎢ ⎥ = ⎢ ⎥10分⎣a ⎦ ⎢-⎥ ⎣-6⎦ ⎣-11⎦ 2 2B.[选修 4-4:坐标系与参数方程](本小题满分 10 分)ππ解:由题:直线方程即为ρ(sin θcos + cos θsin) = 4 ,4 4由ρcos θ= x , ρsin θ= y 得直线的直角坐标方程为 x + y - 8 = 0 , ..................... 4 分设 P 点的坐标为(cos α, 3 sin α),cos α+ 3 sin α- 812 +122AE ⋅ DF = [( b )2 2sin ⎛α+ π⎫ - 86 ⎪ ∴ 点 P 到直线的距离 d = = ⎝ ⎭ , 8 分当α+ π = 2k π- π(k ∈ Z ) ,即α= 2k π- 2π(k ∈ Z) 时, d 取得最大值5,6 2 3此时点 P 的坐标为⎛ - 1 , - 3 ⎫10 分2 2 ⎪ ⎝ ⎭C.[选修 4-5:不等式选讲](本小题满分 10 分)证明:由柯西不等式,得3(a + b + c ) = (b + c + a )( a + b 2 + c b c a)2 ]………………5 分a ⋅ )所以 a + b + c ≤ 3 . .............................................................................................. 10 分 22.(本小题满分 10 分)π解:因为平面 ADE ⊥ 平面 ABCD ,又∠ADE = ,2即 DE ⊥ AD ,因为 DE ⊂ 平面ADE ,平面ADE 平面ABCD = AD , ∴ DE ⊥ 平面 ABCD ,由四边形 ABCD 为边长为 2 的正方形, 所以 DA , DC , DE 两两互相垂直.以 D 为坐标原点,{DA , DC , DE }为一组基底建立如图所示的空间直角坐标系 ......... 2 分由 EF ⊥ 平面 ADE 且 EF = 1 ,∴ D (0, 0, 0), A (2, 0, 0), E (0, 0, 2),C (0, 2, 0), B (2, 2, 0), F (0,1, 2),(1) AE = (-2, 0, 2) , DF = (0,1, 2) ,则cos < AE , DF >=AE ⋅ DF = 4 = 10 ,2 2 ⨯ 5 52 ≥ ( b ⋅ 22 )+ ( c )2 + ( a )2][( a )2 + ( b )2 + ( c b c a a + c ⋅ b + b c c 2 a = (a + b + c ) 2⎧ ⋅ n (n +1) m n 所以 AE 和 DF 所成角的余弦值为10 (5)分 5(2) DB = (2, 2, 0) , DF = (0,1, 2) ,设平面 BDF 的一个法向量为n = ( x , y , z ) ,n ⋅ DB = 2x +2 y = 0 由⎨,取 z = 1,得 n = (2,-2,1) , ⎩n ⋅ DF = y + 2z = 0平面 DFC 的一个法向量为 m = (1, 0, 0) ,∴cos < >= m ⋅n = 2 = 2 ,m ,n 3⨯1 32由二面角 B - DF - C 的平面角为锐角,所以二面角 B - DF - C 的余弦值为 3.……10 分23.(本小题满分 10 分)解:(1)1, 2, 3的所有排列为1, 2,3;1,3, 2; 2,1,3; 2,3,1;3,1, 2;3, 2,1,因为 S 3 = 6 ,所以对应的 k P 分别为 2,1, 2,1,1,1,所以T 3 = 8 ; ............................... 3 分(2)(i )设 n 个不同数的某一个排列 P 为 a 1 , a 2 , ⋅⋅⋅, a n ,因为 n = 4l +1,l ∈ N *,所以 S n == (4l + 1)(2l + 1) 为奇数,2而 2S k 为偶数,所以不存在 k (k ∈ N *,1≤ k ≤ n ) 使得 2S k = S n ; ...........................5 分 (ii) 因为 2S k ≤ S n ,即 a 1 + a 2 + ⋅⋅⋅ + a k ≤ a k +1 + a k +2 + ⋅⋅⋅ + a n , 又由(i )知不存在 k (k ∈ N *,1≤ k ≤ n ) 使得 2S k = S n , 所以 a 1 + a 2 + ⋅⋅⋅ + a k < a k +1 + a k +2 + ⋅⋅⋅ + a n ;所以满足 2S k ≤ S n 的最大下标 k 即满足 a 1 + a 2 + ⋅⋅⋅ + a k < a k +1 + a k +2 + ⋅⋅⋅ + a n ① 且 a 1 + a 2 + ⋅⋅⋅ + a k + a k +1 > a k +2 + ⋅⋅⋅ + a n ②, 考虑排列 P 的对应倒序排列 P ' : a n , a n -1, ⋅⋅⋅, a 1 ,①②即 a n + ⋅⋅⋅ + a k +2 < a k +1 + a k + ⋅⋅⋅ + a 2 + a 1 , a n + ⋅⋅⋅ + a k +2 + a k +1 > a k + ⋅⋅⋅ + a 2 + a 1 , 由题意知 k P ' = n - k -1,则 k P + k P ' = n - 1 ; ..................................................................................................... 8 分 又1, 2, 3,⋅⋅⋅, n ,这 n 个不同数共有 n !个不同的排列,可以构成 n !个对应组合( P , P ') ,2且每组( P , P ') 中 k P + k P ' = n - 1 ,所以T n =n !(n -1) . .................................... 10 分2。

江苏省南通、泰州市2020届高三第一次调研测试数学试题含附加题含答案

江苏省南通、泰州市2020届高三第一次调研测试数学试题含附加题含答案

4.根据如图所示的伪代码,输出的已如函数.若当已知函数若关于,且(2)求六边形微标的周长的最大值.19. (本小题满分16 分)时,)若λ= 2.,求数列②设,证明:对于任意的本小题满分16 分)设函数,其中)当 a =0 时,求函数 f (x) 的单调减区间;已知,向量是矩阵的属于特征值的参数方程(参数方程为都是正实数,且.证明:23.(本小题满分10 分)一只口袋装有形状、大小完全相同的5 只小球,其中红球、黄球、绿球、黑球、白球各1 只. 现从口袋中先后有放回地取球2n次,且每次取1 只球.(1)当n=3时,求恰好取到3 次红球的概率;(2)随机变量X表示2n次取球中取到红球的次数,随机变量求Y的数学期望(用n表示)数学参考答案与评分细则第1页(共16页)南通市2020届高三第一次调研测试数学学科参考答案及评分建议一、填空题:本大题共14小题,每小题5分,共计70分.1.已知集合,,则▲.【答案】2.已知复数满足,其中是虚数单位,则的模为▲.【答案】3.某校高三数学组有5名党员教师,他们一天中在“学习强国”平台上的学习积分依次为,则这5名党员教师学习积分的平均值为▲.【答案】404.根据如图所示的伪代码,输出的a 的值为▲.【答案】115.已知等差数列的公差不为0,且成等比数列,则的值为▲.【答案】16.将一枚质地均匀的硬币先后抛掷3次,则恰好出现2次正面向上的概率为▲.【答案】7.在正三棱柱中,,则三棱锥的体积为▲.【答案】8.已知函数.若当时,函数取得最大值,则的最小值为▲.【答案】59.已知函数是奇函数.若对于任意的,关于的不等式恒成立,则实数的取值范围是▲.a ←1i ←1While i ≤4a ←a+i i ←i +1End While Print a(第4题)数学参考答案与评分细则第2页(共16页)【答案】10.在平面直角坐标系中,已知点A ,B 分别在双曲线的两条渐近线上,且双曲线经过线段AB 的中点.若点的横坐标为2,则点的横坐标为▲.【答案】11.尽管目前人类还无法准确预报地震,但科学家通过研究,已经对地震有所了解,例如,地震时释放出的能量E (单位:焦耳)与地震里氏震级M 之间的关系为.2008年5月汶川发生里氏8.0级地震,它释放出来的能量是2019年6月四川长宁发生里氏6.0级地震释放出来能量的▲倍.【答案】100012.已知△ABC 的面积为3,且.若,则的最小值为▲.【答案】13.在平面直角坐标系中,已知圆与圆相交于A ,B 两点.若圆上存在点,使得△ABP 为等腰直角三角形,则实数的值组成的集合为▲.【答案】14.已知函数若关于的方程有五个不相等的实数根,则实数的取值范围是▲.【答案】二、解答题:本大题共6小题,共计90分.15.(本小题满分14分)如图,在三棱锥中,平面,,分别为的中点.(第15题)数学参考答案与评分细则第3页(共16页)求证:(1)AB ∥平面;(2)平面平面.【证】(1)在中,因为分别为的中点,所以AB ∥DE .……3分又因为平面,平面,所以AB ∥平面.……6分(2)因为平面,平面,所以.……8分又因为,平面,,所以平面.……11分因为平面,所以平面平面.……14分16.(本小题满分14分)在△ABC 中,已知,,.(1)求的值;(2)求的值.【解】(1)在△ABC 中,因为,,由,得.……2分又,,由正弦定理,得,……4分所以.……6分(2)(方法一)由余弦定理,得,……8分数学参考答案与评分细则第4页(共16即,解得或(舍去).……11分所以.……14分(方法二)在△ABC 中,由条件得,所以,所以.所以.……8分所以.……10分由正弦定理,得,所以.……12分所以.……14分17.(本小题满分14分)如图,在平面直角坐标系中,椭圆的焦距为,两条准线间的距离为,分别为椭圆的左、右顶点.(1)求椭圆的标准方程;(2)已知图中四边形是矩形,且,点分别在边上,与相交于第一象限内的点.①若分别是的中点,证明:点在椭圆上;②若点在椭圆上,证明:【解】(1)设椭圆的焦距为,数学参考答案与评分细则第5页(共16页)则由题意,得解得所以.所以椭圆的标准方程为.……3分(2)①由已知,得,,,.直线的方程为,直线的方程为.联立解得即.……6分因为,所以点在椭圆上.……8分②(解法一)设,,则,.直线的方程为,令,得.……10分直线的方程为,令,得.……12分所以.……14分(第18题)O(解法二)设直线的方程为,令,得.设直线的方程为,令,得.……10分而.……12分设,,则,所以,所以.……14分18.(本小题满分16分)在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转.如图,小卢利用图形的旋转设计某次活动的徽标,他将边长为的正三角形绕其中心逆时针旋转到三角形,且.顺次连结,得到六边形徽标.(1)当时,求六边形徽标的面积;(2)求六边形徽标的周长的最大值.【解】连结.在正三角形中,,,,.……2分当正三角形绕中心逆时针旋转到正三角形位置时,有,,,所以≌≌,≌≌,所以,.……4分(1)当时,设六边形徽标的面积为,则……6分.答:当时,六边形徽标的面积为.……9分(2)设六边形徽标的周长为,则……11分,.……13分所以当,即时,取最大值.答:六边形徽标的周长的最大值为.……16分19.(本小题满分16分)已知数列满足:,且当时,.(1)若,证明:数列是等差数列;(2)若.①设,求数列的通项公式;②设,证明:对于任意的,当时,都有.【解】(1)时,由,得……2分所以,即(常数),所以数列是首项为1,公差为1的等差数列.……4分(2)时,,时,.①时,所以.……6分所以.又,所以.……8分又,所以(常数).所以数列是首项为,公比为的等比数列,所以数列的通项公式为.……10分②由①知,,.所以,所以.……12分所以.……14分当时,,所以;当时,,所以;当时,,所以.所以若,则.……16分20.(本小题满分16分)设函数,其中为自然对数的底数.(1)当时,求函数的单调减区间;(2)已知函数的导函数有三个零点,,.①求的取值范围;②若,是函数的两个零点,证明:.【解】(1)时,,其定义域为,.令,得,所以函数的单调减区间为.……3分(2)①,设,则导函数有三个零点,即函数有三个非零的零点.又,若,则,所以在上是减函数,至多有1个零点,不符合题意,所以.……5分令,.列表如下:所以即解得.……8分又,所以在上有且只有1个非零的零点.因为当时,,,,且,又函数的图象是连续不间断的,所以在和上各有且只有1个非零的零点.所以实数的取值范围是.……10分②(证法一)由,得设,且,所以.又因为,所以.所以或时,;时,.由①知,.因为,所以,,所以,极大值极小值.……14分所以成立.……16分(证法二)依题设知:,由①知,设,由①知,所以,在上单调递减.……12分又由,得:,即,所以,又,故,.于是(Ⅰ),即,又,,所以;……14分(Ⅱ),即,又,,故,又,所以,即.所以,得证.……16分21.【选做题】本题包括A、B、C三小题,请选定其中两题,并在答题卡相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-2:矩阵与变换](本小题满分10分)已知,向量是矩阵的属于特征值3的一个特征向量.(1)求矩阵;(2)若点在矩阵对应的变换作用下得到点,求点的坐标.【解】(1)因为向量是矩阵的属于特征值3的一个特征向量,所以,即,所以解得所以.……5分(2)设,则,所以解得所以点的坐标为.……10分B.[选修4-4:坐标系与参数方程](本小题满分10分)在平面直角坐标系中,已知直线的参数方程(t为参数),椭圆C的参数方程为(为参数).求椭圆C上的点到直线的距离的最大值.【解】(方法一)直线的普通方程为.……2分设,则点到直线的距离.……8分当,即()时,.……10分(方法二)直线的普通方程为.椭圆C的普通方程为.……4分设与直线平行的直线方程为,由消,得.令,得.……8分所以直线与椭圆相切.当时,点到直线的距离最大,.……10分C.[选修4-5:不等式选讲](本小题满分10分)已知都是正实数,且.证明:(1);(2).【证】(1)因为都是正实数,所以.又因为,所以,即,得证.……4分(2)因为都是正实数,所以,①,②.③……6分由①+②+③,得,所以,又因为,所以,得证.……10分【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域内作答,解答时应写出(第22题)文字说明、证明过程或演算步骤.22.(本小题满分10分)如图,在直四棱柱中,,,.(1)求二面角的余弦值;(2)若点为棱的中点,点在棱上,且直线与平面所成角的正弦值为,求的长.【解】在直四棱柱中,因为平面,,平面,所以,.又,以为正交基底,建立如图所示的空间直角坐标系.由,得,.……2分(1),,设平面的一个法向量,则即不妨取,则,,所以.……4分因为平面,所以平面的一个法向量为.设二面角的平面角的大小为,根据图形可知,.所以二面角的余弦值为.……6分(2)设,则.又为的中点,则,,.设平面的一个法向量,由得取,则,,所以.……8分设直线与平面所成角的大小为,则,所以或(舍去).所以.……10分23.(本小题满分10分)一只口袋装有形状、大小完全相同的5只小球,其中红球、黄球、绿球、黑球、白球各1只.现从口袋中先后有放回地取球次,且每次取1只球.(1)当时,求恰好取到3次红球的概率;(2)随机变量表示次取球中取到红球的次数,随机变量求的数学期望(用表示).【解】(1)当时,从装有5只小球的口袋中有放回的取球6次,共有个基本事件.记“恰好取到3次红球”为事件,事件包含基本事件有个.因为上述个基本事件发生的可能性相同,故.数学参考答案与评分细则第16页(共16页)答:当时,恰好取到3次红球的概率为.……3分(2)由题意知,随机变量的所有可能取值为.则...……5分所以.……7分令,,则,.,所以.所以.答:的数学期望为.……10分。

2020届江苏省泰州市高三下学期调研测试数学试题(解析版)

2020届江苏省泰州市高三下学期调研测试数学试题(解析版)

2020届江苏省泰州市高三下学期调研测试数学试题一、填空题1.已知集合{}1,2A =,{}2,48B =,,则A B =U _______. 【答案】{}1,2,4,8【解析】利用并集的定义可求得集合A B U . 【详解】{}1,2A =Q ,{}2,48B =,,{}1,2,4,8A B ∴=U . 故答案为:{}1,2,4,8. 【点睛】本题考查并集的计算,考查计算能力,属于基础题.2.若实数x 、y 满足()1x yi x y i +=-+-(i 是虚数单位),则xy =_______. 【答案】12【解析】根据复数相等建立方程组,求出x 、y 的值,进而可得出xy 的值. 【详解】()1x yi x y i +=-+-Q ,1x y x y =-⎧∴⎨=-⎩,解得112x y =-⎧⎪⎨=-⎪⎩,因此,12xy =.故答案为:12. 【点睛】本题考查利用复数相等求参数,考查计算能力,属于基础题.3.如图是容量为100的样本的频率分布直方图,则样本数据落在区间[)6,18内的频数为_______.【答案】80【解析】将样本数据落在区间[)6,18内的频率乘以100可得出结果. 【详解】由直方图可知,样本数据落在区间[)6,18内的频率为()0.080.090.0340.8++⨯=, 因此,样本数据落在区间[)6,18内的频数为1000.880⨯=. 故答案为:80. 【点睛】本题考查利用频率分布直方图计算频数,解题时要明确频率、频数与总容量之间的关系,考查计算能力,属于基础题.4.根据如图所示的伪代码,可得输出的S 的值为_______.【答案】8【解析】根据算法程序列举出算法的每一步,进而可得出输出的S 的值. 【详解】15I =<成立,123I =+=,336S =+=; 35I =<成立,325I =+=,538S =+=; 55I =<不成立,跳出循环体,输出S 的值为8.故答案为:8. 【点睛】本题考查利用算法程序计算输出的值,一般要求将算法的每一步计算出来,考查计算能力,属于基础题.5.双曲线22221(0,0)x y a b a b-=>>的一条渐近线方程为2y x =,则离心率等于___.5【解析】根据双曲线方程得渐近线方程,再根据条件得ba=2,最后得离心率.【详解】双曲线的渐近线方程为:by x a=±, 所以,ba=2,离心率为:c e a ==== 【点睛】本题考查双曲线渐近线方程以及离心率,考查基本分析求解能力,属基础题.6.将一颗质地均匀的骰子(一种各个面上分别标有1、2、3、4、5、6个点的正方体玩具)先后抛掷2次,这两次出现向上的点数分别记为x 、y ,则1x y -=的概率是_______. 【答案】518【解析】计算出基本事件总数,列举出事件“1x y -=”所包含的基本事件,然后利用古典概型的概率公式可计算出所求事件的概率. 【详解】将一颗质地均匀的骰子先后抛掷2次,基本事件总数为2636=,其中,事件“1x y -=”所包含的基本事件有:()1,2、()2,1、()2,3、()3,2、()3,4、()4,3、()4,5、()5,4、()5,6、()6,5,共10种情况,因此,所求事件的概率为1053618=. 故答案为:518. 【点睛】本题考查古典概型概率的计算,考查计算能力,属于基础题.7.在平面直角坐标系xOy 中,抛物线24y x =上一点P 到焦点F 的距离是它到y 轴距离的3倍,则点P 的横坐标为_______. 【答案】12【解析】设点P 的坐标为()00,x y ,根据抛物线的定义可得出关于0x 的方程,解出0x 的值即可得解. 【详解】设点P 的坐标为()00,x y ,则00x >,抛物线的准线方程为1x =-, 由于点P 到焦点F 的距离是它到y 轴距离的3倍,则0013x x +=,解得012x =. 因此,点P 的横坐标为12. 故答案为:12. 【点睛】本题考查抛物线上点的坐标的求解,考查了抛物线定义的应用,考查计算能力,属于基础题.8.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关……”其大意为:“某人从距离关口三百七十八里处出发,第一天走得轻快有力,从第二天起,由于脚痛,每天走的路程为前一天的一半,共走了六天到达关口……” 那么该人第一天走的路程为______________ 【答案】192【解析】根据题意,记每天走的路程里数为{a n },可知{a n }是公比为12的等比数列,又由6天走完378里,利用求和公式即可得出. 【详解】根据题意,记每天走的路程里数为{a n },可知{a n }是公比为12的等比数列, 又由6天走完378里,则S 6611[1)2112a ⎛⎤- ⎥⎝⎦==-378, 解可得:a 1=192,即该人第一天走的路程为192里. 故答案为:192里. 【点睛】本题考查了等比数列求和公式的应用,考查了推理能力与计算能力,注重了数学文化的考查,属于基础题.9.若定义在R 上的奇函数()f x 满足()()4f x f x +=,()11f =,则()()()678f f f ++的值为_______.【答案】1-【解析】利用函数()y f x =的周期性和奇偶性分别求出()6f 、()7f 、()8f 的值,进而可得出结果. 【详解】由于定义在R 上的奇函数()y f x =满足()()4f x f x +=,则该函数是周期为4的周期函数,且()11f =,则()()800f f ==,()()()7111f f f =-=-=-,()()()622f f f =-=, 又()()22f f -=-,()20f ∴=,则()60f =, 因此,()()()6781f f f ++=-. 故答案为:1-. 【点睛】本题考查利用函数的周期性和奇偶性求函数值,考查计算能力,属于中等题.10.将半径为R 的半圆形铁皮卷成一个圆锥的侧面,若圆锥的体积为,则R =_______.【答案】6【解析】设圆锥的底面半径为r ,根据半圆弧长等于圆锥底面圆的周长可得出r 与R 的等量关系,并求出圆锥的高,得出圆锥的体积,由此可求得R 的值. 【详解】设圆锥的底面半径为r ,由于半圆弧长等于圆锥底面圆的周长,则2r R ππ=,2R r ∴=,圆锥的高为2h R ==,则圆锥的体积为22311334224R V r h R R ππ==⨯⨯==,解得6R =.故答案为:6. 【点睛】本题考查由圆锥的体积求参数,考查计算能力,属于中等题. 11.若函数()2,1,x a x af x x x a +≥⎧=⎨-<⎩只有一个零点,则实数a 的取值范围为_______. 【答案】(](],10,1-∞-U【解析】分1a ≤-、11a -<≤、1a >三种情况讨论,结合函数()y f x =只有一个零点得出关于实数a 的不等式(组),即可求得实数a 的取值范围. 【详解】函数21y x =-的零点为±1.①当1a ≤-时,函数()y f x =在区间(),a -∞上无零点,则函数()y f x =在区间[),a +∞上有零点a -,可得a a -≥,解得0a ≤,此时1a ≤-; ②当11a -<≤时,函数()y f x =在区间(),a -∞上有零点1-,则函数()y f x =在区间[),a +∞上无零点,则a a -<,解得0a >,此时01a <≤; ③当1a >时,函数()y f x =在区间(),a -∞上的零点为±1,不合乎题意. 综上所述,实数a 的取值范围是(](],10,1-∞-U . 故答案为:(](],10,1-∞-U . 【点睛】本题考查利用函数的零点个数求参数,解答的关键就是对参数进行分类讨论,考查运算求解能力,属于中等题.12.在平面直角坐标系xOy 中,已知点()11,A x y 、()22,B x y 在圆22:4O x y +=上,且满足12122x x y y +=-,则1212x x y y +++的最小值是_______.【答案】-【解析】求得23AOB π∠=,设点()2cos ,2sin A αα、()2cos ,2sin B ββ,设b a >,可得出()223k k N πβαπ=++∈,然后利用三角恒等变换思想结合正弦函数的有界性可求得1212x x y y +++的最小值. 【详解】由题意可得()11,OA x y =u u u r 、()22,OB x y =u u u r ,12122OA OB x x y y ⋅=+=-u u u r u u u r,所以,1cos 2OA OB AOB OA OB ⋅∠==-⋅u u u r u u u r u u u r u u u r ,0AOB π<∠<Q ,23AOB π∴∠=,设点()2cos ,2sin A αα、()2cos ,2sin B ββ,设b a >,则()223k k N πβαπ=++∈, 所以,12122cos 2cos 2sin 2sin x x y y αβαβ+++=+++222cos 2cos 22sin 2sin 233k k ππααπααπ⎛⎫⎛⎫=+++++++ ⎪ ⎪⎝⎭⎝⎭()()()13sin 13cos 22sin αααϕ=-++=--,ϕ为锐角,且31tan 2331ϕ+==+-,因此,1212x x y y +++的最小值22-. 故答案为:22-. 【点睛】本题考查代数式最值的计算,考查了平面向量数量积的应用,同时也考查了三角恒等变换思想的应用,考查计算能力,属于中等题.13.在锐角ABC V 中,点D 、E 、F 分别在边AB 、BC 、CA 上,若3AB AD =u u u r u u u r,AC AF λ=u u u r u u u r ,且26BC ED EF ED ⋅=⋅=u u u r u u u r u u u r u u u r,1ED =u u u r ,则实数λ的值为_______.【答案】3【解析】将EF u u u r表示为11133EF BC AC λ⎛⎫=+- ⎪⎝⎭u u u r u u u r u u u r ,由题意得知ED u u u r 与AC u u u r 不垂直,由3ED EF ⋅=u u u r u u u r 可得出1103λ-=,进而可求得实数λ的值.【详解】 如下图所示:3AB AD =u u u r u u u r Q ,AC AF λ=u u ur u u u r ,13AD AB ∴=u u u r u u u r ,1AF AC λ=u u u r u u u r ,()11111333EF ED AD AF ED AB AC ED AC AB ACλλ⎛⎫∴=-+=-+=+-+- ⎪⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 11133ED BC AC λ⎛⎫=++- ⎪⎝⎭u u u r u u u r u u u r,ABC QV 是锐角三角形,则ED u u u r 与AC u u ur 不垂直,即0ED AC ⋅≠u u u r u u u r ,1ED =u u u r Q ,6ED BC ⋅=u u u r u u u r,则21111113333ED EF ED ED BC AC ED ED BC ED ACλλ⎡⎤⎛⎫⎛⎫⋅=⋅++-=+⋅+-⋅ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 11333ED AC λ⎛⎫=+-⋅= ⎪⎝⎭u u ur u u u r ,即1103ED AC λ⎛⎫-⋅= ⎪⎝⎭u u ur u u u r , 0ED AC ⋅≠u u u r u u u r Q ,1103λ∴-=,因此,3λ=.故答案为:3. 【点睛】本题考查利用平面向量数量积求参数,解答的关键就是选择合适的基底表示向量,考查计算能力,属于中等题.14.在ABC V 中,点D 在边BC 上,且满足AD BD =,23tan 2tan 30B A -+=,则BDCD的取值范围为_______. 【答案】(]1,2 【解析】作出图形,由23tan 2tan 30B A -+=得出()23tan tan 12A B =+,利用正弦定理和三角恒等变换思想得出24tan 41133tan 2tan 33tan 2tan BD B CD B B B B=+=+-++-,然后利用不等式的性质和基本不等式可求得BDCD的取值范围. 【详解】 如下图所示:23tan 2tan 30B A -+=Q ,()23tan tan 12A B ∴=+, AD BD =Q ,BAD B ∴∠=,CAD A B ∠=-,且B 为锐角,在ACD V 中,()()sin sin sin cos cos sin sin sin sin cos cos sin A B BD AD CA B A B CD CD CAD A B A B A B++====∠--()()222223tan 1tan tan tan 3tan 2tan 34tan 2113tan tan 3tan 2tan 33tan 2tan 3tan 1tan 2B BA B B B B A B B B B B B B +++++====+>--+-++-, 另一方面24tan 4111233tan 2tan 313tan 232tan 2tan tan BD B CD B B B B B B=+=+≤=-++-⨯⋅-, 当且仅当4B π=时,等号成立,因此,BDCD的取值范围是(]1,2. 故答案为:(]1,2. 【点睛】本题考查三角形中边长比值的取值范围的计算,考查了正弦定理、两角和与差的正弦公式以及基本不等式的应用,考查计算能力,属于中等题.二、解答题15.如图,在三棱锥P ABC -中,PA ⊥平面ABC ,AB AC =,点D 、E 、F 分別是AB 、AC 、BC 的中点.(1)求证://BC 平面PDE ; (2)求证:平面PAF ⊥平面PDE . 【答案】(1)见解析;(2)见解析.【解析】(1)利用中位线的性质得出//DE BC ,然后利用线面平行的判定定理可证得//BC 平面PDE ;(2)证明出DE PA ⊥,DE AF ⊥,利用线面垂直的判定定理可证得DE ⊥平面PAF ,再利用面面垂直的判定定理可得出平面PAF ⊥平面PDE . 【详解】(1)在ABC V 中,因为D 、E 分别是AB 、AC 的中点,所以//DE BC , 因为BC ⊄平面PDE ,DE ⊂平面PDE ,所以//BC 平面PDE ; (2)因为PA ⊥平面ABC ,DE ⊂平面ABC ,所以PA DE ⊥, 在ABC V 中,因为AB AC =,F 是BC 的中点,所以AF BC ⊥, 因为//DE BC ,所以DE AF ⊥,又因为AF PA A =I ,AF ⊂平面PAF ,PA ⊂平面PAF ,所以DE ⊥平面PAF , 因为DE ⊂平面PDE ,所以平面PAF ⊥平面PDE . 【点睛】本题考查线面平行和面面垂直的证明,考查推理能力,属于中等题. 16.已知函数()21sin sin cos 2f x x x x =+-,x ∈R . (1)求函数()f x 的最大值,并写出相应的x 的取值集合;(2)若()2f α=,3,88ππα⎛⎫∈- ⎪⎝⎭,求sin 2α的值.【答案】(1)()f x 的最大值为22,此时x 的取值集合为3,8x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;(2)4sin 26α+=. 【解析】(1)利用三角恒等变换思想化简函数()y f x =的解析式为()sin 224f x x π⎛⎫=- ⎪⎝⎭,可得出函数()y f x =的最大值,解方程()2242x k k Z πππ-=+∈可得出对应的x 的取值集合;(2)由()6f α=得出1sin 243πα⎛⎫-= ⎪⎝⎭,利用同角三角函数的基本关系求得cos 24πα⎛⎫- ⎪⎝⎭的值,然后利用两角和的正弦公式可求得sin 2α的值.【详解】 (1)因为()()211cos 2111sin sin cos sin 2sin 2cos 222222x f x x x x x x x -=+-=+-=-sin 2cos cos 2sin sin 224424x x x πππ⎫⎛⎫=-=-⎪ ⎪⎝⎭⎝⎭, 当()2242x k k Z πππ-=+∈,即()38x k k Z ππ=+∈时,函数()y f x =取最大值,所以函数()y f x =的最大值为2,此时x 的取值集合为3,8x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;(2)因为()6f α=,则sin 2246πα⎛⎫-=⎪⎝⎭,即1sin 243πα⎛⎫-= ⎪⎝⎭, 因为3,88ππα⎛⎫∈-⎪⎝⎭,所以2,422πππα⎛⎫-∈- ⎪⎝⎭,则cos 24πα⎛⎫-=== ⎪⎝⎭,所以sin 2sin 2sin 2cos cos 2sin444444ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=-+=-+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦122224232326+=⋅+⋅=. 【点睛】本题考查正弦型函数最值的求解,同时也考查了利用两角和的正弦公式求值,考查计算能力,属于中等题.17.某温泉度假村拟以泉眼C 为圆心建造一个半径为12米的圆形温泉池,如图所示,M 、N 是圆C 上关于直径AB 对称的两点,以A 为圆心,AC 为半径的圆与圆C 的弦AM 、AN 分别交于点D 、E ,其中四边形AEBD 为温泉区,I 、II 区域为池外休息区,III 、IV 区域为池内休息区,设MAB θ∠=.(1)当4πθ=时,求池内休息区的总面积(III 和IV 两个部分面积的和);(2)当池内休息区的总面积最大时,求AM 的长. 【答案】(1)2144(22)m -;(2)(3333)AM m =+【解析】(1)计算出BM 、DM 的长,利用三角形的面积公式可求得III 和IV 两个部分面积的和;(2)将BM 、DM 用含θ的代数式表示出来,可得出池内休息区的总面积S 关于θ的函数表达式,令()()sin 2cos 1fθθθ=-,利用导数求出()f θ的最大值,并求出对应的θ的值,由此可求得AM 的长. 【详解】(1)在Rt ABM V 中,因为24AB =,4πθ=,所以24cos1224MB AM π===24cos12122124MD π=-=,所以池内休息区总面积)(()2121214422S MB DM m =⋅⋅==;(2)在Rt ABM V 中,因为24AB =,MAB θ∠=, 所以24sin BM θ=,24cos AM θ=,24cos 12MD θ=-,由24sin 0BM θ=>,24cos 120MD θ=->得πθ0,3骣琪Î琪桫, 则池内休息区总面积()()1224sin 24cos 12288sin 2cos 12S MB DM θθθθ=⋅⋅=-=-,πθ0,3骣琪Î琪桫; 设()()sin 2cos 1f θθθ=-,πθ0,3骣琪Î琪桫, 因为()()221cos 2cos 12sin 4cos cos 20cos 8f θθθθθθθ=--=--=⇒='又1cos 2θ=>,所以00,3πθ⎛⎫∃∈ ⎪⎝⎭,使得01cos 8θ+=, 则当()00,x θ∈时,()()0f f θθ'>⇒在()00,θ上单调增,当0,3x πθ⎛⎫∈ ⎪⎝⎭时,()()0f f θθ'<⇒在()00,θ上单调递减, 即()0fθ是极大值,也是最大值,所以()()0max f f θθ=,此时024cos 3AM θ==+【点睛】本题考查导数的实际应用,涉及三角函数的应用,解答的关键就是求出函数解析式,考查分析问题和解决问题的能力,属于中等题.18.如图,在平面直角坐标系xOy 中,椭圆()2222:10x y M a b a b+=>>的左顶点为A ,过点A 的直线与椭圆M 交于x 轴上方一点B ,以AB 为边作矩形ABCD ,其中直线CD 过原点O .当点B 为椭圆M 的上顶点时,AOB V 的面积为b ,且AB =.(1)求椭圆M 的标准方程; (2)求矩形ABCD 面积S 的最大值; (3)矩形ABCD 能否为正方形?请说明理由.【答案】(1)22142x y +=;(2)22(3)ABCD 为正方形,理由见解析. 【解析】(1)根据题意得出关于a 、b 的方程组,解出a 、b 的值,即可得出椭圆M 的标准方程;(2)设直线AB 的方程为()2y k x =+,其中0k >,将直线AB 的方程与椭圆M 的方程联立,求出点B 的坐标,利用两点间的距离公式求出AB ,并求出BC ,可得出四边形ABCD 的面积S 关于k 的表达式,然后利用基本不等式可求得S 的最大值; (3)由四边形ABCD 为正方形得出AB BC =,可得出()3222200k k k k -+-=>,构造函数()()322220f k k k k k =-+->,利用零点存在定理来说明函数()y f k =在()0,k ∈+∞时有零点,进而说明四边形ABCD 能成为正方形. 【详解】(1)由题意:22312a b b ab b +=⎨=⎪⎩,解得2a =,2b =所以椭圆M 的标准方程为22142x y +=;(2)显然直线AB 的斜率存在,设为k 且0k >,则直线AB 的方程为()2y k x =+,即20kx y k -+=,联立()222142y k x x y ⎧=+⎪⎨+=⎪⎩得()2222128840k x k x k +++-=,解得222412B k x k-=+,2412B k y k =+,所以AB ==, 直线CD 的方程为y kx =,即0kx y -=,所以BC ==,所以矩形ABCD面积2881122k S k k k====++所以当且仅当2k =时,矩形ABCD面积S 取最大值为 (3)若矩形ABCD 为正方形,则AB BC==,则()3222200k k k k -+-=>,令()()322220f k k k k k =-+->,因为()110f =-<,()280f =>,又()()322220f k k k k k =-+->的图象不间断,所以()()322220f k k k k k =-+->有零点,所以存在矩形ABCD 为正方形.【点睛】本题考查椭圆方程的求解,同时也考查了四边形面积最值的计算,以及动点问题的求解,考查运算求解能力,属于中等题.19.定义:若一个函数存在极大值,且该极大值为负数,则称这个函数为“YZ 函数”. (1)判断函数()1x xf x e=-是否为“YZ 函数”,并说明理由; (2)若函数()()ln g x x mx m R =-∈是“YZ 函数”,求实数m 的取值范围; (3)已知()32111323h x x ax bx b =++-,()0,x ∈+∞,a 、b R ∈,求证:当2a ≤-,且01b <<时,函数()h x 是“YZ 函数”.【答案】(1)()f x 是“YZ 函数”,理由见解析;(2)1,e ⎛⎫+∞ ⎪⎝⎭;(3)证明见解析.【解析】(1)利用导数求出函数()y f x =的极大值,结合题中定义判断即可;(2)分0m ≤和0m >两种情况讨论,利用导数分析函数()y g x =的单调性,利用题中定义得出关于m 的不等式,进而可解得实数m 的取值范围;(3)求出函数()y h x =的导数()2h x x ax b =++',利用导数分析函数()y h x =的单调性,设函数()y h x =的极值点分别为1x 、2x ,可知1x 、2x 是方程()0h x '=的两根,进而可列出韦达定理,结合韦达定理证明出函数()y h x =的极大值为负数,由此可证得结论. 【详解】(1)函数()1xxf x e =-是“YZ 函数”,理由如下: 因为()1x x f x e =-,则()1x xf x e='-,当1x <时,()0f x '>;当1x >时,()0f x '<, 所以函数()1x x f x e =-的极大值()1110f e =-<,故函数()1xxf x e =-是“YZ 函数”;(2)函数()ln g x x mx =-的定义域为()0,+∞,()1g x m x'=-. 当0m ≤时,()10g x m x-'=>,函数()y g x =单调递增,无极大值,不满足题意; 当0m >时,当10x m<<时,()10g x m x -'=>,函数单调递增,当1x m>时,()10g x m x -'=<,函数单调递减,所以函数()y g x =的极大值为111ln ln 1g m m m m m ⎛⎫=-⋅=--⎪⎝⎭, 易知1ln 10g m m ⎛⎫=--<⎪⎝⎭,解得1m e >, 因此,实数m 的取值范围是1,e⎛⎫+∞ ⎪⎝⎭;(3) ()2h x x ax b =++',因为2a ≤-,01b <<,则240a b ∆=->,所以()20h x x ax b =++='有两个不等实根,设为1x 、2x ,因为121200x x a x x b +=->⎧⎨=>⎩,所以1>0x ,20x >,不妨设120x x <<,当10x x <<时,()0h x '>,则函数()y h x =单调递增; 当12x x x <<时,()0h x '<,则函数()y h x =单调递减. 所以函数()y h x =的极大值为()321111111323h x x ax bx b =++-, 由()21110h x x ax b =++='得()3211111x x ax b ax bx =--=--, 因为2a ≤-,01b <<, 所以()()322211111111111111323323h x x ax bx b ax bx ax bx b =++-=--++- ()()22211111121121111063333333ax bx b x bx b x b b b =+-≤-+-=--+-<. 所以函数()y h x =是“YZ 函数”. 【点睛】本题考查函数的新定义“YZ 函数”的应用,考查利用导数求函数的极值、利用极值求参数,同时也考查了利用导数证明不等式,考查推理能力与运算求解能力,属于中等题. 20.已知数列{}n a 、{}n b 、{}n c 满足2n n n b a a +=-,12n n n c a a +=+. (1)若数列{}n a 是等比数列,试判断数列{}n c 是否为等比数列,并说明理由; (2)若n a 恰好是一个等差数列的前n 项和,求证:数列{}n b 是等差数列; (3)若数列{}n b 是各项均为正数的等比数列,数列{}n c 是等差数列,求证:数列{}n a 是等差数列.【答案】(1)答案不唯一,见解析;(2)见解析;(3)见解析. 【解析】(1)设等比数列{}n a 的公比为q ,分12q =-和12q ≠-两种情况讨论,结合等比数列的定义判断即可;(2)设n a 是公差为d 的等差数列{}n d 的前n 项和,推导出11n n n a a d ++-=,由2n n n a a b +=+推导出12n n b b d +-=,进而可证得结论成立;(3)利用数列{}n c 是等差数列结合12n n n c a a +=+推导出212n n n b b b ++=+,再结合数列{}n b 是等比数列,推导出1n n b b +=,由数列{}n c 是等差数列得出212n n n c c c +++=,推导出3223n n n a a a +++=,并将321n n n n a a a a +++=+-代入化简得212n n n a a a +++=,从而可证明出数列{}n a 是等差数列.【详解】(1)设等比数列{}n a 的公比为q ,则()12221n n n n n n c a a a q a q a +=+=+=+, 当12q =-时,0n c =,数列{}n c 不是等比数列; 当12q ≠-时,因为0n c ≠,所以()()112121n n n n q a c q c q a +++==+,所以数列{}n c 是等比数列; (2)因为n a 恰好是一个等差数列的前n 项和,设这个等差数列为{}n d ,公差为d , 因为12n n a d d d =+++L ,所以1121n n n a d d d d ++=++++L , 两式相减得11n n n a a d ++-=, 因为2n n n a a b +=+, 所以()()()()1312321312n n n n n n n n n n n n b b a a a a a a a a d d d +++++++++-=---=---=-=,所以数列{}n b 是等差数列;(3)因为数列{}n c 是等差数列,所以321n n n n c c c c +++-=-, 又因为12n n n c a a +=+,所以()()43322112222n n n n n n n n a a a a a a a a ++++++++-+=+-+,即 ()()()423122n n n n n n a a a a a a +++++-=-+-,则212n n n b b b ++=+,又因为数列{}n b 是等比数列,所以212n n n b b b ++=,则2112n nn n b b b b +++=⋅, 即()()1120n n n n b b b b ++-+=,因为数列{}n b 各项均为正数,所以1n n b b +=, 则312n n n n a a a a +++-=-,即321n n n n a a a a +++=+-, 又因为数列{}n c 是等差数列,所以212n n n c c c +++=,即()()()321212222n n n n n n a a a a a a ++++++++=+,化简得3223n n n a a a +++=, 将321n n n n a a a a +++=+-代入得2122()3n n n n n a a a a a ++++-+=,化简得212n n n a a a +++=,所以数列{}n a 是等差数列. 【点睛】本题考查等差数列和等比数列的证明,考查了等差、等比中项法以及等差、等比数列定义的应用,考查推理能力,属于中等题.21.已知列向量5a ⎡⎤⎢⎥⎣⎦在矩阵 3 41 2M ⎡⎤=⎢⎥⎣⎦对应的变换下得到列向量2 b b -⎡⎤⎢⎥⎣⎦,求1b M a -⎡⎤⎢⎥⎣⎦.【答案】1611⎡⎤⎢⎥-⎣⎦【解析】利用25a b M b -⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦列出方程组求出a 、b 的值,求出矩阵M 的逆矩阵1M -,利用矩阵的乘法可求得矩阵1b M a -⎡⎤⎢⎥⎣⎦. 【详解】 因为342125a b b -⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,所以320210a b a b +=-⎧⎨+=⎩,解得64a b =-⎧⎨=⎩, 设1m p M n q -⎡⎤=⎢⎥⎣⎦,则34101201m p n q ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即3413402021m n p q m n p q +=⎧⎪+=⎪⎨+=⎪⎪+=⎩,解得112232m n p q =⎧⎪⎪=-⎪⎨=-⎪⎪=⎪⎩, 所以1121322M --⎡⎤⎢⎥=⎢⎥-⎣⎦, 所以112416=1361122M b a --⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦⎣⎦. 【点睛】本题考查矩阵的变换,同时也考查了逆矩阵的求解以及矩阵乘法的应用,考查计算能力,属于中等题.22.在平面直角坐标系xOy 中,曲线C的参数方程为cos x y αα=⎧⎪⎨=⎪⎩(α为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为sin 4πρθ⎛⎫+= ⎪⎝⎭P 为曲线C 上任一点,求点P 到直线l 距离的最大值.【答案】【解析】将直线l的极坐标方程化为普通方程,设点()cos P αα,利用点到直线的距离公式结合正弦型函数的有界性可求得点P 到直线l 距离的最大值. 【详解】由题:直线方程即为sin coscos sin44ππρθθ⎛⎫+= ⎪⎝⎭由cos x ρθ=,sin y ρθ=得直线l 的直角坐标方程为80x y +-=, 设P点的坐标为()cos αα,∴点P到直线的距离6d πα⎛⎫===+ ⎪⎝⎭, 当()262k k Z ππαπ+=-∈,即()223k k Z αππ=-∈时,d取得最大值 此时点P 的坐标为13,22⎛⎫-- ⎪⎝⎭. 【点睛】本题考查利用椭圆的参数方程求点到直线距离的最值,同时也考查了三角恒等变换思想的应用,考查计算能力,属于中等题.23.已知实数a 、b 、c 满足0a >,0b >,0c >,2223a b c b c a++=,求证:3a b c ++≤. 【答案】见解析【解析】利用柯西不等式证明出()()2222a b c b c a a b c b c a ⎛⎫++++≥++⎪⎝⎭,由此可证明出3a b c ++≤. 【详解】由柯西不等式,得()()2223a b c a b c b c a b c a ⎛⎫++=++++ ⎪⎝⎭()()()222222b c a b c a ⎡⎤⎡⎤=++⋅++⎢⎥ ⎪ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦()22b c a a b c b c a ⎛≥⋅+⋅+⋅=++ ⎪⎝⎭, 所以3a b c ++≤.【点睛】本题考查利用柯西不等式证明不等式,解答的关键在于对代数式进行合理配凑,考查推理能力,属于中等题.24.如图,在多面体ABCDEF 中,平面ADE ⊥平面ABCD ,四边形ABCD 是边长为2的正方形,ADE V 是等腰直角三角形,且2ADE π∠=,EF ⊥平面ADE ,1EF =.(1)求异面直线AE 和DF 所成角的余弦值;(2)求二面角B DF C --的余弦值.【答案】(1)105;(2)23. 【解析】(1)利用面面垂直的性质定理证明出DE ⊥平面ABCD ,然后以D 为坐标原点,{},,DA DC DE u u u r u u u r u u u r为一组基底建立空间直角坐标系,利用空间向量法可求出异面直线AE 和DF 所成角的余弦值;(2)求出平面BDF 和CDF 的法向量,然后利用空间向量法可求出二面角B DF C --的余弦值.【详解】(1)2ADE π∠=Q ,即DE AD ⊥,因为平面ADE ⊥平面ABCD ,平面ADE I 平面ABCD AD =,DE ⊂平面ADE , DE ∴⊥平面ABCD ,由于四边形ABCD 为边长为2的正方形, 所以DA 、DC 、DE 两两互相垂直.以D 为坐标原点,{},,DA DC DE u u u r u u u r u u u r为一组基底建立如图所示的空间直角坐标系.EF ⊥Q 平面ADE 且1EF =,()0,0,0D ∴、()2,0,0A 、()0,0,2E 、()0,2,0C 、()2,2,0B 、()0,1,2F , ()2,0,2AE =-u u u r ,()0,1,2DF =u u u r ,则10cos ,225AE DF A AE DF E DF ⋅<===⨯⋅>u u u r u u u r u u u u r u u u u ur r u u u r , 所以AE 和DF 10 (2)()2,2,0DB =u u u r ,()0,1,2DF =u u u r ,设平面BDF 的一个法向量为(),,n x y z =r , 由22020n DB x y n DF y z ⎧⋅=+=⎨⋅=+=⎩u u u v v u u u v v ,取1z =,得()2,2,1n =-r , Q 平面CDF 的一个法向量为()1,0,0m =u r ,22cos ,313m n m n m n ⋅∴<>===⨯⋅u r r u r r u r r , 由二面角B DF C --的平面角为锐角,所以二面角B DF C --的余弦值为23. 【点睛】本题考查利用空间向量法计算异面直线所成角和二面角的余弦值,解答的关键就是建立合适的空间直角坐标系,考查计算能力,属于中等题.25.给定()3,n n n N *≥∈个不同的数1、2、3、L 、n ,它的某一个排列P 的前(),1k k N k n *∈≤≤项和为k S ,该排列P 中满足2k n S S ≤的k 的最大值为P k .记这n 个不同数的所有排列对应的P k 之和为n T .(1)若3n =,求3T ;(2)若41n l =+,l N *∈.①证明:对任意的排列P ,都不存在(),1k k N k n *∈≤≤使得2k n S S =; ②求n T (用n 表示).【答案】(1)38T =;(2)①见解析;②()!12n n T n =-. 【解析】(1)列出1、2、3的所有排列,求出6个排列P 中P k 的值,进而可求得3T 的值;(2)①设n 个不同数的某一个排列P 为1a 、2a 、L 、n a ,求得()()()141212n n n S l l +==++为奇数,再由2k S 为偶数可得出结论; ②由题意可得出2k n S S <,可得出1212k k k n a a a a a a ++++⋅⋅⋅+<++⋅⋅⋅+且1212k k k n a a a a a a ++++⋅⋅⋅++>+⋅⋅⋅+,考虑排列P 的对应倒序排列P ',推导出1P k n k '=--,由此可得出1P P k k n '+=-,再由1、2、3、L 、n 这n 个不同数可形成!2n 个对应组合(),P P ',进而可求得n T 的值. 【详解】(1)1、2、3的所有排列为1、2、3;1、3、2;2、1、3;2、3、1;3、1、2;3、2、1.因为36S =,所以对应的P k 分别为2、1、2、1、1、1,所以38T =;(2)(i )设n 个不同数的某一个排列P 为1a 、2a 、L 、n a ,因为41n l =+,l N *∈,所以()()()141212n n n S l l +==++为奇数, 而2k S 为偶数,所以不存在(),1k k N k n *∈≤≤使得2k n S S = (ii )因为2k n S S ≤,即1212k k k n a a a a a a ++++⋅⋅⋅+++⋅⋅⋅+≤,又由(i )知不存在(),1k k N k n *∈≤≤使得2k n S S =, 所以1212k k k n a a a a a a ++++⋅⋅⋅+<++⋅⋅⋅+;所以满足2k n S S ≤的最大下标k 即满足1212k k k n a a a a a a ++++⋅⋅⋅+<++⋅⋅⋅+①, 且1212k k k n a a a a a a ++++⋅⋅⋅++>+⋅⋅⋅+②,考虑排列P 的对应倒序排列:P 'n a 、1n a -、L 、1a ,①②即2121n k k k a a a a a a +++⋅⋅⋅+<++⋅⋅⋅++,2121n k k k a a a a a a +++⋅⋅⋅++>+⋅⋅⋅++,由题意知1P k n k '=--,则1P P k k n '+=-;又1、2、3、L 、n 这n 个不同数共有!n 个不同的排列,可以构成!2n 个对应组合(),P P ',且每组(),P P '中1P P k k n '+=-,所以()!12n n T n =-. 【点睛】本题考查数列中的新定义,着重考查分析,对抽象概念的理解与综合应用的能力,对(3)观察,分析寻找规律是难点,是难题.。

江苏省七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2020届高三数学第三次调研考试(5月)试题

江苏省七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2020届高三数学第三次调研考试(5月)试题

江苏省七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2020届高三数学第三次调研考试(5月)试题(满分160分,考试时间120分钟)2020.5一、 填空题:本大题共14小题,每小题5分,共70分.1. 已知集合U ={-1,0,2,3},A ={0,3},则∁U A =________.2. 已知复数z =a +i1+3i(i 是虚数单位)是纯虚数,则实数a 的值为________.3. 右图是一个算法流程图.若输出y 的值为4时,则输入x 的值为________.4. 已知一组数据6,6,9,x ,y 的平均数是8,且xy =90,则该组数据的方差为________.5. 一只口袋装有形状、大小都相同的4只小球,其中有3只白球,1只红球.从中1次随机摸出2只球,则2只球都是白色的概率为________.6. 已知函数f(x)=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0,则不等式f(x)>f(-x)的解集为____________. 7. 已知数列{a n }是等比数列,其前n 项和为S n .若a 3-a 2=4,a 4=16,则S 3的值为________.8. 在平面直角坐标系xOy 中,双曲线x 2a 2-y2b 2=1(a >0,b >0)的右准线与两条渐近线分别交于A ,B 两点.若△AOB 的面积为ab4,则该双曲线的离心率为________.9. 在直角梯形ABCD 中,AB ∥CD ,AB ⊥BC ,AB =3 cm ,BC =1 cm ,CD =2 cm.将此直角梯形绕AB 边所在的直线旋转一周,由此形成几何体的体积为________cm 3.10. 在平面直角坐标系xOy 中,若曲线y =sin 2x 与y =18tan x 在(π2,π)上交点的横坐标为α,则sin 2α的值为________.11. 如图,在正六边形ABCDEF 中,若AD →=λAC →+μAE →(λ,μ∈R ),则λ+μ的值为________.(第11题)(第12题)12. 如图,有一壁画,最高点A 处离地面6 m ,最低点B 处离地面3.5 m .若从离地高2 m 的C 处观赏它,则离墙________m 时,视角θ最大.13. 已知函数f(x)=x 2-2x +3a ,g(x)=2x -1.若对任意x 1∈[0,3],总存在x 2∈[2,3],使得|f(x 1)|≤g(x 2)成立,则实数a 的值为________.14. 在平面四边形ABCD 中,∠BAD =90°,AB =2,AD =1.若AB →·AC →+BA →·BC →=43CA →·CB →,则CB +12CD 的最小值为________.二、 解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分14分)在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对边的长,a(sin A -sin B)=(c -b)(sin B +sin C).(1) 求角C 的值;(2) 若a =4b ,求sin B 的值.16.(本小题满分14分) 如图,在四棱锥P ABCD 中,底面ABCD 为平行四边形,平面BPC⊥平面DPC ,BP =BC ,点E ,F 分别是PC ,AD 的中点.求证:(1) BE⊥CD;(2) EF∥平面PAB.(本小题满分14分)17.如图,在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y2b2=1(a >b >0)的上顶点为A(0,3),圆O :x 2+y 2=a 24经过点M(0,1).(1) 求椭圆C 的方程;(2) 过点M 作直线l 1交椭圆C 于P ,Q 两点,过点M 作直线l 1的垂线l 2交圆O 于另一点N.若△PQN 的面积为3,求直线l 1的斜率.南通风筝是江苏传统手工艺品之一.现用一张长2 m,宽1.5 m的长方形牛皮纸ABCD裁剪风筝面,裁剪方法如下:分别在边AB,AD上取点E,F,将三角形AEF沿直线EF翻折到A′EF 处,点A′落在牛皮纸上,沿A′E,A′F裁剪并展开,得到风筝面AEA′F,如图1.(1) 若点E恰好与点B重合,且点A′在BD上,如图2,求风筝面ABA′F的面积;(2) 当风筝面AEA′F的面积为 3 m2时,求点A′到AB距离的最大值.已知数列{a n }满足(na n -1-2)a n =(2a n -1)a n -1(n≥2),b n =1a n-n(n∈N *).(1) 若a 1=3,求证:数列{b n }是等比数列;(2) 若存在k∈N *,使得1a k ,1a k +1,1a k +2成等差数列.①求数列{a n }的通项公式;②求证:ln n +12a n >ln(n +1)-12a n +1.已知函数f(x)=ax21+ln x(a≠0),e 是自然对数的底数.(1) 当a >0时,求f(x)的单调增区间;(2) 若对任意的x≥12,f (x)≥2e b -1(b∈R ),求b a的最大值;(3) 若f(x)的极大值为-2,求不等式f(x)+e x<0的解集.2020届高三模拟考试试卷数学附加题(满分40分,考试时间30分钟)21. 【选做题】 在A ,B ,C 三小题中只能选做两题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修42:矩阵与变换)已知a ,b ,c ,d ∈R ,矩阵A =⎣⎢⎡⎦⎥⎤a -20 b 的逆矩阵A -1=⎣⎢⎡⎦⎥⎤1c d 1.若曲线C 在矩阵A 对应的变换作用下得到曲线y =2x +1,求曲线C 的方程.B. (选修44:坐标系与参数方程)在直角坐标平面内,以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系.已知点A ,B 的极坐标分别为(4,π2),(22,5π4),曲线C 的方程为ρ=r(r>0).(1) 求直线AB 的直角坐标方程;(2) 若直线AB 和曲线C 有且只有一个公共点,求r 的值.C.(选修45:不等式选讲)已知a∈R ,若关于x 的方程x 2+4x +|a -1|+|a|=0有实根,求a 的取值范围.【必做题】第22,23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 现有一款智能学习APP,学习内容包含文章学习和视频学习两类,且这两类学习互不影响.已知该APP积分规则如下:每阅读一篇文章积1分,每日上限积5分;观看视频累计3分钟积2分,每日上限积6分.经过抽样统计发现,文章学习积分的概率分布表如表1所示,视频学习积分的概率分布表如表2所示.表1文章学习积分 1 2 3 4 5概率1919191612表2视频学习积分 2 4 6概率161312(1) 现随机抽取1人了解学习情况,求其每日学习积分不低于9分的概率;(2) 现随机抽取3人了解学习情况,设积分不低于9分的人数为ξ,求ξ的概率分布及数学期望.(1) 求2P2-Q2的值;(2) 化简nP n-Q n.2020届高三模拟考试试卷(南通、泰州、徐州等苏北七市联考)数学参考答案及评分标准1. {-1,2}2. -33. -14. 1455. 12 6. (-2,0)∪(2,+∞) 7. 14 8. 29. 7π3 10. -15811. 43 12. 6 13. -13 14. 26215. 解:(1) 在△ABC 中, 因为a(sin A -sin B)=(c -b)(sin B +sin C),由正弦定理a sin A =b sin B =csin C,所以a(a -b)=(b +c)(c -b),(3分)即a 2+b 2-c 2=ab.由余弦定理c 2=a 2+b 2-2abcos C ,得cos C =12.(5分)因为0<C<π,所以C =π3.(7分)(2) (解法1)因为a =4b 及a 2+b 2-c 2=ab ,得c 2=16b 2+b 2-4b 2=13b 2,即c =13b.(10分)由正弦定理c sin C =b sin B ,得13b 32=b sin B,所以sin B =3926.(14分)(解法2)由正弦定理a sin A =bsin B,得sin A =4sin B. 由A +B +C =π,得sin(B +C)=4sin B.因为C =π3,所以12sin B +32cos B =4sin B ,即7sin B =3cos B .(11分)因为sin 2B +cos 2B =1,解得sin 2B =352.在△ABC 中,因为sin B>0,所以sin B =3926.(14分) 16. 证明:(1) 在△PBC 中,因为BP =BC ,点E 是PC 的中点,所以BE⊥PC.(2分) 因为平面BPC⊥平面DPC ,平面BPC∩平面DPC =PC ,BE 平面BPC , 所以BE⊥平面PCD.(5分)因为CD平面DPC ,所以BE⊥CD.(7分)(2) 如图,取PB 的中点H ,连结EH ,AH. 在△PBC 中,因为点E 是PC 的中点,所以HE∥BC,HE =12BC.(9分)又底面ABCD 是平行四边形,点F 是AD 的中点,所以AF∥BC,AF =12BC.所以HE∥AF,HE =AF ,所以四边形AFEH 是平行四边形, 所以EF∥HA.(12分)因为EF 平面PAB ,HA 平面PAB ,所以EF∥平面PAB.(14分) 17. 解:(1) 因为椭圆C 的上顶点为A(0,3),所以b = 3.又圆O :x 2+y 2=14a 2经过点M(0,1),所以a =2.(2分)所以椭圆C 的方程为x 24+y23=1.(4分)(2) 若直线l 1的斜率为0,则PQ =463,MN =2,所以△PQN 的面积为463,不合题意,所以直线l 1的斜率不为0.(5分)设直线l 1的方程为y =kx +1,由⎩⎪⎨⎪⎧x 24+y 23=1,y =kx +1消y ,得(3+4k 2)x 2+8kx -8=0.设P(x 1,y 1),Q(x 2,y 2),则x 1=-4k -26·2k 2+13+4k 2,x 2=-4k +26·2k 2+13+4k 2, 所以PQ =(x 1-x 2)2+(y 1-y 2)2=1+k 2||x 1-x 2=46·1+k 2·2k 2+13+4k2.(8分) 由题可知,直线l 2的方程为y =-1kx +1,即x +ky -k =0,所以MN =21-k 21+k 2=21+k2.(11分) 所以△PQN 的面积S =12PQ ·MN =12×46·1+k 2·2k 2+13+4k 2·21+k2=3, 解得k =±12,即直线l 1的斜率为±12.(14分)18. 解:(1) (解法1)建立如图所示的直角坐标系,则B(2,0),D(0,32),直线BD 的方程为3x +4y -6=0.(2分) 设F(0,b)(b>0),因为点F 到AB 与BD 的距离相等,所以b =|4b -6|5,解得b =23或b =-6(舍去).(4分)所以△ABF 的面积为12×2×23=23m 2,。

泰州三模高三数学答案

泰州三模高三数学答案

2019~2020学年度第二学期调研测试高三数学答案一、填空题1. {}1,2,4,82.12 3. 80 4. 8 5. 6. 5187. 12 8. 192 9. 1- 10. 611. (1](0,1]-∞-U 12. - 13. 3 14. (1,2] 二、解答题15.(本题满分14分)证明:(1)在ABC ∆中,因为,D E 分别是,AB AC 的中点,所以//DE BC , ……………2分 因为BC PDE ⊄平面,DE PDE ⊂平面,所以//BC PDE 平面. ……………6分 (2)因为PA ABC ⊥平面,DE PDE ⊂平面,所以PA DE ⊥,在ABC ∆中,因为AB AC =,F 分别是BC 的中点,所以AF BC ⊥, ……………8分 因为//DE BC ,所以DE AF ⊥,又因为AF PA A =I ,,AF PAF PA PAF ⊂⊂平面平面, 所以DE PAF ⊥平面,……………12分因为DE PDE ⊂平面,所以PAF PDE ⊥平面平面. ……………14分16.(本题满分14分)解:(1)因为21()sin sin cos 2f x x x x =+-, 所以1cos 211()sin 2222x f x x -=+-1(sin 2cos 2)2x x =- ……………2分2cos cos 2sin )244x x ππ=-)24x π=- ……………4分当2242x k πππ-=+(Z)k ∈,即3(8Z)x k k ππ=+∈时,()f x ,所以()f x ,此时x 的取值集合为3,8Z x x k k ππ⎧⎫=+∈⎨⎬⎩⎭.………7分(2)因为()6f α=,则)246πα-=,即1sin(2)43πα-=, 因为3(,)88ππα∈-,所以2(,)422πππα-∈-,则cos(2)4πα-===,……………10分所以sin 2sin[(2)]sin(2)cos cos(2)sin 444444ππππππαααα=-+=-+-13==……………14分17.(本题满分14分)解:(1)在Rt ABM ∆中,因为24AB =,4πθ=,所以MB AM ==24cos 12124MD π=-=,所以池内休息区总面积1212)144(22S MB DM =⋅⋅==. ……………4分 (2)在Rt ABM ∆中,因为24AB =,MAB θ∠=, 所以24sin ,24cos MB AM θθ==, 24cos 12MD θ=-, 由24sin 0,24cos 120MB MD θθ=>=->得0,3πθ⎛⎫∈ ⎪⎝⎭, ……………6分 则池内休息区总面积1224sin (24cos 12)2S MB DM θθ=⋅⋅=-,0,3πθ⎛⎫∈ ⎪⎝⎭; ……………9分设()()sin 2cos 1fθθθ=-,0,3πθ⎛⎫∈ ⎪⎝⎭,因为()()22cos 2cos 12sin 4cos cos 20cos f θθθθθθθ'=--=--=⇒=又11cos 82θ=>,所以00,3πθ⎛⎫∃∈ ⎪⎝⎭,使得01cos 8θ+=, 则当()00,x θ∈时,()()0f f θθ'>⇒在()00,θ上单调增,当0,3x πθ⎛⎫∈ ⎪⎝⎭时,()()0f f θθ'<⇒在()00,θ上单调减, 即()0θf 是极大值,也是最大值,所以()()max 0f f θθ=,此时024cos 3AM θ==+ ……………13分答:(1)池内休息区总面积为2144(2m ;(2)池内休息区总面积最大时AM的长为(3AM =+m .………14分18.(本题满分16分)解:(1)由题意:22212ab b a b c =⎪=⎨⎪⎪=+⎩,解得2,a b c ===所以椭圆M 的标准方程为22142x y +=. ……………4分 (2)显然直线AB 的斜率存在,设为k 且0k >, 则直线AB 的方程为(2)y k x =+,即20kx y k -+=,联立22(2)142y k x x y =+⎧⎪⎨+=⎪⎩得2222(12)8840k x k x k +++-=,解得222412B k x k -=+,2412B k y k =+,所以AB ==,直线CD 的方程为y kx =,即0kx y -=,所以BC ==,所以矩形ABCD面积2881122k S k k k====++所以当且仅当2k =时,矩形ABCD 面积S的最大值为.……………11分 (3)若矩形ABCD 为正方形,则AB BC =,=,则322220k k k -+-= (0)k >, 令32()222(0)f k k k k k =-+->,因为(1)10,(2)80f f =-<=>,又32()222(0)f k k k k k =-+->的图象不间断, 所以32()222(0)f k k k k k =-+->有零点,所以存在矩形ABCD 为正方形.……………16分19.(本题满分16分)解:(1)函数()1xxf x =-e是“YZ 函数”,理由如下: 因为()1x x f x =-e ,则1()x xf x -'=e,当1x <时,()0f x '>;当1x >时,()0f x '<,所以()1x x f x =-e 的极大值1(1)10f =-<e , 故函数()1x xf x =-e是“YZ 函数”. ……………4分(2)定义域为(0,)+∞, 1()g x m x'=-,当0m ≤时,1()0g x m x'=->,函数单调递增,无极大值,不满足题意;当0m >时,当10x m <<时,1()0g x m x '=->,函数单调递增, 当1x m >时,1()0g x m x'=-<,函数单调递减,所以()g x 的极大值为111()ln ln 1g m m m m m=-⋅=--,由题意知1()ln 10g m m =--<,解得1m >e. ……………10分(3)证明: 2()h x x ax b '=++,因为2a ≤-,01b <<,则240a b ∆=->,所以2()0h x x ax b '=++=有两个不等实根,设为12,x x ,因为12120x x a x x b +=->⎧⎨=>⎩,所以120,0x x >>,不妨设120x x <<,当10x x <<时,()0h x '>,则()h x 单调递增; 当12x x x <<时,()0h x '<,则()h x 单调递减, 所以()h x 的极大值为321111111()323h x x ax bx b =++-, ……………13分 由2111()0h x x ax b '=++=得3211111()x x ax b ax bx =--=--,因为2a -≤,01b <<, 所以322211111111111111()()323323h x x ax bx b ax bx ax bx b =++-=--++- 221111121121633333ax bx b x bx b =+-≤-+- 2111()(1)033x b b b =--+-<.所以函数()h x 是“YZ 函数”.……………16分(其他证法相应给分)20.(本题满分16分)解:(1)设等比数列{}n a 的公比为q ,则122(21)n n n n n n c a a a q a q a +=+=+=+,当12q =-时,0n c =,数列{}n c 不是等比数列, ……………2分 当12q ≠-时,因为0n c ≠,所以11(21)(21)n n n n c q a q c q a +++==+,所以数列{}n c 是等比数 列. ……………5分 (2)因为n a 恰好是一个等差数列的前n 项和,设这个等差数列为{}n d ,公差为d , 因为12n n a d d d =+++L ,所以1121n n n a d d d d ++=++++L , 两式相减得11n n n a a d ++-=, 因为2n n n a a b +=+,所以1312321()()()()n n n n n n n n n n b b a a a a a a a a +++++++-=---=---312n n d d d ++=-=, 所以数列{}n b 是等差数列. ……………10分 (3)因为数列{}n c 是等差数列,所以321n n n n c c c c +++-=-,又因为12n n n c a a +=+,所以43322112(2)2(2)n n n n n n n n a a a a a a a a ++++++++-+=+-+, 即 423122()()()n n n n n n a a a a a a +++++-=-+-,则212n n n b b b ++=+, 又因为数列{}n b 是等比数列,所以212n n n b b b ++=,则2112n nn n b b b b +++=⋅, 即11()(2)0n n n n b b b b ++-+=,因为数列{}n b 各项均为正数,所以1n n b b +=, ……………13分 则312n n n n a a a a +++-=-, 即321n n n n a a a a +++=+-,又因为数列{}n c 是等差数列,所以212n n n c c c +++=, 即32121(2)(2)2(2)n n n n n n a a a a a a ++++++++=+, 化简得3223n n n a a a +++=,将321n n n n a a a a +++=+-代入得2122()3n n n n n a a a a a ++++-+=,化简得212n n n a a a +++=,所以数列{}n a 是等差数列. ……………16分 (其他证法相应给分)数学Ⅱ(附加题)21. A . [选修4-2:矩阵与变换](本小题满分10分) 解:因为⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡b b a 252143,所以320210a b a b +=-⎧⎨+=⎩,解得64a b =-⎧⎨=⎩,……………4分 设1m p Mn q -⎡⎤=⎢⎥⎣⎦,则34101201m p n q ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即3413402021m n p q m n p q +=⎧⎪+=⎪⎨+=⎪⎪+=⎩,解得112232m n p q =⎧⎪⎪=-⎪⎨=-⎪⎪=⎪⎩, 所以⎥⎥⎦⎤⎢⎢⎣⎡--=-2321211M , ……………8分 所以11-2416=13-61122b M a -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦. ……………10分B.[选修4-4:坐标系与参数方程](本小题满分10分)解:由题:直线方程即为(sin coscos sin )44ππρθθ+= 由cos x ρθ=,sin y ρθ=得直线的直角坐标方程为80x y +-=,……………4分设P点的坐标为()cos αα,∴点P到直线的距离d ==,……………8分 当2()62Z k k ππαπ+=-∈,即22(3Z)k k αππ=-∈时,d取得最大值此时点P 的坐标为13,22⎛⎫-- ⎪⎝⎭. ……………10分C.[选修4-5:不等式选讲](本小题满分10分) 证明:由柯西不等式,得2223()()()a b c a b c b c a b c a++=++++222222]=++++ ………………5分22()a b c =++≥ 所以3a b c ++≤. ………………10分 22.(本小题满分10分)解:因为平面ADE ⊥平面ABCD ,又2ADE π∠=,即DE AD ⊥,因为DE ADE ⊂平面,ADE ABCD AD =I 平面平面, DE ∴⊥平面ABCD ,由四边形ABCD 为边长为2的正方形, 所以,,DA DC DE 两两互相垂直.以D 为坐标原点,{,,}DA DC DE u u u r u u u r u u u r为一组基底建立如图所示的空间直角坐标系.………2分 由EF ⊥平面ADE 且1EF =,()()()()()()0,0,0,2,0,0,0,0,2,0,2,0,2,2,0,0,1,2,D A E C B F ∴ (1)()2,0,2AE =-u u u r ,()0,1,2DF =u u u r,则cos ,AE DF AE DF AE DF ⋅<===⋅>u u u v u u u vu u u v u u u v u u u v u u u v ,所以AE 和DF所成角的余弦值为5. ……………5分 (2)()2,2,0DB =u u u r ,()0,1,2DF =u u u r ,设平面BDF 的一个法向量为(),,n x y z =r,由2+2020n DB x y n DF y z ⎧⋅==⎨⋅=+=⎩u u u v v u u u v v ,取1z =,得)1,2,2(-=n ρ,Q 平面DFC 的一个法向量为()1,0,0m =u r,22cos ,313m n m n m n ⋅∴<>===⋅⨯v v v vv v ,由二面角B DF C --的平面角为锐角,所以二面角B DF C --的余弦值为23.……10分23.(本小题满分10分)解:(1)1,2,3的所有排列为1,2,3;1,3,2;2,1,3;2,3,1;3,1,2;3,2,1,因为36S =,所以对应的P k 分别为2,1,2,1,1,1,所以38T =; ……………3分 (2)(i )设n 个不同数的某一个排列P 为12,,,n a a a ⋅⋅⋅, 因为41,N n l l *=+∈,所以()()()141212n n n S l l +==++为奇数, 而2k S 为偶数,所以不存在(,1)N k k k n *∈≤≤使得2k n S S =; ……………5分(ii) 因为2k n S S ≤,即1212k k k n a a a a a a ++++⋅⋅⋅+++⋅⋅⋅+≤,又由(i )知不存在(,1)N k k k n *∈≤≤使得2k n S S =,所以1212k k k n a a a a a a ++++⋅⋅⋅+<++⋅⋅⋅+;所以满足2k n S S ≤的最大下标k 即满足1212k k k n a a a a a a ++++⋅⋅⋅+<++⋅⋅⋅+① 且1212k k k n a a a a a a ++++⋅⋅⋅++>+⋅⋅⋅+②, 考虑排列P 的对应倒序排列:P '11,,,n n a a a -⋅⋅⋅,①②即2121n k k k a a a a a a +++⋅⋅⋅+<++⋅⋅⋅++,2121n k k k a a a a a a +++⋅⋅⋅++>+⋅⋅⋅++, 由题意知1P k n k '=--,则1P P k k n '+=-; ……………8分 又1,2,3,,n ⋅⋅⋅,这n 个不同数共有!n 个不同的排列,可以构成!2n 个对应组合(),P P ', 且每组(),P P '中1P P k k n '+=-,所以()!12n n T n =-. ……………10分。

江苏省泰州市2019-2020学年度第二学期调研测试高三数学试题(含答案)

江苏省泰州市2019-2020学年度第二学期调研测试高三数学试题(含答案)

因为 a ≤ −2 , 0 < b < 1 ,则 ∆= a2 − 4b > 0 ,
所以 h′(x) = x2 + ax + b = 0 有两个不等实根,设为 x1, x2 ,
因为
x1 + x2 x1x2=
=−a b>0
>
0
,所以
x1
>
0,
x2
>
0
,不妨设 0
<
x1
<
x2

当 0 < x < x1 时, h′(x) > 0 ,则 h(x) 单调递增;
33

8
又= cosθ
1+ 33 8
>
1 2
,所以 ∃θ0

0,
π 3
,使得
cosθ
0
=
1+ 8
33

则当 x ∈(0,θ0 ) 时, f ′(θ ) > 0 ⇒ f (θ ) 在 (0,θ0 ) 上单调增,

x

θ0
,
π 3
时,
f ′(θ ) < 0 ⇒
f
(θ ) 在 (0,θ0 ) 上单调减,
因为 f (1) =−1 < 0, f (2) =8 > 0 ,又 f (k)= 2k3 − 2k 2 + k − 2(k > 0) 的图象不间断,
所以 f (k)= 2k3 − 2k 2 + k − 2(k > 0) 有零点,所以存在矩形 ABCD 为正方形.
19.(本题满分 16 分)
解:(1)函数 f (x=)

2020届江苏省泰州市高三下学期调研测试数学(文科)试题(PDF版)

2020届江苏省泰州市高三下学期调研测试数学(文科)试题(PDF版)

……………13 分
(2)池内休息区总面积最大时 AM 的长为 AM (3 3 33)m .………14 分
18.(本题满分 16 分)
a2 b2 3b
解:(1)由题意:
1 2
ab
b
,解得 a 2,b c 2 ,
a2 b2 c2
所以椭圆 M 的标准方程为 x2 y2 1. 42
6
88
2
17.(本小题满分 14 分) 某温泉度假村拟以泉眼 C 为圆心建造一个半径为 12 米的圆形温泉池,如图所示,M,
N 是圆 C 上关于直径 AB 对称的两点,以 A 为四心,AC 为半径的圆与圆 C 的弦 AM,AN 分别交于点 D,E,其中四边形 AEBD 为温泉区,I、II 区域为池外休息区,III、IV 区域为
池内休息区,设∠MAB= . (1)当 时,求池内休息区的总面积(III 和 IV 两个部分面积的和); 4
(2)当池内休息区的总面积最大时,求 AM 的长.
18.(本小题满分 16 分)
如图,在平面直角坐标系 xOy 中,椭圆
M:
x2 a2
y2 b2
1(a>b>0)的左顶点为
A,过点
A 的直线与椭圆 M 交于 x 轴上方一点 B,以 AB 为边作矩形 ABCD,其中直线 CD 过原点 O.当
不为难,次日脚痛减一半,六朝才得到其关.”它的大意是:有人要到某关口,路程为
378 里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都是前一天的一半,
一共走了六天到达目的地.那么这个人第一天走的路程是
里.
9.若定义在 R 上的奇函数 f (x) 满足 f (x 4) f (x) , f (1) 1,则 f (6) + f (7) + f (8)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏泰州2020年高三第二学期调研测试数学试题第I 卷(必做题,共160分)一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上.) 1.已知集合A ={l ,2},B ={2,4,8},则A U B = .2.若实数x ,y 满足x +y i =﹣1+(x ﹣y )i (i 是虚数单位),则xy = .3.如图是容量为100的样本的频率分布直方图,则样本数据落在区间[6,18)内的频数为 .4.根据如图所示的伪代码,可得输出的S 的值为 .5.若双曲线22221x y a b-=(a >0,b >0)的一条渐近线方程为2y x =,则该双曲线的离心率为 .6.将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,这两次出现向上的点数分别记为x ,y ,则1x y -=的概率是 .7.在平面直角坐标系xOy 中,抛物线y 2=4x 上一点P 到焦点F 的距离是它到y 轴距离的3倍,则点P 的横坐标为 .8.我国古代数学名著《增删算法统宗》中有这样一首数学诗:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”它的大意是:有人要到某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都是前一天的一半,一共走了六天到达目的地.那么这个人第一天走的路程是 里. 9.若定义在R 上的奇函数()f x 满足(4)()f x f x +=,(1)1f =,则(6)f +(7)f +(8)f 的值为 .10.将半径为R 的半圆形铁皮卷成一个圆锥的侧面,若圆锥的体积为,则R = .11.若函数2()1x a x af x x x a+≥⎧=⎨-<⎩,,只有一个零点,则实数a 的取值范围为 .12.在平面直角坐标系xOy 中,已知点A(1x ,1y ),B(2x ,2y )在圆O :224x y +=上,且满足12122x x y y +=-,则1212x x y y +++的最小值是 .13.在锐角△ABC 中,点D ,E ,F 分别在边AB ,BC ,CA 上,若AB 3AD =u u u r u u u r ,AC AF λ=u u u r u u u r,且BC ED 2EF ED 6⋅=⋅=u u u r u u u r u u r u u u r,ED 1=u u u r ,则实数λ的值为 .14.在△ABC 中,点D 在边BC 上,且满足AD =BD ,3tan 2B ﹣2tanA +3=0,则BDCD的取值范围为 .二、解答题(本大题共6小题,共计90分,请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.) 15.(本小题满分14分)如图,在三棱锥P— ABC 中,PA ⊥平面ABC ,AB =AC ,点D ,E ,F 分別是AB ,AC ,BC 的中点.(1)求证:BC ∥平面PDE ;(2)求证:平面PAF ⊥平面PDE .16.(本小题满分14分)已知函数21()sin sin cos 2f x x x x =+-,x ∈R . (1)求函数()f x 的最大值,并写出相应的x 的取值集合;(2)若()f α=,α∈(8π-,38π),求sin2α的值.17.(本小题满分14分)某温泉度假村拟以泉眼C 为圆心建造一个半径为12米的圆形温泉池,如图所示,M ,N 是圆C 上关于直径AB 对称的两点,以A 为四心,AC 为半径的圆与圆C 的弦AM ,AN 分别交于点D ,E ,其中四边形AEBD 为温泉区,I 、II 区域为池外休息区,III 、IV 区域为池内休息区,设∠MAB =θ.(1)当4πθ=时,求池内休息区的总面积(III 和IV 两个部分面积的和); (2)当池内休息区的总面积最大时,求AM 的长.18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆M :22221x y a b+=(a >b >0)的左顶点为A ,过点A 的直线与椭圆M 交于x 轴上方一点B ,以AB 为边作矩形ABCD ,其中直线CD 过原点O .当点B 为椭圆M 的上顶点时,△AOB 的面积为b ,且AB .(1)求椭圆M 的标准方程;(2)求矩形ABCD 面积S 的最大值;(3)矩形ABCD 能否为正方形?请说明理由.19.(本小题满分16分)定义:若一个函数存在极大值,且该极大值为负数,则称这个函数为“YZ 函数”.(1)判断函数()1xxf x e =-是否为“YZ 函数”,并说明理由; (2)若函数()ln g x x mx =-(m ∈R)是“YZ 函数”,求实数m 的取值范围;(3)已知32111()323h x x ax bx b =++-,x ∈(0,+∞),a ,b ∈R ,求证:当a ≤﹣2,且0<b <1时,函数()h x 是“YZ 函数”.20.(本小题满分16分)已知数列{}n a ,{}n b ,{}n c 满足2n n n b a a +=-,12n n n c a a +=+.(1)若数列{}n a 是等比数列,试判断数列{}n c 是否为等比数列,并说明理由; (2)若n a 恰好是一个等差数列的前n 项和,求证:数列{}n b 是等差数列;(3)若数列{}n b 是各项均为正数的等比数列,数列{}n c 是等差数列,求证:数列{}n a 是等差数列.第II 卷(附加题,共40分)21.【选做题】本题包括A ,B ,C 三小题,请选定其中两题作答,每小题10分共计20分,解答时应写出文字说明,证明过程或演算步骤. A .选修4—2:矩阵与变换已知列向量5a ⎡⎤⎢⎥⎣⎦在矩阵M = 3 41 2⎡⎤⎢⎥⎣⎦对应的变换下得到列向量2 b b -⎡⎤⎢⎥⎣⎦,求1M b a -⎡⎤⎢⎥⎣⎦.B .选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,曲线C的参数方程为cos x y αα=⎧⎪⎨=⎪⎩(α为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为sin()4πρθ+=,点P 为曲线C上任一点,求点P 到直线l 距离的最大值.C .选修4—5:不等式选讲已知实数a ,b ,c 满足a >0,b >0,c >0,2223a b c b c a++=,求证:3a b c ++≤.【必做题】第22题、第23题,每题10分,共计20分,解答时应写出文字说明,证明过程或演算步骤. 22.(本小题满分10分)如图,在多面体ABCDEF 中,平面ADE ⊥平面ABCD ,四边形ABCD 是边长为2的正方形,△ADE 是等腰直角三角形,且∠ADE =2π,EF ⊥平面ADE ,EF =1. (1)求异面直线AE 和DF 所成角的余弦值; (2)求二面角B —DF —C 的余弦值.23.(本小题满分10分)给定n (n ≥3,n N *∈)个不同的数1,2,3,…,n ,它的某一个排列P 的前k (k N *∈,1≤k ≤n )项和为k S ,该排列P 中满足2k n S S ≤的k 的最大值为P k .记这n 个不同数的所有排列对应的P k 之和为n T .(1)若n =3,求3T ;(2)若n =4l +1,l N *∈,①证明:对任意的排列P ,都不存在k (k N *∈,1≤k ≤n )使得2k n S S =;②求n T (用n 表示).2019~2020学年度第二学期调研测试高三数学答案一、填空题1. {}1,2,4,82.123. 804. 85.6.518 7. 128. 192 9. 1- 10. 611. (1](0,1]-∞-U 12. - 13. 3 14. (1,2] 二、解答题15.(本题满分14分)证明:(1)在ABC ∆中,因为,D E 分别是,AB AC 的中点,所以//DE BC , ……………2分 因为BC PDE ⊄平面,DE PDE ⊂平面,所以//BC PDE 平面. ……………6分 (2)因为PA ABC ⊥平面,DE PDE ⊂平面,所以PA DE ⊥,在ABC ∆中,因为AB AC =,F 分别是BC 的中点,所以AF BC ⊥, ……………8分 因为//DE BC ,所以DE AF ⊥,又因为AF PA A =I ,,AF PAF PA PAF ⊂⊂平面平面, 所以DE PAF ⊥平面,……………12分因为DE PDE ⊂平面,所以PAF PDE ⊥平面平面. ……………14分16.(本题满分14分)解:(1)因为21()sin sin cos 2f x x x x =+-,所以1cos 211()sin 2222x f x x -=+-1(sin 2cos 2)2x x =- ……………2分(sin 2cos cos 2sin )244x x ππ=-sin(2)24x π=- ……………4分当2242x k πππ-=+(Z)k ∈,即3(8Z)x k k ππ=+∈时,()f x ,所以()f x 的最大值为2,此时x 的取值集合为3,8Z x x k k ππ⎧⎫=+∈⎨⎬⎩⎭.………7分(2)因为()f α=)4πα-=,即1sin(2)43πα-=, 因为3(,)88ππα∈-,所以2(,)422πππα-∈-,则cos(2)4πα-===,……………10分所以sin 2sin[(2)]sin(2)cos cos(2)sin 444444ππππππαααα=-+=-+-13== ……………14分17.(本题满分14分)解:(1)在Rt ABM ∆中,因为24AB =,4πθ=,所以MB AM ==24cos12124MD π=-=,所以池内休息区总面积1212)144(22S MB DM =⋅⋅==. ……………4分 (2)在Rt ABM ∆中,因为24AB =,MAB θ∠=, 所以24sin ,24cos MB AM θθ==, 24cos 12MD θ=-, 由24sin 0,24cos 120MB MD θθ=>=->得0,3πθ⎛⎫∈ ⎪⎝⎭, ……………6分则池内休息区总面积1224sin (24cos 12)2S MB DM θθ=⋅⋅=-,0,3πθ⎛⎫∈ ⎪⎝⎭; ……………9分 设()()sin 2cos 1f θθθ=-,0,3πθ⎛⎫∈ ⎪⎝⎭,因为 ()()22cos 2cos 12sin 4cos cos 20cos f θθθθθθθ'=--=--=⇒=又11cos 82θ+=>,所以00,3πθ⎛⎫∃∈ ⎪⎝⎭,使得01cos 8θ+=, 则当()00,x θ∈时,()()0f f θθ'>⇒在()00,θ上单调增, 当0,3x πθ⎛⎫∈ ⎪⎝⎭时,()()0f f θθ'<⇒在()00,θ上单调减, 即()0θf 是极大值,也是最大值,所以()()max 0f f θθ=,此时024cos 3AM θ==+ ……………13分 答:(1)池内休息区总面积为2144(2-m ;(2)池内休息区总面积最大时AM的长为(3AM =+m .………14分18.(本题满分16分)解:(1)由题意:22212ab b a b c =⎪=⎨⎪⎪=+⎩,解得2,a b c ===所以椭圆M 的标准方程为22142x y +=. ……………4分 (2)显然直线AB 的斜率存在,设为k 且0k >, 则直线AB 的方程为(2)y k x =+,即20kx y k -+=,联立22(2)142y k x x y =+⎧⎪⎨+=⎪⎩得2222(12)8840k x k x k +++-=,解得222412B k x k -=+,2412B k y k =+,所以AB ==, 直线CD 的方程为y kx =,即0kx y -=,所以BC ==,所以矩形ABCD面积2288112122k S k k k k====+++≤所以当且仅当2k =时,矩形ABCD 面积S的最大值为11分 (3)若矩形ABCD 为正方形,则AB BC =,=,则322220k k k -+-= (0)k >, 令32()222(0)f k k k k k =-+->,因为(1)10,(2)80f f =-<=>,又32()222(0)f k k k k k =-+->的图象不间断, 所以32()222(0)f k k k k k =-+->有零点,所以存在矩形ABCD 为正方形.……………16分19.(本题满分16分)解:(1)函数()1xxf x =-e 是“YZ 函数”,理由如下: 因为()1x x f x =-e ,则1()x xf x -'=e,当1x <时,()0f x '>;当1x >时,()0f x '<,所以()1x x f x =-e 的极大值1(1)10f =-<e , 故函数()1x xf x =-e是“YZ 函数”. ……………4分(2)定义域为(0,)+∞, 1()g x m x'=-,当0m ≤时,1()0g x m x'=->,函数单调递增,无极大值,不满足题意; 当0m >时,当10x m <<时,1()0g x m x'=->,函数单调递增, 当1x m >时,1()0g x m x'=-<,函数单调递减, 所以()g x 的极大值为111()ln ln 1g m m m m m=-⋅=--, 由题意知1()ln 10g m m =--<,解得1m >e . ……………10分 (3)证明: 2()h x x ax b '=++,因为2a ≤-,01b <<,则240a b ∆=->,所以2()0h x x ax b '=++=有两个不等实根,设为12,x x , 因为121200x x a x x b +=->⎧⎨=>⎩,所以120,0x x >>,不妨设120x x <<, 当10x x <<时,()0h x '>,则()h x 单调递增;当12x x x <<时,()0h x '<,则()h x 单调递减,所以()h x 的极大值为321111111()323h x x ax bx b =++-, ……………13分 由2111()0h x x ax b '=++=得3211111()x x ax b ax bx =--=--,因为2a -≤,01b <<, 所以322211111111111111()()323323h x x ax bx b ax bx ax bx b =++-=--++- 221111121121633333ax bx b x bx b =+-≤-+- 2111()(1)033x b b b =--+-<. 所以函数()h x 是“YZ 函数”. ……………16分 (其他证法相应给分)20.(本题满分16分)解:(1)设等比数列{}n a 的公比为q ,则122(21)n n n n n n c a a a q a q a +=+=+=+,当12q =-时,0n c =,数列{}n c 不是等比数列, ……………2分 当12q ≠-时,因为0n c ≠,所以11(21)(21)n n n n c q a q c q a +++==+,所以数列{}n c 是等比数 列. ……………5分(2)因为n a 恰好是一个等差数列的前n 项和,设这个等差数列为{}n d ,公差为d , 因为12n n a d d d =+++L ,所以1121n n n a d d d d ++=++++L ,两式相减得11n n n a a d ++-=,因为2n n n a a b +=+,所以1312321()()()()n n n n n n n n n n b b a a a a a a a a +++++++-=---=---312n n d d d ++=-=, 所以数列{}n b 是等差数列. ……………10分(3)因为数列{}n c 是等差数列,所以321n n n n c c c c +++-=-,又因为12n n n c a a +=+,所以43322112(2)2(2)n n n n n n n n a a a a a a a a ++++++++-+=+-+, 即 423122()()()n n n n n n a a a a a a +++++-=-+-,则212n n n b b b ++=+,又因为数列{}n b 是等比数列,所以212n n n b b b ++=,则2112n n n n b b b b +++=⋅, 即11()(2)0n n n n b b b b ++-+=,因为数列{}n b 各项均为正数,所以1n n b b +=, ……………13分 则312n n n n a a a a +++-=-,即321n n n n a a a a +++=+-,又因为数列{}n c 是等差数列,所以212n n n c c c +++=,即32121(2)(2)2(2)n n n n n n a a a a a a ++++++++=+,化简得3223n n n a a a +++=,将321n n n n a a a a +++=+-代入得2122()3n n n n n a a a a a ++++-+=,化简得212n n n a a a +++=,所以数列{}n a 是等差数列. ……………16分 (其他证法相应给分)数学Ⅱ(附加题)21. A . [选修4-2:矩阵与变换](本小题满分10分)解:因为⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡b b a 252143,所以320210a b a b +=-⎧⎨+=⎩,解得64a b =-⎧⎨=⎩,……………4分 设1m p M n q -⎡⎤=⎢⎥⎣⎦,则34101201m p n q ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 即3413402021m n p q m n p q +=⎧⎪+=⎪⎨+=⎪⎪+=⎩,解得112232m n p q =⎧⎪⎪=-⎪⎨=-⎪⎪=⎪⎩, 所以⎥⎥⎦⎤⎢⎢⎣⎡--=-2321211M , ……………8分 所以11-2416=13-61122b M a -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦. ……………10分B.[选修4-4:坐标系与参数方程](本小题满分10分)解:由题:直线方程即为(sin cos cos sin )44ππρθθ+=, 由cos x ρθ=,sin y ρθ=得直线的直角坐标方程为80x y +-=,……………4分 设P点的坐标为()cos αα, ∴点P到直线的距离d ==8分 当2()62Z k k ππαπ+=-∈,即22(3Z)k k αππ=-∈时,d取得最大值此时点P 的坐标为13,22⎛⎫-- ⎪⎝⎭. ……………10分C.[选修4-5:不等式选讲](本小题满分10分)证明:由柯西不等式,得2223()()()a b c a b c b c a b c a++=++++222222]=++++ ………………5分22()a b c =++≥ 所以3a b c ++≤. ………………10分22.(本小题满分10分)解:因为平面ADE ⊥平面ABCD ,又2ADE π∠=, 即DE AD ⊥,因为DE ADE ⊂平面,ADE ABCD AD =I 平面平面, DE ∴⊥平面ABCD ,由四边形ABCD 为边长为2的正方形,所以,,DA DC DE 两两互相垂直. 以D 为坐标原点,{,,}DA DC DE u u u r u u u r u u u r 为一组基底建立如图所示的空间直角坐标系.………2分由EF ⊥平面ADE 且1EF =,()()()()()()0,0,0,2,0,0,0,0,2,0,2,0,2,2,0,0,1,2,D A E C B F ∴(1)()2,0,2AE =-u u u r ,()0,1,2DF =u u u r ,则cos ,AE DF AE DF AE DF ⋅<===⋅>u u u v u u u v u u u v u u u v u u u v u u u v , 所以AE 和DF所成角的余弦值为5. ……………5分(2)()2,2,0DB =u u u r ,()0,1,2DF =u u u r ,设平面BDF 的一个法向量为(),,n x y z =r , 由2+2020n DB x y n DF y z ⎧⋅==⎨⋅=+=⎩u u u v v u u u v v ,取1z =,得)1,2,2(-=n ρ,Q 平面DFC 的一个法向量为()1,0,0m =u r ,22cos ,313m n m n m n ⋅∴<>===⋅⨯v v v v v v , 由二面角B DF C --的平面角为锐角,所以二面角B DF C --的余弦值为23.……10分23.(本小题满分10分)解:(1)1,2,3的所有排列为1,2,3;1,3,2;2,1,3;2,3,1;3,1,2;3,2,1,因为36S =,所以对应的P k 分别为2,1,2,1,1,1,所以38T =; ……………3分(2)(i )设n 个不同数的某一个排列P 为12,,,n a a a ⋅⋅⋅,因为41,N n l l *=+∈,所以()()()141212n n n S l l +==++为奇数, 而2k S 为偶数,所以不存在(,1)N k k k n *∈≤≤使得2k n S S =; ……………5分(ii) 因为2k n S S ≤,即1212k k k n a a a a a a ++++⋅⋅⋅+++⋅⋅⋅+≤,又由(i )知不存在(,1)N k k k n *∈≤≤使得2k n S S =,所以1212k k k n a a a a a a ++++⋅⋅⋅+<++⋅⋅⋅+;所以满足2k n S S ≤的最大下标k 即满足1212k k k n a a a a a a ++++⋅⋅⋅+<++⋅⋅⋅+① 且1212k k k n a a a a a a ++++⋅⋅⋅++>+⋅⋅⋅+②,考虑排列P 的对应倒序排列:P '11,,,n n a a a -⋅⋅⋅,①②即2121n k k k a a a a a a +++⋅⋅⋅+<++⋅⋅⋅++,2121n k k k a a a a a a +++⋅⋅⋅++>+⋅⋅⋅++, 由题意知1P k n k '=--,则1P P k k n '+=-; ……………8分 又1,2,3,,n ⋅⋅⋅,这n 个不同数共有!n 个不同的排列,可以构成!2n 个对应组合(),P P ', 且每组(),P P '中1P P k k n '+=-,所以()!12n n T n =-. ……………10分。

相关文档
最新文档