三年高考(2017-2019)理科数学高考真题分类汇总:函数的综合及其应用

合集下载

三年高考(2017-2019)理科数学高考真题分类汇总:导数的几何意义、定积分与微积分基本定理

三年高考(2017-2019)理科数学高考真题分类汇总:导数的几何意义、定积分与微积分基本定理

第七讲 导数的几何意义、定积分与微积分基本定理2019年1.(2019全国Ⅰ理13)曲线23()e xy x x =+在点(0)0,处的切线方程为____________.1.解析:因为23e x y x x =+(),所以2'3e 31x y x x =++(), 所以当0x =时,'3y =,所以23e x y x x =+()在点00(,)处的切线斜率3k =, 又()00y =所以切线方程为()030y x -=-,即3y x =.2.(2019全国Ⅲ理6)已知曲线e ln x y a x x =+在点1e a (,)处的切线方程为y =2x +b ,则 A .e 1a b ==-,B .a=e ,b =1C .1e 1a b -==,D .1e a -= ,1b =- 2.解析 e ln x y a x x =+的导数为'e ln 1x y a x =++,又函数e ln xy a x x =+在点(1,e)a 处的切线方程为2y x b =+,可得e 012a ++=,解得1e a -=,又切点为(1,1),可得12b =+,即1b =-.故选D .2017、2018年一、选择题1.(2018全国卷Ⅰ)设函数32()(1)f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为A .2y x =-B .y x =-C .2y x =D .y x = D 【解析】通解 因为函数32()(1)=+-+f x x a x ax 为奇函数,所以()()-=-f x f x ,所以3232()(1)()()[(1)]-+--+-=-+-+x a x a x x a x ax ,所以22(1)0-=a x , 因为∈R x ,所以1=a ,所以3()=+f x x x ,所以2()31'=+f x x ,所以(0)1'=f ,所以曲线()=y f x 在点(0,0)处的切线方程为=y x .故选D .优解一 因为函数32()(1)=+-+f x x a x ax 为奇函数,所以(1)(1)0-+=f f ,所以11(11)0-+--++-+=a a a a ,解得1=a ,所以3()=+f x x x ,所以2()31'=+f x x ,所以(0)1'=f ,所以曲线()=y f x 在点(0,0)处的切线方程为=y x .故选D .优解二 易知322()(1)[(1)]=+-+=+-+f x x a x ax x x a x a ,因为()f x 为奇函数,所以函数2()(1)=+-+g x x a x a 为偶函数,所以10-=a ,解得1=a ,所以 3()=+f x x x ,所以2()31'=+f x x ,所以(0)1'=f ,所以曲线()=y f x 在点(0,0)处的切线方程为=y x .故选D .二、填空题14.(2018全国卷Ⅱ)曲线2ln(1)=+y x 在点(0,0)处的切线方程为__________. 2=y x 【解析】∵2ln(1)=+y x ,∴21y x '=+.当0x =时,2y '=, ∴曲线2ln(1)=+y x 在点(0,0)处的切线方程为02(0)y x -=-,即2=y x .15.(2018全国卷Ⅲ)曲线(1)xy ax e =+在点(0,1)处的切线的斜率为2-,则a =____. 3-【解析】(1)x y ax a e '=++,由曲线在点(0,1)处的切线的斜率为2-, 得00(1)12x x x y ax a e a =='=++=+=-,所以3a =-.三、解答题34.(2017北京)已知函数()cos x f x e x x =-.(Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程;(Ⅱ)求函数()f x 在区间[0,]2π上的最大值和最小值. 【解析】(Ⅰ)因为()e cos x f x x x =-,所以()e (cos sin )1,(0)0x f x x x f ''=--=.又因为(0)1f =,所以曲线()y f x =在点(0,(0))f 处的切线方程为1y =.(Ⅱ)设()e (cos sin )1x h x x x =--,则()e (cos sin sin cos )2e sin x x h x x x x x x '=---=-.当π(0,)2x ∈时,()0h x '<,所以()h x 在区间π[0,]2上单调递减. 所以对任意π(0,]2x ∈有()(0)0h x h <=,即()0f x '<. 所以函数()f x 在区间π[0,]2上单调递减.因此()f x 在区间π[0,]2上的最大值为(0)1f =,最小值为ππ()22f =-.。

2017年-2019年 普通高等学校招生全国统一考试 理科数学试题及答案(全国卷1)

2017年-2019年 普通高等学校招生全国统一考试 理科数学试题及答案(全国卷1)

2019年普通高等学校招生全国统一考试理科数学本试卷共4页,23小题,满分150分,考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡的相应位置上。

2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}}242{60M x x N x x x =-<<=--<,,则M N ⋂=A. }{43x x -<<B. }{42x x -<<-C. }{22x x -<<D.}{23x x <<【答案】C 【解析】 【分析】本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.【详解】由题意得,{}{}42,23M x x N x x =-<<=-<<,则{}22M N x x ⋂=-<<.故选C .【点睛】不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.2.设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则 A. 22+11()x y +=B. 22(1)1x y -+=C. 22(1)1x y +-=D.22(+1)1y x +=【答案】C 【解析】 【分析】本题考点为复数的运算,为基础题目,难度偏易.此题可采用几何法,根据点(x ,y )和点(0,1)之间的距离为1,可选正确答案C .【详解】,(1),z x yi z i x y i =+-=+-1,z i -=则22(1)1x y +-=.故选C . 【点睛】本题考查复数的几何意义和模的运算,渗透了直观想象和数学运算素养.采取公式法或几何法,利用方程思想解题.3.已知0.20.32log 0.2,2,0.2a b c ===,则A. a b c <<B. a c b <<C. c a b <<D.b c a <<【答案】B 【解析】 【分析】运用中间量0比较,a c ,运用中间量1比较,b c 【详解】22log 0.2log 10,a =<=0.20221,b =>=0.300.20.21,<<=则01,c a c b <<<<.故选B .【点睛】本题考查指数和对数大小的比较,渗透了直观想象和数学运算素养.采取中间变量法,利用转化与化归思想解题.4.(12≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是12.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A. 165 cmB. 175 cmC. 185 cmD. 190cm【答案】B 【解析】 【分析】理解黄金分割比例的含义,应用比例式列方程求解.【详解】设人体脖子下端至腿根的长为x cm ,肚脐至腿根的长为y cm ,则26261105x x y +==+,得42.07, 5.15x cmy cm ≈≈.又其腿长为105cm ,头顶至脖子下端的长度为26cm ,所以其身高约为42.07+5.15+105+26=178.22,接近175cm .故选B . 【点睛】本题考查类比归纳与合情推理,渗透了逻辑推理和数学运算素养.采取类比法,利用转化思想解题.5.函数f (x )=2sin cos x xx x ++在[—π,π]的图像大致为A.B.C.D.【答案】D 【解析】 【分析】先判断函数的奇偶性,得()f x 是奇函数,排除A ,再注意到选项的区别,利用特殊值得正确答案.【详解】由22sin()()sin ()()cos()()cos x x x xf x f x x x x x-+----===--+-+,得()f x 是奇函数,其图象关于原点对称.又221422()1,2()2f πππππ++==>2()01f πππ=>-+.故选D . 【点睛】本题考查函数的性质与图象,渗透了逻辑推理、直观想象和数学运算素养.采取性质法或赋值法,利用数形结合思想解题.6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A.516B.1132C.2132D.1116【答案】A 【解析】 【分析】本题主要考查利用两个计数原理与排列组合计算古典概型问题,渗透了传统文化、数学计算等数学素养,“重卦”中每一爻有两种情况,基本事件计算是住店问题,该重卦恰有3个阳爻是相同元素的排列问题,利用直接法即可计算.【详解】由题知,每一爻有2中情况,一重卦的6爻有62情况,其中6爻中恰有3个阳爻情况有36C ,所以该重卦恰有3个阳爻的概率为3662C =516,故选A .【点睛】对利用排列组合计算古典概型问题,首先要分析元素是否可重复,其次要分析是排列问题还是组合问题.本题是重复元素的排列问题,所以基本事件的计算是“住店”问题,满足条件事件的计算是相同元素的排列问题即为组合问题.7.已知非零向量a ,b 满足a =2b ,且(a –b )⊥b ,则a 与b 的夹角为A.π6B.π3C.2π3D.5π6【答案】B 【解析】 【分析】本题主要考查利用平面向量数量积数量积计算向量长度、夹角与垂直问题,渗透了转化与化归、数学计算等数学素养.先由()a b b -⊥得出向量,a b 的数量积与其模的关系,再利用向量夹角公式即可计算出向量夹角.【详解】因为()a b b -⊥,所以2()a b b a b b -⋅=⋅-=0,所以2a b b ⋅=,所以c o s θ=22||12||2a b b a b b ⋅==⋅,所以a 与b 的夹角为3π,故选B . 【点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为[0,]π.8.如图是求112122++的程序框图,图中空白框中应填入A. A =12A + B. A =12A+C. A =112A+D.A =112A+【答案】A 【解析】 【分析】本题主要考查算法中的程序框图,渗透阅读、分析与解决问题等素养,认真分析式子结构特征与程序框图结构,即可找出作出选择.【详解】执行第1次,1,122A k ==≤是,因为第一次应该计算1122+=12A +,1k k =+=2,循环,执行第2次,22k =≤,是,因为第二次应该计算112122++=12A +,1k k =+=3,循环,执行第3次,22k =≤,否,输出,故循环体为12A A=+,故选A .【点睛】秒杀速解 认真观察计算式子的结构特点,可知循环体为12A A=+.9.记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A. 25n a n =-B. 310n a n =-C. 228n S n n =-D.2122n S n n =-【答案】A 【解析】 【分析】等差数列通项公式与前n 项和公式.本题还可用排除,对B ,55a =,44(72)1002S -+==-≠,排除B ,对C ,245540,25850105S a S S ==-=⨯-⨯-=≠,排除C .对D ,24554150,5250522S a S S ==-=⨯-⨯-=≠,排除D ,故选A .【详解】由题知,41514430245d S a a a d ⎧=+⨯⨯=⎪⎨⎪=+=⎩,解得132a d =-⎧⎨=⎩,∴25n a n =-,故选A . 【点睛】本题主要考查等差数列通项公式与前n 项和公式,渗透方程思想与数学计算等素养.利用等差数列通项公式与前n 项公式即可列出关于首项与公差的方程,解出首项与公差,在适当计算即可做了判断.10.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为A. 2212x y +=B. 22132x y +=C. 22143x y +=D.22154x y += 【答案】B 【解析】 【分析】可以运用下面方法求解:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n=+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4,422cos 9n n AF F n n n BF F n ⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得n =22224,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B . 【详解】如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1A F B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得n =22224312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养.11.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数 ②f (x )在区间(2π,π)单调递增 ③f (x )在[,]ππ-有4个零点 ④f (x )的最大值为2 其中所有正确结论的编号是 A. ①②④ B. ②④ C. ①④ D. ①③【答案】C【解析】 【分析】化简函数()sin sin f x x x =+,研究它的性质从而得出正确答案. 【详解】()()()()sin sin sin sin ,f x x x x x f x f x -=-+-=+=∴为偶函数,故①正确.当2x ππ<<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误.当0x π≤≤时,()2s i n fx x =,它有两个零点:0,π;当0x π-≤<时,()()s i n s i n 2s i nfx xx x =--=-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误.当[]()2,2x k k k *∈ππ+π∈N 时,()2s i n fx x =;当[]()2,22x k k k *∈π+ππ+π∈N 时,()s i n s i n 0f x x x =-=,又()f x 为偶函数,()f x ∴的最大值为2,故④正确.综上所述,①④ 正确,故选C .【点睛】画出函数()sin sin f x x x =+的图象,由图象可得①④正确,故选C .12.已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,PB 的中点,∠CEF =90°,则球O 的体积为 A. B.C.D.【答案】D 【解析】 【分析】先证得PB ⊥平面PAC ,再求得PA PB PC ===从而得P ABC -为正方体一部分,进而知正方体的体对角线即为球直径,从而得解.【详解】解法一:,PA PB PC ABC ==∆为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA 、AB 中点, //EF PB ∴,EF AC ∴⊥,又EF CE ⊥,,CEAC C EF =∴⊥平面PAC ,PB ⊥平面PAC ,PAB PA PB PC ∴∠=90︒,∴===,P ABC ∴-为正方体一部分,2R == 3442338R V R =∴=π=⨯=π,故选D .解法二:设2PA PB PC x ===,,E F 分别为,PA AB 中点,//EF PB ∴,且12EF PB x ==,ABC ∆为边长为2的等边三角形,CF ∴=又90CEF ∠=︒1,2CE AE PA x ∴===AEC ∆中余弦定理()2243cos 22x x EAC x+--∠=⨯⨯,作PD AC ⊥于D ,PA PC =,D Q 为AC 中点,1cos 2AD EAC PA x ∠==,2243142x x x x +-+∴=,2212122x x x ∴+=∴==,PA PB PC ∴======2AB BC AC ,,,PA PB PC ∴两两垂直,2R ∴==2R ∴=,344338V R ∴=π=π⨯=,故选D . 【点睛】本题考查学生空间想象能力,补体法解决外接球问题.可通过线面垂直定理,得到三棱两两互相垂直关系,快速得到侧棱长,进而补体成正方体解决.二、填空题:本题共4小题,每小题5分,共20分。

三年高考(2017-2019)高考数学真题分项汇编 专题12 数列 理(含解析)

三年高考(2017-2019)高考数学真题分项汇编 专题12 数列 理(含解析)

专题12数列1.【2019年高考全国I 卷理数】记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =-B .310n a n =-C .228n S n n =- D .2122n S n n =- 【答案】A【解析】由题知,41514430245d S a a a d ⎧=+⨯⨯=⎪⎨⎪=+=⎩,解得132a d =-⎧⎨=⎩,∴25n a n =-,24n S n n =-,故选A . 【名师点睛】本题主要考查等差数列通项公式与前n 项和公式,渗透方程思想与数学计算等素养.利用等差数列通项公式与前n 项公式即可列出关于首项与公差的方程,解出首项与公差,再适当计算即可做了判断.2.【2019年高考全国III 卷理数】已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a = A .16 B .8C .4D .2【答案】C【解析】设正数的等比数列{a n }的公比为q ,则231111421111534a a q a q a q a q a q a ⎧+++=⎨=+⎩, 解得11,2a q =⎧⎨=⎩,2314a a q ∴==,故选C .【名师点睛】本题利用方程思想求解数列的基本量,熟练应用公式是解题的关键. 3.【2019年高考浙江卷】设a ,b ∈R ,数列{a n }满足a 1=a ,a n +1=a n 2+b ,n *∈N ,则 A .当101,102b a => B .当101,104b a => C .当102,10b a =-> D .当104,10b a =->【答案】A【解析】①当b =0时,取a =0,则0,n a n *=∈N .90b -时,总存在b ≥, ()22bb b +12=时,4a 211⎫++=⎪故B 项不正确。

故本题正确答案为A 。

【名师点睛】遇到此类问题,不少考生会一筹莫展。

三年高考2017_2019高考数学真题分项汇编专题03导数及其应用选择题填空题理含解析

三年高考2017_2019高考数学真题分项汇编专题03导数及其应用选择题填空题理含解析


sin x x cos x x2


f
(x) ,得
f (x) 是奇函数,其图象关于原点对称.

f
(π) 2

1 π 2
( π )2

4
2π π2
1,
f
(π)

π 1
π2
0 ,可知应为 D 选项中的图象.
2
故选 D.
【名师点睛】本题考查函数的性质与图象的识别,渗透了逻辑推理、直观想象和数学运算素养.采取性
通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日 L2 点的轨道
运行. L2 点是平衡点,位于地月连线的延长线上.设地球质量为 M1,月球质量为 M2,地月距离为 R, L2
点到月球的距离为
r,根据牛顿运动定律和万有引力定律,r
满足方程:
(
M1 Rr
)2

M2 r2
11.【2018 年高考全国Ⅱ卷理数】函数 f x ex ex 的图像大致为
x2
【答案】B
【解析】 x

0,
f
x
ex ex x2

f
x,
f
x 为奇函数,舍去 A;
f 1 e e1 0 ,∴舍去 D;
f x
因为
x


π 2
,
π

时,
f
x

0
,所以排除选项
C,
故选 D.
【名师点睛】先研究函数的奇偶性,再研究函数在

π 2
,
π

上的符号,即可判断选择.有关函数图象的

三年高考(2017-2019)理数真题分项版解析——专题02 函数的概念与基本初等函数I (原卷版)

三年高考(2017-2019)理数真题分项版解析——专题02 函数的概念与基本初等函数I (原卷版)

专题02 函数的概念与基本初等函数I1.【2019年高考全国Ⅰ卷理数】已知0.20.32log 0.220.2a b c ===,,,则 A .a b c << B .a c b << C .c a b <<D .b c a <<2.【2019年高考天津理数】已知5log 2a =,0.5og 2.l 0b =,0.20.5c =,则,,a b c 的大小关系为 A .a c b << B .a b c << C .b c a <<D .c a b <<3.【2019年高考全国Ⅱ卷理数】若a >b ,则 A .ln(a −b )>0 B .3a <3b C .a 3−b 3>0D .│a │>│b │4.【2019年高考北京理数】在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2−m 1=2152lg E E ,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是−26.7,天狼星的星等是−1.45,则太阳与天狼星的亮度的比值为 A .1010.1B .10.1C .lg10.1D .10−10.15.【2019年高考全国Ⅰ卷理数】函数f (x )=在[,]-ππ的图像大致为 A . B . C .D .6.【2019年高考全国Ⅲ卷理数】函数3222x xx y -=+在[]6,6-的图像大致为 A . B . C .D .7.【2019年高考浙江】在同一直角坐标系中,函数1xy a =,1(2log )a y x =+(a >0,且a ≠1)的图象可能是8.【2019年高考全国Ⅱ卷理数】2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L 点的轨道运行.2L 点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:121223()()M M M R r R r r R +=++.设r Rα=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为 ABCD9.【2019年高考全国Ⅲ卷理数】设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则A .f (log 314)>f (322-)>f (232-)B .f (log 314)>f (232-)>f (322-)C .f (322-)>f (232-)>f (log 314)D .f (232-)>f (322-)>f (log 314)10.【2017年高考山东理数】设函数y =A ,函数ln(1)y x =-的定义域为B ,则A B I = A .(1,2) B .(1,2] C .(-2,1)D .[-2,1)11.【2018年高考全国Ⅱ卷理数】函数()2e e x xf x x --=的图像大致为12.【2018年高考全国Ⅲ卷理数】函数422y x x =-++的图像大致为13.【2018年高考浙江】函数y =2xsin2x 的图象可能是A .B .C .D .14.【2018年高考全国Ⅰ卷理数】设函数()()321f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点()0,0处的切线方程为 A .2y x =- B .y x =- C .2y x =D .y x =15.【2018年高考全国Ⅱ卷理数】已知()f x 是定义域为(),-∞+∞的奇函数,满足()()11f x f x -=+.若()12f =,则()()()123f f f ++()50f ++=LA .50-B .0C .2D .5016.【2018年高考天津理数】已知2log e a =,ln2b =,121log 3c =,则a ,b ,c 的大小关系为 A .a b c >> B .b a c >> C .c b a >>D .c a b >>17.【2018年高考全国Ⅲ卷理数】设0.2log 0.3a =,2log 0.3b =,则A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+18.【2017年高考北京理数】根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与M N最接近的是(参考数据:lg3≈0.48)A .1033B .1053C .1073D .109319.【2017年高考全国Ⅰ卷理数】设x 、y 、z 为正数,且235x y z ==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z20.【2017年高考浙江】若函数f (x )=x 2+ ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M – mA .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关21.【2017年高考全国Ⅰ卷理数】函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]22.【2017年高考北京理数】已知函数1()3()3x xf x =-,则()f xA .是奇函数,且在R 上是增函数B .是偶函数,且在R 上是增函数C .是奇函数,且在R 上是减函数D .是偶函数,且在R 上是减函数23.【2017年高考天津理数】已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为A .a b c <<B .c b a <<C .b a c <<D .b c a <<24.【2017年高考山东理数】已知当[0,1]x ∈时,函数2(1)y mx =-的图象与y m =的图象有且只有一个交点,则正实数m 的取值范围是 A.(0,1])+∞U B .(0,1][3,)+∞U C.)+∞UD.[3,)+∞U25.【2017年高考山东理数】若,且,则下列不等式成立的是A .B .C .D .26.【2019年高考全国Ⅱ卷理数】设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦ C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦27.【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则 A .a <–1,b <0B .a <–1,b >0C .a >–1,b <0D .a >–1,b >028.【2018年高考全国Ⅰ卷理数】已知函数()e 0ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是 A .[–1,0) B .[0,+∞) C .[–1,+∞)D .[1,+∞)29.【2017年高考全国Ⅲ卷理数】设函数()π(3cos )f x x =+,则下列结论错误的是A .()f x 的一个周期为2π-B .()y f x =的图象关于直线8π3x =对称 C .(π)f x +的一个零点为π6x =D .()f x 在(π2,π)单调递减30.【2017年高考全国Ⅲ卷理数】已知函数211()2(e e )x x f x x x a --+=-++有唯一零点,则a =A .12- B .13C .12D .131.【2017年高考天津理数】已知函数23,1,()2, 1.x x x f x x x x ⎧-+≤⎪=⎨+>⎪⎩设a ∈R ,若关于x 的不等式()||2x f x a ≥+在R 上恒成立,则a 的取值范围是 A .47[,2]16-B .4739[,]1616-C.[2]- D.39[]16- 32.【2019年高考江苏】函数y =的定义域是 ▲ . 33.【2018年高考江苏】函数()f x =________.34.【2017年高考江苏】记函数()f x =的定义域为D .在区间[4,5]-上随机取一个数x ,则x D ∈的概率是 .35.【2019年高考全国Ⅱ卷理数】已知()f x 是奇函数,且当0x <时,()e ax f x =-.若(ln 2)8f =,则a =__________.36.【2019年高考北京理数】设函数()e e xxf x a -=+(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________.37.【2019年高考浙江】已知a ∈R ,函数3()f x ax x =-,若存在t ∈R ,使得2|(2)()|3f t f t +-≤,则实数a 的最大值是___________.38.【2019年高考北京理数】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________.39.【2018年高考全国Ⅲ卷理数】函数()πcos 36f x x ⎛⎫=+⎪⎝⎭在[]0π,的零点个数为________. 40.【2018年高考浙江】我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一。

2017-2019全国高考典型的函数的概念与基本初等函数题目分类汇编

2017-2019全国高考典型的函数的概念与基本初等函数题目分类汇编

2017-2019全国高考典型的函数的概念与基本初等函数题目分类汇编1.【2019年高考全国Ⅰ卷理数】已知0.20.32log 0.220.2a b c ===,,,则 A .a b c << B .a c b << C .c a b <<D .b c a <<【答案】B【解析】22log 0.2log 10,a =<=0.20221,b =>=0.3000.20.21,c <=<=即01,c <<则a c b <<.2.【2019年高考天津理数】已知5log 2a =,0.5og 2.l 0b =,0.20.5c =,则,,a b c 的大小关系为 A .a c b << B .a b c << C .b c a <<D .c a b <<【答案】A【解析】因为551log 2log 2a =<=, 0.50.5log 0.2log 0.252b =>=,10.200.50.50.5c <=<,即112c <<, 所以a c b <<.3.【2019年高考全国Ⅱ卷理数】若a >b ,则 A .ln(a −b )>0 B .3a <3b C .a 3−b 3>0 D .│a │>│b │【答案】C【解析】取2,1a b ==,满足a b >,但ln()0a b -=,则A 错,排除A ; 由219333=>=,知B 错,排除B ;取1,2a b ==-,满足a b >,但|1||2|<-,则D 错,排除D ; 因为幂函数3y x =是增函数,a b >,所以33a b >,即a 3−b 3>0,C 正确.4.【2019年高考北京理数】在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2−m 1=2152lg E E ,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是−26.7,天狼星的星等是−1.45,则太阳与天狼星的亮度的比值为 A .1010.1B .10.1C .lg10.1D .10−10.1【答案】A【解析】两颗星的星等与亮度满足12125lg 2E m m E -=, 令211.45,26.7m m =-=-, 则()121222lg( 1.4526.7)10.1,55E m m E =-=⨯-+= 从而10.11210E E =. 5.【2019年高考全国Ⅰ卷理数】函数f (x )=2sin cos ++x xx x在[,]-ππ的图像大致为 A .B .C .D .【答案】D 【解析】由22sin()()sin ()()cos()()cos x x x xf x f x x x x x -+----===--+-+,得()f x 是奇函数,其图象关于原点对称.又22π1π42π2()1,π2π()2f ++==>2π(π)01πf =>-+,可知应为D 选项中的图象. 6.【2019年高考全国Ⅲ卷理数】函数3222x xx y -=+在[]6,6-的图像大致为A .B .C .D .【答案】B【解析】设32()22x x x y f x -==+,则332()2()()2222x x x xx x f x f x ----==-=-++,所以()f x 是奇函数,图象关于原点成中心对称,排除选项C .又34424(4)0,22f -⨯=>+排除选项D ;36626(6)722f -⨯=≈+,排除选项A , 7.【2019年高考浙江】在同一直角坐标系中,函数1x y a =,1(2log )a y x =+(a >0,且a ≠1)的图象可能是【答案】D【解析】当01a <<时,函数xy a =的图象过定点(0,1)且单调递减,则函数1xy a =的图象过定点(0,1)且单调递增,函数1log 2a y x ⎛⎫=+⎪⎝⎭的图象过定点1(,0)2且单调递减,D 选项符合; 当1a >时,函数xy a =的图象过定点(0,1)且单调递增,则函数1x y a=的图象过定点(0,1)且单调递减,函数1log 2a y x ⎛⎫=+⎪⎝⎭的图象过定点1(,02)且单调递增,各选项均不符合. 8.【2019年高考全国Ⅱ卷理数】2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L 点的轨道运行.2L 点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:121223()()M M M R r R r r R +=++.设rRα=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为 ABCD【答案】D 【解析】由rRα=,得r R α=, 因为121223()()M M M R r R r r R +=++,所以12122222(1)(1)M M M R R R ααα+=++,即543232221133[(1)]3(1)(1)M M αααααααα++=+-=≈++,解得α=所以.r R α==9.【2019年高考全国Ⅲ卷理数】设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则A .f (log 314)>f (322-)>f (232-)B .f (log 314)>f (232-)>f (322-)C .f (322-)>f (232-)>f (log 314)D .f (232-)>f (322-)>f (log 314)【答案】C【解析】()f x Q 是定义域为R 的偶函数,331(log )(log 4)4f f ∴=.223303322333log 4log 31,1222,log 422---->==>>∴>>Q ,又()f x 在(0,+∞)上单调递减,∴23323(log 4)22f f f --⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,即23323122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.10.【2017年高考山东理数】设函数y =A ,函数ln(1)y x =-的定义域为B ,则A B I = A .(1,2) B .(1,2] C .(-2,1) D .[-2,1)【答案】D【解析】由240x -≥得22x -≤≤, 由10x ->得1x <,故{|22}{|1}{|21}A B x x x x x x =-≤≤<=-≤<I I .11.【2018年高考全国Ⅱ卷理数】函数()2e e x xf x x--=的图像大致为【答案】B【解析】()()()2ee 0,,x xx f x f x f x x--≠-==-∴Q 为奇函数,舍去A ; ()11e e 0f -=->Q ,∴舍去D ; ()()()()()243e e e e 22e 2e ,xx x x x x x xx x f x xx---+---++=='Q 2x ∴>时,()0f x '>,()f x 单调递增,舍去C.12.【2018年高考全国Ⅲ卷理数】函数422y x x =-++的图像大致为【答案】D【解析】函数图象过定点(0,2),排除A ,B ;令42()2y f x x x ==-++,则32()422(21)f x x x x x '=-+=--,由()0f x '>得22(21)0x x -<,得2x <-或20x <<,此时函数单调递增, 由()0f x '<得22(21)0x x ->,得22x >或202x -<<,此时函数单调递减,排除C. 13.【2018年高考浙江】函数y =2xsin2x 的图象可能是A .B .C .D .【答案】D【解析】令()2sin2xf x x =,因为()()(),2sin22sin2xxx f x x x f x -∈-=-=-=-R ,所以()2sin2xf x x =为奇函数,排除选项A,B;因为π,π2x ⎛⎫∈ ⎪⎝⎭时,()0f x <,所以排除选项C , 故选D .14.【2018年高考全国Ⅰ卷理数】设函数()()321f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点()0,0处的切线方程为 A .2y x =- B .y x =- C .2y x = D .y x =【答案】D【解析】因为函数()f x 是奇函数,所以10a -=,解得1a =, 所以()3f x x x =+,()231f x x '=+,所以()()01,00f f '==,所以曲线()y f x =在点()0,0处的切线方程为()()00y f f x '-=,化简可得y x =, 故选D .15.【2018年高考全国Ⅱ卷理数】已知()f x 是定义域为(),-∞+∞的奇函数,满足()()11f x f x -=+.若()12f =,则()()()123f f f ++()50f ++=LA .50-B .0C .2D .50【答案】C【解析】因为()f x 是定义域为(),-∞+∞的奇函数,且()()11f x f x -=+, 所以()()()()()113114f x f x f x f x f x T +=--∴+=-+=-∴=,,,因此()()()()()()()()()()1235012123412f f f f f f f f f f ⎡⎤++++=+++++⎣⎦L , 因为()()()()3142f f f f =-=-,,所以()()()()12340f f f f +++=, 因为()()200f f ==,从而()()()()()1235012f f f f f ++++==L . 16.【2018年高考天津理数】已知2log e a =,ln2b =,121log 3c =,则a ,b ,c 的大小关系为 A .a b c >> B .b a c >> C .c b a >> D .c a b >>【答案】D【解析】由题意结合对数函数的性质可知:2log e 1a =>,()21ln20,1log eb ==∈,12221log log 3log e 3c ==>, 据此可得:c a b >>.17.【2018年高考全国Ⅲ卷理数】设0.2log 0.3a =,2log 0.3b =,则A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+【答案】B【解析】0.22log 0.3,log 0.3a b ==Q ,0.30.311log 0.2,log 2a b∴==, 0.311log 0.4a b ∴+=,1101a b ∴<+<,即01a b ab+<<, 又0,0a b ><Q ,0ab ∴<, ∴0ab a b <+<.18.【2017年高考北京理数】根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与M N最接近的是(参考数据:lg3≈0.48)A .1033B .1053C .1073D .1093【答案】D【解析】设36180310M x N ==,两边取对数,36136180803lg lg lg3lg10361lg38093.2810x ==-=⨯-=,所以93.2810x =,即MN最接近9310. 19.【2017年高考全国Ⅰ卷理数】设x 、y 、z 为正数,且235x y z ==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z【答案】D【解析】令235(1)x y zk k ===>,则2log x k =,3log y k =,5log z k =∴22lg lg 3lg 913lg 23lg lg8x k y k =⋅=>,则23x y >, 22lg lg5lg 2515lg 25lg lg32x k z k =⋅=<,则25x z <. 20.【2017年高考浙江】若函数f (x )=x 2+ ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M – mA .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关【答案】B【解析】因为最值在2(0),(1)1,()24a a fb f a b f b ==++-=-中取,所以最值之差一定与b 无关.21.【2017年高考全国Ⅰ卷理数】函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]【答案】D【解析】因为()f x 为奇函数且在(,)-∞+∞单调递减,要使1()1f x -≤≤成立,则x 满足11x -≤≤,从而由121x -≤-≤得13x ≤≤,即满足1(2)1f x -≤-≤的x 的取值范围为[1,3].22.【2017年高考北京理数】已知函数1()3()3x xf x =-,则()f xA .是奇函数,且在R 上是增函数B .是偶函数,且在R 上是增函数C .是奇函数,且在R 上是减函数D .是偶函数,且在R 上是减函数【答案】A【解析】()()113333xxx x f x f x --⎛⎫⎛⎫-=-=-=- ⎪ ⎪⎝⎭⎝⎭,所以该函数是奇函数,并且3xy =是增函数,13xy ⎛⎫= ⎪⎝⎭是减函数,根据增函数−减函数=增函数,可知该函数是增函数.23.【2017年高考天津理数】已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为A .a b c <<B .c b a <<C .b a c <<D .b c a <<【答案】C【解析】因为()f x 是奇函数且在R 上是增函数,所以当0x >时,()0f x >, 从而()()g x xf x =是R 上的偶函数,且在[0,)+∞上是增函数,22(log 5.1)(log 5.1)a g g =-=,0.822<,又4 5.18<<,则22log 5.13<<, 所以0.8202log 5.13<<<,0.82(2)(log 5.1)(3)g g g <<,所以b a c <<.24.【2017年高考山东理数】已知当[0,1]x ∈时,函数2(1)y mx =-的图象与y m =的图象有且只有一个交点,则正实数m 的取值范围是A .(0,1])+∞UB .(0,1][3,)+∞UC .)+∞UD .[3,)+∞U【答案】B【解析】当01m <≤时,11m≥,2(1)y mx =-在[0,1]x ∈时单调递减,且22(1)(1),1y mx m ⎡⎤=-∈-⎣⎦,y m =在[0,1]x ∈时单调递增,且[,1]y m m m =∈+,此时有且仅有一个交点;当1m >时,101m <<,2(1)y mx =-在1,1m ⎡⎤⎢⎥⎣⎦上单调递增,所以要有且仅有一个交点,需2(1)13m m m -≥+⇒≥.25.【2017年高考山东理数】若0a b >>,且1ab =,则下列不等式成立的是A .()21log 2a ba ab b +<<+ B .()21log 2a b a b a b<+<+ C .()21log 2a ba ab b +<+<D .()21log 2a ba b a b +<+<【答案】B【解析】因为0a b >>,且1ab =,所以1,01,a b ><<所以221,log ()log 12a ba b <+>=, 12112log ()a ba ab a a b b b+>+>+⇒+>+, 26.【2019年高考全国Ⅱ卷理数】设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是A.9,4⎛⎤-∞⎥⎝⎦B.7,3⎛⎤-∞⎥⎝⎦C.5,2⎛⎤-∞⎥⎝⎦D.8,3⎛⎤-∞⎥⎝⎦【答案】B【解析】∵(1) 2 ()f x f x+=,()2(1)f x f x∴=-.∵(0,1]x∈时,1()(1)[,0]4f x x x=-∈-;∴(1,2]x∈时,1(0,1]x-∈,1()2(1)2(1)(2),02f x f x x x⎡⎤=-=--∈-⎢⎥⎣⎦;∴(2,3]x∈时,1(1,2]x-∈,()2(1)4(2)(3)[1,0]f x f x x x=-=--∈-,如图:当(2,3]x∈时,由84(2)(3)9x x--=-解得173x=,283x=,若对任意(,]x m∈-∞,都有8()9f x≥-,则73m≤.则m的取值范围是7,3⎛⎤-∞⎥⎝⎦.27.【2019年高考浙江】已知,a b∈R,函数32,0()11(1),032x xf xx a x ax x<⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b=--恰有3个零点,则A.a<–1,b<0 B.a<–1,b>0C.a>–1,b<0 D.a>–1,b>0【答案】C【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x 错误!未找到引用源。

三年高考(2017-2019)理科数学高考真题分类汇总:导数的综合应用

三年高考(2017-2019)理科数学高考真题分类汇总:导数的综合应用

第八讲 导数的综合应用2019年1(2019天津理8)已知a ∈R ,设函数222,1,()ln ,1,x ax a x f x x a x x ⎧-+=⎨->⎩„若关于x 的不等式()0f x …在R 上恒成立,则a 的取值范围为A.[]0,1B.[]0,2C.[]0,eD.[]1,e 解析 当时,恒成立; 当时,令 , 所以,即. 当时,恒成立, 令,则, 当时,,递增,当时,,递减, 所以当时,取得最小值. 所以.综上,的取值范围是.2.(2019全国Ⅲ理20)已知函数32()2f x x ax b =-+. (1)讨论()f x 的单调性; (2)是否存在,a b ,使得()f x 在区间[0,1]的最小值为1-且最大值为1?若存在,求1x =()112210f a a =-+=>1x <()22202f x x ax a a=-+⇔厖()()()()22221112111111x x x x x g x x x x x-----+==-=-=-=----()112201x x ⎛⎫--+--= ⎪ ⎪-⎝⎭?()max 20a g x =…0a >1x >()ln 0ln xf x x a x ax=-⇔厔()ln x h x x =()()()221ln ln 1ln ln x x x x h x x x -⋅-'==e x >()0h x '>()h x 1e x <<()0h x '<()h x e x =()h x ()e e h =()min e a h x =„a []0,e出,a b 的所有值;若不存在,说明理由. 解析(1). 令,得x =0或. 若a >0,则当时,;当时,.故在单调递增,在单调递减; 若a =0,在单调递增; 若a <0,则当时,;当时,.故在单调递增,在单调递减. (2)满足题设条件的a ,b 存在.(i )当a ≤0时,由(1)知,在[0,1]单调递增,所以在区间[0,l]的最小值为,最大值为.此时a ,b 满足题设条件当且仅当,,即a =0,.(ii )当a ≥3时,由(1)知,在[0,1]单调递减,所以在区间[0,1]的最大值为,最小值为.此时a ,b 满足题设条件当且仅当,b =1,即a =4,b =1.(iii )当0<a <3时,由(1)知,在[0,1]的最小值为,最大值为b 或.若,b =1,则,与0<a <3矛盾.若,,则或或a =0,与0<a <3矛盾.2()622(3)f x x ax x x a '=-=-()0f x '=3a x =(,0),3a x ⎛⎫∈-∞+∞ ⎪⎝⎭U ()0f x '>0,3a x ⎛⎫∈ ⎪⎝⎭()0f x '<()f x (,0),,3a ⎛⎫-∞+∞⎪⎝⎭0,3a ⎛⎫⎪⎝⎭()f x (,)-∞+∞,(0,)3a x ⎛⎫∈-∞+∞ ⎪⎝⎭U ()0f x '>,03a x ⎛⎫∈ ⎪⎝⎭()0f x '<()f x ,,(0,)3a ⎛⎫-∞+∞ ⎪⎝⎭,03a ⎛⎫ ⎪⎝⎭()f x ()f x (0)=f b (1)2f a b =-+1b =-21a b -+=1b =-()f x ()f x (0)=f b (1)2f a b =-+21a b -+=-()f x 3327a a f b ⎛⎫=-+ ⎪⎝⎭2a b -+3127a b -+=-a =3127a b -+=-21a b -+=a=a =-综上,当且仅当a =0,或a =4,b =1时,在[0,1]的最小值为–1,最大值为1. 3.(2019浙江22)已知实数0a ≠,设函数()=ln 0.f x a x x +>(1)当34a =-时,求函数()f x 的单调区间; (2)对任意21[,)ex ∈+∞均有()f x ≤ 求a 的取值范围. 注:e=2.71828…为自然对数的底数. 解析:(Ⅰ)当时,.所以,函数的单调递减区间为(0,3),单调递增区间为(3,+).(Ⅱ)由,得.当时,等价于. 令,则. 设,则.(i )当.记,则 . 故1b =-()f x 34a =-3()ln 04f x x x =->3()4f 'xx=-=()f x ∞1(1)2f a≤0a <≤04a <≤()2f x a≤22ln 0x a a --≥1t a=t ≥()22ln ,g t t x t =≥()2ln g t g x ≥=1,7x ⎡⎫∈+∞⎪⎢⎣⎭≤()2ln g t g x ≥=1()ln ,7p x x x =≥1()p'x x ==所以, .因此,. (ii )当时, 令 ,则, 故在上单调递增,所以. 由(i )得. 所以,.因此. 由(i )(ii )得对任意,, 即对任意,均有. 综上所述,所求a 的取值范围是4.(2019全国Ⅰ理20)已知函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明: (1)()f x '在区间(1,)2π-存在唯一极大值点; (2)()f x 有且仅有2个零点.()(1)0p x p ≥=()2()0g t g px ≥=≥211,e 7x ⎡⎫∈⎪⎢⎣⎭()g t g = (211)()(1),,e 7q x x xx ⎡⎤=++∈⎢⎥⎣⎦()10q'x =>()q x 211,e 7⎡⎤⎢⎥⎣⎦1()7q x q ⎛⎫⎪⎝⎭„11(1)07777q p p ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭()<0q x ()0g t g => (2)1,e x ⎡⎫∈+∞⎪⎢⎣⎭),()0t g t ∈+∞ (2)1,e x ⎡⎫∈+∞⎪⎢⎣⎭()f x „0,4⎛ ⎝⎦解析:(1)设,则,. 当时,单调递减,而, 可得在有唯一零点,设为.则当时,;当时,. 所以在单调递增,在单调递减,故在存在唯一极大值点,即在存在唯一极大值点.(2)的定义域为.(i )当时,由(1)知,在单调递增,而,所以当时,,故在单调递减,又,从而是在的唯一零点.(ii )当时,由(1)知,在单调递增,在单调递减,而,,所以存在,使得,且当时,;当时,.故在单调递增,在单调递减.又,,所以当时,.从而 在没有零点.()()g x f 'x =1()cos 1g x x x =-+21sin ())(1x 'x g x =-++1,2x π⎛⎫∈- ⎪⎝⎭()g'x (0)0,()02g'g'π><()g'x 1,2π⎛⎫- ⎪⎝⎭α(1,)x α∈-()0g'x >,2x α⎛π⎫∈ ⎪⎝⎭()0g'x <()g x (1,)α-,2απ⎛⎫ ⎪⎝⎭()g x 1,2π⎛⎫- ⎪⎝⎭()f 'x 1,2π⎛⎫- ⎪⎝⎭()f x (1,)-+∞(1,0]x ∈-()f 'x (1,0)-(0)0f '=(1,0)x ∈-()0f 'x <()f x (1,0)-(0)=0f 0x =()f x (1,0]-0,2x ⎛π⎤∈ ⎥⎝⎦()f 'x (0,)α,2απ⎛⎫⎪⎝⎭(0)=0f '02f 'π⎛⎫< ⎪⎝⎭,2βαπ⎛⎫∈ ⎪⎝⎭()0f 'β=(0,)x β∈()0f 'x >,2x βπ⎛⎫∈ ⎪⎝⎭()0f 'x <()f x (0,)β,2βπ⎛⎫⎪⎝⎭(0)=0f 1ln 1022f ππ⎛⎫⎛⎫=-+> ⎪ ⎪⎝⎭⎝⎭0,2x ⎛π⎤∈ ⎥⎝⎦()0f x >()f x 0,2⎛⎤⎥⎝⎦π(iii )当时,,所以在单调递减.而,,所以在有唯一零点.(iv )当时,,所以<0,从而在没有零点.综上,有且仅有2个零点.5.(2019全国Ⅱ理20)已知函数()11ln x f x x x -=-+.(1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点;(2)设x 0是f (x )的一个零点,证明曲线y =ln x 在点A (x 0,ln x 0)处的切线也是曲线e xy =的切线.解析:(1)f (x )的定义域为. 因为,所以在(0,1),(1,+∞)单调递增. 因为f (e )=,, 所以f (x )在(1,+∞)有唯一零点x 1,即f (x 1)=0. 又,, 故f (x )在(0,1)有唯一零点.综上,f (x )有且仅有两个零点. (2)因为,故点B (–ln x 0,)在曲线y =e x 上. 由题设知,即, ,2x π⎛⎤∈π ⎥⎝⎦()0f 'x <()f x ,2π⎛⎫π ⎪⎝⎭02f π⎛⎫> ⎪⎝⎭()0f π<()f x ,2π⎛⎤π ⎥⎝⎦(,)x ∈π+∞ln(1)1x +>()f x ()f x (,)π+∞()f x (0,1)(1,)+∞U 211()0(1)f x x x '=+>-()f x e 110e 1+-<-22222e 1e 3(e )20e 1e 1f +-=-=>--1101x <<1111111()ln ()01x f x f x x x +=-+=-=-11x 0ln 01e x x -=01x 0()0f x =0001ln 1x x x +=-故直线AB 的斜率.曲线y =e x在点处切线的斜率是,曲线在点处切线的斜率也是,所以曲线在点处的切线也是曲线y =e x 的切线.6.(2019江苏19)设函数()()()(),,,f x x a x b x c a b c =---∈R 、()f 'x 为f (x )的导函数.(1)若a =b =c ,f (4)=8,求a 的值;(2)若a ≠b ,b =c ,且f (x )和()f 'x 的零点均在集合{3,1,3}-中,求f (x )的极小值;(3)若0,01,1a b c =<=…,且f (x )的极大值为M ,求证:M ≤427. 解析(1)因为,所以.因为,所以,解得.(2)因为,所以, 从而.令,得或. 因为都在集合中,且, 所以. 此时,.令,得或.列表如下:00000000000111ln 111ln 1x x x x x k x x x x x x +---===+-----001(ln ,)B x x -01x ln y x =00(,ln )A x x 01x ln y x =00(,ln )A x x a b c ==3()()()()()f x x a x b x c x a =---=-(4)8f =3(4)8a -=2a =b c =2322()()()(2)(2)f x x a x b x a b x b a b x ab =--=-+++-2()3()3a b f 'x x b x +⎛⎫=--⎪⎝⎭()0f 'x =x b =23a bx +=2,,3a ba b +{3,1,3}-a b ≠21,3,33a ba b +===-2()(3)(3)f x x x =-+()3(3)(1)f 'x x x =+-()0f 'x =3x =-1x =所以的极小值为.(3)因为,所以,.因为,所以, 则有2个不同的零点,设为.由,得.列表如下:所以的极大值. 解法一:.因此. 解法二:因为,所以.()f x 2(1)(13)(13)32f =-+=-0,1ac ==32()()(1)(1)f x x x b x x b x bx =--=-++2()32(1)f 'x x b x b =-++01b <≤224(1)12(21)30b b b ∆=+-=-+>()f 'x ()1212,x x x x <()0f 'x =1211,33b b x x ++==()f x ()1M f x =()321111(1)M f x x b x bx ==-++()221111211(1)[32(1)]3999b b x b b b x b x b x -+++⎛⎫=-++--+ ⎪⎝⎭()2321(1)(1)227927b b b b b --+++=++23(1)2(1)(1)2272727b b b b +-+=-+(1)24272727b b +≤+≤427M ≤01b <≤1(0,1)x ∈。

三年高考(2017-2019)理科数学高考真题分类汇总:不等式的综合应用

三年高考(2017-2019)理科数学高考真题分类汇总:不等式的综合应用

不等式的综合应用2019年1.(2019天津理13)设0,0,25x y x y >>+=,的最小值为 .解析 0x >,0y >,25x y +=,===由基本不等式,==时,即3xy =,且25x y +=时,即31x y =⎧⎨=⎩或x y =⎧⎪⎨=⎪⎩2017、2018年一、选择题1.(2018北京)设集合{(,)|1,4,2},A x y x y ax y x ay =-+>-≥≤则A .对任意实数a ,(2,1)A ∈B .对任意实数a ,(2,1)A ∉C .当且仅当0a <时,(2,1)A ∉D .当且仅当32a ≤时,(2,1)A ∉ D 【解析】点(2,1)在直线1x y -=上,4ax y +=表示过定点(0,4),斜率为a -的直线,当0a ≠时,2x ay -=表示过定点(2,0),斜率为1a的直线,不等式2x ay -≤表示的区域包含原点,不等式4ax y +>表示的区域不包含原点.直线4ax y +=与直线2x ay -=互相垂直,显然当直线4ax y +=的斜率0a ->时,不等式4ax y +>表示的区域不包含点(2,1),故排除A ;点(2,1)与点(0,4)连线的斜率为32-,当32a -<-,即32a >时,4ax y +>表示的区域包含点(2,1),此时2x ay -<表示的区域也包含点(2,1),故排除B ;当直线4ax y +=的斜率32a -=-,即32a =时,4ax y +>表示的区域不包含点(2,1),故排除C ,故选D .解法二 若(2,1)A ∈,则21422a a +>⎧⎨-⎩≤,解得32a >,所以当且仅当32a ≤时,(2,1)A ∉.故选D .2.(2017天津)已知函数||2,1,()2, 1.x x f x x x x +<⎧⎪=⎨+⎪⎩≥设a ∈R ,若关于x 的不等式()||2x f x a +≥在R 上恒成立,则a 的取值范围是A .[2,2]- B.[2]- C.[2,- D.[- A 【解析】解法一 函数()f x 的图象如图所示,当||2xy a =+的图象经过点(0,2)时,可知2a =±.当2x y a =+的图象与2y x x =+的图象相切时,由22x a x x+=+,得2240x ax -+=,由0∆=,并结合图象可得2a =,要使()||2xf x a +≥恒成立,当0a ≤时,需满足2a -≤,即20a -≤≤,当0a >时,需满足2a ≤,所以22a -≤≤.解法二 由题意0x =时,()f x 的最小值2,所以不等式()||2xf x a +≥等价于 ||22xa +≤在R 上恒成立.当a =0x =,得|22x+>,不符合题意,排除C 、D ;当a =-0x =,得|22x->,不符合题意,排除B ;选A . 二、填空题1.(2018天津)已知,a b ∈R ,且360a b -+=,则128ab +的最小值为 . 15.14【解析】由360a b -+=,得36a b =-,所以36331112222824ab b b --+=+=⨯=≥, 当且仅当363122b b -=,即1b =时等号成立. 2.(2018浙江)已知λ∈R ,函数24,()43,x x f x x x x λλ-⎧=⎨-+<⎩≥,当2λ=时,不等式()0f x <的解集是___________.若函数()f x 恰有2个零点,则λ的取值范围是___________.(1,4);(1,3](4,)+∞U 【解析】若2λ=,则当2x ≥时,令40x -<,得24x <≤;当2x <时,令2430x x -+<,得12x <<.综上可知14x <<,所以不等式()0f x <的解集为(1,4).令40x -=,解得4x =;令2430x x -+=,解得1x =或3x =.因为函数()f x 恰有2个零点,结合函数的图象(图略)可知13λ<≤或4λ>. 3.(2017北京)已知0x ≥,0y ≥,且1x y +=,则22x y +的取值范围是_______.1[,1]2【解析】由题意,22222211(1)2212()22u x y x x x x x =+=+-=-+=-+,且[0,1]x ∈,又0x =时,221u x y =+=,12x =时,22min 12u x y =+=,当1x =时,221u x y =+=,所以22x y +取值范围为1[,1]2.4.(2017天津)若,a b ∈R ,0ab >,则4441a b ab ++的最小值为___________.4【解析】44224141144a b a b ab ab ab ab+++=+≥≥ , 当且仅当222a b =,且12ab =,即22a =时取等号.5.(2017江苏)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费之和最小,则x 的值是 . 30【解析】总费用为,当且仅当,即时等号成立.6.(2017浙江)已知a ∈R ,函数4()||f x x a a x=+-+在区间[1,4]上的最大值是5,则a 的取值范围是 .9(,]2-∞【解析】∵[1,4]x ∈,∴4[4,5]x x+∈①当5a ≥时,44()2224f x a x a a x a a x x =--+=---=-≤, 所以()f x 的最大值245a -=,即92a =(舍去) ②当4a ≤时,44()5f x x a a x x x=+-+=+≤,此时命题成立.③当45a <<时,max ()max{|4|,|5|}f x a a a a =-+-+,则|4||5||4|5a a a a a a -+-+⎧⎨-+=⎩≥或|4||5||5|5a a a a a a -+<-+-+=, 解得92a =或92a <, 综上可得,实数a 的取值范围是9(,]2-∞.600900464()4240x x x x +⨯=+≥⨯900x x=30x =。

三年高考(2017-2019)高考数学真题分项汇编 专题04 导数及其应用(解答题)理(含解析)

三年高考(2017-2019)高考数学真题分项汇编 专题04 导数及其应用(解答题)理(含解析)

专题04 导数及其应用(解答题)1.【2019年高考全国Ⅰ卷理数】已知函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明:(1)()f x '在区间(1,)2π-存在唯一极大值点; (2)()f x 有且仅有2个零点. 【答案】(1)见解析;(2)见解析。

【解析】(1)设()()g x f 'x =,则1()cos 1g x x x =-+,21sin ())(1x 'x g x =-++. 当1,2x π⎛⎫∈- ⎪⎝⎭时,()g'x 单调递减,而(0)0,()02g'g'π><,可得()g'x 在1,2π⎛⎫- ⎪⎝⎭有唯一零点,设为α.则当(1,)x α∈-时,()0g'x >;当,2x α⎛π⎫∈ ⎪⎝⎭时,()0g'x <. 所以()g x 在(1,)α-单调递增,在,2απ⎛⎫ ⎪⎝⎭单调递减,故()g x 在1,2π⎛⎫- ⎪⎝⎭存在唯一极大值点,即()f 'x 在1,2π⎛⎫- ⎪⎝⎭存在唯一极大值点.(2)()f x 的定义域为(1,)-+∞。

(i)当(1,0]x ∈-时,由(1)知,()f 'x 在(1,0)-单调递增,而(0)0f '=,所以当(1,0)x ∈-时,()0f 'x <,故()f x 在(1,0)-单调递减,又(0)=0f ,从而0x =是()f x 在(1,0]-的唯一零点。

(ii )当0,2x ⎛π⎤∈ ⎥⎝⎦时,由(1)知,()f 'x 在(0,)α单调递增,在,2απ⎛⎫ ⎪⎝⎭单调递减,而(0)=0f ',02f 'π⎛⎫< ⎪⎝⎭,所以存在,2βαπ⎛⎫∈ ⎪⎝⎭,使得()0f 'β=,且当(0,)x β∈时,()0f 'x >;当,2x βπ⎛⎫∈ ⎪⎝⎭时,()0f 'x <。

2017-2019三年高考全国卷3理科数学试题及答案

2017-2019三年高考全国卷3理科数学试题及答案

2017-2019全国III卷理数2019全国III卷理数2018全国III卷理数2017全国III卷理数2019年全国卷Ⅲ高考理科数学试题1.已知集合2{1,0,1,2}{1}A B x x =-=≤,,则A B =A.{}1,0,1-B.{}0,1C.{}1,1-D.{}0,1,22.若(1i)2i z +=,则z =A.1i --B.1+i -C.1i -D.1+i3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A.0.5B.0.6C.0.7D.0.84.(1+2x 2)(1+x )4的展开式中x 3的系数为A.12B.16C.20D.245.已知各项均为正数的等比数列{a n }的前4项为和为15,且a 5=3a 3+4a 1,则a 3=A.16B.8C.4D.26.已知曲线e ln x y a x x =+在点(1,a e)处的切线方程为y =2x +b ,则A.e 1a b ==-,B.a=e,b =1C.1e 1a b -==,D .1e a -=,1b =-7.函数3222x x x y -=+在[]6,6-的图象大致为A.B.C.D.8.如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则A.BM =EN ,且直线BM 、EN 是相交直线B.BM ≠EN ,且直线BM ,EN 是相交直线C.BM =EN ,且直线BM 、EN 是异面直线D.BM ≠EN ,且直线BM ,EN 是异面直线9.执行下边的程序框图,如果输入的ε为0.01,则输出s 的值等于A.4122- B.5122- C.6122- D.7122-10.双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐进线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为A.4B.2C.D.11.设()f x 是定义域为R 的偶函数,且在()0,∞单调递减,则A.f (log 314)>f (322-)>f (232-)B.f (log 314)>f (232-)>f (322-)C.f (322-)>f (232-)>f (log 314)D.f (232-)>f (322-)>f (log 314)12.设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点②()f x 在(0,2π)有且仅有2个极小值点③()f x 在(0,10π)单调递增④ω的取值范围是[1229510,)其中所有正确结论的编号是A.①④B.②③C.①②③D.①③④二、填空题:本题共4小题,每小题5分,共20分。

三年高考(2017-2019)理科数学高考真题分类汇总:函数的概念和性质

三年高考(2017-2019)理科数学高考真题分类汇总:函数的概念和性质

函数的概念和性质2019年1.(2019全国Ⅱ理14)已知()f x 是奇函数,且当0x <时,()e ax f x =-.若(ln 2)8f =,则a =__________.【解析】解析:ln 2(ln 2)e(ln 2)8a f f --=-=-=-,得28a -=,3a =-.2.(2019全国Ⅲ理11)设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则A .f (log 314)>f (322-)>f (232-)B .f (log 314)>f (232-)>f (322-) C .f (322-)>f (232-)>f (log 314)D .f (232-)>f (322-)>f (log 314) 【解析】 ()f x 是定义域为R 的偶函数,所以331(log )(log 4)4f f =,因为33log 4log 31>=,2303202221--<<<=,所以23323022log 4--<<<,又()f x 在(0,)+∞上单调递减,所以233231(2)(2)(log )4f f f -->>. 故选C . 3.(2019北京理13)设函数()exxf x e a -=+ (a 为常数),若()f x 为奇函数,则a =______;若()f x 是R 上的增函数,则a 的取值范围是 ________.【解析】①根据题意,函数e e x xf x a -=+(),若f x ()为奇函数,则f x f x -=-()(),即=e e e e x x x x a a --+-+() ,所以()()+1e e 0x x a -+=对x ∈R 恒成立.又e e 0x x -+>,所以10,1a a +==-.②函数e e xxf x a -=+(),导数e e x xf x a -'=-().若()f x 是R 上的增函数,则()f x 的导数e 0e xxf x a -'-≥=()在R 上恒成立,即2e x a ≤恒成立,而2e >0x ,所以a ≤0,即a 的取值范围为0]-∞(,.4.(2019全国Ⅰ理11)关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2 其中所有正确结论的编号是 A .①②④B .②④C .①④D .①③【解析】()sin sin |i |sin s n f x x x x x f x -=-+-=+=()(),则函数()f x 是偶函数,故①正确.当π,π2x ⎛⎫∈⎪⎝⎭时, sin sin sin sin x x x x ==,, 则sin sin 2sin f x x x x =+=()为减函数,故②错误. 当0πx ≤≤,sin sin sin sin 2sin f x x x x x x =+=+=(), 由0f x =()得2sin 0x =,得0x =或πx =, 由()f x 是偶函数,得在[π0-,)上还有一个零点πx =-,即函数()f x 在[]ππ-,上有3个零点,故③错误.当sin 1sin 1x x ==,时,()f x 取得最大值2,故④正确, 故正确的结论是①④. 故选C . 5.(2019全国Ⅰ理5)函数f (x )=在[,]-ππ的图像大致为 A . B .C .D .【解析】: 因为()2sin cos x xf x x x +=+,π[]πx ∈-,,所以()()()22sin sin cos cos x x x xf x f x x x x x --+-===--++,2sin cos ++x xx x所以()f x 为[ππ]-,上的奇函数,因此排除A ; 又()22sin ππππ0cos ππ1πf +==>+-+,因此排除B ,C ; 故选D .6.(2019全国Ⅲ理7)函数3222x xx y -=+在[]6,6-的图像大致为 A . B .C .D .【解析】 因为332()2()()2222x x x xx x f x f x ----==-=-++, 所以()f x 是[]6,6-上的奇函数,因此排除C ,又1182(4)721f =>+,因此排除A ,D .故选B .7.(2019浙江6)在同一直角坐标系中,函数y =1x a ,y =log a (x +12),(a >0且a ≠1)的图像可能是A. B.C. D.【解析】由函数1xy a =,1log 2a y x ⎛⎫=+ ⎪⎝⎭,单调性相反,且函数1log 2a y x ⎛⎫=+ ⎪⎝⎭图像恒过1,02⎛⎫⎪⎝⎭可各满足要求的图象为D .故选D .8.(2019江苏4)函数y =的定义域是 .【解析】 由2760x x +-…,得2670x x --„,解得17x-剟.所以函数y =[1,7]-.2017-2018年一、选择题1.(2018全国卷Ⅱ)函数2()--=x xe ef x x 的图像大致为B 【解析】当0<x 时,因为0--<xxe e ,所以此时2()0--=<x xe ef x x ,故排除A .D ;又1(1)2=->f e e,故排除C ,选B . 2.(2018全国卷Ⅲ)函数422y x x =-++的图像大致为D 【解析】当0x =时,2y =,排除A ,B .由3420y x x '=-+=,得0x =或x =(1,1)-上有三个极值点,所以排除C ,故选D .3.(2018浙江)函数||2sin 2x y x =的图象可能是A .B .C .D .【解析】设||()2sin 2x f x x =,其定义域关于坐标原点对称,又||()2sin(2)()x f x x f x --=⋅-=-,所以()y f x =是奇函数,故排除选项A ,B ;令()0f x =,所以sin 20x =,所以2x k π=(k ∈Z ),所以2k x π=(k ∈Z ),故排除选项C .故选D .4.(2018全国卷Ⅱ)已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)-=+f x f x .若(1)2=f ,则(1)(2)(3)(50)++++=…f f f f A .50-B .0C .2D .50【解析】解法一 ∵()f x 是定义域为(,)-∞+∞的奇函数,()()-=-f x f x .且(0)0=f .∵(1)(1)-=+f x f x ,∴()(2)=-f x f x ,()(2)-=+f x f x ∴(2)()+=-f x f x ,∴(4)(2)()+=-+=f x f x f x ,∴()f x 是周期函数,且一个周期为4,∴(4)(0)0==f f ,(2)(11)(11)(0)0=+=-==f f f f ,(3)(12)(12)(1)2=+=-=-=-f f f f ,∴(1)(2)(3)(50)120(49)(50)(1)(2)2+++⋅⋅⋅+=⨯++=+=f f f f f f f f , 故选C .解法二 由题意可设()2sin()2f x x π=,作出()f x 的部分图象如图所示.由图可知,()f x 的一个周期为4,所以(1)(2)(3)(50)+++⋅⋅⋅+f f f f , 所以(1)(2)(3)(50)120(1)(2)2+++⋅⋅⋅+=⨯++=f f f f f f ,故选C .5.(2017新课标Ⅰ)函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(1)1f =-,则满足1(2)1f x --≤≤ 的x 的取值范围是A .[−2,2]B .[−1,1]C .[0,4]D .[1,3] 【解析】由函数()f x 为奇函数,得(1)(1)1f f -=-=,不等式1(2)1f x --≤≤即为(1)(2)(1)f f x f --≤≤,又()f x 在(,)-∞+∞单调递减,所以得121x --≥≥,即13x ≤≤,选D . 6.(2017浙江)若函数2()f x x ax b =++在区间[0,1]上的最大值是M ,最小值是m ,则M m -A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关 【解析】函数()f x 的对称轴为2ax =-, ①当02a-≤,此时(1)1M f a b ==++,(0)m f b ==,1M m a -=+; ②当12a-≥,此时(0)M f b ==,(1)1m f a b ==++,1M m a -=--;③当012a<-<,此时2()24a a m f b =-=-,(0)M f b ==或(1)1M f a b ==++,24a M m -=或214a M m a -=++.综上,M m -的值与a 有关,与b 无关.选B .7.(2017天津)已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为 A .a b c <<B .c b a <<C .b a c <<D .b c a <<【解析】由题意()g x 为偶函数,且在(0,)+∞上单调递增,所以22(log 5.1)(log 5.1)a g g =-= 又2222log 4log 5.1log 83=<<=,0.8122<<,所以0.822log 5.13<<,故b a c <<,选C .8.(2017北京)已知函数1()3()3x xf x =-,则()f xA .是奇函数,且在R 上是增函数B .是偶函数,且在R 上是增函数C .是奇函数,且在R 上是减函数D .是偶函数,且在R 上是减函数 【解析】11()3()(3())()33xx x x f x f x ---=-=--=-,得()f x 为奇函数, ()(33)3ln 33ln 30x x x x f x --''=-=+>,所以()f x 在R 上是增函数.选A .二、填空题1.(2018江苏)函数()f x =的定义域为 .【解析】要使函数()f x 有意义,则2log 10x -≥,即2x ≥,则函数()f x 的定义域是[2,)+∞.2.(2018江苏)函数()f x 满足(4)()()f x f x x +=∈R ,且在区间(2,2]-上,cos ,02,2()1||,20,2x x f x x x π⎧<⎪⎪=⎨⎪+<⎪⎩≤-≤则((15))f f 的值为 .【解析】因为函数()f x 满足(4)()f x f x +=(x ∈R ),所以函数()f x 的最小正周期是4.因为在区间(2,2]- 上,cos ,02,2()1||,20,2x x f x x x π⎧<⎪⎪=⎨⎪+<⎪⎩≤-≤,所以1((15))((1))()cos24f f f f f π=-===. 3.(2018上海)已知11{2,1,,,1,2,3}22α∈---,若幂函数()α=f x x 为奇函数,且在0+∞(,)上递减,则α=_____【解析】由题意()f x 为奇函数,所以α只能取1,1,3-,又()f x 在(0,)+∞上递减,所以1α=-.4.(2018北京)能说明“若()(0)f x f >对任意的(0,2]x ∈都成立,则()f x 在[0,2]上是增函数”为假命题的一个函数是__________.sin y x =(不答案不唯一)【解析】这是一道开放性试题,答案不唯一,只要满足()(0)f x f >对任意的(0,2]x ∈都成立,且函数()f x 在[0,2]上不是增函数即可,如,()sin f x x =,答案不唯一.5.(2017新课标Ⅲ)设函数1,0()2,0xx x f x x +⎧=⎨>⎩≤,则满足1()()12f x f x +->的x 的取值范围是___.【解析】当12x >时,不等式为12221x x-+>恒成立;当102x <≤,不等式12112x x +-+>恒成立; 当0x ≤时,不等式为11112x x ++-+>,解得14x >-,即104x -<≤;综上,x 的取值范围为1(,)4-+∞.6.(2017江苏)已知函数31()2x x f x x x e e=-+-,其中e 是自然数对数的底数,若2(1)(2)0f a f a -+≤,则实数a 的取值范围是 .1[1,]2-【解析】因为,所以函数是奇函数,因31()2e ()e x x f x x f x x -=-++-=-()f x为,所以数在上单调递增,又,即,所以, 即,解得,故实数的取值范围为. 7.(2017山东)若函数e ()x f x (e=2.71828L ,是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质,下列函数中具有M 性质的是 ①()2xf x -=②()3xf x -=③3()=f x x④2()2=+f x x①④【解析】①()2()2x x x x e e f x e -=⋅=在R 上单调递增,故()2xf x -=具有M 性质;②()3()3x x x x e e f x e -=⋅=在R 上单调递减,故()3xf x -=不具有M 性质;③3()xxe f x e x =⋅,令3()x g x e x =⋅,则322()3(2)xxxg x e x e x x e x '=⋅+⋅=+,∴当2x >-时,()0g x '>,当2x <-时,()0g x '<,∴3()x x e f x e x =⋅在(),2-∞-上单调递减,在()2,-+∞上单调递增,故()3f x x =不具有M 性质;④2()(2)xxe f x e x =+,令()()22x g x e x =+,则22()(2)2[(1)1]0x x x g x e x e x e x '=++⋅=++>,∴2()(2)x x e f x e x =+在R 上单调递增,故2()2f x x =+具有M 性质.8.(2017浙江)已知a ∈R ,函数4()||f x x a a x=+-+在区间[1,4]上的最大值是5,则a 的取值范围是 .9(,]2-∞【解析】∵[1,4]x ∈,∴4[4,5]x x+∈①当5a ≥时,44()2224f x a x a a x a a x x =--+=---=-≤, 所以()f x 的最大值245a -=,即92a =(舍去) ②当4a ≤时,44()5f x x a a x x x=+-+=+≤,此时命题成立.22()32e e 320x x f 'x x x -=-++≥-+()f x R 21)02()(f f a a +-≤2())2(1a a f f ≤-221a a ≤-2120a a +-≤112a -≤≤a 1[1,]2-③当45a <<时,max ()max{|4|,|5|}f x a a a a =-+-+,则|4||5||4|5a a a a a a -+-+⎧⎨-+=⎩≥或|4||5||5|5a a a aa a -+<-+-+=, 解得92a =或92a <, 综上可得,实数a 的取值范围是9(,]2-∞.。

三年高考(2017_2019)高考数学真题分项汇编专题02函数的概念与基本初等函数I文

三年高考(2017_2019)高考数学真题分项汇编专题02函数的概念与基本初等函数I文

B.

5 4
,
9 4

C.

5 4
,
9 4

{1}
D.

5 4
,
9 4


{1}
【答案】D
【解析】作出函数
f
(x)

2 1 x
,
x,
0 x 1,
x 1
的图象,
y1x
以及直线
4 ,如图,
f (x) 1 x a(a R)
专题 02 函数的概念与基本初等函数 I
1.【2019 年高考全国Ⅰ卷文数】已知 a log2 0.2, b 20.2 , c 0.20.3 ,则
A. a b c
B. a c b
C. c a b
D. b c a
【答案】B
【解析】 a log2 0.2 log2 1 0, b 20.2 20 1,
A.
B.
C.
D.
【答案】D
【解析】由
f
(x)

sin(x) (x) cos(x) (x)2

sin x x cos x x2

f
(x)
,得
f (x) 是奇函数,其图象关于原点对
称.
f
(
π
)

1

π 2
2 (π)2

2
4 2π 1, π2
f
(π)

π 1
0 c 0.20.3 0.20 1, 即 0 c 1,
则a c b.
故选 B.
【名师点睛】本题考查指数和对数大小的比较,考查了数学运算的素养.采取中间量法,根据指数函数

《精品》2017-2019三年高考真题数学(理)分项汇编专题03导数及其应用(选择题、填空题)(原卷

《精品》2017-2019三年高考真题数学(理)分项汇编专题03导数及其应用(选择题、填空题)(原卷

专题03导数及其应用(选择题、填空题)1.【2019年高考全国Ⅲ卷理数】已知曲线y a e x x ln x在点(1,a e)处的切线方程为y=2x+b,则A.a e,b1B.a=e,b=1C.a e 1,b 1D.a e 1,b 12.【2018年高考全国Ⅰ卷理数】设函数f(x)x3(a 1)x2ax.若f(x)为奇函数,则曲线y f(x)在点(0,0)处的切线方程为y 2xA.y 2xC.3.【2017年高考全国Ⅱ卷理数】若x2是函数y xB.y xD.f(x)(x2ax 1)e x 1的极值点,则f(x)的极小值为A.1B.2e 3C.5e 3D.14.【2017年高考浙江】函数y=f(x)的导函数y f (x)的图象如图所示,则函数y=f(x)的图象可能是5.【2018年高考全国Ⅱ卷理数】函数f x e xex2x的图像大致为16.【2018 年高考全国Ⅲ卷理数】函数yx 4 x 2 2的图像大致为7.【2019 年高考天津理数】已知 aR ,设函数 f ( x )x 2 2a x 2a , x 1,x a ln x , x 1.若关于 x 的不等式 f ( x ) 0在 R上恒成立,则 a的取值范围为A .C .0,10,eB .D .0,21,e8.【2019 年高考浙江】已知恰有 3 个零点,则 A .a <–1,b<0C .a >–1,b<0x, x 0 a , b R ,函数 f ( x )1 1x 3 (a 1)x 2 ax , x 03 2B .a <–1,b >0D .a >–1,b >0.若函数y f ( x ) ax b9.【2017 年高考全国Ⅲ卷理数】已知函数f ( x ) x22 x a (ex 1ex 1)有唯一零点,则 a =A .12B .1 3C .1 2D .110.【2019 年高考全国Ⅰ卷理数】曲线y 3( x2x )ex在点(0,0) 处的切线方程为____________.211.【2018 年高考全国Ⅱ卷理数】曲线y 2ln( x 1) 在点 (0, 0) 处的切线方程为__________.12.【2018 年高考全国Ⅲ卷理数】曲线yax 1ex在点0,1处的切线的斜率为2,则 a ________.的距离的最小值是 13.【2019 年高考江苏】在平面直角坐标系 xOy 直线 x y 0中,P 是曲线 y x .4 x( x 0)上的一个动点,则点 P 到14.【2018 年高考全国Ⅰ卷理数】已知函数fx 2si n x sin2 x ,则 fx的最小值是_____________.15.【2019 年高考江苏】在平面直角坐标系 xOy中,点 A 在曲线 y =ln x 上,且该曲线在点 A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点 A 的坐标是.16.【2019 年高考北京理数】设函数fx exa ex(a 为常数).若 f (x )为奇函数,则 a =________; 若 f (x )是 R 上的增函数,则 a 的取值范围是___________.17.【2018 年高考江苏】若函数在内有且只有一个零点,则在上的最大值与最小值的和为.18.【2017 年高考江苏】已知函数f ( x )x 2 x e1e,其中 e 是自然对数的底数.若f (a 1)f (2 a 2) 0 ,则实数 a 的取值范围是.19.【2017 年高考山东理数】若函数e xf ( x ) ( e2.71828是自然对数的底数)在 f ( x )的定义域上单调递增,则称函数 f ( x )具有 M 性质.下列函数中所有具有 M 性质的函数的序号为.①f ( x ) 2x②f ( x ) 3x③f ( x ) x3④f ( x ) x223 xx3。

三年(2017-2019)高考真题数学(理)分项汇编 专题09 三角函数(原卷版)

三年(2017-2019)高考真题数学(理)分项汇编  专题09 三角函数(原卷版)

专题09 三角函数1.【2019年高考全国Ⅰ卷理数】函数f (x )=在[,]-ππ的图像大致为A .B .C .D .2.【2019年高考全国Ⅰ卷理数】关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④ B .②④ C .①④D .①③3.【2019年高考全国Ⅱ卷理数】下列函数中,以2π为周期且在区间(4π,2π)单调递增的是A .f (x )=|cos2x |B .f (x )=|sin2x |C .f (x )=cos|x |D .f (x )=sin|x |4.【2019年高考全国Ⅱ卷理数】已知α∈(0,2π),2sin2α=cos2α+1,则sin α=A .15B.5C.3D.55.【2019年高考全国Ⅲ卷理数】设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点2sin cos ++x xx x③()f x 在(0,10π)单调递增 ④ω的取值范围是[1229510,)其中所有正确结论的编号是 A .①④ B .②③ C .①②③D .①③④6.【2019年高考天津卷理数】已知函数()sin()(0,0,||)f x A x A ωϕωϕ=+>><π是奇函数,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若()g x 的最小正周期为2π,且4g π⎛⎫= ⎪⎝⎭38f π⎛⎫= ⎪⎝⎭A .2-B .CD .27.【2018年高考全国Ⅲ卷理数】若1sin 3α=,则cos2α=A .89B .79C .79-D .89-8.【2018年高考全国卷II 理数】若()cos sin f x x x =-在[],a a -是减函数,则a 的最大值是 A .π4 B .π2C .3π4D .π9.【2018年高考天津理数】将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数 A .在区间35[,]44ππ上单调递增 B .在区间3[,]4ππ上单调递减 C .在区间53[,]42ππ上单调递增 D .在区间3[,2]2ππ上单调递减 10.【2018年高考浙江卷】函数y =2xsin2x 的图象可能是A .B .C .D .11.【2017年高考全国Ⅰ理数】已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是 A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 212.【2017年高考全国Ⅲ理数】设函数()π(3cos )f x x =+,则下列结论错误的是A .()f x 的一个周期为2π-B .()y f x =的图象关于直线8π3x =对称 C .(π)f x +的一个零点为π6x =D .()f x 在(π2,π)单调递减13.【2017年高考天津卷理数】设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5()28f π=,()08f 11π=,且()f x 的最小正周期大于2π,则 A .23ω=,12ϕπ= B .23ω=,12ϕ11π=- C .13ω=,24ϕ11π=-D .13ω=,24ϕ7π=14.【2019年高考北京卷理数】函数f (x )=sin 22x 的最小正周期是__________. 15.【2019年高考江苏卷】已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是 ▲ . 16.【2018年高考全国Ⅰ理数】已知函数()2sin sin2f x x x =+,则()f x 的最小值是_____________. 17.【2018年高考北京卷理数】设函数f (x )=πcos()(0)6x ωω->,若π()()4f x f ≤对任意的实数x 都成立,则ω的最小值为__________.18.【2018年高考全国Ⅲ理数】函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.19.【2018年高考江苏卷】已知函数()ππsin 2()22y x =+-<<ϕϕ的图象关于直线π3x =对称,则ϕ的值是________.20.【2017年高考全国Ⅱ理数】函数()23sin 4f x x x =+-(π0,2x ⎡⎤∈⎢⎥⎣⎦)的最大值是 . 21.【2017年高考北京卷理数】在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若1sin 3α=,则cos()αβ-=___________. 22.【2018年高考全国Ⅱ理数】已知sin cos 1αβ+=,cos sin 0αβ+=,则sin()αβ+=__________. 23.【2017年高考江苏卷】若π1tan(),46α-=则tan α= ▲ .24.【2019年高考浙江卷】设函数()sin ,f x x x =∈R .(1)已知[0,2),θ∈π函数()f x θ+是偶函数,求θ的值; (2)求函数22[()][()]124y f x f x ππ=+++的值域.25.【2017年高考浙江卷】已知函数22sin cos cos ()()x x x f x x x =--∈R .(1)求2()3f π的值. (2)求()f x 的最小正周期及单调递增区间.26.【2017年高考江苏卷】已知向量(cos ,sin ),(3,[0,π].x x x ==∈a b (1)若a ∥b ,求x 的值;(2)记()f x =⋅a b ,求()f x 的最大值和最小值以及对应的x 的值.27.【2018年高考浙江卷】已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P(3455-,-).(1)求sin (α+π)的值; (2)若角β满足sin (α+β)=513,求cos β的值.28.【2018年高考江苏卷】已知,αβ为锐角,4tan 3=α,cos()+=αβ.(1)求cos2α的值;(2)求tan()-αβ的值.29.【2017年高考山东卷理数】设函数ππ()sin()sin()62f x x x ωω=-+-,其中.已知π()06f =.(1)求;(2)将函数的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位,得到函数的图象,求在π3π[,]44-上的最小值.03ω<<ω()y f x =()y g x =()g x。

三年高考(2017-2019)理科数学高考真题分类汇总:指数函数、对数函数、幂函数

三年高考(2017-2019)理科数学高考真题分类汇总:指数函数、对数函数、幂函数

指数函数、对数函数、幂函数2019年1.(2019全国Ⅰ理3)已知0.20.32log 0.220.2a b c ===,,,则 A .a b c << B .a c b <<C .c a b <<D .b c a <<解析:依题意22log 0.2log 10a ==<, 0.20221b ==>,因为0.3000.20.21=<<, 所以0.30.201c =∈(,),所以a c b <<.故选B .2.(2019天津理6)已知5log 2a =,0.5og 2.l 0b =,0.20.5c =,则,,a b c 的大小关系为 A.a c b << B.a b c << C.b c a << D.c a b << 解析 由题意,可知5log 21a =<,115122221log 0.2log log 5log 5log 425b --====>=. 0.20.51c =<,所以b 最大,a ,c 都小于1.因为5log 2a ==150.210.52⎛⎫==== ⎪⎝⎭225log 42>=12⎛< ⎝c <, 所以a c b <<. 故选A .3.(2019浙江16)已知a ∈R ,函数3()f x ax x =-,若存在t ∈R ,使得2|(2)()|3f t f t +-≤,则实数a 的最大值是____.解析:存在t ∈R ,使得2|(2)()|3f t f t +-≤, 即有332|(2)(2)|3a t t at t +-+-+≤,化为22|2(364)2|3a t t ++-≤, 可得2222(364)233a t t -++-, 即224(364)33a t t ++, 由223643(1)11t t t ++=++, 可得403a ,可得a 的最大值为43.2010-2018年一、选择题1.(2018全国卷Ⅰ)已知函数0()ln 0⎧=⎨>⎩,≤,,,x e x f x x x ()()=++g x f x x a .若()g x 存在2个零点,则a 的取值范围是 A .[1,0)-B .[0,)+∞C .[1,)-+∞D .[1,)+∞解析:函数()()=++g x f x x a 存在 2个零点,即关于x 的方程()=--f x x a 有2 个不同的实根,即函数()f x 的图象与直线=--y x a 有2个交点,作出直线=--y x a 与函数()f x 的图象,如图所示,由图可知,1-≤a ,解得1≥a ,故选C . 2.(2018全国卷Ⅲ)设0.2log 0.3a =,2log 0.3b =,则A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+解析:由0.2log 0.3a =得0.31log 0.2a =,由2log 0.3b =得0.31log 2b=, 所以0.30.30.311log 0.2log 2log 0.4a b +=+=,所以1101a b <+<,得01a b ab+<<.又0a >,0b <,所以0ab <,所以0ab a b <+<.故选B .3.(2018天津)已知2log e =a ,ln 2b =,121log 3c =,则a ,b ,c 的大小关系为 A .a b c >> B .b a c >> C .c b a >> D .c a b >>解析:因为2log e >1a =,ln 2(0,1)b =∈,12221log log 3log 13c e ==>>. 所以c a b >>,故选D .4.(2017新课标Ⅰ)设,,x y z 为正数,且235x y z ==,则A .235x y z <<B .523z x y <<C .352y z x <<D .325y x z << 解析:设235x y z k ===,因为,,x y z 为正数,所以1k >,则2log x k =,3log y k =,5log z k =, 所以22lg lg 3lg 913lg 23lg lg8x k y k =⨯=>,则23x y >,排除A 、B ;只需比较2x 与5z , 22lg lg 5lg 2515lg 25lg lg 32x k z k =⨯=<,则25x z <,选D . 5.(2017天津)已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为 A .a b c <<B .c b a <<C .b a c <<D .b c a <<解析:由题意()g x 为偶函数,且在(0,)+∞上单调递增,所以22(log 5.1)(log 5.1)a g g =-= 又2222log 4log 5.1log 83=<<=,0.8122<<,所以0.822log 5.13<<,故b a c <<,选C .6.(2017北京)已知函数1()3()3x xf x =-,则()f xA .是奇函数,且在R 上是增函数B .是偶函数,且在R 上是增函数C .是奇函数,且在R 上是减函数D .是偶函数,且在R 上是减函数 解析:11()3()(3())()33xx x x f x f x ---=-=--=-,得()f x 为奇函数, ()(33)3ln 33ln 30x x x x f x --''=-=+>,所以()f x 在R 上是增函数.选A .7.(2017北京)根据有关资料,围棋状态空间复杂度的上限M 约为3613,而可观测宇宙中普通物质的原子总数N 约为8010.则下列各数中与M N最接近的是(参考数据:lg 3≈0.48)A .3310B .5310C .7310D .9310解析:设36180310M x N ==,两边取对数得,36136180803lg lg lg3lg10361lg38093.2810x ==-=⨯-≈,所以93.2810x =,即M N最接近9310,选D .二、填空题1.(2018江苏)函数()f x =的定义域为 .解析:[2,)+∞【解析】要使函数()f x 有意义,则2log 10x -≥,即2x ≥,则函数()f x 的定义域是[2,)+∞.2.(2018上海)已知11{2,1,,,1,2,3}22α∈---,若幂函数()α=f x x 为奇函数,且在(0,)+∞上递减,则α=_____.解析:由题意()f x 为奇函数,所以α只能取1,1,3-,又()f x 在(0,)+∞上递减,所以1α=-.3.(2018上海)已知常数0a >,函数2()(2)x x f x ax =+的图像经过点6()5P p ,、1()5Q q -,,若236p qpq +=,则a =__________.解析:由题意2625=+p pap ,2125=-+q q aq ,上面两式相加, 得22122+=++p q pq ap aq,所以22+=p q a pq ,所以236=a , 因为0>a ,所以6=a .。

三年高考(2017-2019)各地文科数学高考真题分类汇总:三角函数的综合应用

三年高考(2017-2019)各地文科数学高考真题分类汇总:三角函数的综合应用

三角函数的综合应用1.(2017浙江)我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度。

祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积6S ,6S = .2.(2017浙江)已知向量a ,b 满足||1=a ,||2=b ,则||||++-a b a b 的最小值 是 ,最大值是 .3.(2018江苏)某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和CDP △的面积,并确定sin θ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为43∶.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.4.(2017江苏)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm ,容器Ⅰ的底面对角线AC 的长为cm ,容器Ⅱ的两底面对角线EG ,11E G 的长分别为14cm 和62cm . 分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm . 现有一根玻璃棒l ,其长度为40cm .(容器厚度、玻璃棒粗细均忽略不计)(1)将l 放在容器Ⅰ中,l 的一端置于点A 处,另一端置于侧棱1CC 上,求l 没入水中部分的长度;(2)将l 放在容器Ⅱ中,l 的一端置于点E 处,另一端置于侧棱1GG 上,求l 没入水中部分的长度.NM POA B C D答案1.2【解析】单位圆内接正六边形是由6个边长为1的正三角形组成,所以61611sin 602S =⨯⨯⨯⨯=o .2.4,,a b r r 的夹角为θ,由余弦定理有:a b -==r r ,a b +==r r则:a b a b ++-=r r r r令y =[]21016,20y =+,据此可得:()()max min 4a b a b a b a b ++-==++-==r r r r r r r r ,即a b a b ++-r r r r 的最小值是4,最大值是3.【解析】(1)连结PO 并延长交MN 于H ,则PH ⊥MN ,所以OH =10.过O 作OE ⊥BC 于E ,则OE ∥MN ,所以COE θ∠=,故40cos OE θ=,40sin EC θ=,则矩形ABCD 的面积为240cos (40sin 10)800(4sin cos cos )θθθθθ⨯+=+,CDP ∆的面积为1240cos (4040sin )1600(cos sin cos )2θθθθθ⨯⨯-=-. 过N 作GN ⊥MN ,分别交圆弧和OE 的延长线于G 和K ,则10GK KN ==. 令0GOK θ∠=,则01sin 4θ=,0(0,)6πθ∈. 当0[,)2πθθ∈时,才能作出满足条件的矩形ABCD ,所以sin θ的取值范围是1[,1)4.答:矩形ABCD 的面积为800(4sin cos cos )θθθ+平方米,CDP ∆的面积为1600(cos sin cos )θθθ-,sin θ的取值范围是1[,1)4. (2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k ,乙的单位面积的年产值为3k (0)k >,则年总产值为4800(4sin cos cos )31600(cos sin cos )k k θθθθθθ⨯++⨯- 8000(sin cos cos )k θθθ=+,0[,)2πθθ∈. 设()sin cos cos f θθθθ=+,0[,)2πθθ∈,则222()cos sin sin (2sin sin 1)(2sin 1)(sin 1)f θθθθθθθθ'=--=-+-=--+.令()0f θ'=,得π6θ=, 当0(,)6πθθ∈时,()>0f θ′,所以()f θ为增函数; 当(,)62ππθ∈时,()<0f θ′,所以()f θ为减函数, θH E K G NM PO A B C D因此,当π6θ=时,()f θ取到最大值. 答:当π6θ=时,能使甲、乙两种蔬菜的年总产值最大. 4.【解析】(1)由正棱柱的定义,1CC ⊥平面ABCD ,所以平面11A ACC ⊥平面ABCD ,1CC AC ⊥.记玻璃棒的另一端落在1CC 上点M 处.因为AC =40AM =.所以30MN ==,从而3sin 4MAC ∠=. 记AM 与水平的交点为1P ,过1P 作11PQ AC ⊥,1Q 为垂足, 则11PQ ⊥平面ABCD ,故1112PQ =, 从而11116sin PQ AP MAC==∠. 答:玻璃棒l 没入水中部分的长度为16cm.( 如果将“没入水中部分”理解为“水面以上部分”,则结果为24cm)(2)如图,O ,1O 是正棱台的两底面中心.由正棱台的定义,1OO ⊥平面 EFGH ,所以平面11E EGG ⊥平面EFGH ,1OO ⊥EG .同理,平面11E EGG ⊥平面1111E F G H ,1OO ⊥11E G .记玻璃棒的另一端落在1GG 上点N 处.过G 作GK ⊥11E G ,K 为垂足, 则GK =1OO =32.因为EG = 14,11E G = 62,所以1KG =6214242-=,从而140GG ===. 设1,,EGG ENG αβ==∠∠则114sin sin()cos 25KGG KGG απ=+==∠∠. 因为2απ<<π,所以3cos 5α=-. 在ENG △中,由正弦定理可得4014sin sin αβ=,解得7sin 25β=. 因为02βπ<<,所以24cos 25β=. 于是sin sin()sin()sin cos cos sin NEG αβαβαβαβ=π--=+=+∠42473(35)525255=⨯+-⨯=. 记EN 与水面的交点为2P ,过2P 作22P Q EG ⊥,2Q 为垂足,则 22P Q ⊥平面EFGH ,故22P Q =12,从而 2EP =2220sin P NEGQ =∠. 答:玻璃棒l 没入水中部分的长度为20cm.(如果将“没入水中部分”理解为“水面以上部分”,则结果为20cm)。

2017-2019三年全国三卷高考理科数学试题附答案解析

2017-2019三年全国三卷高考理科数学试题附答案解析

2017-2019全国III卷理数解析2019全国III卷理数解析2018全国III卷理数解析2017全国III卷理数解析2019年全国卷Ⅲ理科数学试题解析(1) 已知集合}1|{},2,1,0,1{2≤=-=x x B A ,则=⋂B A ( )A.}1,0,1{-B. B.{0,1}C. C.}1,1{-D. D.}2,1,0{答案:A解答:}11|{}1|{2≤≤-=≤=x x x x B ,所以}1,0,1{-=⋂B A .2.若i i z 2)1(=+,则=z ( )A.i --1B.i +-1C.i -1D.i +1答案:D解答:i i z 2)1(=+,i i i i i i i i i z +=-=-+-=+=1)1()1)(1()1(212. 3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著,某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( )A.5.0B.6.0C.7.0D.8.0答案:C解答:7.0100608090=+-4.42)1)(21(x x++的展开式中3x 的系数为( )A.12B.16C.20D.24答案:A解答:由题意可知含3x 的项为33142334121211x x C x x C =⋅⋅⋅+⋅⋅⋅,所以系数为12.5.已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a =()A. 16B.8C.4D.2答案:C解答:设该等比数列的首项1a ,公比q ,由已知得,4211134a qa q a =+,因为10a >且0q >,则可解得2q =,又因为231(1)15a q q q +++=,即可解得11a =,则2314a a q ==.6. 已知曲线x x ae y x ln +=在点)1(ae ,处的切线方程为b x y +=2,则( )A.e a =,1-=bB.e a =,1=bC.1-=ea ,1=bD.1-=ea ,1-=b答案:D解析:令x x ae x f x ln )(+=,则1ln )(++='x ae x f x ,21)1(=+='ae f ,得11-==e ea .b ae f +==2)1(,可得1-=b .故选D.7.函数3222x xx y -=+在[6,6]-的图像大致为( )A.B.C.D.答案:B解析:∵32()22x xx y f x -==+,∴332()2()()2222x x x xx x f x f x ----==-=-++,∴()f x 为奇函数,排除选项C.又∵334442424(4)8222f -⨯⨯=≈=+,根据图像进行判断,可知选项B 符合题意.8.如图,点为正方形的中心,为正三角形,平面平面,是线段的中点,则( )A.,且直线,是相交直线B.,且直线,是相交直线C.,且直线,是异面直线D.,且直线,是异面直线答案:B解析:因为直线,都是平面内的直线,且不平行,即直线,是相交直线,设正方形的边长为,则由题意可得:,根据余弦定理可得:,,所以,故选B.9.执行右边的程序框图,如果输出为,则输出的值等于()A.B.C.D.答案:C解析:第一次循环:;第二次循环:;第三次循环:;第四次循环:;…第七次循环:,此时循环结束,可得.故选C.10.双曲线C:22142x y-=的右焦点为F,点P为C的一条渐近线的点,O为坐标原点.若||||PO PF=则PFO∆的面积为()A: 324B:322C:2D:32答案: A解析:由双曲线的方程2242x y-=可得一条渐近线方程为2y x=;在PFO∆中||||PO PF=过点P做PH垂直OF因为2tan POF=2∠得到32PO=;所以13326224S PFO∆=⨯=;故选A;11.若()f x是定义域为R的偶函数,且在(0,)+∞单调递减,则()A.233231(log)(2)(2) 4f f f-->>B.233231(log )(2)(2)4f f f -->>C.233231(2)(2)(log )4f f f -->>D.233231(2)(2)(log )4f f f -->>答案:C解析:依据题意函数为偶函数且函数在(0,)+∞单调递减,则函数在(,0)-∞上单调递增;因为3331(log )(log 4)(log 4)4f f f =-=;又因为233230221log 4--<<<<;所以233231(2)(2)(log )4f f f -->>;故选C.12.设函数()()sin 05f x x πωω⎛⎫=+> ⎪⎝⎭,已知()f x 在[]02π,有且仅有5个零点,下述四个结论:○1()f x 在()0,2π有且仅有3个极大值点 ○2()f x 在()0,2π有且仅有2个极小值点 ○3()f x 在0,10π⎛⎫⎪⎝⎭单调递增○4ω的取值范围是1229,510⎡⎫⎪⎢⎣⎭其中所有正确结论的编号是A. ○1○4B.○2○3C.○1○2○3D.○1○3○4答案:D解析:根据题意,画出草图,由图可知[)122,x x π∈,由题意可得,125565x x πωππωπ⎧+=⎪⎪⎨⎪+=⎪⎩,解得12245295x x πωπω⎧=⎪⎪⎨⎪=⎪⎩,所以2429255πππωω≤<,解得1229510ω≤<,故○4对; 令52x ππω+=得3010x πω=>,∴图像中y 轴右侧第一个最值点为最大值点,故○1对; ∵[)122,x x π∈,∴()f x 在()0,2π有2个或3个极小值点,故○2错; ∵1229510ω≤<,∴1149251051002πππππω≤⋅+<<,故○3对. 二.填空题13.已知a ,b 为单位向量,且0a b ⋅=,若25c a b =-,则cos ,a c = .答案:23解析:∵()22222545459ca ba b a b =-=+-⋅=,∴3c =,∵()225252a c a a b a a b ⋅=⋅-=-⋅=,∴22cos ,133a c a c a c ⋅===⨯⋅. 14.记n S 为等差数列{}n a 的前n 项和,若10a ≠,213a a =,则105SS = .答案:4解析:设该等差数列的公差为d ,∵213a a =,∴113a d a +=,故()1120,0d a a d =≠≠,∴()()()1101101551102292102452452a a a d S d a a S a d d++⨯====++.15.设1F 、2F 为椭圆1203622=+y x C :的两个焦点,M 为C 上一点且在第一象限,若21F MF ∆为等腰三角形,则M 的坐标为________.答案:)15,3(解析:已知椭圆1203622=+y x C :可知,6=a ,4=c ,由M 为C 上一点且在第一象限,故等腰三角形21F MF ∆中8211==F F MF ,4212=-=MF a MF ,415828sin 2221=-=∠M F F ,15sin 212=∠=M F F MF y M ,代入1203622=+y x C :可得3=M x .故M 的坐标为)15,3(. 16.学生到工厂劳动实践,利用3D 打印技术制作模型。

2017-2019高考理数真题汇编--专题02 函数的概念与基本初等函数(解析版)

2017-2019高考理数真题汇编--专题02 函数的概念与基本初等函数(解析版)

专题02 函数的概念与基本初等函数I1.【2019年高考全国Ⅰ卷理数】已知0.20.32log 0.220.2a b c ===,,,则 A .a b c << B .a c b << C .c a b <<D .b c a <<【答案】B【解析】22log 0.2log 10,a =<=0.20221,b =>=0.3000.20.21,c <=<=即01,c <<则a c b <<. 故选B .【名师点睛】本题考查指数和对数大小的比较,考查了数学运算的素养.采取中间量法,根据指数函数和对数函数的单调性即可比较大小.2.【2019年高考天津理数】已知5log 2a =,0.5og 2.l 0b =,0.20.5c =,则,,a b c 的大小关系为 A .a c b << B .a b c << C .b c a <<D .c a b <<【答案】A【解析】因为551log 2log 2a =<=, 0.50.5log 0.2log 0.252b =>=,10.20.50.50.5c <=<,即112c <<, 所以a c b <<. 故选A.【名师点睛】本题考查比较大小问题,关键是选择中间量和利用函数的单调性进行比较. 3.【2019年高考全国Ⅱ卷理数】若a >b ,则 A .ln(a −b )>0 B .3a <3b C .a 3−b 3>0 D .│a │>│b │【答案】C【解析】取2,1a b ==,满足a b >,但ln()0a b -=,则A 错,排除A ;由219333=>=,知B 错,排除B ;取1,2a b ==-,满足a b >,但|1||2|<-,则D 错,排除D ; 因为幂函数3y x =是增函数,a b >,所以33a b >,即a 3−b 3>0,C 正确. 故选C .【名师点睛】本题主要考查对数函数的性质、指数函数的性质、幂函数的性质及绝对值的意义,渗透了逻辑推理和运算能力素养,利用特殊值排除即可判断.4.【2019年高考北京理数】在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2−m 1=2152lg E E ,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是−26.7,天狼星的星等是−1.45,则太阳与天狼星的亮度的比值为 A .1010.1B .10.1C .lg10.1D .10−10.1【答案】A【解析】两颗星的星等与亮度满足12125lg 2E m m E -=, 令211.45,26.7m m =-=-, 则()121222lg( 1.4526.7)10.1,55E m m E =-=⨯-+= 从而10.11210E E =. 故选A.【名师点睛】本题以天文学问题为背景,考查考生的数学应用意识、信息处理能力、阅读理解能力以及对数的运算.5.【2019年高考全国Ⅰ卷理数】函数f (x )=2sin cos ++x xx x在[,]-ππ的图像大致为 A .B .C .D .【答案】D 【解析】由22sin()()sin ()()cos()()cos x x x xf x f x x x x x -+----===--+-+,得()f x 是奇函数,其图象关于原点对称.又22π1π42π2()1,π2π()2f ++==>2π(π)01πf =>-+,可知应为D 选项中的图象. 故选D .【名师点睛】本题考查函数的性质与图象的识别,渗透了逻辑推理、直观想象和数学运算素养.采取性质法和赋值法,利用数形结合思想解题.6.【2019年高考全国Ⅲ卷理数】函数3222x xx y -=+在[]6,6-的图像大致为 A . B .C .D .【答案】B【解析】设32()22x xx y f x -==+,则332()2()()2222x x x x x x f x f x ----==-=-++,所以()f x 是奇函数,图象关于原点成中心对称,排除选项C .又34424(4)0,22f -⨯=>+排除选项D ; 36626(6)722f -⨯=≈+,排除选项A , 故选B .【名师点睛】本题通过判断函数的奇偶性,排除错误选项,通过计算特殊函数值,作出选择.本题注重基础知识、基本计算能力的考查.7.【2019年高考浙江】在同一直角坐标系中,函数1x y a =,1(2log )a y x =+(a >0,且a ≠1)的图象可能是【答案】D【解析】当01a <<时,函数xy a =的图象过定点(0,1)且单调递减,则函数1x y a=的图象过定点(0,1)且单调递增,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭的图象过定点1(,0)2且单调递减,D 选项符合;当1a >时,函数xy a =的图象过定点(0,1)且单调递增,则函数1x y a=的图象过定点(0,1)且单调递减,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭的图象过定点1(,02)且单调递增,各选项均不符合. 综上,选D.【名师点睛】易出现的错误:一是指数函数、对数函数的图象和性质掌握不熟练,导致判断失误;二是不能通过讨论a 的不同取值范围,认识函数的单调性.8.【2019年高考全国Ⅱ卷理数】2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L 点的轨道运行.2L 点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:121223()()M M M R r R r r R +=++.设r Rα=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为 ABCD【答案】D 【解析】由rRα=,得r R α=, 因为121223()()M M M R r R r r R +=++,所以12122222(1)(1)M M M R R R ααα+=++,即543232221133[(1)]3(1)(1)M M αααααααα++=+-=≈++,解得α=所以.r R α== 故选D.【名师点睛】由于本题题干较长,所以,易错点之一就是能否静心读题,正确理解题意;易错点之二是复杂式子的变形易出错.9.【2019年高考全国Ⅲ卷理数】设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则A .f (log 314)>f (322-)>f (232-)B .f (log 314)>f (232-)>f (322-)C .f (322-)>f (232-)>f (log 314)D .f (232-)>f (322-)>f (log 314)【答案】C【解析】()f x Q 是定义域为R 的偶函数,331(log )(log 4)4f f ∴=.223303322333log 4log 31,1222,log 422---->==>>∴>>Q ,又()f x 在(0,+∞)上单调递减,∴23323(log 4)22f f f --⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,即23323122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选C .【名师点睛】本题主要考查函数的奇偶性、单调性,先利用函数的奇偶性化为同一区间,再利用中间量比较自变量的大小,最后根据单调性得到答案.10.【2017年高考山东理数】设函数y =A ,函数ln(1)y x =-的定义域为B ,则A B I = A .(1,2) B .(1,2] C .(-2,1) D .[-2,1)【答案】D【解析】由240x -≥得22x -≤≤, 由10x ->得1x <,故{|22}{|1}{|21}A B x x x x x x =-≤≤<=-≤<I I . 选D.【名师点睛】集合的交、并、补运算问题,应把集合先化简再计算,常借助数轴或韦恩图进行求解.11.【2018年高考全国Ⅱ卷理数】函数()2e e x xf x x--=的图像大致为【答案】B【解析】()()()2ee 0,,x xx f x f x f x x--≠-==-∴Q 为奇函数,舍去A ; ()11e e 0f -=->Q ,∴舍去D ; ()()()()()243e e e e 22e 2e ,xx x x x x x xx x f x xx---+---++=='Q 2x ∴>时,()0f x '>,()f x 单调递增,舍去C. 因此选B.【名师点睛】有关函数图象识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的周期性. 12.【2018年高考全国Ⅲ卷理数】函数422y x x =-++的图像大致为【答案】D【解析】函数图象过定点(0,2),排除A ,B ;令42()2y f x x x ==-++,则32()422(21)f x x x x x '=-+=--,由()0f x '>得22(21)0x x -<,得2x <-或202x <<,此时函数单调递增, 由()0f x '<得22(21)0x x ->,得22x >或202x -<<,此时函数单调递减,排除C. 故选D.【名师点睛】本题主要考查函数的图象的识别和判断,利用函数图象过的定点及由导数判断函数的单调性是解决本题的关键.13.【2018年高考浙江】函数y =2xsin2x 的图象可能是A .B .C .D .【答案】D【解析】令()2sin2xf x x =,因为()()(),2sin22sin2xxx f x x x f x -∈-=-=-=-R ,所以()2sin2xf x x =为奇函数,排除选项A,B;因为π,π2x ⎛⎫∈ ⎪⎝⎭时,()0f x <,所以排除选项C , 故选D .【名师点睛】先研究函数的奇偶性,再研究函数在π,π2⎛⎫⎪⎝⎭上的符号,即可判断选择.有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置; (2)由函数的单调性,判断图象的变化趋势; (3)由函数的奇偶性,判断图象的对称性; (4)由函数的周期性,判断图象的周期性.14.【2018年高考全国Ⅰ卷理数】设函数()()321f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点()0,0处的切线方程为 A .2y x =- B .y x =- C .2y x = D .y x =【答案】D【解析】因为函数()f x 是奇函数,所以10a -=,解得1a =,所以()3f x x x =+,()231f x x '=+,所以()()01,00f f '==,所以曲线()y f x =在点()0,0处的切线方程为()()00y f f x '-=,化简可得y x =, 故选D .【名师点睛】该题考查的是函数的奇偶性以及有关曲线()y f x =在某个点()()00,x f x 处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论:多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得()f x ',借助于导数的几何意义,结合直线方程的点斜式求得结果.15.【2018年高考全国Ⅱ卷理数】已知()f x 是定义域为(),-∞+∞的奇函数,满足()()11f x f x -=+.若()12f =,则()()()123f f f ++()50f ++=LA .50-B .0C .2D .50【答案】C【解析】因为()f x 是定义域为(),-∞+∞的奇函数,且()()11f x f x -=+, 所以()()()()()113114f x f x f x f x f x T +=--∴+=-+=-∴=,,,因此()()()()()()()()()()1235012123412f f f f f f f f f f ⎡⎤++++=+++++⎣⎦L , 因为()()()()3142f f f f =-=-,,所以()()()()12340f f f f +++=, 因为()()200f f ==,从而()()()()()1235012f f f f f ++++==L . 故选C .【名师点睛】先根据奇函数的性质以及对称性确定函数周期,再根据周期以及对应函数值求结果.函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.16.【2018年高考天津理数】已知2log e a =,ln2b =,121log 3c =,则a ,b ,c 的大小关系为 A .a b c >> B .b a c >> C .c b a >> D .c a b >>【答案】D【解析】由题意结合对数函数的性质可知:2log e 1a =>,()21ln20,1log eb ==∈,12221log log 3log e 3c ==>, 据此可得:c a b >>. 本题选择D 选项.【名师点睛】由题意结合对数函数的性质整理计算即可求得最终结果.对于对数的大小的比较,我们通常都是运用对数函数的单调性,但很多时候,因对数的底数或真数不相同,不能直接利用函数的单调性进行比较,这就必须掌握一些特殊方法.在进行对数的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据对数函数的单调性进行判断.对于不同底而同真数的对数的大小的比较,利用图象法求解,既快捷,又准确.17.【2018年高考全国Ⅲ卷理数】设0.2log 0.3a =,2log 0.3b =,则A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+【答案】B【解析】0.22log 0.3,log 0.3a b ==Q ,0.30.311log 0.2,log 2a b∴==, 0.311log 0.4a b ∴+=,1101a b ∴<+<,即01a b ab+<<, 又0,0a b ><Q ,0ab ∴<, ∴0ab a b <+<. 故选B .【名师点睛】本题主要考查对数的运算和不等式,属于中档题.18.【2017年高考北京理数】根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与M N最接近的是(参考数据:lg3≈0.48)A .1033B .1053C .1073D .1093【答案】D【解析】设36180310M x N ==,两边取对数,36136180803lg lg lg3lg10361lg38093.2810x ==-=⨯-=,所以93.2810x =,即MN最接近9310. 故选D .【名师点睛】本题考查了转化与化归能力,本题以实际问题的形式给出,但本质就是对数的运算关系,以及指数与对数运算的关系,难点是令36180310x =,并想到两边同时取对数进行求解,对数运算公式包含log log log a a a M N MN +=,log log log a a aM M N N-=,log log na a M n M =. 19.【2017年高考全国Ⅰ卷理数】设x 、y 、z 为正数,且235x y z==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z【答案】D【解析】令235(1)x y zk k ===>,则2log x k =,3log y k =,5log z k =∴22lg lg 3lg 913lg 23lg lg8x k y k =⋅=>,则23x y >, 22lg lg5lg 2515lg 25lg lg32x k z k =⋅=<,则25x z <. 故选D .【名师点睛】对于连等问题,常规的方法是令该连等为同一个常数,再用这个常数表示出对应的,,x y z ,通过作差或作商进行比较大小.对数运算要记住对数运算中常见的运算法则,尤其是换底公式以及0与1的对数表示.20.【2017年高考浙江】若函数f (x )=x 2+ ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M – mA .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关【答案】B【解析】因为最值在2(0),(1)1,()24a a fb f a b f b ==++-=-中取,所以最值之差一定与b 无关.故选B .【名师点睛】对于二次函数的最值或值域问题,通常先判断函数图象对称轴与所给自变量闭区间的关系,结合图象,当函数图象开口向上时,若对称轴在区间的左边,则函数在所给区间内单调递增;若对称轴在区间的右边,则函数在所给区间内单调递减;若对称轴在区间内,则函数图象顶点的纵坐标为最小值,区间端点距离对称轴较远的一端取得函数的最大值.21.【2017年高考全国Ⅰ卷理数】函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]【答案】D【解析】因为()f x 为奇函数且在(,)-∞+∞单调递减,要使1()1f x -≤≤成立,则x 满足11x -≤≤,从而由121x -≤-≤得13x ≤≤,即满足1(2)1f x -≤-≤的x 的取值范围为[1,3]. 故选D.【名师点睛】奇偶性与单调性的综合问题,要充分利用奇、偶函数的性质与单调性解决不等式和比较大小问题,若()f x 在R 上为单调递增的奇函数,且12()()0f x f x +>,则120x x +>,反之亦成立.22.【2017年高考北京理数】已知函数1()3()3x xf x =-,则()f xA .是奇函数,且在R 上是增函数B .是偶函数,且在R 上是增函数C .是奇函数,且在R 上是减函数D .是偶函数,且在R 上是减函数【答案】A【解析】()()113333xxxx f x f x --⎛⎫⎛⎫-=-=-=- ⎪ ⎪⎝⎭⎝⎭,所以该函数是奇函数,并且3xy =是增函数,13xy ⎛⎫= ⎪⎝⎭是减函数,根据增函数−减函数=增函数,可知该函数是增函数.故选A.【名师点睛】本题属于基础题型,根据()f x -与()f x 的关系就可以判断出函数的奇偶性,判断函数单调性的方法:(1)利用平时学习过的基本初等函数的单调性;(2)利用函数图象判断函数的单调性;(3)利用函数的四则运算判断函数的单调性,如:增函数+增函数=增函数,增函数−减函数=增函数;(4)利用导数判断函数的单调性.23.【2017年高考天津理数】已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为A .a b c <<B .c b a <<C .b a c <<D .b c a <<【答案】C【解析】因为()f x 是奇函数且在R 上是增函数,所以当0x >时,()0f x >, 从而()()g x xf x =是R 上的偶函数,且在[0,)+∞上是增函数,22(log 5.1)(log 5.1)a g g =-=,0.822<,又4 5.18<<,则22log 5.13<<, 所以0.8202log 5.13<<<,0.82(2)(log 5.1)(3)g g g <<,所以b a c <<. 故选C .【名师点睛】比较大小是高考的常见题型,指数式、对数式的大小比较要结合指数函数、对数函数,借助指数函数和对数函数的图象,利用函数的单调性、奇偶性等进行大小比较,要特别关注灵活利用 函数的奇偶性和单调性,数形结合进行大小比较或解不等式.24.【2017年高考山东理数】已知当[0,1]x ∈时,函数2(1)y mx =-的图象与y m =的图象有且只有一个交点,则正实数m 的取值范围是A .(0,1])+∞UB .(0,1][3,)+∞UC .)+∞UD .[3,)+∞U【答案】B【解析】当01m <≤时,11m≥,2(1)y mx =-在[0,1]x ∈时单调递减,且22(1)(1),1y mx m ⎡⎤=-∈-⎣⎦,y m =在[0,1]x ∈时单调递增,且[,1]y m m m =∈+,此时有且仅有一个交点;当1m >时,101m <<,2(1)y mx =-在1,1m ⎡⎤⎢⎥⎣⎦上单调递增,所以要有且仅有一个交点,需2(1)13m m m -≥+⇒≥.故选B.【名师点睛】已知函数有零点求参数的取值范围常用的方法和思路:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数的取值范围; (2)分离参数法:将参数分离,转化成求函数值域的问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解. 25.【2017年高考山东理数】若0a b >>,且1ab =,则下列不等式成立的是A .()21log 2a ba ab b +<<+ B .()21log 2a b a b a b<+<+ C .()21log 2a ba ab b +<+<D .()21log 2a ba b a b +<+<【答案】B【解析】因为0a b >>,且1ab =,所以1,01,a b ><<所以221,log ()log 12a ba b <+>=, 12112log ()a ba ab a a b b b+>+>+⇒+>+,【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.本题虽小,但考查的知识点较多,需灵活利用指数函数、对数函数的性质及基本不等式作出判断.26.【2019年高考全国Ⅱ卷理数】设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦【答案】B【解析】∵(1) 2 ()f x f x +=,()2(1)f x f x ∴=-. ∵(0,1]x ∈时,1()(1)[,0]4f x x x =-∈-;∴(1,2]x ∈时,1(0,1]x -∈,1()2(1)2(1)(2),02f x f x x x ⎡⎤=-=--∈-⎢⎥⎣⎦; ∴(2,3]x ∈时,1(1,2]x -∈,()2(1)4(2)(3)[1,0]f x f x x x =-=--∈-, 如图:当(2,3]x ∈时,由84(2)(3)9x x --=-解得173x =,283x =, 若对任意(,]x m ∈-∞,都有8()9f x ≥-,则73m ≤.则m 的取值范围是7,3⎛⎤-∞ ⎥⎝⎦.【名师点睛】本题考查了函数与方程,二次函数.解题的关键是能够得到(2,3]x ∈时函数的解析式,并求出函数值为89-时对应的自变量的值. 27.【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则 A .a <–1,b <0 B .a <–1,b >0 C .a >–1,b <0 D .a >–1,b >0【答案】C【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x ,则y =f (x )﹣ax ﹣b 最多有一个零点; 当x ≥0时,y =f (x )﹣ax ﹣bx 3(a +1)x 2+ax ﹣ax ﹣bx 3(a +1)x 2﹣b ,2(1)y x a x =+-',当a +1≤0,即a ≤﹣1时,y ′≥0,y =f (x )﹣ax ﹣b 在[0,+∞)上单调递增, 则y =f (x )﹣ax ﹣b 最多有一个零点,不合题意; 当a +1>0,即a >﹣1时,令y ′>0得x ∈(a +1,+∞),此时函数单调递增, 令y ′<0得x ∈[0,a +1),此时函数单调递减, 则函数最多有2个零点.根据题意,函数y =f (x )﹣ax ﹣b 恰有3个零点⇔函数y =f (x )﹣ax ﹣b 在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点, 如图:∴0且()32011(1)1(1)032b a a a b ->⎧⎪⎨+-++-<⎪⎩, 解得b <0,1﹣a >0,b (a +1)3,则a >–1,b <0. 故选C .【名师点睛】本题考查函数与方程,导数的应用.当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b 最多有一个零点;当x ≥0时,y =f (x )﹣ax ﹣bx 3(a +1)x 2﹣b ,利用导数研究函数的单调性,根据单调性画出函数的草图,从而结合题意可列不等式组求解.28.【2018年高考全国Ⅰ卷理数】已知函数()e 0ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是 A .[–1,0) B .[0,+∞) C .[–1,+∞) D .[1,+∞)【答案】C【解析】画出函数()f x 的图象,e xy =在y 轴右侧的图象去掉,再画出直线y x =-,之后上下移动,可以发现当直线过点(0,1)时,直线与函数图象有两个交点,并且向下可以无限移动,都可以保证直线与函数的图象有两个交点,即方程()f x x a =--有两个解,也就是函数()g x 有两个零点, 此时满足1a -≤,即1a ≥-.故选C .【名师点睛】该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图象以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果.即:首先根据g (x )存在2个零点,得到方程()0f x x a ++=有两个解,将其转化为()f x x a =--有两个解,即直线y x a =--与曲线()y f x =有两个交点,根据题中所给的函数解析式,画出函数()f x 的图象,再画出直线y x =-,并将其上下移动,从图中可以发现,当1a -≤时,满足y x a=--与曲线()y f x =有两个交点,从而求得结果.29.【2017年高考全国Ⅲ卷理数】设函数()π(3cos )f x x =+,则下列结论错误的是A .()f x 的一个周期为2π-B .()y f x =的图象关于直线8π3x =对称 C .(π)f x +的一个零点为π6x = D .()f x 在(π2,π)单调递减【答案】D【解析】函数()f x 的最小正周期为2π2π1T ==,则函数()f x 的周期为()2πT k k =∈Z ,取1k =-,可得函数()f x 的一个周期为2π-,选项A 正确; 函数()f x 图象的对称轴为()ππ3x k k +=∈Z ,即()ππ3x k k =-∈Z ,取3k =,可得y =f (x )的图象关于直线8π3x =对称,选项B 正确;()πππcos πcos 33f x x x ⎡⎤⎛⎫⎛⎫+=++=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,函数()f x 的零点满足()πππ32x k k +=+∈Z ,即()ππ6x k k =+∈Z ,取0k =,可得(π)f x +的一个零点为π6x =,选项C 正确; 当π,π2x ⎛⎫∈⎪⎝⎭时,π5π4π,363x ⎛⎫+∈ ⎪⎝⎭,函数()f x 在该区间内不单调,选项D 错误.故选D.【名师点睛】(1)求最小正周期时可先把所给三角函数式化为(n )si y A x ωϕ=+或(s )co y A x ωϕ=+的形式,则最小正周期为2πT ω=;奇偶性的判断关键是看解析式是否为sin y A x ω=或cos y A x b ω=+的形式.(2)求()()sin 0()f x A x ωϕω+≠=的对称轴,只需令()ππ2x k k ωϕ+=+∈Z ,求x 即可;求f (x )的对称中心的横坐标,只需令π()x k k ωϕ+=∈Z 即可.30.【2017年高考全国Ⅲ卷理数】已知函数211()2(e e )x x f x x x a --+=-++有唯一零点,则a =A .12- B .13C .12D .1【答案】C【解析】函数()f x 的零点满足()2112e e x x x x a --+-=-+, 设()11eex x g x --+=+,则()()21111111e 1eeee e x x x x x x g x ---+----'=-=-=,当()0g x '=时,1x =;当1x <时,()0g x '<,函数()g x 单调递减; 当1x >时,()0g x '>,函数()g x 单调递增, 当1x =时,函数()g x 取得最小值,为()12g =.设()22h x x x =-,当1x =时,函数()h x 取得最小值,为1-,若0a ->,函数()h x 与函数()ag x -没有交点;若0a -<,当()()11ag h -=时,函数()h x 和()ag x -有一个交点,即21a -⨯=-,解得12a =. 故选C.【名师点睛】函数零点的应用主要表现在利用零点求参数范围,若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用.31.【2017年高考天津理数】已知函数23,1,()2, 1.x x x f x x x x ⎧-+≤⎪=⎨+>⎪⎩设a ∈R ,若关于x 的不等式()||2x f x a ≥+在R 上恒成立,则a 的取值范围是 A .47[,2]16-B .4739[,]1616-C.[2]- D.39[]16- 【答案】A【解析】不等式()||2xf x a ≥+可化为()()2x f x a f x -≤+≤ (*), 当1x ≤时,(*)式即22332x x x a x x -+-≤+≤-+,即2233322x x a x x -+-≤≤-+, 又22147473()241616x x x -+-=---≤-(当14x =时取等号), 223339393()241616x x x -+=-+≥(当34x =时取等号),所以47391616a -≤≤, 当1x >时,(*)式为222x x a x x x --≤+≤+,32222x x a x x--≤≤+.又3232()22x x x x --=-+≤-3x =,222x x +≥=(当2x =时取等号),所以2a -≤≤. 综上,47216a -≤≤. 故选A .【名师点睛】首先将()||2x f x a ≥+转化为()()22x xf x a f x --≤≤-,涉及分段函数问题要遵循分段处理的原则,分别对x 的两种不同情况进行讨论,针对每种情况根据x 的范围,利用极端原理,求出对应的a 的取值范围.32.【2019年高考江苏】函数y =的定义域是 ▲ .【答案】[1,7]-【解析】由题意得到关于x 的不等式,解不等式可得函数的定义域. 由已知得2760x x +-≥,即2670x x --≤,解得17x -≤≤, 故函数的定义域为[1,7]-.【名师点睛】求函数的定义域,其实质就是以函数解析式有意义为准则,列出不等式或不等式组,然后求出它们的解集即可.33.【2018年高考江苏】函数()f x =________.【答案】[2,+∞)【解析】要使函数()f x 有意义,则需2log 10x -≥,解得2x ≥,即函数()f x 的定义域为[)2,+∞. 【名师点睛】求给定函数的定义域往往需转化为解不等式(组)的问题.求解本题时,根据偶次根式下被开方数非负列不等式,解对数不等式得函数定义域.34.【2017年高考江苏】记函数()f x =D .在区间[4,5]-上随机取一个数x ,则x D ∈的概率是 .【答案】59【解析】由260x x +-≥,即260x x --≤,得23x -≤≤, 根据几何概型的概率计算公式得x D ∈的概率是3(2)55(4)9--=--.【名师点睛】(1)当试验的结果构成的区域为长度、面积或体积等时,应考虑使用几何概型求解. (2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.(3)几何概型有两个特点:①无限性,②等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.35.【2019年高考全国Ⅱ卷理数】已知()f x 是奇函数,且当0x <时,()e ax f x =-.若(ln 2)8f =,则a =__________.【答案】3-【解析】由题意知()f x 是奇函数,且当0x <时,()e axf x =-,又因为ln 2(0,1)∈,(ln 2)8f =, 所以ln 2e 8a --=-,两边取以e 为底数的对数,得ln 23ln 2a -=, 所以3a -=,即3a =-.【名师点睛】本题主要考查函数的奇偶性,对数的计算.36.【2019年高考北京理数】设函数()e e xxf x a -=+(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________. 【答案】(]1;,0--∞【解析】首先由奇函数的定义得到关于a 的恒等式,据此可得a 的值,然后利用()0f x '≥可得a 的取值范围.若函数()e e xxf x a -=+为奇函数,则()(),f x f x -=-即()ee e e xx x x a a --+=-+,即()()1e e0xxa -++=对任意的x 恒成立,则10a +=,得1a =-.若函数()e e xxf x a -=+是R 上的增函数,则() e e 0x xf x a -'=-≥在R 上恒成立,即2e x a ≤在R 上恒成立, 又2e 0x >,则0a ≤, 即实数a 的取值范围是(],0-∞.【名师点睛】本题考查函数的奇偶性、单调性、利用单调性确定参数的范围.解答过程中,需利用转化与化归思想,转化成恒成立问题.注重重点知识、基础知识、基本运算能力的考查.37.【2019年高考浙江】已知a ∈R ,函数3()f x ax x =-,若存在t ∈R ,使得2|(2)()|3f t f t +-≤,则实数a 的最大值是___________. 【答案】43【解析】存在t ∈R ,使得2|(2)()|3f t f t +-≤, 即有332|(2)(2)|3a t t at t +-+-+≤, 化为()22|23642|3a t t ++-≤, 可得()2222364233a t t -≤++-≤, 即()22436433a t t ≤++≤, 由223643(1)11t t t ++=++≥,可得403a <≤. 则实数a 的最大值是43. 【名师点睛】本题考查函数的解析式及二次函数,结合函数的解析式可得33|(2)(2)|a t t at t +-+-+23≤,去绝对值化简,结合二次函数的最值及不等式的性质可求解. 38.【2019年高考北京理数】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________. 【答案】①130;②15【解析】①10x =时,顾客一次购买草莓和西瓜各一盒,需要支付()608010130+-=元. ②设顾客一次购买水果的促销前总价为y 元,当120y <元时,李明得到的金额为80%y ⨯,符合要求; 当120y ≥元时,有()80%70%y x y -⨯≥⨯恒成立, 即()87,8y y x y x -≥≤, 因为min158y ⎛⎫=⎪⎝⎭,所以x 的最大值为15. 综上,①130;②15.【名师点睛】本题主要考查函数的最值,不等式的性质及恒成立,数学的应用意识,数学式子变形与运算求解能力.以实际生活为背景,创设问题情境,考查学生身边的数学,考查学生的数学建模素养. 39.【2018年高考全国Ⅲ卷理数】函数()πcos 36f x x ⎛⎫=+⎪⎝⎭在[]0π,的零点个数为________. 【答案】3【解析】0πx ≤≤Q ,ππ19π3666x ∴≤+≤,由题可知πππ3π336262x x +=+=,或π5π362x +=,解得π4π,99x =或7π9,故有3个零点.【名师点睛】本题主要考查三角函数的性质和函数的零点,属于基础题.解题时,首先求出π36x +的范围,再由函数值为零,得到π36x +的取值可得零点个数. 40.【2018年高考浙江】我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的综合及其应用
一、选择题
1.(2017天津)已知函数23,1,
()2
, 1.x x x f x x x x ⎧-+⎪
=⎨+>⎪

≤设a ∈R ,若关于x 的不等式()||2x f x a +≥在R 上恒成立,则a 的取值范围是 A .47[,2]16
-
B .4739
[,]1616-
C
.[- D
.39
[]16
- A 【解析】解法一 根据题意,作出()f x 的大致图象,如图所示
当1x ≤时,若要()|
|2x f x a +≥恒成立,结合图象,只需2
3()2
x x x a -+-+≥,即2302x x a -++≥,故对于方程2302x x a -++=,21
()4(3)02a ∆=--+≤,解得
4716a -≥;当1x >时,若要()||2x
f x a +≥恒成立,结合图象,只需22
x x a x ++≥,
即22x a x +≥,又222x x +≥,当且仅当2
2x x
=,即2x =时等号成立,所以2a ≤,综上,a 的取值范围是47
[,2]16
-
.选A . 解法二 由题意()f x 的最小值为114,此时12
x =.不等式()||2x
f x a +≥在R 上恒成立
等价于11
|
|24
x a +≤在R 上恒成立.
当a =-1
2
x =
,11||
|28x -=>,不符合,排除C 、D ; 当3916a =
时,令12x =,394311
||||216168
x +=>,不符合,排除B .选A . 二、填空题
x
1.(2017山东)若函数e ()x
f x (e=2.71828L ,是自然对数的底数)在()f x 的定义域上单
调递增,则称函数()f x 具有M 性质,下列函数中具有M 性质的是 . ①()2
x
f x -=
②2
()f x x
=
③()3
x
f x -=
④()cos f x x =
①④【解析】①()2()2
x x x x e e f x e -=⋅=在R 上单调递增,故()2x
f x -=具有M 性质;
②()3()3
x x x x e e f x e -=⋅=在R 上单调递减,故()3x
f x -=不具有M 性质;
③3
()x
x
e f x e x =⋅,令3
()x g x e x =⋅,则3
2
2()3(2)x
x
x
g x e x e x x e x '=⋅+⋅=+,
∴当2x >-时,()0g x '>,当2x <-时,()0g x '<,
∴3()x x e f x e x =⋅在(),2-∞-上单调递减,在()2,-+∞上单调递增,
故()3
f x x =不具有M 性质;
④2
()(2)x
x
e f x e x =+,令()()
22x g x e x =+,
则22
()(2)2[(1)1]0x x x g x e x e x e x '=++⋅=++>,
∴2()(2)x x e f x e x =+在R 上单调递增,故2()2f x x =+具有M 性质.
2.(2017江苏)设()f x 是定义在R 且周期为1的函数,在区间[0,1)上,2,(),x x D
f x x x D
⎧∈=⎨
∉⎩其中集合1
{|,}n D x x n n
-==∈*N ,则方程()lg 0f x x -=的解的个数是 .
8【解析】由于,则需考虑的情况,
在此范围内,且时,设,且互质, 若,则由,可设,且,m n 互质, 因此,则,此时左边为整数,右边为非整数,矛盾,
因此,
()[0,1)f x ∈110x ≤<x ∈Q x D ∈*,,,2q
x p q p p
=
∈≥N ,p q lg x ∈Q lg (0,1)x ∈*lg ,,,2n
x m n m m
=
∈≥N 10n m
q p
=
10()n
m q p =lg x ∉Q
因此不可能与每个周期内对应的部分相等, 只需考虑与每个周期的部分的交点,
画出函数图象,图中交点除外其他交点横坐标均为无理数,属于每个周期的部分, 且处,则在附近仅有一个交点,
因此方程的解的个数为8.
3.(2017新课标Ⅰ)如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC
的中心为O .D 、E 、F 为圆O 上的点,DBC ∆,ECA ∆,FAB ∆分别是以BC ,
CA ,AB 为底边的等腰三角形。

沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起DBC ∆,ECA ∆,FAB ∆,使得D 、E 、F 重合,得到三棱锥。

当ABC ∆的边长变
化时,所得三棱锥体积(单位:3cm )的最大值为_______.
OE 交AC 于G ,由题意OE AC ⊥,设等边三角形ABC 的边长
为x (05x <<)
,则6
OG x =
,56GE x =-.
lg x x D ∈lg x x D ∉(1,0)x D ∉1x =11
(lg )1ln10ln10
x x '=
=<1x =()lg 0f x x -
=
F
G O
D F
E
C
B
A
由题意可知三棱锥的高h===
底面2
4
ABC
S x

=,
三棱锥的体积为2
1
34
V x
=⨯=
设45
()5
h x x x
=
,则34
()20
h x x x
'=(05
x
<<),
令()0
h x
'=
,解得x=
(0,
x∈时,()0
h x
'>,()
h x单调递增;
当x∈时,()0
h x
'<,()
h x单调递减,
所以x=()
h x
取得最大值4
h=
所以2
max1212
V===
三、解答题
1.(2018上海)某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时,某地上班族S中的成员仅以自驾或公交方式通勤,分析显示:当S中%(0100)
x x
<<的成员自驾时,自驾群体的人均通勤时间为
30,030,
()1800
290,30100
x
f x
x x
x
<


=⎨
+-<<
⎪⎩

(单位:分钟),
而公交群体的人均通勤时间不受x影响,恒为40分钟,试根据上述分析结果回答下列问题:
(1)当x在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?
(2)求该地上班族S的人均通勤时间()
g x的表达式;讨论()
g x的单调性,并说明其实
际意义.
【解析】(1)当030
x
<≤时,()3040
f x=<恒成立,公交群体的人均通勤时间不可能少
于自驾群体的人均通勤时间;。

相关文档
最新文档