04 Linux内核与根文件系统映像文件的编译及调试
linux编译方法

linux编译方法随着信息技术的发展,Linux操作系统在各个领域中得到了广泛应用。
为了能够更好地使用和开发Linux,对于Linux的编译方法有着深入的了解是十分必要的。
本文将介绍Linux的编译方法,包括准备工作、编译过程以及常见问题的处理。
一、准备工作在进行Linux编译之前,需要进行一些准备工作来保证编译的顺利进行。
1.1 环境搭建首先,需要确保你的系统已经安装了必要的软件和工具,比如gcc编译器、make工具等。
可以通过运行以下命令来检查软件是否已经安装:```shellgcc --versionmake --version```如果显示相应软件的版本号,则表示已经安装成功。
1.2 获取源代码在开始编译之前,需要先获取源代码。
通常情况下,你可以从开源项目的官方网站或者代码托管平台上下载源代码。
通过以下命令可以从远程仓库中克隆代码到本地:```shellgit clone <repository_url>```其中`<repository_url>`是代码仓库的URL地址。
二、编译过程在准备工作完成后,就可以进行Linux的编译了。
下面介绍一般的编译过程。
2.1 配置首先,在源代码所在的目录中运行以下命令来进行配置:```shell./configure```配置命令会检查系统环境,并生成一个Makefile文件,用于后续的编译。
2.2 编译配置完成后,运行以下命令进行编译:make```编译命令会根据Makefile文件中的规则,将源代码编译为可执行文件或者库文件。
2.3 安装编译完成后,可以运行以下命令来进行安装:```shellmake install```安装命令会将编译生成的文件复制到系统指定的目录中,使得这些文件可以被系统正常调用和使用。
三、常见问题处理在进行Linux编译的过程中,可能会遇到一些常见的问题。
下面列举一些常见问题及其解决方法。
3.1 缺少依赖库在编译过程中,可能会提示缺少某些依赖库。
Linux内核编译过程详解

内核升级前的准备工作:Linux系统进行内核升级或定制内核时需要安装GCC编译工具、make编译器,同时变异内核需要root权限。
安装GCC编译环境参考:/rhelinux/248.html操作系统:RHEL 5.5开始安装:按照以下顺序安装所需要的包就可以完成GCC的安装了1. rpm -ivh kernel-headers-2.6.18-194.el5.i386.rpm2. rpm -ivh glibc-headers-2.5-49.i386.rpm3. rpm -ivh glibc-devel-2.5-49.i386.rpm4. rpm -ivh libgomp-4.4.0-6.el5.i386.rpm5. rpm -ivh gcc-4.1.2-48.el5.i386.rpm6. rpm -ivh libstdc++-devel-4.1.2-48.el5.i386.rpm7. rpm -ivh gcc-c++-4.1.2-48.el5.i386.rpm8. rpm -ivh ncurses-5.5-24.20060715.i386.rpm9. rpm -ivh ncurses-devel-5.5-24.20060715.i386.rpm注意:在升级编译完内核,重启后提示如下错误信息:RedHat nash Version 5.1.19.6 startingrver(2.6.33.3)mount: could not find filesystem …/dev/root‟setuproot: moving /dev failed: No such file or directorysetuproot: error mounting /proc: No such file or directorysetuproot: error mounting /sys: No such file or directoryswitchroot: mount failed: No such file or directoryKernel panic – not syncing: Attempted to kill init![Linux-initrd @ 0x1fc37000,0x228585 bytes]于是在网上找了很多,也尝试了很多加模块、重编译了N次、改fstab等方法,都不行。
Linux内核与跟文件系统的关系

Linux内核与根文件系统的关系开篇题外话:对于Linux初学者来说,这是一个很纠结的问题,但这也是一个很关键的问题!一语破天机:“尽管内核是Linux 的核心,但文件却是用户与操作系统交互所采用的主要工具。
这对Linux 来说尤其如此,这是因为在UNIX 传统中,它使用文件I/O 机制管理硬件设备和数据文件。
”一.什么是文件系统文件系统指文件存在的物理空间,linux系统中每个分区都是一个文件系统,都有自己的目录层次结构。
Linux文件系统中的文件是数据的集合,文件系统不仅包含着文件中的数据而且还有文件系统的结构,所有Linux 用户和程序看到的文件、目录、软连接及文件保护信息等都存储在其中。
这种机制有利于用户和操作系统的交互。
每个实际文件系统从操作系统和系统服务中分离出来,它们之间通过一个接口层:虚拟文件系统或VFS来通讯。
VFS使得Linux可以支持多个不同的文件系统,每个表示一个VFS 的通用接口。
由于软件将Linux 文件系统的所有细节进行了转换,所以Linux核心的其它部分及系统中运行的程序将看到统一的文件系统。
Linux 的虚拟文件系统允许用户同时能透明地安装许多不同的文件系统。
在Linux文件系统中,EXT2文件系统、虚拟文件系统、/proc文件系统是三个具有代表性的文件系统。
二.什么是根文件系统根文件系统首先是一种文件系统,该文件系统不仅具有普通文件系统的存储数据文件的功能,但是相对于普通的文件系统,它的特殊之处在于,它是内核启动时所挂载(mount)的第一个文件系统,内核代码的映像文件保存在根文件系统中,系统引导启动程序会在根文件系统挂载之后从中把一些初始化脚本(如rcS,inittab)和服务加载到内存中去运行。
我们要明白文件系统和内核是完全独立的两个部分。
在嵌入式中移植的内核下载到开发板上,是没有办法真正的启动Linux操作系统的,会出现无法加载文件系统的错误。
那么根文件系统在系统启动中到底是什么时候挂载的呢?先将/dev/ram0挂载,而后执行/linuxrc.等其执行完后。
内核和文件系统编译

内核和文件系统编译【实用版】目录1.编译内核2.编译文件系统3.编译过程中的注意事项正文在内核和文件系统的编译过程中,我们需要遵循一定的步骤和技巧,以确保编译的顺利进行。
下面,我们将详细介绍如何编译内核和文件系统,以及在编译过程中需要注意的事项。
一、编译内核1.获取内核源代码:首先,你需要从内核官方网站上下载最新的内核源代码。
通常情况下,我们使用的是 Linux 内核。
2.配置内核:下载源代码后,需要对其进行配置,以满足你的需求。
这个过程可以通过 make menuconfig 或者 make xconfig 等命令完成。
3.编译内核:配置完成后,就可以使用 make 命令编译内核了。
编译完成后,会生成一个新的内核文件。
4.更新内核:将新的内核文件安装到系统中,替换原有的内核。
这一步通常需要重启系统,以使新内核生效。
二、编译文件系统1.选择文件系统:根据你的需求,选择合适的文件系统。
常见的文件系统有 ext3、ext4、xfs 等。
2.配置文件系统:与编译内核类似,需要对文件系统进行配置。
根据文件系统的不同,配置方法也会有所区别。
3.编译文件系统:配置完成后,使用 make 命令编译文件系统。
编译完成后,会生成一个新的文件系统驱动文件。
4.加载文件系统:将新的文件系统驱动文件加载到系统中,使其生效。
这一步同样需要重启系统。
三、编译过程中的注意事项1.环境准备:在编译之前,确保你的系统环境、编译器和相关工具都处于最新版本。
2.编译选项:根据你的需求和硬件环境,选择合适的编译选项。
例如,你可以选择启用或禁用某些硬件支持、优化编译速度等。
3.错误处理:编译过程中可能会遇到错误,需要仔细阅读错误信息,找出问题所在,并进行解决。
4.编译时间:编译内核和文件系统是一个相对耗时的过程,需要耐心等待。
通过以上步骤,你可以顺利地完成内核和文件系统的编译工作。
内核编译的步骤

内核编译的步骤以内核编译的步骤为标题,写一篇文章。
一、概述内核编译是将操作系统内核的源代码转换为可以在特定硬件平台上运行的机器代码的过程。
通过编译内核,可以定制操作系统,优化性能,添加新的功能等。
二、准备工作1. 获取内核源代码:可以从官方网站或版本控制系统中获取内核源代码。
2. 安装编译工具链:需要安装交叉编译工具链,以便在主机上编译生成目标平台上的可执行文件。
3. 配置编译环境:设置编译选项,选择适合的配置文件,配置内核参数。
三、配置内核1. 进入内核源代码目录:在命令行中切换到内核源代码目录。
2. 启动配置界面:运行命令“make menuconfig”或“make config”启动配置界面。
3. 配置选项:在配置界面中,可以选择内核所支持的功能和驱动程序,根据需求进行配置。
例如,选择硬件平台、文件系统、网络协议等。
4. 保存配置:保存配置并退出配置界面。
四、编译内核1. 清理编译环境:运行命令“make clean”清理编译环境,删除之前的编译结果。
2. 开始编译:运行命令“make”开始编译内核。
编译过程可能需要一段时间,取决于硬件性能和代码规模。
3. 生成内核镜像:编译完成后,将生成内核镜像文件,通常为“vmlinuz”或“bzImage”。
4. 安装内核模块:运行命令“make modules_install”安装内核模块到指定目录。
五、安装内核1. 备份原始内核:在安装新内核之前,建议备份原始内核以防止意外情况发生。
2. 安装内核镜像:将生成的内核镜像文件复制到引导目录,通常为“/boot”。
3. 配置引导程序:根据使用的引导程序(如GRUB或LILO),更新引导配置文件,添加新内核的启动项。
4. 重启系统:重启计算机,并选择新内核启动。
六、验证内核1. 登录系统:使用新内核启动系统后,使用合法的用户凭证登录系统。
2. 检查内核版本:运行命令“uname -r”可查看当前正在运行的内核版本。
Linux操作系统的编译和安装

Linux操作系统的编译和安装在正文规定的字数限制下,为了准确满足标题描述的内容需求,并确保内容排版整洁美观、语句通顺、全文表达流畅且无影响阅读体验的问题,本文将按照以下格式进行写作:一、简介Linux操作系统是一种开源的、自由的Unix-like操作系统,它广泛应用于各种领域,包括服务器、嵌入式设备等。
本文将重点介绍Linux 操作系统的编译和安装过程。
二、编译准备1. 下载源代码在编译Linux操作系统之前,首先需要从官方网站下载Linux内核的源代码包。
2. 安装必要的依赖软件在编译过程中,需要安装一些必要的软件和工具,如编译器、构建工具等。
三、编译步骤1. 解压源代码包使用解压命令将下载的源代码包解压到指定目录。
2. 配置编译选项进入源代码目录,并运行配置命令,根据需要选择不同的编译选项。
3. 执行编译命令运行编译命令开始编译操作系统内核,这个过程可能需要一段时间。
四、安装步骤1. 安装编译生成的内核镜像文件将编译生成的内核镜像文件复制到合适的位置,并修改相关配置文件以引导新编译的内核。
2. 安装相关系统文件运行安装命令,将其他必要的系统文件复制到适当的位置。
五、系统配置1. 修改引导加载程序根据系统的引导加载程序,如GRUB、LILO等,修改引导配置文件以支持新安装的内核。
2. 配置网络和驱动程序根据具体需求,配置网络设置和硬件驱动程序。
六、测试与验证1. 重新启动系统重新启动计算机,并选择新编译的内核进行引导。
2. 验证系统版本和功能运行相应的命令,验证新安装的Linux操作系统版本和功能是否正确。
七、常见问题解决1. 编译错误分析编译过程中出现的错误信息,根据错误提示进行逐步修复。
2. 硬件兼容性问题部分硬件设备可能需要额外的驱动程序或补丁文件才能正常运行,根据具体情况进行相应的处理。
八、总结通过本文的介绍,读者可以了解到Linux操作系统的编译和安装过程,同时了解到在实际操作中会遇到的一些常见问题及解决方法。
Linux内核编译配置选项详解

Code maturity level options代码成熟度选项Prompt for development and/or incomplete code/drivers 显示尚在开发中或尚未完成的代码与驱动.除非你是测试人员或者开发者,否则请勿选择General setup常规设置Local version - append to kernel release在内核版本后面加上自定义的版本字符串(小于64字符),可以用"uname -a"命令看到Automatically append version information to the version string 自动在版本字符串后面添加版本信息,编译时需要有perl以及git仓库支持Support for paging of anonymous memory (swap)使用交换分区或者交换文件来做为虚拟内存System V IPCSystem V进程间通信(IPC)支持,许多程序需要这个功能.必选,除非你知道自己在做什么IPC NamespacesIPC命名空间支持,不确定可以不选POSIX Message QueuesPOSIX消息队列,这是POSIX IPC中的一部分BSD Process Accounting将进程的统计信息写入文件的用户级系统调用,主要包括进程的创建时间/创建者/内存占用等信息BSD Process Accounting version 3 file format使用新的第三版文件格式,可以包含每个进程的PID和其父进程的PID,但是不兼容老版本的文件格式Export task/process statistics through netlink通过netlink接 口向用户空间导出任务/进程的统计信息,与BSDProcess Accounting的不同之处在于这些统计信息在整个 任务/进程生存期 都是可用的Enable per-task delay accounting在统计信息中包含进程等候系统资源(cpu,IO同步,内存交换等)所花费的时间UTS NamespacesUTS名字空间支持,不确定可以不选Auditing support审计支持,某些内 核模块(例如SELinux)需要它,只有同时选择其子项才能对系统调用进行审 计Enable system-call auditing support支持对系统调用的审计Kernel .config support把内核的配置信息编译进内核中,以后可以通过scripts/extract-ikconfig脚本来提取这些信息Enable access to .config through /proc/config.gz允许通过/proc/config.gz访问内核的配置信息Cpuset support只有含有大量CPU(大于16个)的SMP系统或NUMA(非一致内存访问)系统才需要它Kernel->user space relay support (formerly relayfs)在某些文件系统上(比 如debugfs)提 供从内核空间向用户空间传递大量数据的接口Initramfs source file(s)initrd已经被initramfs取代,如果你不明白这是什么意思,请保持空白Optimize for size (Look out for broken compilers!)编译时优化内核尺寸(使用"-Os"而不是"-O2"参数编译),有时会产生错误的二进制代码Enable extended accounting over taskstats收集额外的进程统计信息并通过taskstats接口发送到用户空间Configure standard kernel features (for small systems)配置标准的内核特性(为小型系统)Enable 16-bit UID system calls允许对UID系统 调用进行过时的16-bit包装Sysctl syscall support不需要重启就能修改内核的某些参数和变量,如果你也选择了支持/proc,将能从/proc/sys存取可以影响内核行为的参数或变量Load all symbols for debugging/kksymoops装载所有的调试符号表信息,仅供调试时选择Include all symbols in kallsyms在kallsyms中 包含内核知道的所有符号,内核将会增大300KDo an extra kallsyms pass除非你在kallsyms中发现了bug并需要报告这个bug才打开该选项Support for hot-pluggable devices支持热插拔设备,如usb与pc卡等,Udev也需要它Enable support for printk允许内核向终端打印字符信息,在需要诊断内核为什么不能运行时选择BUG() support显示故障和失败条件(BUG和WARN),禁用它将可能导致隐含的错误被忽略 Enable ELF core dumps内存转储支持,可 以帮助调试ELF格 式的程序Enable full-sized data structures for core在内核中使用全尺寸的数据结构.禁用它将使得某些内核的数据结构减小以节约内存,但是将会降低性能Enable futex support快速用户空间互斥体可以使线程串行化以避免竞态条件,也提高了响应速度.禁用它将导致内核不能正确的运行基于glibc的程序Enable eventpoll support支持事件轮循的系统调用Use full shmem filesystem完全使用shmem来 代替ramfs.shmem是基于共享内存的文件系统(可能用到swap),在启用TMPFS后可以挂载为tmpfs供用户空间使用,它比简单的ramfs先进许多Use full SLAB allocator使用SLAB完全 取代SLOB进行 内存分配,SLAB是 一种优秀的内存分配管理器,推荐使用Enable VM event counters for /proc/vmstat允许在/proc/vmstat中包含虚拟内存事件记数器Loadable module support可加载模块支持Enable loadable module support打开可加载模块支持,如果打开它则必须通过"make modules_install"把内核模块安装在/lib/modules/中Module unloading允许卸载已经加载的模块Forced module unloading允许强制卸载正在使用中的模块(比较危险)Module versioning support允许使用其他内核版本的模块(可能会出问题)Source checksum for all modules为所有的模块校验源码,如果你不是自己编写内核模块就不需要它Automatic kernel module loading让内核通过运行modprobe来自动加载所需要的模块,比如可以自动解决模块的依赖关系Block layer块设备层Enable the block layer块设备支持,使用 硬盘/USB/SCSI设备者必选Support for Large Block Devices仅在使用大于2TB的 块设备时需要Support for tracing block io actions块队列IO跟踪支 持,它允许用户查 看在一个块设备队列上发生的所有事件,可以通过blktrace程序获得磁盘当前的详细统计数据Support for Large Single Files仅在可能使用大于2TB的文件时需要IO SchedulersIO调度器Anticipatory I/O scheduler假设一个块设备只有一个物理查找磁头(例如一个单独的SATA硬盘),将多个随机的小写入流合并成一个大写入流,用写入延时换取最大的写入吞吐量.适用于大多数环境,特别是写入较多的环境(比如文件服务器)Deadline I/O scheduler使用轮询的调度器,简 洁小巧,提供了最 小的读取延迟和尚佳的吞吐量,特别适合于读取较多的环境(比如数据库)CFQ I/O scheduler使用QoS策略为 所有任务分配等量的带宽,避免进程被饿死并实现了较低的延迟,可以认为是上述两种调度器的折中.适用于有大量进程的多用户系统Default I/O scheduler默认IO调度器Bus options (PCI, PCMCIA, EISA, MCA, ISA)总线选项PCI supportPCI支持,如果使用了PCI或PCI Express设备就必选PCI access modePCI访问模式,强列建议选"Any"(系统将优先使用"MMConfig",然后使用"BIOS",最后使用"Direct"检测PCI设备)PCI Express supportPCI Express支持(目前主要用于显卡和千兆网卡)PCI Express Hotplug driver如果你的主板和设备都支持PCI Express热插拔就可以选上Use polling mechanism for hot-plug events对热插拔事件采用轮询机制,仅用于测试目的Root Port Advanced Error Reporting support由PCI Express AER驱动程序处理发送到Root Port的错误信息Message Signaled Interrupts (MSI and MSI-X)PCI Express支持两类中断:INTx使用传统的IRQ中断,可以与现行的PCI总线的驱动程序和操作系统兼容;MSI则是通过inbound Memory Write触发和发送中断,更适合多CPU系统.可以使用"pci=nomsi"内核引导参数关闭MSIPCI Debugging将PCI调试信息 输出到系统日志里Interrupts on hypertransport devices允许本地的hypertransport设备使用中断ISA support现在基本上没有ISA的设备了,如果你有就选吧MCA support微通道总线,老旧 的IBM的台式机 和笔记本上可能会有这种总线NatSemi SCx200 support在使用AMD Geode处理器的机器上才可能有PCCARD (PCMCIA/CardBus) supportPCMCIA卡(主要用于笔记本)支持Enable PCCARD debugging仅供调试16-bit PCMCIA support一些老的PCMCIA卡使用16位的CardBus32-bit CardBus support当前的PCMCIA卡 基本上都是32位 的CardBusCardBus yenta-compatible bridge support使用PCMCIA卡 的基本上都需要选择这一项,子项请按照自己实际使用的PCMCIA卡选择{省略的部分请按照自己实际使用的PCMCIA卡选择}PCI Hotplug SupportPCI热插拔支持,如果你有这样的设备就到子项中去选吧Cryptographic options加密选项Cryptographic API提供核心的加密API支持.这 里的加密算法被广泛的应用于驱动程序通信协议等机制中.子选项可以全不选,内核中若有其他部分依赖它,会自动选上Cryptographic algorithm manager创建加密模版实例,必 须要选HMAC support为IPSec所必 须,可为PPPoE提供压缩支持XCBC supportKeyed-Hashing with encryption algorithmKeyed-Hashing用加密算法Null algorithmsNULL加密算法(什么也不做),用于IPsec协议的封装安全载荷模块(ESP)MD4 digest algorithm老旧的摘要算法,已 经过时MD5 digest algorithm主流摘要算法,128位(已 被中国山东大学王小云攻破,可以快速找到碰撞)SHA1 digest algorithm主流摘要算法,160位(已 被中国山东大学王小云攻破,可以快速找到碰撞),速度与MD5相当SHA256 digest algorithm更好的摘要算法,256位,速 度较SHA1稍慢SHA384 and SHA512 digest algorithms更好的摘要算法,384/512位,速度大约只有SHA1的40-50%Whirlpool digest algorithms最安全的摘要算法,512位,已 被列入ISO标准,目前最新版本为3.0(2003年发布)Tiger digest algorithms号称最快的摘要算法,192位,专 门为64位CPU进行了优化GF(2^128) multiplication functions吉安卡洛-费斯切拉(2 ^ 128)乘法的功能Efficient table driven implementation of multiplications field GF(2^128). This is needed by some cypher modes. T option will be selected automatically if you select such cipher mode. Only select this option by hand if you exp an external module that requires these functionsECB support电子密码本,最简 单的加密方法CBC support密码块链,IPSec需要使用它PCBC supportPCBC: Propagating Cipher Block Chaining mode . This block cipher algorithm is required for RxRPC.LRW supportLRW: Liskov Rivest Wagner, a tweakable, non malleable, nnarrow block cipher mode for dm-crypt. Use it with ciph specification string aes-lrw-benbi, the key must be 256,The first 128, 192 or 256 bits in the key are used for A rest is used to tie each cipher block to its logical posSoftware async crypto daemonThis is a generic software asynchronous crypto daemon thconverts an arbitrary synchronous software crypto algori into an asynchronous algorithm that executes in a kernel。
编译Linux内核

编译Linux内核实验目的学习重新编译Linux内核,理解、掌握Linux内核和发行版本的区别。
实验内容重新编译内核是一件比你想像的还要简单的事情,它甚至不需要你对内核有任何的了解,只要你具备一些基本的Linux操作系统的知识就可以进行。
本次实验,要求你在RedHat Fedora Core 5的Linux系统里,下载并重新编译其内核源代码(版本号KERNEL-2.6.15-1.2054);然后,配置GNU的启动引导工具grub,成功运行你刚刚编译成功的Linux内核。
实验提示Linux是当今流行的操作系统之一。
由于其源码的开放性,现代操作系统设计的思想和技术能够不断运用于它的新版本中。
因此,读懂并修改Linux内核源代码无疑是学习操作系统设计技术的有效方法。
本实验首先介绍Linux内核的特点、源码结构和重新编译内核的方法,讲述如何通过Linux系统所提供的/proc虚拟文件系统了解操作系统运行状况的方法。
最后,对Linux编程环境中的常用工具也有简单介绍。
1.1查找并且下载一份内核源代码我们知道,Linux受GNU通用公共许可证(GPL)保护,其内核源代码是完全开放的。
现在很多Linux的网站都提供内核代码的下载。
推荐你使用Linux的官方网站: ,如图1-1。
在这里你可以找到所有的内核版本。
图1-1 Linux的官方网站由于作者安装的Fedora Core 5并不附带内核源代码,第一步首先想办法获取合适版本的Linux内核代码。
通过命令# uname –r2.6.15-1.2054_FC5这就是说,RedHat Fedora Core 5采用的内核版本是2.6.15-1.2054_FC5。
但是,官方网站/pub/linux/kernel/找不到对应版本。
请别着急,既然它是RedHat发布的,RedHat的官方网站总有吧。
浏览/pub/fedora/linux/core/5/source/SRPMS,我们发现果然有文件kernel-2.6.15-1.2054_FC5.src.rpm,这个rpm文件就是2.6.15-1.2054_FC5版的内核源代码了。
Linux内核裁剪与编译

创建一个用于编译的内核目录,并配置相应的环境变量。
内核配置与选择
配置内核
01
使用make menuconfig或其他配置工具进行内核配置,选择所
需的特性和功能。
定制内核
02
根据实际需求,禁用不必要的模块和功能,以减小内核体积。
配置参数
03
在编译过程中,根据需要设置编译参数,如优化级别、编译器
选项等。
编译过程与注意事项
执行编译
在配置完成后,执行make命令开始 编译内核。
等待编译完成
编译过程可能需要较长时间,取决于 系统性能和内核大小。
注意事项
在编译过程中,注意观察日志信息, 以便及时发现和解决问题。
内核安装
编译完成后,按照系统要求进行内核 安装和引导配置。
04
内核编译优化
编译优化简介
-O3
在`-O2`的基础上,进一步开启更多的编译器优化选项。
-Os
以最小化代码大小为目标进行优化,适用于嵌入式系统等资源受限的环境。
-fPIC
生成位置无关代码,便于动态链接。
编译优化实践
根据目标硬件平台和性能 需求,选择合适的编译选 项。
关注内核代码质量,避免 过度优化导致代码可读性 和维护性下降。
优化内核
针对特定需求进行内核优化,如调整调度 策略、优化内存管理等,以提高系统的性 能和响应速度。
定制内核
根据需求分析结果,定制内核的功能和参 数,如禁用不必要的模块、开启特定功能 等。
案例三:使用第三方工具进行内核裁剪与编译
总结词
选择合适的第三方 工具
配置工具链
导入内核源码
自动裁剪与编译
使用第三方工具进行内 核裁剪与编译,可以借 助第三方工具的自动化 和智能化功能,提高内 核裁剪与编译的效率和 准确性。
Linux的内核编译和内核模块的管理

Linux的内核编译和内核模块的管理一、内核的介绍内核室操作系统的最重要的组件,用来管理计算机的所有软硬件资源,以及提供操作系统的基本能力,RED hatenterpriselinux的许多功能,比如软磁盘整列,lvm,磁盘配额等都是由内核来提供。
1.1内核的版本与软件一样内核也会定义版本的信息,以便让用户可以清楚的辨认你用得是哪个内核的一个版本,linux内核以以下的的语法定义版本的信息MAJOR.MINOR.RELEASE[-CUSTOME]MAJOR:主要的版本号MINOR:内核的次版本号,如果是奇数,表示正在开发中的版本,如果是偶数,表示稳定的版本RELEASE:修正号,代表这个事第几次修正的内核CUSTOME 这个是由linux产品商做定义的版本编号。
如果想要查看内核的版本使用uname 来查看语法#uname [选项]-r --kernel-release 只查看目前的内核版本号码-s --kernel-name 支持看内核名称、-n --nodename 查看当前主机名字-v --kernel-version 查看当前内核的版本编译时间-m --machine 查看内核机器平台名称-p --processor 查看处理器信息-I --hard-platform 查看硬件平台信息-o --operating-system 查看操作系统的名称-a 查看所有1.2内核的组件内核通常会以镜像文件的类型来存储在REDHAT ENTERPRISE LINUX 中,当你启动装有REDHAT ENTERPRISE linux的系统的计算机时,启动加载器bootloader 程序会将内核镜像文件直接加载到程序当中,已启动内核与整个操作系统一般来说,REDHAT ENTERPRISE LINUX 会把内核镜像文件存储在/boot/目录中,文件名称vmlinuz-version或者vmlinux-version 其中version就是内的版本号内核模块组成linux内核的第二部分是内核模块,或者单独成为内核模块。
linux内核编译与裁剪

Linux内核编译内幕详解内核,是一个操作系统的核心。
它负责管理系统的进程、内存、设备驱动程序、文件和网络系统,决定着系统的性能和稳定性。
Linux的一个重要的特点就是其源代码的公开性,所有的内核源程序都可以在/usr/src/l inux下找到,大部分应用软件也都是遵循GPL而设计的,你都可以获取相应的源程序代码。
全世界任何一个软件工程师都可以将自己认为优秀的代码加入到其中,由此引发的一个明显的好处就是Linux修补漏洞的快速以及对最新软件技术的利用。
而Linux的内核则是这些特点的最直接的代表。
想象一下,拥有了内核的源程序对你来说意味着什么?首先,我们可以了解系统是如何工作的。
通过通读源代码,我们就可以了解系统的工作原理,这在Windows下简直是天方夜谭。
其次,我们可以针对自己的情况,量体裁衣,定制适合自己的系统,这样就需要重新编译内核。
在Windows下是什么情况呢?相信很多人都被越来越庞大的Windows整得莫名其妙过。
再次,我们可以对内核进行修改,以符合自己的需要。
这意味着什么?没错,相当于自己开发了一个操作系统,但是大部分的工作已经做好了,你所要做的就是要增加并实现自己需要的功能。
在Windows下,除非你是微软的核心技术人员,否则就不用痴心妄想了。
内核版本号由于Linux的源程序是完全公开的,任何人只要遵循GPL,就可以对内核加以修改并发布给他人使用。
Linux的开发采用的是集市模型(bazaar,与cathedral--教堂模型--对应),为了确保这些无序的开发过程能够有序地进行,Linux采用了双树系统。
一个树是稳定树(stable tree),另一个树是非稳定树(unstable tree)或者开发树(d evelopment tree)。
一些新特性、实验性改进等都将首先在开发树中进行。
如果在开发树中所做的改进也可以应用于稳定树,那么在开发树中经过测试以后,在稳定树中将进行相同的改进。
linux内核编译过程解释

linux内核编译过程解释
Linux内核是操作系统的核心部分,它控制着系统的资源管理、任务调度、驱动程序等重要功能。
编译Linux内核是一项非常重要的任务,因为它决定了系统的性能、稳定性和可靠性。
下面我们来了解一下Linux内核的编译过程。
1. 下载内核源代码:首先,我们需要从官方网站上下载Linux
内核的源代码。
这里我们可以选择下载最新的稳定版本或者是开发版,具体取决于我们的需求。
2. 配置内核选项:下载完源代码后,我们需要对内核进行配置。
这一步通常需要使用make menuconfig命令来完成。
在配置过程中,我们需要选择系统所需的各种驱动程序和功能选项,以及定制化内核参数等。
3. 编译内核:配置完成后,我们可以使用make命令开始编译内核。
编译过程中会生成一些中间文件和可执行文件,同时也会编译各种驱动程序和功能选项。
4. 安装内核:编译完成后,我们可以使用make install命令将内核安装到系统中。
这一步通常需要将内核文件复制到/boot目录下,并更新系统的引导程序以便正确加载新内核。
5. 重启系统:安装完成后,我们需要重启系统以使新内核生效。
如果新内核配置正确,系统应该能顺利地启动并正常工作。
总的来说,Linux内核的编译过程是一个相对复杂的过程,需要一定的技术和操作经验。
但是,通过了解和掌握相关的编译技巧和命
令,我们可以轻松地完成内核编译工作,并为系统的性能和稳定性做出贡献。
linux内核裁剪及编译步骤

linux内核裁剪及编译步骤Linux内核裁剪及编译步骤Linux操作系统的内核是其最重要和核心的组成部分。
用户可以根据自己的需要对内核进行裁剪以减少内核代码的大小,以及支持特定的硬件和功能。
Linux内核的裁剪和编译步骤相对来说比较复杂,需要一定的技术和安装环境的支持。
下面将介绍Linux内核裁剪及编译的具体步骤,以供参考。
一、准备工作在开始进行Linux内核的裁剪及编译之前,需要进行一些准备工作。
首先,需要安装Linux操作系统的开发环境。
其次,需要下载Linux内核的源代码,可以从Linux 的官方网站或者其他开源社区下载。
二、配置内核选项安装好开发环境和下载好源代码之后,就可以开始进行内核的裁剪和编译了。
首先需要进行内核选项的配置。
可以使用make menuconfig命令进入配置界面。
在这个界面中,用户可以对内核进行不同程度的裁剪,包括去掉多余的硬件支持和功能选项。
在配置选项中,用户需要选择一些基本的配置选项,包括文件系统类型、设备驱动、协议栈、安全选项、虚拟化等。
用户可以根据自己的需要,进行选项的选择和配置。
三、编译内核在完成了内核的配置之后,下一步就是进行内核的编译。
可以使用make命令进行编译。
编译过程中需要耗费一定的时间和资源,因此建议在空闲时刻进行编译。
如果出现编译错误,需要根据错误提示进行排查和解决。
编译错误很可能是由配置选项不当造成的,因此要仔细检查配置选项。
四、安装内核编译完成后,就可以安装内核。
可以使用make install命令进行安装。
安装完成后,可以重启系统,以使新的内核生效。
在重启时,需要手动选择新的内核,可以选择自己编译的内核或者系统默认的内核。
五、总结对于不同的用户,对内核的需求和选择是不同的。
因此,在对内核进行裁剪时,需要根据自己的需求进行适当的选择,以提高系统性能和稳定性。
同时,在进行内核的编译时,也需要仔细检查配置选项和随时记录日志以便排除可能出现的问题。
嵌入式Linux内核模块的配置与编译

嵌入式Linux内核模块的配置与编译一、简介随着 Linux操作系统在嵌入式领域的快速发展,越来越多的人开始投身到这方面的开发中来。
但是,面对庞大的Linux内核源代码,开发者如何开始自己的开发工作,在完成自己的代码后,该如何编译测试,以及如何将自己的代码编译进内核中,所有的这些问题都直接和Linux的驱动的编译以及Linux的内核配置系统相关。
内核模块是一些在操作系统内核需要时载入和执行的代码,它们扩展了操作系统内核的功能却不需要重新启动系统,在不需要时可以被操作系统卸载,又节约了系统的资源占用。
设备驱动程序模块就是一种内核模块,它们可以用来让操作系统正确识别和使用使用安装在系统上的硬件设备。
Linux内核是由分布在全球的Linux爱好者共同开发的,为了方便开发者修改内核,Linux的内核采用了模块化的内核配置系统,从而保证内核扩展的简单与方便。
本文通过一个简单的示例,首先介绍了如何在Linux下编译出一个内核模块,然后介绍了Linux内核中的配置系统,讲述了如何将一个自定义的模块作为系统源码的一部分编译出新的操作系统,注意,在这里我们介绍的内容均在内核2.6.13.2(也是笔者的开发平台的版本)上编译运行通过,在2.6.*的版本上基本上是可以通用的。
二、单独编译内核模块首先,我们先来写一个最简单的内核模块:#include <linux/module.h>#include <linux/kernel.h>#include <linux/errno.h>#define DRIVER_VERSION "v1.0"#define DRIVER_AUTHOR "RF"#define DRIVER_DESC "just for test"MODULE_AUTHOR(DRIVER_AUTHOR);MODULE_DESCRIPTION(DRIVER_DESC);MODULE_LICENSE("GPL");staticintrfmodule_init(void){printk("hello,world:modele_init");return 0;}static void rfmodule_exit(void){printk("hello,world:modele_exit");}module_init (rfmodule_init);module_exit (rfmodule_exit);这个内核模块除了在载入和卸载的时候打印2条信息之外,没有任何其他功能,不过,对于我们这个编译的例子来讲,已经足够了。
Linux内核调试

可以看到,jiffies 的值得到了更新。
1.7.2 调试模块
由于模块并没有作为 vmlinux 的一部分传给 gdb,因此必须通过某种方法把模块信息告 知 gdb。 1.模块文件的组成
Linux 的模块是 ELF 格式的可执行映像,分成了很多个 section。与调试关系较为密切的
的三个 section 如下: .text:包含了模块的可执行代码。 .bss 和.data:包括了模块的变量(在模块编译阶段被初始化的变量在.data,其他的 在.bss )
(1)启动 gdb。
在第一行调用 gdb 时所传入的参数中: vmlinux:未压缩的 ELF 内核可执行文件变量。 此时可以通过 p 命令查看系统变量,例如
在没有选中 CONFIG_DEBUG_IN FO 时也可查看 jiffies
需要注意的是,从上图中可以看出,虽然 jiffies 是不停变换的,但是 gdb 每次读取同一 个变量时将得到相同的值,这是因为 gdb 对读到的值进行了缓存。如果希望去掉缓存的影响, 可以使用 core-file 命令。
(1)如果不清楚当前正在运行的内核源代码的目录,可以通过如下方法查看。
(2)进入内核源代码所在目录,通过 make menuconfig 命令进入编译选项配置环境, 如图 1.1 所示。
调试内核
图 1.1 编译选项配置环境
在选项配置环境中每个选项有“*”(编译进内核)、“M”(以模块方式编译)和“”(不 编译)三种状态,可以分别使用“Y”、“M”和“N”键来设置。 2.配置编译选项
(2)加载模块信息。模块名称和.text 基址是 add-symbol-file 命令的必要参数,.bss 和.data 的基址可使用-s 选项传给 add-symbol-file 命令。
Linux内核编译及常见错误实验报告

***学生实验报告一、实验目的(1)学习重新编译Linux内核的方法(2)理解Linux标准内核和发行版本内核的区别。
二、实验内容在Linux系统中下载同一发行版本的版本号较高的内核,编译之后运行自己编译的内核,并使用uname-r命令查看是否运行成功。
由于不同版本的内核在编译过程中可能出现不同的问题,本书推荐的内核版本为4.16.10。
从第7章开始的进阶实验篇,都可以选用该版本的内核。
三、实验设备Vmware上运行的linux ubuntu 5.11.0-43-generic实验成功:linux ubuntu 4.18.0-generic(Ubuntu18.04均可)实验成功的方法在最后四、实验过程和原理分析一、实验(一)准备工作:在这里我建议用一个全新的虚拟机,避免编译错误对原来常使用的虚拟机造成不可逆的影响,安装好后就先安装gcc、make等工具首先下载好Linux***内核文件解压至/usr/src 目录下,如下:确认安装好gcc、make等工具,后可直接运行命令sudo make menuconfig进行查看内核功能是否需要编译,如果遇到如下错误可以运行命令sudo apt bison 或sudo apt-get install fiex bison命令解决错误:解决:(不建议)(强烈建议)除此之外还可以直接运行,上一条命令解决不了就用下面这个:sudo apt-get install --reinstall bison libbison-dev flex libfl-dev解决上述错误(强烈建议)运行完上述命令后再次输入sudo make menuconfig便正常进入如下:见到这个界面后无需任何多余操作,使用键盘方向键选择<Save>回车再回车即可此时.config文件生成成功.config文件是隐藏文件记得加参数-a此外还有一个方法就是用cp 命令从原有系统的内核复制.config文件过来也可以命令:sudo cp /boot/config- 5.11.0-43-generic ./.config(二)编译内核为了避免多线程编译时同时出现过多错误,我们这里一开始只使用单线程编译在这里除了用make编译还可以用make-kpkg等工具,个人比较喜欢用make-kpkg但课本用make所以我接下来的实验也先用make完成。
Linux系统下的软件开发调试技巧

Linux系统下的软件开发调试技巧在软件开发中,调试是一个非常重要的环节,对于开发人员来说,这是发现和解决错误的关键阶段。
在Linux系统下开发软件,不同于其他操作系统,需要掌握一些专门的调试技巧,这些技巧可以帮助开发人员更加高效地调试程序。
以下是一些Linux系统下的软件开发调试技巧。
1. 充分利用 Linux 内核中的调试工具Linux内核中集成了许多调试工具,如strace、gdb、objdump等等。
可以利用这些工具来分析程序运行过程中出现的问题,比如内存泄漏、死锁等。
其中, GDB是一个强大的调试器,是Linux下最常用的调试工具之一。
他可以帮助开发人员跟踪BUG并捕捉核心转储文件。
使用GDB可以在开发过程中定位程序的错误和异常,并快速地解决问题。
2. 使用makefile来构建程序makefile通过简单的定义来管理程序的构建过程,在Linux的开发环境中很常用。
它可以将构建过程分为多个步骤,并使开发人员能够轻松地修改其中一个步骤而不会影响其他步骤,从而使构建过程更加灵活和可维护。
makefile同时可以管理多个文件的编译以及正确处理链接依赖关系等复杂的构建操作。
3. 利用版本控制工具版本控制工具被广泛用于管理代码并帮助团队协作。
在Linux 下,使用版本控制工具可以很容易地跟踪代码变更,同时也可以帮助开发人员回滚到先前的版本,并更容易地利用分支和标签来管理代码。
使用版本控制工具也有助于团队协作,并且对于故障排除、代码重构和功能追踪非常有用。
4. 使用轻量、快速的编辑器开发人员需要在编写代码时使用轻量、快速的编辑器,以便任务不被中断。
Vim和Emacs这两款编辑器在Linux下有着广泛的应用,它们的优势是快速、可扩展、有强大的功能。
它们能够实现代码高亮、自动缩进、代码补全等特性,从而提高开发人员的生产率。
5. 使用测试自动化工具在强调代码质量和稳定性的现代软件开发过程中,关键是将测试纳入开发周期。
Linux内核移植与根文件系统构建

Linux内核移植
10、SCSI device support
如果有SCSI 设备(SCSI 控制卡,硬盘或光驱等)则选上这项。目前SCSI 设备类型已经比较多,要具体区分它们你得先了解他们所使用的控制 芯片类型。2.6.X 内核中对各类型SCSI设备已经有更具体详细的支持。 <*> scsi support; <*>scsi disk support;
Linux内核移植
5、Networking option
网络选项,它主要是关于一些网络协议的选项。Linux 功能也就是在于 对网络功能的灵活支持。这部分内容相当多,根据不同情况,一般我 们把以下几项选上。 5.1、 packet socket 包协议支持,有些应用程序使用Packet 协议直接同网络设备通讯, 而不通过内核中的其它中介协议。同时它可以让你在TCP 不能用时找 到一个通讯方法。 5.2、 unix domain socket 对基本UNIX socket 的支持 5.3、 TCP/IP networking 对TCP/IP 协议栈的支持,当然要。如果你的内核很在意大小,而且 没有什么网络要就,也不使用类似X Window 之类基于Unix Socket 的应用那你可以不选,可节省大约144K 空间。
二、内核与根文件系统实验
• • • • 安装完成后依次执行以下命令: [root# root] Make dep [root# root] Make [root# root] Make PREFIX=./root install
由于根文件系统是内核启动时挂载的第一个文件系统那么根文件系统就要包括linux启动时所必须的目录和关键性的文件例如linux启动时都需要有init目录下的相关文件在linux挂载分区时linux一定会找etcfstab这个挂载文件等根文件系统中还包括了许多的应用程序bin目录等任何包括这些linux系统启动所必须的文件都可以成为根文件系统
linux内核交叉编译过程详解

linux内核交叉编译过程详解交叉编译是在一个平台上生成适用于另一个平台的可执行文件的过程。
下面将详细解释在Linux下的内核交叉编译过程:1.环境搭建:o安装交叉编译工具链。
这些工具通常以静态链接的方式提供,例如gcc-arm-linux-gnueabi、binutils-arm-linux-gnueabi。
o配置本地的Makefile文件,以指定交叉编译工具链的路径。
2.获取内核源码:o从官方网站或git仓库下载目标内核的源码。
3.配置内核:o运行makemenuconfig或其他配置工具,根据目标平台的硬件和需求选择合适的配置选项。
o保存配置,生成.config文件。
4.交叉编译内核:o运行make命令开始编译过程。
由于内核很大,此过程可能需要很长时间。
o在编译过程中,内核将被编译成可在目标平台上运行的二进制文件。
5.打包编译好的内核:o内核编译完成后,需要将其打包成适合在目标平台上安装的形式。
这通常涉及到创建引导加载程序(如U-Boot)所需的映像文件。
6.测试和调试:o将编译好的内核和相关文件复制到目标板上,进行启动和测试。
o如果遇到问题,需要进行调试和修复。
7.部署:o一旦内核能够正常工作,就可以将其部署到目标设备上。
这可能包括将其集成到设备固件中,或者作为独立的操作系统运行。
8.维护和更新:o根据需要更新内核版本或进行其他更改,重复上述步骤。
在整个过程中,确保你的交叉编译环境和目标硬件的文档齐全,并遵循相应的开发指导原则。
对于复杂的项目,可能还需要进行更深入的定制和优化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验 Linux内核与根文件系统映像文件的
编译及调试
一、实验目的
1、了解Linux内核的启动加载过程,根文件系统结构,内核与文件
系统数据交换的原理;
2、掌握Linux内核和文件系统的配置编译以及运行调试的基本方
法和手段。
二、实验仪器设备和材料清单
硬件:PC机
软件:ubuntu操作系统,eclipse/vi开发环境,qemu虚拟机软件包,Linux内核、Busybox源代码包等。
三、实验内容
1、eclipse集成开发平台搭建配置
2、Linux内核配置编译链接及内核Image映像文件制作
3、根文件系统配置编译链接及内核Image映像文件制作
4、qemu虚拟机配置
5、内核+文件系统在qemu上加载运行及GDB调试
四、实验要求
掌握使用Makefile进行简单程序项目管理,GDB调试的基本方法,虚拟机配置和运行,image映像文件的制作
五、实验步骤及结果测试
1.在Linux下安装eclipse开发环境并进行相应设置;
2.修改Linux 内核和文件系统的Makefile文件,编译链接并制作
Image文件;
3.安装虚拟机,修改配置文件,配置虚拟机;
4.利用eclipse+虚拟机+GDB进行Linux内核+文件系统的运行及调
试,并观察系统是否正常运行;
六、实验报告要求
写明实验的题目、实验要求、实验内容,详细记录实验过程和结果以及遇到的主要技术问题和解决方法。