对流给热系数测定实验报告
空气-水蒸气对流给热系数测定实验报告
空气-水蒸气对流给热系数测定实验报告本实验使用臭氧编码器,通过悬浮思路分析,利用不同的匀速度下不同的温度差分析空气-水蒸气的对流换热系数,帮助我们理解空气-水蒸汽对流的过程。
本文将对实验的设备、方法、结果及分析进行详细介绍。
一、实验设备1. 实验室气体混合系统2. 实验室压力传感器4. 实验室水蒸气浸润计6. 实验室数据采集器二、实验方法1. 设计实验2. 实验片段将实验室气体混合系统、压力传感器、温度传感器、水蒸气浸润计和湿度传感器等设备设置在实验室中,同时使用数据采集器对数据进行实时记录。
在实验中,我们首先设置了一个不同的温度差,然后观察它们在不同的匀速度下的换热系数。
通过计算,我们可以得到不同匀速下不同温度差的换热系数。
三、实验结果及分析通过实验结果和数据分析,我们得到不同温度差和匀速度下的换热系数。
1. 换热系数随着温度差的增加而增加我们可以看到,在温度差越大的情况下,热传导的能力也越强。
颗粒与颗粒之间的间距越小,热量间的转移就越快,因此换热系数也越高。
当温度差在一定的范围内,换热系数与温度差的平方成正比。
我们还可以看到,在匀速越大的情况下,换热系数也会越大。
当匀速越大时,颗粒间的热传导也会越快,从而使换热系数更大。
综合以上分析,我们可以得到空气-水蒸汽的对流换热系数与温度差和匀速度密切相关。
当温度差和匀速度越大时,换热系数也会越大。
同时,通过这些实验结果,我们可以更好地理解空气-水蒸汽对流的过程。
四、实验结论通过本次实验,我们可以得出以下结论:1. 空气-水蒸汽的对流换热系数与温度差成正比,当温度差越大时,换热系数也会越大。
因此,我们可以通过控制空气-水蒸汽的温度差和匀速度来控制其换热系数,从而更好地理解热传导过程。
对流给热系数测定实验
物理化学实验报告实验名称:对流给热系数测定实验学院:化学工程学院专业:化学工程与工艺班级:姓名:学号指导教师:日期:一、实验目的1、掌握传热膜系数的测定方法;2、通过实验,掌握确定传热膜系数准数关联式中的系数A和指数m的方法;3、通过实验提高对传热膜系数准数关联式的理解,并分析影响传热膜系数的因素,了解工程上强化传热的措施。
二、实验原理对流传热的核心问题是求算传热膜系数,当流体无相变时对流传热准数关联式的一般形式为:Nu=A×Re m×Pr n×Gr p (4-1)对于强制湍流而言,Gr准数可以忽略,故Nu=A×Re m×Pr n(4-2) 本实验中,可用图解法和最小二乘法计算上述准数关联式中的指数m、n和系数A。
用图解法对多变量方程进行关联时,要对不同变量Re和Pr分别回归。
本实验可简化上式,即取n=0.4(流体被加热)。
这样,上式即变为单变量方程,在两边取对数,即得到直线方程:lg(Nu/Pr0.4)=lgA + mlgRe (4-3)在双对数坐标纸上作图,找出直线斜率,即为方程的指数m。
在直线上任取一点的函数值代入方程中,则可得到系数A,即:A=Nu/(Pr0.4×Re m) (4-4) 用图解法,根据实验点确定直线位置有一定的人为性。
而用最小二乘法回归,可以得到最佳关联结果。
应用微机,对多变量方程进行一次回归,就能同时得到A、m、n。
对于方程的关联,首先要有Nu、Re、Pr的数据组。
其准数定义式分别为:Nu=αd/λ,Re=duρ/μ,Pr=Cpμ/λ实验中改变空气的流量以改变Re准数的值。
根据定性温度(空气进、出口温度的算术平均值)计算对应的Pr准数值。
同时,由牛顿冷却定律,求出不同流速下的传热膜系数α值进而算得Nu准数值。
牛顿冷却定律:Q=α×A×△t m (4-5)(tw-t1)-(tw-t2)△t m =ln(tw-t1)/(tw-t2)式中:α—传热膜系数,[W/(m2×℃)];Q—传热量,[W];A—总传热面积,[m2];△t m—管壁温度与管内流体温度的对数平均温差,[℃];tw—蒸汽平均温差,[℃]。
对流给热系数的测定(数据处理)
实验三 对流给热系数的测定一、实验目的1、观察水蒸气在换热管外壁上的冷凝现象,并判断冷凝类型;2、测定空气(或水)在圆直管内强制对流给热系数i α;3、应用线性回归分析方法,确定关联式Nu=ARe m Pr 0.4中常数A 、m 的值。
4、掌握热电阻测温的方法。
二、基本原理在套管换热器中,环隙通以水蒸气,内管管内通以空气或水,水蒸气冷凝放热以加热空气或水,在传热过程达到稳定后,有如下关系式:V ρC P (t 2-t 1)=αi A i (t w -t)m (1-1)式中: V ——被加热流体体积流量,m3/s ; Ρ——被加热流体密度,kg/m3; C P ——被加热流体平均比热,J/(kg ·℃);αi ——流体对内管内壁的对流给热系数,W/(m2·℃); t 1、t 2——被加热流体进、出口温度,℃;A i ——内管的外壁、内壁的传热面积,m2;(T -T W )m ——水蒸气与外壁间的对数平均温度差,℃; 22112211ln )()()(w w w w m T T T T T T T T Tw T -----=- (1-2)(t w -t)m ——内壁与流体间的对数平均温度差,℃;22112211ln )()()(t t t t t t t t t t w w w w m w -----=- (1-3)式中:T 1、T 2——蒸汽进、出口温度,℃;T w1、T w2、t w1、t w2——外壁和内壁上进、出口温度,℃。
当内管材料导热性能很好,即λ值很大,且管壁厚度很薄时,可认为T w1=t w1,T w2=t w2,即为所测得的该点的壁温。
由式(1-3)可得:m w P i t t A t t C V )()(012--=ρα (1-4)若能测得被加热流体的V 、t 1、t 2,内管的换热面积A i ,以及水蒸气温度T ,壁温T w1、T w2,则可通过式(1-4)算得实测的流体在管内的(平均)对流给热系数αi 。
化工原理实验(四)空气-蒸汽对流给热系数测定
化工原理实验(四)空气-蒸汽对流给热系数测定一、实验目的1、 了解间壁式传热元件,掌握给热系数测定的实验方法。
2、 掌握热电阻测温的方法,观察水蒸气在水平管外壁上的冷凝现象。
3、 学会给热系数测定的实验数据处理方法,了解影响给热系数的因素和强化传热的途径。
二、基本原理在工业生产过程中,大量情况下,冷、热流体系通过固体壁面(传热元件)进行热量交换,称为间壁式换热。
如图(4-1)所示,间壁式传热过程由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热所组成。
达到传热稳定时,有()()()()mm W M W p p t KA t t A T T A t t c m T T c m Q ∆=-=-=-=-=221112222111αα (4-1)Tt图4-1间壁式传热过程示意图式中:Q - 传热量,J / s ;m 1 - 热流体的质量流率,kg / s ; c p 1 - 热流体的比热,J / (kg ∙℃); T 1 - 热流体的进口温度,℃; T 2 - 热流体的出口温度,℃; m 2 - 冷流体的质量流率,kg / s ; c p 2 - 冷流体的比热,J / (kg ∙℃); t 1 - 冷流体的进口温度,℃; t 2 - 冷流体的出口温度,℃;α1 - 热流体与固体壁面的对流传热系数,W / (m 2 ∙℃);A 1 - 热流体侧的对流传热面积,m 2;()m W T T -- 热流体与固体壁面的对数平均温差,℃;α2 - 冷流体与固体壁面的对流传热系数,W / (m 2 ∙℃);A 2 - 冷流体侧的对流传热面积,m 2;()m W t t - - 固体壁面与冷流体的对数平均温差,℃;K - 以传热面积A 为基准的总给热系数,W / (m 2 ∙℃); m t ∆- 冷热流体的对数平均温差,℃;热流体与固体壁面的对数平均温差可由式(4—2)计算,()()()22112211ln W W W W m W T T T T T T T T T T -----=- (4-2)式中:T W 1 - 热流体进口处热流体侧的壁面温度,℃;T W 2 - 热流体出口处热流体侧的壁面温度,℃。
空气-水蒸气对流给热系数测定实验报告
空气-水蒸气对流给热系数测定实验报告
实验目的:测定空气-水蒸气对流给热系数。
实验原理:空气-水蒸气对流给热系数是指在给定条件下,单位时间内单位面积的对流热流量。
在实际应用中,了解对流给热系数的大小对于设计和优化热传递设备非常重要。
实验装置:实验装置包括一个加热管、一个水槽以及一个温度计。
通过控制加热管的电压和水槽的温度,可以得到不同的条件下空气-水蒸气对流的热传递情况。
实验步骤:
1. 将实验装置准备好,确保加热管和温度计的位置正确。
2. 首先将加热管的电压调整到一个固定值,记录加热管上的电压和电流。
3. 启动水槽并将水温调整到一个适当的温度。
4. 将温度计放置在实验装置中,记录下来水的初始温度。
5. 开始记录时间和温度,每隔一段时间记录一次温度值。
6. 进行多组实验,每组实验可以改变加热管的电压或者水槽的温度,以得到不同的实验数据。
实验数据处理:
1. 将实验数据整理成表格。
2. 根据实验数据绘制温度-时间曲线。
3. 计算出空气-水蒸气对流的热传递系数。
4. 对不同实验条件下得到的热传递系数进行比较和分析。
实验结果:
根据实验数据计算得出的空气-水蒸气对流给热系数为X(单位)。
实验讨论:
根据实验结果可以得出结论:在给定的实验条件下,空气-水
蒸气对流给热系数为X,说明X。
实验结论:
通过本实验测定得到空气-水蒸气对流给热系数为X(单位),实验结果具有一定的参考价值,并为相关热传递设备的设计和优化提供了理论依据。
对流传热系数实验报告
一、实验目的1. 了解对流传热的基本原理,掌握对流传热系数的测定方法。
2. 掌握牛顿冷却定律的应用,通过实验验证其对流传热系数的计算公式。
3. 分析影响对流传热系数的因素,如流体速度、温度差、流体性质等。
二、实验原理对流传热系数是指单位时间内,单位面积上流体温度差为1℃时,单位面积上传递的热量。
牛顿冷却定律描述了对流传热过程,即:Q = h A (T1 - T2)式中:Q ——传热量(W)h ——对流传热系数(W/(m²·K))A ——传热面积(m²)T1 ——高温流体温度(℃)T2 ——低温流体温度(℃)根据牛顿冷却定律,可以通过实验测量传热量、传热面积、流体温度差,从而计算出对流传热系数。
三、实验仪器与材料1. 套管换热器2. 温度计3. 流量计4. 计时器5. 计算器6. 水和空气四、实验步骤1. 准备实验仪器,连接套管换热器、温度计、流量计等。
2. 在套管换热器内注入水,打开冷却水阀门,调节流量至预定值。
3. 在套管换热器外通入空气,调节风速至预定值。
4. 同时打开加热器和冷却水阀门,使水加热至预定温度,空气冷却至预定温度。
5. 记录开始加热和冷却的时间,观察温度变化。
6. 当温度变化稳定后,记录温度计的读数,计算温度差。
7. 关闭加热器和冷却水阀门,停止实验。
五、实验数据与处理1. 记录实验数据,包括水温度、空气温度、流量、时间等。
2. 根据牛顿冷却定律计算传热量Q:Q = m c ΔT其中,m为水的质量流量(kg/s),c为水的比热容(J/(kg·K)),ΔT为温度差(K)。
3. 计算对流传热系数h:h = Q / (A ΔT)六、实验结果与分析1. 根据实验数据,计算对流传热系数h,并与理论值进行比较。
2. 分析实验结果,探讨影响对流传热系数的因素。
3. 分析实验误差,总结实验经验。
七、结论通过对对流传热系数的测定实验,掌握了对流传热的基本原理和牛顿冷却定律的应用。
试验三空气-水对流给热系数测定
实验三空气-水对流给热系数测定一、实验目的1. 测定套管换热器中空气—水系统的传热系数;2. 测定不同的热空气流量时,Nu与Re之间的关系,并得到准数方程式;二、基本原理1. 测定传热系数K根据传热速率方程式(1)(2)实验时,若能测定或确定Q、t m和A,则可测定K。
(1)传热速率在不考虑热损失的条件下(3)式中:—空气的质量流量,kg/s,,为空气的容积流量,m3/s,ρ为空气的密度,kg/m3;—空气的定压比热,J/(kg·K);—空气的进、出口温度,℃。
(2)传热推动力t m(4)式中:,—冷却水出口温度,℃,—冷却水进口温度,℃(3)传热面积(5)式中:L—传热管长度,m ;d—传热管内径,m 。
2. 求Nu与Re的定量关系式由因次分析法可知,空气在圆形直管中强制湍流时的传热膜系数符合下列准数关联式:或(6)式中:A,n—待定系数及指数;—定性温度下空气的导热系数,W/(m·K);—空气的流速,m/s, ;μ—空气的粘度,kg/(m·s);—管壁对空气的传热膜系数,W/(m2·K)。
在水—空气换热系统中,若忽略管壁与污垢的热阻,则总传热系数K与传热膜系数的关系为:式中:—管壁对水的传热膜系数,W/(m2·K)—管壁对空气的传热系数,W/(m2·K)本实验中保持水在套管环隙间的高速流动,且由于水的比热较大,因此水的进、出口温度变化很小,管壁对水的传热系数较管壁对空气的传热系数大得多,即,这样总传热系数近似等于管壁对空气的传热系数:实验中通过调节空气的流量,测得对应的传热系数,然后将实验数据整理为Re及Nu,再将所得的一系列Nu-Re数据,通过用双对数坐标纸作图或回归分析法求得待定系数A和指数n,进而得到准数方程式。
三、实验装置如图1所示,实验装置由加热器1、夹套换热器14、15、风机7和流量计2、10等组成。
换热器的内管14为φ30×2mm的铜管,有效长度为2000mm。
实验7. 空气-蒸汽对流给热系数的测定
实验7. 空气-蒸汽对流给热系数的测定一、实验目的1.熟悉传热过程及间壁式换热器的结构,掌握热电阻的测温方法;2.观察蒸汽在水平冷凝管外壁上的冷凝现象,测定对流给热系数h ;3.测定努塞尔数Nu 与雷诺数e R 之间的关系,并确定它们的关联式;4.了解强化传热的途径,分析热交换过程的影响因素。
二、基本原理工业生产中冷流体和热流体常通过固体壁面进行热量交换,此种换热方式称为间壁式传热。
间壁式传热过程是由热流体对固体壁面的对流传热、固体壁面的热传导和固体壁面对冷流体的对流传热过程组成,间壁式传热过程如图2—10所示。
当传热过程达到稳定时,它们有如下关系: 图2—10 间壁式传热过程示意图()()()()112122121122m p m p W W m M mq c t t q c T T h A t t h A T T KA t Φ=-=-=-=-=∆ (2—45) 式中:Φ—传热速率,W ;q m1、q m2 —冷、热流体的质量流量,1kg s -⋅; c p1、c p2 —冷、热流体的比热容,11kJ kg K --⋅⋅;T 1 、T 2—热流体的进出口温度,K ; t 1、t 2 —冷流体的进出口的度,K ;A 1、A 2—冷、热流体侧的对流传热面积,m 2;12,h h —冷、热流体与固体壁面的对流给热系数,21W m K --⋅⋅; ()W m t t -、()W m T T -—冷、热流体与固体壁面的对数平均温度差,K ;K —总传热系数,21W m K --⋅⋅; A —传热面积,m 2;m t ∆—对数平均温度差,K ;热流体与固体壁面的对数平均温差可由下式计算()()()22112211ln W W W W m W T T T T T T T T T T -----=- (2-46)式中:12,W W T T —热流体进出口处热流体侧壁面的温度,K 。
固体壁面与冷流体的对数平均温差可由下式求得()()()22112211ln t t t t t t t t t t W W W W m W -----=- (2-47)式中:12,W W t t —冷流体进出口处冷流体侧壁面的温度,K ; 冷热流体间的对数平均温度差可由下式计算()()12211221ln m T t T t t T t T t ---∆=-- (2—48)在套管式换热器中,由于水蒸气通过套管的环隙,冷空气或水通过内管间,测定对流给热系数时,由式(2—45)可得内管内壁面与冷空气或水的对流给热系数()()112111p W mm c t t h A t t -=- (2—49)实验中,要测定内管的壁温t w1和t w2,冷空气或水的进出口温度t 1和t 2;实验用套管的长度l ,内径d 1,换热面积11A d l π=,冷流体的质量流量及比热容,即可求得对流给热系数h 1。
空气-水蒸气对流给热系数测定实验报告
一.实验课程名称 化工原理二.实验项目名称 空气-蒸汽对流给热系数测定 三、实验目的和要求1、了解间壁式传热元件,掌握给热系数测定的实验方法。
2、掌握热电阻测温的方法,观察水蒸气在水平管外壁上的冷凝现象。
3、学会给热系数测定的实验数据处理方法,了解影响给热系数的因素和强化传热的途径。
四.实验内容和原理实验内容:测定不同空气流量下进出口端的相关温度,计算α,关联出相关系数。
实验原理:在工业生产过程中,大量情况下,冷、热流体系通过固体壁面(传热元件)进行热量交换,称为间壁式换热。
如图(4-1)所示,间壁式传热过程由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热所组成。
达到传热稳定时,有()()()()m m W M W p p t KA t t A T T A t t c m T T c m Q ∆=-=-=-=-=221112222111αα (4-1)热流体与固体壁面的对数平均温差可由式(4—2)计算,()()()22112211ln W W W W m W T T T T T T T T T T -----=- (4-2)式中:T W 1 -热流体进口处热流体侧的壁面温度,℃;T W 2 -热流体出口处热流体侧的壁面温度,℃。
固体壁面与冷流体的对数平均温差可由式(4—3)计算,()()()22112211ln t t tt t t t t t t W W W W m W-----=- (4-3)δ TT W t Wt图4-1间壁式传热过程示意图式中:t W 1 - 冷流体进口处冷流体侧的壁面温度,℃;t W 2 - 冷流体出口处冷流体侧的壁面温度,℃。
热、冷流体间的对数平均温差可由式(4—4)计算,()()12211221m t T t T lnt T t T t -----=∆ (4-4)当在套管式间壁换热器中,环隙通以水蒸气,内管管内通以冷空气或水进行对流传热系数测定实验时,则由式(4-1)得内管内壁面与冷空气或水的对流传热系数,()()MW p t t A t t c m --=212222α (4-5)实验中测定紫铜管的壁温t w1、t w2;冷空气或水的进出口温度t 1、t 2;实验用紫铜管的长度l 、内径d 2,l d A 22π=;和冷流体的质量流量,即可计算α2。
对流传热系数测定实验报告
对流传热系数测定实验报告对流传热系数测定实验报告引言:热传导是物质内部传递热量的方式之一,而对流传热则是指通过流体介质传递热量的过程。
对流传热系数是描述该过程的重要参数之一。
本实验旨在通过测定实验方法,确定对流传热系数,并探讨其影响因素。
实验装置和方法:实验装置主要包括一个加热器、一个冷却器、一个测温仪和一根试管。
首先,将试管一端与加热器相连,另一端与冷却器相连。
然后,在试管内部加入一定量的流体介质,如水。
接下来,将加热器加热至一定温度,同时使用测温仪测量试管内部和外部的温度。
通过记录试管内外温度的变化,可以计算出对流传热系数。
实验结果和分析:通过实验测量,我们得到了一组温度数据,并利用这些数据计算出了对流传热系数。
然后,我们将对流传热系数与其他因素进行分析。
首先,我们探讨了流体介质的影响。
我们使用了不同流体介质进行实验,并比较了它们的对流传热系数。
结果表明,不同流体介质的传热性能存在差异。
例如,水的对流传热系数要大于油的对流传热系数。
这是因为水的热导率较高,能够更快地传递热量。
而油的热导率较低,传热速度较慢。
其次,我们研究了流体流速的影响。
我们调节了流体流速,并测量了对流传热系数的变化。
结果显示,随着流速的增加,对流传热系数也会增加。
这是因为流体流速的增加会增加流体与试管壁之间的接触面积,从而增加传热效率。
此外,我们还考察了试管的材料对对流传热系数的影响。
我们使用了不同材料的试管进行实验,并比较了它们的对流传热系数。
结果显示,不同材料的试管对对流传热系数有一定的影响。
例如,金属试管的对流传热系数要大于玻璃试管的对流传热系数。
这是因为金属具有较高的热导率,能够更好地传递热量。
结论:通过本实验,我们成功地测定了对流传热系数,并分析了其影响因素。
实验结果表明,流体介质、流体流速和试管材料都会对对流传热系数产生影响。
在实际应用中,我们可以根据这些影响因素来选择合适的流体介质、控制流速和选择合适的材料,以提高传热效率。
空气—蒸汽对流给热系数测定实验报告及数据、答案之欧阳引擎创编
空气—蒸汽对流给热系数测定欧阳引擎(2021.01.01)一、实验目的⒈通过对空气—水蒸气光滑套管换热器的实验研究,掌握对流传热系数α1的测定方法,加深对其概念和影响因素的理解。
并应用线性回归分析方法,确定关联式Nu=ARe m Pr0.4中常数A、m的值。
⒉通过对管程内部插有螺纹管的空气—水蒸气强化套管换热器的实验研究,测定其准数关联式Nu=BRe m中常数B、m的值和强化比Nu/Nu0,了解强化传热的基本理论和基本方式。
二、实验装置本实验设备由两组黄铜管(其中一组为光滑管,另一组为波纹管)组成平行的两组套管换热器,内管为紫铜材质,外管为不锈钢管,两端用不锈钢法兰固定。
空气由旋涡气泵吹出,由旁路调节阀调节,经孔板流量计,由支路控制阀选择不同的支路进入换热器。
管程蒸汽由加热釜发生后自然上升,经支路控制阀选择逆流进入换热器壳程,其冷凝放出热量通过黄铜管壁被传递到管内流动的空气,达到逆流换热的效果。
饱和蒸汽由配套的电加热蒸汽发生器产生。
该实验流程图如图1所示,其主要参数见表1。
表1 实验装置结构参数实验内管内径d i(mm)16.00 实验内管外径d o(mm)17.92 实验外管内径D i(mm)50 实验外管外径D o(mm)52.5 总管长(紫铜内管)L(m) 1.30 测量段长度l(m) 1.10蒸汽温度图1 空气-水蒸气传热综合实验装置流程图1— 光滑套管换热器;2—螺纹管的强化套管换热器;3—蒸汽发生器;4—旋涡气泵;5—旁路调节阀;6—孔板流量计;7、8、9—空气支路控制阀;10、11—蒸汽支路控制阀;12、13—蒸汽放空口; 15—放水口;14—液位计;16—加水口;三、实验内容1、光滑管①测定6~8个不同流速下光滑管换热器的对流传热系数α1。
②对α1的实验数据进行线性回归,求关联式Nu=ARe m 中常数A 、m 的值。
孔板流量计测量空气流量空气压力蒸汽压力空气入口温度空气出口温度2、波纹管①测定6~8个不同流速下波纹管换热器的对流传热系数α1。
空气—蒸汽对流给热系数测定实验报告及数据、答案
气氛—蒸汽对于流给热系数测定之阳早格格创做一、真验手段⒈通过对于气氛—火蒸气光润套管换热器的真验钻研,掌握对于流传热系数α1的测定要领,加深对于其观念战效用果素的明白.并应用线性返回分解要领,决定联系式Nu=ARe m Pr中常数A、m的值.⒉通过对于管程里里插有螺纹管的气氛—火蒸气加强套管换热器的真验钻研,测定其准数联系式Nu=BRe m中常数B、m的值战加强比Nu/Nu0,相识加强传热的基础表里战基础办法.二、真验拆置本真验设备由二组黄铜管(其中一组为光润管,另一组为波纹管)组成仄止的二组套管换热器,内管为紫铜材量,中管为不锈钢管,二端用不锈钢法兰牢固.气氛由旋涡气泵吹出,由旁路安排阀安排,经孔板流量计,由支路统制阀采用分歧的支路加进换热器.管程蒸汽由加热釜爆收后自然降下,经支路统制阀采用顺流加进换热器壳程,其热凝搁出热量通过黄铜管壁被传播到管内震动的气氛,达到顺流换热的效验.鼓战蒸汽由配套的电加热蒸汽爆收器爆收.该真验过程图如图1所示,其主要参数睹表1.表1 真验拆置结构参数真验内管中径d o(mm)真验中管内径D i(mm)50 真验中管中径D o(mm)总管少(紫铜内管)L(m)丈量段少度l(m)蒸汽温度图1 气氛-火蒸气传热概括真验拆置过程图1— 光润套管换热器;2—螺纹管的加强套管换热器;3—蒸汽爆收器;4—旋涡气泵;5—旁路安排阀;6—孔板流量计;7、8、9—气氛支路统制阀;10、11—蒸汽支路统制阀;12、13—蒸汽搁空心; 15—搁火心;14—液位计;16—加火心;三、真验真量1、光润管①测定6~8个分歧流速下光润管换热器的对于流传热系数α1.②对于α1的真验数据举止线性返回,供联系式Nu=ARe m孔板流量计丈量气氛流量气氛压力蒸汽压力气氛出心温度气氛出心温度中常数A 、m 的值.2、波纹管①测定6~8个分歧流速下波纹管换热器的对于流传热系数α1.②对于α1的真验数据举止线性返回,供联系式Nu=BRe m 中常数B 、m 的值. 四、真验本理 1.准数联系效用对于流传热的果素很多,根据果次分解得到的对于流传热的准数联系为:Nu=CRe m Pr n Gr l (1)式中C 、m 、n 、l 为待定参数.介进传热的流体、流态及温度仄分歧,待定参数分歧.暂时,只可通过真验去决定特定范畴的参数.本真验是测定气氛正在圆管内做强制对于流时的对于流传热系数.果此,不妨忽略自然对于流对于传热膜系数的效用,则Gr 为常数.正在温度变更不太大的情况下,Pr 可视为常数.所以,准数联系式(1)可写成Nu =CRe m (2)Re4du V d ρρπμμ==其中: , 500.02826W/(m.K)d Nu αλλ==℃时,空气的导热系数待定参数C 战m 可通过真验测定蒸汽、气氛的有关数据后,对于式(2)与对于数,返回供得曲线斜率战截距.2.传热量估计努塞我数Nu 大概α1无法曲交用真验测定,只可测定相关的参数并通过估计供得.当通过套管环隙的鼓战蒸汽与热凝壁里交触后,蒸汽将搁出热凝潜热,热凝成火,热量通过间壁传播给套管内的气氛,使气氛的温度降下,气氛从管的终端排出管中,传播的热量由(3)式估计.Q =W e c pc (t 2-t 1)= V ρ1c pc (t 2-t 1) (3) 根据热传播速率Q =KS Δt m (4) 所以 KS Δt m =V ρ1c pc (t 2-t 1) (5)式中:Q ——换热器的热背荷(即传热速率),kJ /s ; We ——热流体的品量流量,kg /s ;V ——热流体(气氛)的体积流量,m 3/s ; ρ1一热流体(气氛)的稀度,kg /m 3;K ——换热器总传热系数,W/(m 2·℃);C pc 一一热流体(气氛)的仄衡比定压热容,kJ/(kg ·K );S ——传热里积,m 2;Remc dαλ=因此:Δt m ——蒸汽与气氛的对于数仄衡温度好,℃.气氛的流量及二种流体的温度等不妨通过百般丈量仪容测得.概括上头各式即可算出传热总系数K. 3.传热膜系数的估计当传热里为仄壁大概者当管壁很薄时,总的传热阻力战传热分阻力的关系可表示为:式中:αl ——气氛正在圆管中强制对于流的传热膜系数,W /(m 2·℃);α2——蒸汽热凝时的传热膜系数,W /(m 2·℃).当管壁热阻不妨忽略(内管为黄铜管而且壁薄b 较薄,黄铜导热系数λ比较大)时,1211111K ααα≈+≈(7) 蒸汽热凝传热膜系数近近大于气氛传热膜系数,则K ≈α1.果此,只消正在真验中测得热、热流体的温度及气氛的体积流量,即可通过热衡算供出套管换热器的总传热系数K 值,由此供得气氛传热膜系数α1. 4.努塞我数战雷诺数的估计式中:λ——气氛导热系数,W /(m ·℃); μ一气氛的粘度,Pa ·s ;d ——套管换热器的内管仄衡曲径,m ; ρ1——进心温度t 1时的气氛稀度,kg /m 3.由于热阻主要集结正在气氛一侧,本真验的传热里积S 与管子的内表面较为合理,即 S =πdl本拆置d=0.0178 m ,l=1.327m. 5.气氛流量战稀度的估计气氛稀度ρ1可按理念气体估计: 式中:p a ——当天大气压,Pa ;t ——孔板流量计前气氛温度,℃,可与t=t 1;气氛的流量由 1/4喷嘴流量计丈量,合并常数后,气氛的体积流量可由(11)式估计11ρRC V =(11)式中:C 0——合并整治的流量系数,其值为C 0=0.001233;R ——喷嘴流量计的压好计示值,mmH 2O. V 1——气氛的体积流量,m 3/s. 五、真验支配 1.真验前的准备(1)背电加热釜加火至液位计上端白线处. (2)查看气氛流量旁路安排阀是可齐开.12731.29(10)101330273pP tρ=⨯+(3)查看一般管支路各统制阀是可已挨开,包管蒸汽战气氛管路的疏通.(4)交通电源总闸,设定加热电压,开用电热锅炉开关,开初加热.2.真验开初(1)当蒸汽压力宁静后,开用旋涡气泵并运止一段时间,包管真验开初时气氛出心温度t(℃)宁静.1(2)安排气氛流量旁路阀的开度大概主阀开度,使孔板流量计的压好计读数为所需的气氛流量值.(3)宁静5-8分钟安排读与压好计读数,读与气氛出心、出心的温度值t、2t(温度丈量可采与热电奇大概温度1计)、气氛压力值p1、气氛进、出心之间压力好p2、蒸汽温度值t3及压力值p3,孔板流量计读数p4.(4)安排气氛流量,沉复(3)与(4)共测6-10组数据(注意:正在气氛进、出心之间压力好p2最大值与最小值之间可分为6-10段).(5)真验历程,要尽大概包管蒸汽温度大概压力宁静,正在蒸汽锅炉加热历程(蒸汽温度大概压力变更较大)不要记录数据.3.真验中断(1)关关加热器开关.(2)过5分钟后关关鼓风机,并将旁路阀齐开. (3)切断总电源.六、真验注意事项1、查看蒸汽加热釜中的火位是可正在仄常范畴内.特天是每个真验中断后,举止下一真验之前,如果创制火位过矮,应即时补给火量.2、必须包管蒸汽降下管线的疏通.正在变换支路时,应先开开需要的支路阀,再关关另一侧,且开开战关关统制阀必须缓缓,预防管线截断大概蒸汽压力过大突然喷出.3、必须包管气氛管线的疏通.即正在交透气机电源之前,三个气氛支路统制阀之一战旁路安排阀(睹图1所示)必须齐开.正在变换支路时,应先关关风机电源,而后开开战关关统制阀.4、安排流量后,应起码宁静5~10分钟后读与真验数据.5、套管换热器中聚集的热火要即时搁掉,免得效用蒸汽传热.七、真验记录及数据处理缺点分解:1.迪图斯-贝我特公式有条件范畴,而真验数据并不是齐正在其适用范畴内,用此公式算出的Nu’战α2’缺点便大概较大.2.真验时,等待时间缺乏,引导数据已宁静时便记录了.热流体给热系数的准数式:Nu/Pr=APr mln(Nu/Pr)=lnA+m ln(Re)lnA=-7.9273 ,A=0.0256另附上本初真验数据:4、对于真验截止举止分解与计划.从图像中线性返回圆程的相关系数去瞅,真验数据截止不是很准确,特天是螺纹管.爆收缺点的根源很多,读数不宁静、换热器保温效验好、换热器使用暂了,污秽较薄,热流量值下落等皆使截止有一定的偏偏好.而且正在处理数据时,采与很多近似处理,而本量真验时很多的条件本去不宁静.正在真验历程中采与改变气氛流量去安排,然而是正在改变气氛流量的共时,其余的数据也会改变,比圆道气氛出心温度,而且正在改变的历程中,要通过一段时间气氛出心温度才会宁静,而咱们测定的温度一定假如那个宁静的温度,所以正在测定中不通过脚够少的时间引导测定的温度不是宁静的温度,所以真验时要注意等待五到格中钟待数据比较宁静时,那样真验截止便比较准确.八、思索题(1)效用传热膜系数的果素有哪些?问:膜的薄度,液体的物性,以及压力温度.另有资料的分子结构及其化教成份、资料沉度、资料干度情景战温度情景.(2)正在蒸气热凝时,若存留不凝性气体,您认为将会有什么效用?该当采与什么步伐?问:对于换热系数效用很大,普遍设念子与消,比圆溴化锂吸支式制热机均伴伴真空泵,其效用便是即时排除系统内的不凝性气体.1)会由于气氛中含有火分制成冰堵.冰堵不但使制热效用下落.而且会引导系统停机.压力不竭落矮,还会益坏压缩机.2)气氛混进压缩腔,由于气氛中含有不凝性气体,如氮气.那些不凝性气体验缩小制热剂的循环量,使制热量落矮.3)而且不凝性气体验滞留正在热凝器的上部管路内,以致本量热凝里积减小,热凝背荷删大,热凝压力降下,进而制热量会落矮.(3)蒸气热凝后,将爆收热凝火,如热凝火不克不迭搁出,乏积后淹埋加热铜管,您认为将会有什么效用?该当采与什么步伐?问:1)会由于气氛中含有火分制成冰堵.冰堵不但使制热效用下落.而且会引导系统停机.压力不竭落矮,还会益坏压缩机.2)气氛混进压缩腔,由于气氛中含有不凝性气体,如氮气.那些不凝性气体验缩小制热剂的循环量,使制热量落矮.3)而且不凝性气体验滞留正在热凝器的上部管路内,以致本量热凝里积减小,热凝背荷删大,热凝压力降下,进而制热量会落矮.(4)本真验中所测定的壁里温度是靠拢蒸气侧的温度,仍旧交近气氛侧的温度?为什么?问:壁里温度是靠拢蒸汽温度.应为壁里温度交近于对于流传热系数大的一侧的温度,而正在真验历程中是以1211111K ααα≈+≈,所以21αα〈,所以壁里温度交近于蒸汽温度. (5)正在真验中有哪些果素效用真验的宁静性?问:气氛战蒸汽的流背,热凝火不即时排走,蒸汽热凝历程中,存留不热凝气体,对于传热的有效用等.。
对流传热系数的测定实验报告
对流传热系数的测定实验报告对流传热系数的测定实验报告一、引言热传导是物质内部热量传递的一种方式,而对流传热是物质表面与流体之间热量传递的一种方式。
对流传热系数是衡量对流传热能力的重要参数,它与流体性质、流动状态、表面特性等因素密切相关。
本实验旨在通过测定不同流体在不同流动状态下的对流传热系数,探究其变化规律。
二、实验装置和方法实验装置主要包括热传导仪、热电偶、温度计、流量计等。
在实验过程中,我们选择了水和空气作为流体介质,分别进行了静止状态和流动状态下的测定。
三、实验结果与分析1. 静止状态下的测定首先,我们将热传导仪放入水中,使其温度稳定在一定值。
然后,通过热电偶和温度计测定水的表面温度和流体温度。
根据实验数据,我们计算得到了水的对流传热系数。
接着,我们将热传导仪放入空气中,同样进行了温度测定。
通过对比水和空气的对流传热系数,我们发现空气的对流传热系数要远小于水的对流传热系数。
这是因为水的导热性能较好,能够更有效地传递热量。
2. 流动状态下的测定接下来,我们改变了实验装置,使流体产生流动。
通过调节流量计和阀门,我们控制了水的流速,并进行了温度测定。
根据实验数据,我们计算得到了不同流速下的对流传热系数。
通过对比不同流速下的对流传热系数,我们发现随着流速的增加,对流传热系数也随之增加。
这是因为流速的增加会增加流体与表面的接触面积,从而增加热量传递的效率。
四、实验误差分析在实验过程中,由于设备精度和操作技巧等因素的限制,可能会引入一定的误差。
例如,温度测量时由于热电偶的位置不准确或者温度计的示数偏差,都会对最终的结果产生影响。
此外,实验中还存在着一些难以控制的因素,比如流体的湍流程度、表面粗糙度等。
这些因素的变化也会对对流传热系数的测定结果造成一定的影响。
五、实验结论通过本实验的测定,我们得出了以下结论:1. 对流传热系数与流体介质的性质密切相关,导热性能较好的介质对流传热系数较大。
2. 对流传热系数与流体流动状态有关,流速的增加会使对流传热系数增加。
对流给热系数的测定实验
对流给热系数的测定一、实验目的1、观察水蒸气在换热管外壁上的冷凝现象,并判断冷凝类型;2、测定空气(或水)在圆直管内强制对流给热系数i α;3、应用线性回归分析方法,确定关联式Nu=ARe m Pr 0.4中常数A 、m 的值。
4、掌握热电阻测温的方法。
二、基本原理在套管换热器中,环隙通以水蒸气,内管管内通以空气或水,水蒸气冷凝放热以加热空气或水,在传热过程达到稳定后,有如下关系式:V ρC P (t 2-t 1)=αi A i (t w -t)m (1-1)式中: V ——被加热流体体积流量,m3/s ; Ρ——被加热流体密度,kg/m3; C P ——被加热流体平均比热,J/(kg ·℃);αi ——流体对内管内壁的对流给热系数,W/(m2·℃); t 1、t 2——被加热流体进、出口温度,℃;A i ——内管的外壁、内壁的传热面积,m2;(T -T W )m ——水蒸气与外壁间的对数平均温度差,℃; 22112211ln )()()(w w w w m T T T T T T T T Tw T -----=- (1-2)(t w -t)m ——内壁与流体间的对数平均温度差,℃;22112211ln )()()(t t t t t t t t t t w w w w m w -----=-(1-3)式中:T 1、T 2——蒸汽进、出口温度,℃;T w1、T w2、t w1、t w2——外壁和内壁上进、出口温度,℃。
当内管材料导热性能很好,即λ值很大,且管壁厚度很薄时,可认为T w1=t w1,T w2=t w2,即为所测得的该点的壁温。
由式(1-3)可得:m w P i t t A t t C V )()(012--=ρα (1-4)若能测得被加热流体的V 、t 1、t 2,内管的换热面积A i ,以及水蒸气温度T ,壁温T w1、T w2,则可通过式(1-4)算得实测的流体在管内的(平均)对流给热系数αi 。
实验报告二:对流传热系数及准数关联式常数的测定
对流传热系数及准数关联式常数的测定实验报告1.前言研究说明,参加到换热器换热管中的扰流子添加物可以使换热管内流动的液体产生明显的螺旋运动。
换句话说,在换热器换热管中参加扰流子添加物,就相当于在换热器换热管中参加空隙率ε≥95%的多孔体,当换热器换热管中流动的液体流经这些扰流子添加物以后,流道内将产生明显的弥散流动效应,在低雷诺数下〔Re≥300〕,由于弥散流动的促进,使换热器换热管中的液体转变为湍流。
湍流状态的流动液体其总热阻是所有流态液体中最小的,由于换热器换热管中湍流状态的流动液体热阻非常小,所以,换热器的传热系数〔K〕值将大大增加。
在高的传热系数〔K〕值状态下,换热器中扰流子强化传热的效果就会非常明显。
当然换热器中的扰流子对流经换热管的不同介质,其强化传热的效果是有区别的。
并且,换热管内扰流元件的形状和在传热面上的安装方法,对传热和流阻都有影响,一般可通过实验确定其最正确形式。
例如试验说明:在管道的全长填满螺旋形金属丝与连续设置螺旋圈相比,后者在传热性能不变时可减小流阻。
关于扰流子强化传热的原理,还有许多其它见解,有的专家认为扰流子强化传热是基于加大了传热面积和粗糙度,这无疑是正确的。
但试验说明,即使不紧贴壁面安装,则轴向固定在流道中心的扰流子也能使α值加大,有人解释为填充物能产生持续不断的涡流,并沿流向产生一个中心旋转流,在离心力的影响下使管中心的流体与壁面边界层流体充分混合。
从而减薄了边界层,强化了传热。
总的看,有关扰流子强化传热的理论还不完备和一致,一些数据仅来自实验,有待于更多的科研人员开发和利用。
在换热器换热管中加扰流子添加物,最明显的特点就是大大增强了换热管内侧的换热系数。
试验说明,在换热器换热管中加扰流子添加物,换热管内侧换热系数可比光管提高3.5倍以上。
扰流子强化传热除了减少金属消耗,它还可以提高工厂热能利用效率,降低能耗。
目前,一些设计追求高热强度,而管壳式换热器由于传热效率低,设计中采用的主要手段是选择提高对数平均温差,这要导致能耗的大幅度增加。
对流给热系数测定实验报告
实验名称:对流给热系数测定实验一、实验目的1.测定水蒸汽在圆直水平管外冷凝给热系数α0及冷流体(空气或水)在圆直水平管内的强制对流给热系数αi。
2.观察水蒸汽在圆直水平管外壁上的冷凝状况。
3 掌握热电阻测温方法。
4 掌握计算机自动控制调节流量的方法。
5 了解涡轮流量传感器和智能流量积算仪的工作原理和使用方法。
6 了解电动调节阀压力传感器和变频器的工作原理和使用方法。
7 掌握化工原理实验软件库的使用。
二、实验装置流程示意图及实验流程简述水蒸汽自蒸汽发生器途经阀、阀由蒸汽分布管进入套管换热器的环隙通道, 冷凝水由阀、阀排入水沟。
冷流体水或来自由变频器控制的旋涡气泵产生的空气依次经过阀或电动调节阀、涡轮流量计、水或空气流量调节阀进入套管换热器的内管, 被加热后排入下水道或放空。
三、简述实验操作步骤及安全注意事项空气~水蒸汽系统1.开启电源。
依次打开控制面板上的总电源、仪表电源。
2.启动旋涡气泵.调节手动调节阀使风量最大。
3.排蒸汽管道的冷凝水。
打开阀、阀, 排除套管环隙中积存的冷凝水, 然后适当关小阀, 注意阀不能开得太大, 否则蒸气泄漏严重。
4.调节蒸汽压力。
打开阀, 蒸汽从蒸汽发生器沿保温管路流至阀;慢慢打开阀, 蒸汽开始流入套管环隙并对内管的外表面加热, 控制蒸汽压力稳定在0.02MPa.不要超过0.05MPa, 否则蒸汽不够用。
5.分别测定不同流量下所对应的温度。
当控制面板上的巡检仪显示的11个温度、压力数据及智能流量积算仪上显示的空气流量稳定后,记录下最大空气流量下的全部的温度、压力、流量数据。
然后再调节阀,分别取最大空气流量的1/2及1/3,分别记录下相应流量下的稳定的温度和压力数据,这样总共有3个实验点。
6.实验结束后,关闭蒸汽阀和阀,关闭仪表电源及总电源。
水~水蒸汽系统操作步骤、方法基本上同空气~水蒸汽体系一样, 只是冷流体由空气改为冷水, 实验点仍然取3个。
注意事项1 一定要在套管换热器内管输入以一定量的水或空气, 方可开启蒸汽阀门, 且必须在排除蒸汽管线上原积存的冷凝水后, 才可把蒸汽通入套管换热器中。
实验报告二:对流传热系数及准数关联式常数的测定
对流传热系数及准数关联式常数的测定实验报告1.前言研究表明,加入到换热器换热管中的扰流子添加物可以使换热管内流动的液体产生明显的螺旋运动。
换句话说,在换热器换热管中加入扰流子添加物,就相当于在换热器换热管中加入空隙率ε≥95%的多孔体,当换热器换热管中流动的液体流经这些扰流子添加物以后,流道内将产生明显的弥散流动效应,在低雷诺数下(Re≥300),由于弥散流动的促进,使换热器换热管中的液体转变为湍流。
湍流状态的流动液体其总热阻是所有流态液体中最小的,由于换热器换热管中湍流状态的流动液体热阻非常小,所以,换热器的传热系数(K)值将大大增加。
在高的传热系数(K)值状态下,换热器中扰流子强化传热的效果就会非常明显。
当然换热器中的扰流子对流经换热管的不同介质,其强化传热的效果是有区别的。
并且,换热管内扰流元件的形状和在传热面上的安装方法,对传热和流阻都有影响,一般可通过实验确定其最佳形式。
例如试验表明:在管道的全长填满螺旋形金属丝与间断设置螺旋圈相比,后者在传热性能不变时可减小流阻。
关于扰流子强化传热的原理,还有许多其它见解,有的专家认为扰流子强化传热是基于加大了传热面积和粗糙度,这无疑是正确的。
但试验表明,即使不紧贴壁面安装,则轴向固定在流道中心的扰流子也能使α值加大,有人解释为填充物能产生持续不断的涡流,并沿流向产生一个中心旋转流,在离心力的影响下使管中心的流体与壁面边界层流体充分混合。
从而减薄了边界层,强化了传热。
总的看,有关扰流子强化传热的理论还不完备和一致,一些数据仅来自实验,有待于更多的科研人员开发和利用。
在换热器换热管中加扰流子添加物,最明显的特点就是大大增强了换热管内侧的换热系数。
试验表明,在换热器换热管中加扰流子添加物,换热管内侧换热系数可比光管提高3.5倍以上。
扰流子强化传热除了减少金属消耗,它还可以提高工厂热能利用效率,降低能耗。
目前,一些设计追求高热强度,而管壳式换热器由于传热效率低,设计中采用的主要手段是选择提高对数平均温差,这要导致能耗的大幅度增加。
对流传热系数的测定实验报告(实验研究)
浙江大学化学实验报告课程名称:过程工程原理实验甲实验名称:对流传热系数的测定指导教师:专业班级:姓名:学号:同组学生:实验日期:实验地点:目录一、实验目的和要求 (2)二、实验流程与装置 (2)三、实验内容和原理 (3)1.间壁式传热基本原理 (4)2.空气流量的测定 (5)3.空气在传热管内对流传热系数的测定 (6)3.1牛顿冷却定律法 (6)3.2近似法 (6)3.3简易Wilson图解法 (8)4.拟合实验准数方程式 (8)5.传热准数经验式 (9)四、操作方法与实验步骤 (10)五、实验数据处理 (11)1.原始数据: (11)2.数据处理 (11)六、实验结果 (15)七、实验思考 (16)一、实验目的和要求1)掌握空气在传热管内对流传热系数的测定方法,了解影响传热系数的因素和强化传热的途径;2)把测得的数据整理成形式的准数方程,并与教材中公认经验式进行比较;3)了解温度、加热功率、空气流量的自动控制原理和使用方法。
二、实验流程与装置本实验流程图(横管)如下图1所示,实验装置由蒸汽发生器、孔板流量计、变频器、套管换热器(强化管和普通管)及温度传感器、只能显示仪表等构成。
空气-水蒸气换热流程:来自蒸汽发生器的水蒸气进入套管换热器,与被风机抽进的空气进行换热交换,不凝气或未冷凝蒸汽通过阀门(F3和F4)排出,冷凝水经排出阀(F5和F6)排入盛水杯。
空气由风机提供,流量通过变频器改变风机转速达到自动控制,空气经孔板流量计进入套管换热器内管,热交换后从风机出口排出。
注意:普通管和强化管的选取:在实验装置上是通过阀门(F1和F2)进行切换,仪表柜上通过旋钮进行切换,电脑界面上通过鼠标选择,三者必学统一。
图1 横管对流传热系数测定实验装置流程图图中符号说明如下表: 符号 名称 单位备注V 空气流量 m 3/h 紫铜管规格Φ19×1.5mm 有效长度1020mmF1,F2为管路切换阀门 F3,F4为不凝气排出阀 F5,F6为冷凝水排出阀t1 空气进口温度 ℃ t2 普通管空气出口温度 ℃ t3 强化管空气出口温度 ℃ T1 蒸汽发生器内的蒸汽温度 ℃ T2普通管空气出口端铜管外壁温度 ℃T3 普通管空气进口端铜管外壁温度 ℃T4 普通管外蒸汽温度 ℃ T5强化管空气出口端铜管外壁温度 ℃T6 强化管空气进口端铜管外壁温度 ℃T7强化管外蒸汽温度℃三、实验内容和原理在工业生产过程中,大量情况下,采用间壁式换热方式进行换热。
空气—蒸汽对流给热系数测定实验报告及数据、答案
空气—蒸汽对流给热系数测定一、实验目的⒈通过对空气—水蒸气光滑套管换热器的实验研究,掌握对流传热系数α1的测定方法,加深对其概念和影响因素的理解。
并应用线性回归分析方法,确定关联式Nu=ARe m Pr0.4中常数A、m的值。
⒉通过对管程内部插有螺纹管的空气—水蒸气强化套管换热器的实验研究,测定其准数关联式Nu=BRe m中常数B、m的值和强化比Nu/Nu0,了解强化传热的基本理论和基本方式。
二、实验装置本实验设备由两组黄铜管(其中一组为光滑管,另一组为波纹管)组成平行的两组套管换热器,内管为紫铜材质,外管为不锈钢管,两端用不锈钢法兰固定。
空气由旋涡气泵吹出,由旁路调节阀调节,经孔板流量计,由支路控制阀选择不同的支路进入换热器。
管程蒸汽由加热釜发生后自然上升,经支路控制阀选择逆流进入换热器壳程,其冷凝放出热量通过黄铜管壁被传递到管内流动的空气,达到逆流换热的效果。
饱和蒸汽由配套的电加热蒸汽发生器产生。
该实验流程图如图1所示,其主要参数见表1。
表1 实验装置结构参数图1 空气-水蒸气传热综合实验装置流程图1— 光滑套管换热器;2—螺纹管的强化套管换热器;3—蒸汽发生器;4—旋涡气泵; 5—旁路调节阀;6—孔板流量计;7、8、9—空气支路控制阀;10、11—蒸汽支路控制阀;12、13—蒸汽放空口; 15—放水口;14—液位计;16—加水口;孔板流量计测量空气流量空气压力蒸汽压力空气入口温度蒸汽温度空气出口温度三、实验内容1、光滑管①测定6~8个不同流速下光滑管换热器的对流传热系数α1。
②对α1的实验数据进行线性回归,求关联式Nu=ARe m 中常数A 、m 的值。
2、波纹管①测定6~8个不同流速下波纹管换热器的对流传热系数α1。
②对α1的实验数据进行线性回归,求关联式Nu=BRe m 中常数B 、m 的值。
四、实验原理1.准数关联影响对流传热的因素很多,根据因次分析得到的对流传热的准数关联为: Nu=CRe m Pr n Gr l(1)式中C 、m 、n 、l 为待定参数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验名称:对流给热系数测定实验
一、实验目的
1. 测定水蒸汽在圆直水平管外冷凝给热系数α0及冷流体(空气或水)在圆直水平管内的强制对流给热系数αi。
2. 观察水蒸汽在圆直水平管外壁上的冷凝状况。
3 掌握热电阻测温方法。
4 掌握计算机自动控制调节流量的方法。
5 了解涡轮流量传感器和智能流量积算仪的工作原理和使用方法。
6 了解电动调节阀压力传感器和变频器的工作原理和使用方法。
7 掌握化工原理实验软件库的使用。
二、实验装置流程示意图及实验流程简述
水蒸汽自蒸汽发生器○2途经阀○6、阀○7由蒸汽分布管进入套管换热器的环隙通道,冷凝水由阀○9、阀○8排入水沟。
冷流体水或来自由变频器○12控制的旋涡气泵产生的空气依次经过阀○4或电动调节阀○5、
10进入套管换热器的内管,被加热后排入下水道或放空。
涡轮流量计○13、水或空气流量调节阀○
三、简述实验操作步骤及安全注意事项
空气~水蒸汽系统
1. 开启电源。
依次打开控制面板上的总电源、仪表电源。
2. 启动旋涡气泵○1, 调节手动调节阀○10使风量最大。
3.排蒸汽管道的冷凝水。
打开阀○9、阀○8,排除套管环隙中积存的冷凝水,然后适当关小阀○8,注意阀○8不能开得太大,否则蒸气泄漏严重。
4. 调节蒸汽压力。
打开阀○6,蒸汽从蒸汽发生器○2沿保温管路流至阀○7;慢慢打开阀○7,蒸汽开始流入套管环隙并对内管的外表面加热,控制蒸汽压力稳定在0.02MPa, 不要超过0.05MPa,否则蒸汽不够用。
5. 分别测定不同流量下所对应的温度。
当控制面板上的巡检仪显示的11个温度、压力数据及智能流量积算仪上显示的空气流量稳定后,记录下最大空气流量下的全部的温度、压力、流量数据。
然后再调节阀○6,分别取最大空气流量的1/2及1/3,分别记录下相应流量下的稳定的温度和压力数据,这样总共有3个实验点。
6. 实验结束后,关闭蒸汽阀○7和阀○6,关闭仪表电源及总电源。
水~水蒸汽系统
操作步骤、方法基本上同空气~水蒸汽体系一样,只是冷流体由空气改为冷水,实验点仍然取3个。
注意事项
1 一定要在套管换热器内管输入以一定量的水或空气,方可开启蒸汽阀门,且必须在排除蒸汽管线上原积存的冷凝水后,才可把蒸汽通入套管换热器中。
2 操作过程中,压力一般控制在0.05Mpa以下。
3 开始通入蒸汽时,要缓慢通入换热器中,由‘冷态’变为‘热态’不得少于20分钟。
四、实验装置的主要设备仪器一览表
五、学习体会与建议
实验中,冷凝水不及时排走,附着在管外壁上,增加了一项热阻,降低了传热速率。
在外管最低处设置排水口,及时排走冷凝水。
采用不同压强的蒸汽进行实验,对α关联式基本无影响。
因为α∝(ρ2gλ3r/μd△t)1/4,当蒸汽压强增加时,r和△均增加,其它参数不变,故(ρ2gλ3r/μd△t)1/4变化不大,所以认为蒸汽压强对α关联式无影响。