高等数学第一章测试题
高等数学第一章总习题及答案
![高等数学第一章总习题及答案](https://img.taocdn.com/s3/m/b8ac3efa770bf78a6529548c.png)
7. 已知 lim
x →0
f ( x) ) sin x = 3 , 求 lim f ( x) . x →0 x 2 2x − 1
解
因为 lim(2 − 1) = 0 , lim
x →0
x
ln(1 +
x →0
f ( x) ) sin x = 3 , 故必有 lim ln(1 + f ( x) ) = 0 , x →0 sin x 2x − 1
2
2
x
1 1 . = ( )2 = 2 2
1
(4) (5) (6)
lim
x →0
1 x sin x 1 = lim 2 2 = . x →0 2 x
1
x
lim(1 + 3tan 2 x)cot
x →0
= [lim(1 + 3tan 2 x) 3tan x ]3 = e3 .
2
x →0
设 k 为任一个大于 2c 的自然数, 则当 n > k 时,
0 < x ≤ e, 在 x = e 处, lim+ f ( x) = ln e = 1 , lim− f ( x) = 1 , x →e x →e x > e,
故 f ( x) 在 x = e 处连续, 故函数连续区间为 (0, + ∞) .
9.
⎧ cos x , x ≥ 0, ⎪ ⎪x + 2 设 f ( x) = ⎨ 要使 f ( x) 在 (−∞, + ∞) 内连续, 应如何选择 ⎪ a − a − x , x < 0, ⎪ x ⎩
n →∞ n →∞
(B) 无界数列必定发散; (D) 单调数列必有极限.
yn . xn
高等数学第一章测试卷
![高等数学第一章测试卷](https://img.taocdn.com/s3/m/fc11a06379563c1ec4da7116.png)
高等数学第一章测试卷(B )一、选择题。
(每题4分,共20分)1.假设对任意的∈x R ,都有)()()(x g x f x ≤≤ϕ,且0)]()([lim =-∞→x x g x ϕ,则)(lim x f x ∞→( ) A.存在且等于零 B.存在但不一定为零 C.一定不存在 D.不一定存在2.设函数nn x x x f 211lim )(++=∞→,讨论函数)(x f 的间断点,其结论为( ) A.不存在间断点 B.存在间断点1=x C.存在间断点0=x D. 存在间断点1-=x3.函数222111)(xx x x x f +--=的无穷间断点的个数为( ) A. 0 B. 1 C. 2 D. 34.设函数)(x f 在),(+∞-∞内单调有界,}{n x 为数列,下列命题正确的是( )A.若}{n x 收敛,则{)(n x f }收敛B.若}{n x 单调,则{)(n x f }收敛C.若{)(n x f }收敛,则}{n x 收敛D.若{)(n x f }单调,则}{n x 收敛5.设}{},{},{n n n c b a 均为非负数列,且∞===∞→∞→∞→n n n n n n c b a lim ,1lim ,0lim ,则( ) A. n n b a <对任意n 成立 B. n n c b <对任意n 成立C. 极限n n n c a ∞→lim 不存在D. 极限n n n c b ∞→lim 不存在 二、填空题(每题4分,共20分)6.设x x x f x f x 2)1(2)(,2-=-+∀,则=)(x f ____________。
7.][x 表示取小于等于x 的最大整数,则=⎥⎦⎤⎢⎣⎡→x x x 2lim 0__________。
8.若1])1(1[lim 0=--→x x e a xx ,则实数=a ___________。
9.极限=⎪⎪⎭⎫ ⎝⎛+-∞→x x b x a x x ))((lim 2___________。
高等数学第一章测试题
![高等数学第一章测试题](https://img.taocdn.com/s3/m/952d3b85a0116c175f0e48fa.png)
高等数学(上)第一章函数与极限测试题1.设)(x f y =的定义域是]1,0(,x x ln 1)(-=ϕ,则复合函数)]([x f y ϕ=的定义域为 ;2.函数)12ln(2712arcsin 2--+-=x xx x y 的定义域 ;3.下列哪些函数相同 ; (1) x ln 2与2ln x ; (2)2x 与x ; (3) x 与x x sgn .4.函数)1ln(2x x y ++=的奇偶性为 ;函数xex y 2=的奇偶性为 ;5. (1) 设52)2(2+-=+x x x f ,则=-)2(x f ; (2) 设x e f x =+)1(,则=)(x f ; (3)设221)1(x x x x f +=+,则=)(x f . .6.计算下列各极限: (1) 13322lim223++-→n n n n ; (2) ∑=∞→nk n nk 12lim; (3)))1(1321211(lim +++⋅+⋅∞→n n n ;(4) )2141211(lim nn +++∞→ ; (5) 332)13)(2)(1(limnn n n n +++→; (6) )1(lim n n n -++∞→;(7) nnn n n 3232lim+-+∞→7.计算下列各极限: (1) 15lim3+-→x x x ; (2)15865lim223+-+-→x x x x x ; (3)hx h x h 220)(lim-+→; (4))1113(lim 31xxx ---→(5) 121lim22---∞→x x x x ; (6)31lim2+++∞→x x x x ; (7)157134lim32-++-∞→x x x x x ; (8) 203050)3()12()52(lim+++∞→x x x x ;(9) 145lim1---→x xx x8.计算下列各极限: (1) xx x 1sinlim 2→; (2) 11sin11lim22-++-∞→x x x x x ; (3) xxx arctan lim∞→9(1) 如果 51lim21=-++→xb ax x x ,求a 与b 的值。
智慧树-高等数学1-网课章节测试答案
![智慧树-高等数学1-网课章节测试答案](https://img.taocdn.com/s3/m/845cc63c11a6f524ccbff121dd36a32d7375c78a.png)
A.
;
B.
.
C.
;
D.
;
正确
本题总得分2分
总分
第1部分
Copyright © 2003-现在 Zhihuishu. All rights reserved.沪ICP备10007183号-5
沪公网备31010402003974号电子营业执照
高等数学1
在线学堂
第五章测试
得 分:
10
评 语:
高等数学1
第一章测试
1
【单选题】 (2分)
下列命题正确的是( )。
A.
无界变量一定是无穷大量
B.
无穷小量是绝对值很小很小的数
C.
无穷小量的倒数是无穷大量
D.
无穷小量是以零为极限的变量
正确
本题总得分2分
2
【单选题】 (2分)
计算: ( ).
A.
B.
0
C.
1
D.
2
正确
本题总得分2分
3
【单选题】 (2分)
A.
在点 处连续
B.
极限 不存在
C.
在点 处可导
D.
在点 处有定义
正确
本题总得分2分
5
【单选题】 (2分)
若 ,则 = ( ).
A.
B.
C.
D.
正确
本题总得分2分
6
【单选题】 (2分)
如果 ,那么 = ( ).
A.
B.
C.
D.
正确
本题总得分2分
总分
第1部分
Copyright © 2003-现在 Zhihuishu. All rights reserved.沪ICP备10007183号-5
高等数学同济第八版第一章考试试卷
![高等数学同济第八版第一章考试试卷](https://img.taocdn.com/s3/m/c632cd7bfd4ffe4733687e21af45b307e871f9ef.png)
高等数学同济第八版第一章考试试卷一、选择题(每题3分,共30分)1. 函数y = √(9 - x^2) + (1)/(√(x - 1))的定义域是()A. (1,3]B. [ - 3,3]C. (1,9]D. [1,3]2. 设f(x)=<=ft{begin{array}{ll}x^2,x≤slant 0 sin x,x > 0end{array}right.,则f(0)等于()A. 0.B. 1.C. -1D. 不存在。
3. 函数y = (1)/(x - 1)在区间(1,2)内是()A. 单调递增且有界。
B. 单调递增且无界。
C. 单调递减且有界。
D. 单调递减且无界。
4. lim_x→1frac{x^2-1}{x - 1}=()A. 0.B. 1.C. 2.D. 不存在。
5. lim_x→∞(1+(1)/(x))^2x=()A. eB. e^2C. (1)/(e)D. (1)/(e^2)6. 当x→0时,与x是等价无穷小的是()A. sin^2xB. tan xC. ln(1 + x)D. 1-cos x7. lim_x→0(sin 3x)/(kx)= 2,则k=()A. (3)/(2)B. (2)/(3)C. (1)/(2)D. (1)/(3)8. 函数y = f(x)在点x = a处连续是f(x)在点x = a处可导的()A. 充分必要条件。
B. 充分非必要条件。
C. 必要非充分条件。
D. 既非充分也非必要条件。
9. 设y = lncos x,则y^′=()A. tan xB. -tan xC. cot xD. -cot x10. 设y = x^e+e^x+ln x + e,则y^′=()A. ex^e - 1+e^x+(1)/(x)B. x^e+e^x+(1)/(x)C. ex^e+e^x+(1)/(x)D. e^x+e^x+(1)/(x)二、填空题(每题3分,共15分)1. 函数y = (√(x + 1))/(x - 1)的间断点是______。
高等数学1第1-3章测试题
![高等数学1第1-3章测试题](https://img.taocdn.com/s3/m/5e489989e53a580216fcfe5b.png)
《高等数学》(上)第1-3章自测题使用对象:2012级计机系、电子系本科学生一、填空题:1.设,0,cos 0,)(⎩⎨⎧>≤=-x x x e x f x 则=-)1(f ,=-)1(2x f .2.设函数3arcsin2lg)(x x x x f +-=,则它的定义域是 .3.当0→x 时,1132-+ax 与1cos -x 为等价无穷小,则a=4.如果⎪⎩⎪⎨⎧=≠-+=0,00,12sin )(2x x xe x xf ax 在),(+∞-∞内连续,则a =5.曲线⎩⎨⎧=+=321t y t x 在2=t 处的切线方程为 ,法线方程为 6.设函数21()1x x f x ax bx ⎧≤=⎨+>⎩在点1x =处可导,则a = ,b = .7. 设函数()f u 可导, 若3(cos 2)y f x x =+, 则dy dx=.8. 设2()y f x x =+且()f u 可导,则y ''= . 9. 设201223825y x x x =+-+,则(30)y = . 10.设x xe x f =)(,则(10)()f x =.11.设y x y +=tan ,则____________dy =12.已知,arctan )(,2323/x x f x x f y =⎪⎭⎫⎝⎛+-=则==0x dxdy __________________13.函数233x x y -=在__________单调递减,其图形在 是凹的.14.函数322312)(x x x x f -+=在 处取得极小值,在 处取得极大值,点 是拐点. 15.21xy x=+的图形有铅直渐近线 ;有斜渐近线 .16.若函数32y ax bx cx d =+++在0x =处有极值0y =,点(1,1)是拐点,则a = , b =,c = ,d = . 二、单项选择题:1. 下列函数在给定的变化过程中不是无穷小量的是( ).(A )1()x f x e =, 0x +→ (B )()ln f x x =,1x → (C )()arctan 2f x xπ=-,x →+∞ (D)()f x =x →∞2. 设22()4x f x x +=-, 则2x =-是()f x 的( ).(A) 连续点(B) 可去间断点 (C) 跳跃间断点 (D) 第二类间断点 3. 当0x →时, ( )与2x 是等价无穷小.(A)2ln(1)x + (B)21cos x - (C)2sin 1x + (D)2x x + 4.已知0()limx f x x→=,且(0)1f =,那么( )(A )()f x 在0x =处不连续。
高数第一章测试题
![高数第一章测试题](https://img.taocdn.com/s3/m/0a13cf6742323968011ca300a6c30c225801f06a.png)
高数第一章测试题一、选择题1. 极限的定义中,ε的值可以是()。
A. 任意正实数B. 固定正实数C. 非负整数D. 正整数2. 函数f(x)在x=0处连续的充要条件是()。
A. 有定义B. 极限存在C. 极限值等于函数值D. 左右极限相等3. 下列函数在x=0处不可导的是()。
A. y = x^2B. y = sin(x)C. y = 1/xD. y = e^x4. 定积分的几何意义是()。
A. 曲线与x轴所围成的面积B. 曲线与y轴所围成的面积C. 曲线与直线y=a所围成的面积D. 曲线与直线x=a所围成的面积5. 微分的物理意义是()。
A. 速度B. 加速度C. 位移D. 路程二、填空题1. 极限lim(x→0) (sin(x) / x) 的值为______。
2. 函数y = 2x在x=2处的导数为______。
3. 定积分∫(0,1) x^2 dx 的值为______。
4. 微分d(y) = (2x + 3)dx,对应的原函数是______。
5. 曲线y = x^3 + 2x在x=1处的切线斜率为______。
三、计算题1. 求函数f(x) = 3x^2 - 2x + 1在x=1处的导数。
2. 计算极限lim(x→∞) (1 + 1/x)^x。
3. 求定积分∫(0,2) e^x dx。
4. 求微分d(y) = (x^2 + 3x)e^x dx的原函数。
5. 求曲线y = 2x^3 - 3x^2在x=-1处的切线方程。
四、应用题1. 一个物体的速度v(t) = 3t^2 - 2t + 1,求在时间t=2时的速度和加速度。
2. 一块矩形土地的长为x米,宽为(x-10)米,土地的周长为60米,求矩形土地的面积。
3. 一个圆的半径以每秒0.5厘米的速度增长,如果初始半径为2厘米,求10秒后圆的面积。
4. 一个水箱的容积V(x) = x^2 - 4x + 5,现在水箱中有水x^2 - 2x + 3立方米,水面高度为h米,求水箱中水的深度。
高等数学第一章单元测验试题及答案
![高等数学第一章单元测验试题及答案](https://img.taocdn.com/s3/m/485f9563bc64783e0912a21614791711cd797916.png)
4.k 取何值时,函数⎪⎩⎪⎨⎧≥+<=0,20,2tan )(x k x x x x x f 在0=x 处连续.5.判别函数11arctan )(2++=xx x x f 在0=x 处的间断点的类型.6.用极限定义证明:123182lim 23=--→x x x .(δε-定义).7.求极限n n n 25sin 2lim ∞→。
8.求极限145lim 1---→x x x x 。
9.若0)11lim(2=--++∞→b ax x x x ,试确定常数a 、b 的值.10.已知函数)(x f 在],[b a 上连续,且b b f a a f 2)(,2)(≤≥,证明存在],[b a ∈ξ,使得ξξ2)(=f 。
5.判别函数11arctan )(2++=xx x x f 在0=x 处的间断点的类型.解:函数在0=x 处无定义,所以函数在0=x 处间断,…………3分又)(lim 0x f x →)11arctan (lim 20++=→xx x x 1100=++=,所以0=x 是第一类可去间断点.…….10分6.用极限定义证明:123182lim 23=--→x x x .(δε-定义).证明:0>∀ε,要使|123)3)(3(2||123182|2--+-=---x x x x x ε<-=-+=|3|2|1262|x x ,………….4分只要2|3|ε<-x 。
取2εδ=,………….8分则当δ<-<|3|0x 时,有|123182|2---x x ε<-=|3|2x ,从而有123182lim 21=--→x x x 。
………….10分7.求极限n n n 25sin 2lim ∞→。
解:n n n 25sin 2lim ∞→=nn n 2125sin lim ∞→--------------------------------------------------------------------------------5分52525sin lim ⋅=∞→nn n 5=-----------------------------------------------------------------------10分8.求极限145lim 1---→x x x x 。
高数测试卷一及答案(第一章)
![高数测试卷一及答案(第一章)](https://img.taocdn.com/s3/m/d76cef2231b765ce050814dd.png)
高数第一章测试一、选择题(每题5分)1、当x →0时,下列函数哪一个是其他三个的高阶无穷小( )A .x 2 B. 1-cos x C. x - tan x D. ln(1+x 2)答案:C;211cos ~2x x -,22ln(1)~x x +, 222222000011tan cos 11sin 1cos lim lim lim lim 022cos 2cos x x x x x x x x x x x x x x x→→→→---===-=, ∴该选(C )2、设当x →0时,(1-cos x )ln(1+x 2)是比x sin x n 高阶的无穷小,而x sin x n 是比(2x e )高阶的无穷小,则正整数n 为()A.1B.2C.3D.4答案:B ;因为当0x →时,224121(1cos )ln(1)sin ,(1)2n n x x x x x x x e x +-+-,,所以214n <+<满足题设条件的2n =。
故选B 。
3、设232)(-+=x x x f ,则当x →0时() A. )(x f 与x 是等价无穷小量 B. )(x f 与x 是同阶但非等价无穷小量C. )(x f 与比x 较高阶的无穷小量D. )(x f 与比x 较低阶的无穷小量 答案:B ;【解法1】ln 22ln32121ln 2(ln 2)2!131ln 3(ln 3)2!()232(ln 2ln 3)()x x x x x x e x x e x x f x x x ο==+++ ==+++∴=+-=++ 故0x →时()f x 与x 是同阶但非等价无穷小量。
【解法2】 000()2322ln 23ln 3lim lim lim ln 2ln 31x x x x x x x f x x x →→→+-+===+ ∴0x →时()f x 与x 是同阶但非等价无穷小量。
4、下列极限存在的是() A.x x x x 1arctan sin lim 0→ B. x x x x 1arctan sin lim 0→ C. x x x x 1arctan sin lim 0→ D. x x x x 1arctan sin lim 0→答案:A;因为00sin sin 11lim arctan (1)()lim arctan 12222x x x x x x x x ππππ-→→=--==⨯=+,。
(完整版)同济大学第六版高等数学第一章综合测试题
![(完整版)同济大学第六版高等数学第一章综合测试题](https://img.taocdn.com/s3/m/400c10f21ed9ad51f01df2cb.png)
第一章综合测试题一、填空题1、函数1()arccos(1)f x x =-的定义域为 . 2、设()2ln f x x =,[()]ln(1ln )fg x x =-, 则()g x = .3、已知1tan ,0,()ln(1), 0ax x e e x f x x a x +⎧+-≠⎪=+⎨⎪=⎩在0x =连续,则a = . 4、若lim 25nn n c n c →∞+⎛⎫= ⎪-⎝⎭,则c = . 5、函数y =的连续区间为 .二、选择题1、 设()f x 是奇函数,()g x 是偶函数, 则( )为奇函数.(A )[()]g g x (B )[()]g f x (C )[()]f f x (D )[()]f g x2、 设)(x f 在(,)-∞+∞内单调有界, {}n x 为数列,则下列命题正确的是( ).(A )若{}n x 收敛,则{()}n f x 收敛 (B )若{}n x 单调,则{()}n f x 收敛(C )若{()}n f x 收敛,则{}n x 收敛 (D )若{()}n f x 单调,则{}n x 收敛 3、 设21(2)cos ,2,()4 0, 2,x x f x x x ⎧+≠±⎪=-⎨⎪=±⎩ 则()f x ( ). (A )在点2x =,2x =-都连续 (B )在点2x =,2x =-都间断(C )在点2x =连续,在点2x =-间断 (D )在点2x =间断,在点2x =-连续4、 设lim 0n n n x y →∞=,则下列断言正确的是( ). (A )若{}n x 发散,则{}n y 必发散 (B )若{}n x 无界,则{}n y 必有界(C )若{}n x 有界,则{}n y 必为无穷小 (D )若1n x ⎧⎫⎨⎬⎩⎭收敛 ,则{}n y 必为无穷小 5、当0x x →时,()x α与()x β都是关于0x x -的m 阶无穷小,()()x x αβ+是关于0x x -的n 阶无穷小,则( ).(A )必有m n = (B )必有m n > (C )必有m n ≤ (D )以上情况皆有可能 三、设2,0,1()(||),(),0.2x x f x x x x x x ϕ<⎧=+=⎨≥⎩ 求[()]f x ϕ,[()]f x ϕ. 四、求极限1、22lim(4)tan 4x x x π→-2、3113lim 11x x x →⎛⎫- ⎪--⎝⎭ 3、11lim 3x x x x →+∞⎛⎫+ ⎪⎝⎭4、22212lim 12n n n n n n →∞⎛⎫+++ ⎪+++⎝⎭L 5、1/1/011lim arctan 1x x x e e x→+- 五、讨论函数22(4),0,sin ()(1),01x x x x f x x x x x π⎧-<⎪⎪=⎨+⎪≥⎪-⎩的连续性,如有间断点,判别其类型.六、设kA x αβ==,求A 及k ,使得当x →+∞时,αβ:. 七、已知()f x连续,05x →=,求20()lim x f x x →. 八、设函数)(x f 在(,)-∞+∞内有定义,且在点0x =处连续,对任意1x 与2x 有1212()()()f x x f x f x +=+. 证明:)(x f 在(,)-∞+∞内连续.九、证明:函数()[]f x x x =-在(,)-∞+∞上是有界的周期函数.十、设)(x f 在]1,0[上非负连续,且(0)(1)0f f ==. 证明:对任意实数(01)a a <<必存在实数0[0,1]x ∈,使得0[0,1]x a +∈,且00()()f x a f x +=.。
高等数学第一章测试题(第7版)
![高等数学第一章测试题(第7版)](https://img.taocdn.com/s3/m/6260a4e7aa00b52acfc7caca.png)
高等数学(上)第一章函数与极限测试题一、填空(20分)1.设)(x f y =的定义域是]1,0(,x x ln 1)(-=ϕ,则复合函数)]([x f y ϕ=的定义域为 ;2.函数)21ln(12arcsin 2x x x xy --++=的定义域 ;3.下列哪些函数相同 ;(1) x ln 2与2ln x ; (2) 2x 与x ; (3) x 与x x sgn .4.函数)1ln(2x x y ++=的奇偶性为 ;函数x e x y 2=的奇偶性为 ;5. (1) 设2)1(2+=+x x f ,则=)(cos x f ;(2) 设x e f x =+)1(,则=)(x f .6.如果,21)74)(1(132lim 23=+-+-∞→n x x x x x 则=n ; 7. =+∞→)(x xx x x 2sin 2sin lim ;8.当=α 时,αx x 21~1s i n 1-+;9. 1x =-为2()1f x x =+的第____类间断点;10.若⎪⎩⎪⎨⎧=≠-+=0,0,1sin )(2x a x x e x x f ax 在0=x 处连续,则=a 。
二、计算数列极限(50分):1. )2141211(lim n n +++∞→ ; 2. )1(lim n n n -++∞→; 3. n n nn n 3232lim +-+∞→ 4.15865lim 223+-+-→x x x x x ;5.)1113(lim 31x x x ---→ 6. 121l i m 22---∞→x x x x ; 7. 30sin tan lim x x x x -→; 8. xx x sin 20)31(lim +→; 9. x e e xx x cos 1lim 0---→; 10. 11sin 1lim 20--+→x x e x x ;五(6分)、设⎪⎩⎪⎨⎧=≠+=-001)(2x k x x x f x )(,试确定k 的值,使)(x f 在0=x 处连续。
数学高一第一章试卷
![数学高一第一章试卷](https://img.taocdn.com/s3/m/2629f87dbdd126fff705cc1755270722182e5954.png)
数学高一第一章试卷一、选择题(每题5分,共40分)1. 设集合A = {xx^2 - 3x + 2 = 0},则A中的元素为()A. 1,2B. {-1, -2}C. {1, -2}D. {-1, 2}2. 已知集合A={0,1,2},B = {xx = 2a,a∈ A},则A∩ B=()A. {0}B. {0,2}C. {0,4}D. {0,1,2,4}3. 若集合A={x1,B = {xx < a},且A⊆ B,则a的取值范围是()A. a≥slant3B. a>3C. a≤slant - 1D. a < - 14. 下列函数中,与y = x是同一个函数的是()A. y=√(x^2)B. y=frac{x^2}{x}C. y = sqrt[3]{x^3}D. y=(√(x))^25. 函数y = f(x)的定义域为[-2,3],则函数y = f(x - 1)的定义域为()A. [-1,4]B. [-3,2]C. [-2,3]D. [-1,3]6. 已知f(x)=<=ft{b egin{array}{ll}x + 1,x≤slant0 x^2,x > 0end{array}right.,则f(f(-1))的值为()A. 0B. 1C. 2D. 47. 函数y = x^2+2x - 3,x∈[-2,2]的值域是()A. [-4,5]B. [-4,+∞)C. [-3,5]D. [-3,+∞)8. 若函数y = f(x)是偶函数,且在(0,+∞)上是减函数,又f(3)=0,则(f(x)+f(-x))/(2x)<0的解集为()A. (-3,0)∪(3,+∞)B. (-∞,- 3)∪(0,3)C. (-∞,-3)∪(3,+∞)D. (-3,0)∪(0,3)二、填空题(每题5分,共20分)1. 集合A={xx^2-5x + 6 = 0},B={xmx - 1 = 0},若A∩ B = B,则实数m的取值集合为_______。
高等数学第一单元测试-答案
![高等数学第一单元测试-答案](https://img.taocdn.com/s3/m/de82c24833687e21af45a9d9.png)
第一单元 测试题一 填空(4X10=40)1 11)(-=x e x f , 2. 1y = 3. e 4. A-= 3, 5.a= 4, l =10 6. a=0 7. a 8 . 13- 9.cos (sin )(cot cos sin lnsin )x x x x x x - ,10.!2二、选择题 (4X6=24) ABBBDD三.计算说明: 计算1-4 题在学完第三章后可以用洛比达法则。
1.(5分)22001sin 1lim lim 21x x x x x x e →→==- 2、(5分)计算极限 2cos()sin()sin sin 22lim lim x a x a x a x a x a x ax a →→+--=-- 2cos()()22lim limcos()cos 2x a x a x a x a x a a x a →→+-+===- 个别同学用导数定义,也可以。
3 . (5分) 计算极限 该题应该为0x →33000224sin 3cos3cos 4sin lim lim lim tan 2tan 2tan 2x x x x x x x x x x x x →→→-=-30023cos 4lim lim 222x x x x x x x→→=-=4 . (5分) 计算极限000002322131ln 2ln 31lim lim lim lim lim ln 6tan 2tan 2tan 2222x x x x x x x x x x x x x x x x →→→→→+---=+=+= 5.(5分)求函数212111()lim n n n n x f x x x x+++→∞+=-+的间断点并判断类型。
解: 1,0||11,||1()2,10,1x x x f x x x ⎧<<⎪⎪⎪>=⎨⎪=⎪=-⎪⎩ 因为 0lim (),x f x →=∞ 0x =为无穷间断点。
高等数学第一章测试题
![高等数学第一章测试题](https://img.taocdn.com/s3/m/0cb40d14ce84b9d528ea81c758f5f61fb636285d.png)
高等数学第一章测试题一、单项选择题(20分)1、当0x x →时,()(),x x αβ都是无穷小,则当0x x →时( )不一定是无穷小.(A)()()x x βα+ (B) ()()x x 22βα+ (C) [])()(1ln x x βα⋅+(D) )()(2x x βα 2、极限a x a x a x -→⎪⎭⎫ ⎝⎛1sin sin lim 的值是( ). (A ) 1 (B ) e (C ) a e cot (D ) a e tan3、⎪⎩⎪⎨⎧=≠-+=001sin )(2x a x x e x x f ax 在0x =处连续,则a =( ). (A ) 1(B ) 0 (C ) e (D ) 1-4、函数 ⎪⎪⎪⎩⎪⎪⎪⎨⎧<+<≤>-+=0,sin 10,2tan 1,1)1ln()(x x x x x x x x x f π 的全体连续点的集合是 ( )(A) (-∞,+∞) (B) (-∞,1) (1,+ ∞)(C) (-∞,0) (0, +∞) (D) (-∞,0) (0,1) (1,+ ∞)5、 设0)11(lim 2=--++∞→b ax x x x ,则常数a ,b 的值所组成的数组(a ,b )为( )(A ) (1,0) (B ) (0,1) (C ) (1,1) (D ) (1,-1)6、已知函数231)(22+--=x x x x f ,下列说法正确的是( )。
(A) )(x f 有2个无穷间断点 (B) )(x f 有1个可去间断点,1个无穷间断点(C) )(x f 有2个第一类间断点 (D) )(x f 有1个无穷间断点,1个跳跃间断7、|sin |()cos x f x x xe-=()x -∞<<+∞是 。
(A )奇函数; (B )周期函数;(C )有界函数; (D )单调函数8、当0x →时,2()(1cos )ln(12)f x x x =-+与 是同阶无穷小量。
高等数学第一章习题
![高等数学第一章习题](https://img.taocdn.com/s3/m/db3f3e2a453610661ed9f427.png)
第一章 函数第一节 函数的概念1. 求下列函数的定义域:(1)y = (2)121y x =-(3)y =(4)sin y =(5)y =arcsin(x -3)(6)1ln(1)y x =-(7)y =(81arctan y x =)2.设f (x )的定义域是[0, 1], 求下列函数的定义域:(1) f (e x );(2) f (ln x );(3) f (arctan x );(4) f (cos x ).3.设⎪⎩⎪⎨⎧≥<=3|| 03|| |sin |)(ππϕx x x x , 求)6(πϕ, )4(πϕ, )4(πϕ-, ϕ(-2)。
.4.设32(3)2251,()f x x x x f x +=-+-求;5.设⎪⎩⎪⎨⎧>-=<=1|| 11|| 01|| 1)(x x x x f , g (x )=e x , 求f [g (x )]和g [f (x )]。
..第二节 函数的几种特性1.试证下列函数在指定区间内的单调性:(1)xx y -=1, (-∞, 1); (2)y =x +ln x , (0, +∞).2.设下面所考虑的函数都是定义在对称区间(-l , l )上的, 证明:(1)两个偶函数的和是偶函数, 两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数, 两个奇函数的乘积是偶函数, 偶函数与奇函数的乘积是奇函数.3.证明21()f x x=在()0,1内无界4.下列各函数中哪些是周期函数?对于周期函数,指出其周期:(1)y=cos(x-2);(2)y=cos 4x;(3)y=1+sin πx;(4)y=x cos x;(5)y=sin2x.第三节 初等函数1.在下列各题中, 求由所给函数复合而成的函数, 并求这函数分别对应于给定自变量值x 1和x 2的函数值:(1) y =u 2, u =sin x , 61π=x , 32π=x ; (2) y =sin u , u =2x , ,81π=x ,42π=x ; (3)u y =, u =1+x 2, x 1=1, x 2= 2;(4) y =e u , u =x 2, x 1 =0, x 2=1;(5) y =u 2 , u =e x , x 1=1, x 2=-1.2.下列初等函数由哪些基本初等函数复合而成?(1)()2arccos 1y x =-(2)2sec 24y x π⎛⎫=-⎪⎝⎭(3)(sin cos y ⎡⎤=⎣⎦(4)y =3.将下列三角函数积化和差:(1)sin 2sin8αα (2)sin5cos3αα(3)cos6sin 2αβ (4)cos3cos 4αβ4.证明:(1)arcsin arccos 2x x π+=(2)arctan cot 2x arc x π+=5.证明:(1)()sh x y shxchy chxshy ±=±(2)()ch x y chxchy shxshy ±=±6.证明:(1)反双曲正弦函数(ln y arshx x ==(2)反双曲余弦函数(ln y archx x ==7.下列函数是否为初等函数?(1)y x = (2)(sin y = (3)xy x x =+ (4)311112x x x y e x ⎧--≤≤=⎨<≤⎩第四节 两个常用不等式1. 设12,,...,n a a a 是n 个正数,称12111(...)n na a a +++为12,,...,n a a a 的调和平均值,利用算术平均值与几何平均值的关系证明几何平均值与调和平均值的关系:对任意n 个正数12,,...,n a a a有12111(...)nn a a a ≤+++2.证明下列不等式:(1)1212......n n x x x x x x +++≤+++(2)1212...(...)n n x x x x x x x x ++++≥-+++总复习题一1.填空题.(1)设()f x =,则()f x 的定义域为(2)设101(),212x f x x ≤≤⎧=⎨-<≤⎩则(2)f x +的定义域为 (3)设()1f x x =+,则1f f x ⎡⎤⎛⎫ ⎪⎢⎥⎝⎭⎣⎦=(4)设21()1424x x x f x xx x -∞<<⎧⎪=≤≤⎨⎪<<+∞⎩,则其反函数是2.选择题: (1)已知()f x 在[]2,2-上为偶函数 ,且()[]()222,0f x x x x =+∈-,那么当[]0,2x ∈时,()f x 的表达式为() ()()()()22222,2,2,2.A x x B x x C x x D x x +--+--(2)设()g x 在[],a b 上单调,()f x 在()(),g a g b ⎡⎤⎣⎦上单调,则()()f g x -( ) ()[]()[]()[]()[]A .在a,b 上单增,B 在a,b 上单减,C 在-b,-a 上单增,D 在-b,-a 上单减(3)下列函数中是偶函数的应为( )()()(()()[]()()()((()()()2ln ,22,sgn cos x x A f x x B f x x C f x D f x x x ===+=⋅(4)下列函数中不是周期函数的应为( )()()()()()()()()[]2sin ,sincos 23sin 2cos ,x x A f x x B f x C f x x x D f x x x π==+=+=-3.计算题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学第一章测试题
一、单项选择题(20分)
1、当0x x →时,()(),x x αβ都是无穷小,则当0x x →时( )不一定是无穷小.
(A)
()()x x βα+ (B) ()()x x 22βα+ (C) [])()(1ln x x βα⋅+
(D) )()(2x x βα 2、极限a x a x a x -→⎪⎭⎫ ⎝
⎛1
sin sin lim 的值是( ). (A ) 1 (B ) e (C ) a e cot (D ) a e tan
3、⎪⎩
⎪⎨⎧=≠-+=001sin )(2x a x x e x x f ax 在0x =处连续,则a =( ). (A ) 1
(B ) 0 (C ) e (D ) 1-
4、函数 ⎪⎪⎪⎩⎪⎪⎪⎨⎧<+<≤>-+=0,sin 10,2tan 1
,1)1ln()(x x x x x x x x x f π 的全体连续点的集合是 ( )
(A) (-∞,+∞) (B) (-∞,1) (1,+ ∞)
(C) (-∞,0) (0, +∞) (D) (-∞,0) (0,1) (1,+ ∞)
5、 设0)11(lim 2=--++∞→b ax x x x ,则常数a ,b 的值所组成的数组(a ,b )为( )
(A ) (1,0) (B ) (0,1) (C ) (1,1) (D ) (1,-1)
6、已知函数231)(22+--=x x x x f ,下列说法正确的是( )。
(A) )(x f 有2个无穷间断点 (B) )(x f 有1个可去间断点,1个无穷间断点
(C) )(x f 有2个第一类间断点 (D) )(x f 有1个无穷间断点,1个跳跃间断
7、|sin |()cos x f x x xe
-=()x -∞<<+∞是 。
(A )奇函数; (B )周期函数;(C )有界函数; (D )单调函数
8、当0x →时,2()(1cos )ln(12)f x x x =-+与 是同阶无穷小量。
(A )3x ; (B )4x ; (C )5x ; (D )2
x 9、 lim(cos )()sec x x x A e B e C D →--=π
141
4
222 . . . .
答( )
10、的值为, 极限)00()1(lim 0≠≠+→b a a x x b
x 答( ) . . a
be D e C a b B A a b
)()(ln )(1)(
二、填空题(24分)
1、极限)0(ln )ln(lim
0>-+→a x a a x x 的值是 .
2、x x x 23sin lim 0→=___________
3、 设)0(0,0,2cos )(>⎪⎪⎩⎪⎪⎨⎧<--≥+=a x x x a a x x x x f 当a= 时,x =0是f (x )
的连续点。
4、 0lim x x x x e e -→=- 。
5、设.1
4lim 231A x x ax x x =-+--→。
则a = , A = 6、3sin 3lim(sin )x x x x x
→∞+= 。
7、 ()=--→x x x
x 3sin 3lim 33
8、10
1lim(1)lim sin x x x x x x -→→∞++=
9、4cos 0lim(1cos )x x x →+=
10、2
01cos lim x ax x →-= (0a ≠) 11、⎪⎭⎫ ⎝
⎛-+∞→x x x 1cos 1lim 2 = 三、计算题(50分)
1、x x x
x x x tan 2cos sin 1lim 0-+→计算极限
2、. 讨论极限 x x x sin lim
→ 3、求极限.-lim ln x x x →-121
4. 设函数211)(x x x f -+=
,求在0的左极限和右极限。
5、求
23122+--=x x x y 的间断点,并判别间断点的类型。
6.讨论函数
()⎩⎨⎧<+≥=010cos x x x x x f 在 x = 0 处的连续性。
7、. 函数 ()x y arcsin sin = 与函数 y = x 是否表示同一函数,并说明理由。
8、 讨论数列
()()
() ,2,1,161212=-++=n n n n n a n 当 ∞→n 时的极限。
9、 设,;,求,其中.f x x x x x x x f a f a a ()()()=-+≤->⎧⎨⎪⎩⎪++->221121110
10.设()3212+-=-x x x f , 求()1+x f 。
四、证明题(6分)
1、证明:方程k x x =-sin 2)0(>k 至少有一个正根。
2、证明方程在区间,内至少有一个实根.x x 57412-=()。