机械设计课件第十一章 蜗杆传动
蜗杆传动课件
蜗杆传动课件蜗杆传动课件蜗杆传动是一种常见的机械传动方式,它通过蜗杆和蜗轮之间的啮合来实现转动传递。
在工业领域中,蜗杆传动广泛应用于各种机械设备中,如起重机、输送机、搅拌机等。
本文将介绍蜗杆传动的原理、特点以及应用。
一、蜗杆传动的原理蜗杆传动是一种通过蜗杆和蜗轮之间的啮合来实现转动传递的机械传动方式。
蜗杆是一种螺旋形状的轴,蜗轮则是一个具有螺旋槽的圆盘。
当蜗杆旋转时,它的螺旋形状会使蜗轮产生旋转运动。
由于蜗杆的斜面角度较小,蜗轮的转速相对较低,但扭矩较大。
这使得蜗杆传动适用于需要大扭矩和较低转速的场合。
二、蜗杆传动的特点1. 大传动比:蜗杆传动的传动比可以达到较大的数值,通常在10:1至60:1之间。
这使得蜗杆传动在一些需要较大减速比的设备中非常实用。
2. 紧凑结构:由于蜗杆传动的传动比较大,所以可以通过较小的尺寸实现较大的减速比。
这使得蜗杆传动在空间有限的场合中非常适用。
3. 自锁性:蜗杆传动具有自锁性,即在没有外力作用下,蜗杆传动可以防止被传动部件的逆转。
这使得蜗杆传动在一些需要防止逆转的场合中非常有用,如起重机的升降装置。
4. 传动效率较低:由于蜗杆传动的摩擦损失较大,所以传动效率相对较低。
通常情况下,蜗杆传动的传动效率在50%至80%之间。
因此,在对传动效率要求较高的场合中,蜗杆传动可能不是最佳选择。
三、蜗杆传动的应用1. 起重机:蜗杆传动广泛应用于各种起重机中,如桥式起重机、门式起重机等。
蜗杆传动的大传动比和自锁性使得起重机的升降装置更加安全可靠。
2. 输送机:蜗杆传动也常用于输送机中,用于驱动输送带或链条的运动。
蜗杆传动的紧凑结构和大传动比使得输送机的传动装置更加节省空间且具有较大的减速比。
3. 搅拌机:蜗杆传动还广泛应用于各种搅拌机中,如混凝土搅拌机、食品搅拌机等。
蜗杆传动的大扭矩和较低转速使得搅拌机可以更好地完成搅拌工作。
总结蜗杆传动是一种常见的机械传动方式,它通过蜗杆和蜗轮之间的啮合来实现转动传递。
《蜗杆传动上课版》课件
04 传动比
蜗杆与蜗轮之间的转速之
比,决定了传动的减速或
增速效果。
蜗杆传动的应用范围
工业制造领域
用于各种机械设备中 的减速或增速传动, 如纺织机械、印刷机
械等。
交通运输领域
用于车辆、船舶和飞 机中的传动系统,如 发动机、变速器等。
农业机械领域
用于拖拉机、收割机 等农业机械中的传动
系统。
新能源领域
在风力发电、太阳能 发电等新能源领域中 ,蜗杆传动也得到了
切削加工是制造蜗杆传动的关键步骤, 需要精确控制切削参数和刀具几何形状 ,以保证蜗杆的精度和表面质量。
材料选择应根据使用要求和工作环境, 选择合适的材料和规格,以确保蜗杆传 动的性能和寿命。
热处理对于提高蜗杆传动的硬度和耐磨 性至关重要,包括淬火、回火和表面处 理等工艺。
蜗杆传动的维护保养
定期检查蜗杆传动的润滑 状况,确保润滑良好以减 少摩擦和磨损。
智能化控制
结合现代控制技术, 实现蜗杆传动的智能 化控制,提高传动精 度和效率。
拓展应用领域
探索蜗杆传动在更多 领域的应用,扩大其 使用范围。
04
蜗杆传动的设计与计算
蜗杆传动的设计原则
高效性
蜗杆传动应尽可能地提高传动效率, 减少能量损失。
稳定性
保证蜗杆传动的长期稳定运行,减少 维护和更换的频率。
材料和许用应力选择
根据计算结果,选择合适的材 料和确定许用应力,以确保蜗 杆传动的安全性和可靠性。
润滑和散热设计
考虑蜗杆传动的润滑和散热需 求,设计合理的润滑和散热系
统。
蜗杆传动的优化设计
参数优化
对蜗杆传动的参数进行 优化设计,以提高其性
能和降低制造成本。
机械原理—蜗杆传动概述课件
蜗杆传动过程中可能产生振动和噪声。了解这些现象的产生机理有助于降低振 动和噪声,提高传动性能。
05
蜗杆传动的强度与失效分析
强度计算
1 2 3
材料力学性能 蜗杆传动的材料强度是其承受载荷的关键因素。 需要考虑材料的弹性模量、屈服强度、抗拉强度 等参数。
接触应力分析 蜗杆与蜗轮在传动过程中会产生接触应力,需要 进行接触应力分析,以确定接触面的应力分布和 大小。
受力分析
法向力与切向力
蜗杆传动中,蜗杆和蜗轮受到法向力 和切向力的作用。这些力的大小和方 向随着传动状态的变化而变化。
摩擦力分析
蜗杆传动中的摩擦力是影响传动效率 的重要因素。分析摩擦力的性质和变 化规律有助于提高传动效率。
动态特性
动态响应
蜗杆传动的动态响应包括速度、加速度和位移的变化。这些动态特性的变化规 律影响传动的稳定性和精度。
主要由蜗杆、蜗轮和机架组成。
圆弧齿蜗杆传动
主要由蜗杆、圆弧齿蜗轮和机架 组成。
锥蜗杆传动
主要由锥蜗杆、直齿圆柱蜗轮和 机架组成。
参数
模数
蜗杆传动的标准参数,表示蜗杆 分度圆直径与齿距之比,是设计、
制造和使用蜗杆传动的依据。
压力角
在分度圆柱面上,螺旋线的切线与 通过切点的平面之间的夹角,是影 响蜗杆传动效率的重要参数。
弯曲应力计算 蜗杆在传递扭矩时会产生弯曲应力,需要计算蜗 杆的弯曲应力,以确保其具有足够的弯曲强度。
失效形式
疲劳断裂
01
在循环载荷作用下,蜗杆和蜗轮的应力超过其疲劳极限,导致
疲劳断裂。
Hale Waihona Puke 胶合磨损02蜗杆和蜗轮在高速重载下,由于摩擦产生高温,导致材料表面
第十一章蜗杆传动
β1 γ1
px1
l
γ
d
πd1
蜗杆传动的效率与导程角有关,导程角大,传动效率高;导程角小, 传动效率低。当传递动力时,要求效率高,通常取γ=15°~30°,此时 应采用多头蜗杆。若蜗杆传动要求具有自锁性能时,通常取导程角
2302.50/03/2~04.50的单头蜗杆。
v arctafvn, fv为当量摩
根据相对滑动速度、载荷类型等参考表11-7选择。
三、热平衡计算
2020/3/20
蜗杆传动转化为热量所
消耗的功率 P S
P S 1000 ( 1 - ) P1
经箱体散发热量的相当
功率 Pc 为
P C k s A (t1 t0 )
达到平衡时,
P S P C ,则 t1的计算公式为:
2020/3/20
§11—1 蜗杆传动概述
1 组成:主要由蜗杆和蜗轮组成
2 功用:传递两交错轴之间的运动和动力,常常∑=90°
3 结构:
4
蜗杆类似于螺杆,也可看成是齿
数 很少的宽斜齿轮,在交错轴斜齿轮
中,当小齿轮的齿数很少(如z1=1)而且 β1很大时,轮齿在圆柱体上构成多圈完 整的螺旋.在此将β1称为导程角γ, 蜗 杆有左旋和右旋之分,除特殊要求之外,
分析: m一定时,q越小导程角γ越大,传动效率越高,但蜗杆的强度、 刚度降低。因此在蜗杆轴刚度允许的情况下,设计蜗杆传动时,要求 传动效率高时q选小值;要求强度和刚度大时q取大值.
5 中心距:
ad1d2 2
m 2(qz2)
2020/3/20
ω2
r2 r1
p a ω1
二、蜗杆传动的几何尺寸
蜗轮蜗杆传动PPT课件
蜗杆传动的类型和特点 蜗杆传动的主要参数和几何尺寸计算
精品课件资料
(一)教学要求 1、了解蜗杆传动特点、类型 2、掌握蜗杆传动的主要参数及几何尺寸计算 3、熟悉普通圆柱蜗杆传动的正确啮合条件、
强 度计算及热平衡计算等。 (二)教学的重点与难点
重点:普通圆柱蜗杆传动的几何参数计算、 正确啮合条件、强度计算。
VS
V1 cos
d1n1 60 1000 cos
(m / s) V1
较大的VS易发生齿面磨损和胶 合;如润滑条件良好(形成油膜条 件)则较大的VS则有助于形成润滑 油膜,减少摩擦、磨损,提高传动 效率。
精品课件资料
2.失效形式: 主要有点蚀、齿根折断、齿面胶合和磨损。最常见失
效是齿面胶合和过度磨损。
11.8 常用各类齿轮传动的选择
11.8.1 各类齿轮传动性能的比较
精品课件资料
11.8.2 传动类型的选择
在选择传动类型时应考虑以下几个方面 传递大功率时,一般均采用圆柱齿轮。 在联合使用圆柱、圆锥齿轮时,应将圆锥齿轮放在高 速级
圆柱齿轮和谐齿轮相比,一般斜齿轮的强度比直齿轮 高,且传动平稳,所以用于高速场合。直齿轮用于低速 场合
为了减摩,通常蜗杆用碳钢和合金钢制成,高速重载 的蜗杆常用15Cr、20Cr渗碳(shentan)淬火,或45钢、 40Cr淬火。低速中轻载的蜗杆可用45钢调质。
蜗轮用有色金属,常用材料有:铸造锡青铜、铸造铝 青铜、灰铸铁等。
精品课件资料
11.4.2 蜗杆、蜗轮的结构
1.蜗杆的结构 蜗杆通常与轴做成一体,称为蜗杆轴。 (1)铣(xi)制蜗杆
精品课件资料
精品课件资料
总效率:
1 2 3
蜗杆传动PPT课件
蜗轮材料的许用应力[sH]由材料的抗失效能力决定。其计算公式为
2.蜗轮的许用弯曲应力[sF]
6.15.6 蜗杆传动的效率、润滑及热平衡计算
1、蜗杆传动效率
h1─计及啮合摩擦损耗的效率;
h2─计及轴承摩擦损耗的效率;
h3─计及溅油损耗的效率;
h1是对总效率影响最大的因素,可由下式确定:
6.15.1 蜗杆传动的类型和特点
其齿面一般是在车床上用直线刀刃的 车刀切制而成,车刀安装位置不同, 加工出的蜗杆齿面的齿廓形状不同。
阿基米德蜗杆 渐开线蜗杆 法向直廓蜗杆 锥面包络圆柱蜗杆
圆柱蜗杆传动
环面蜗杆传动
锥蜗杆传动
普通圆柱蜗杆传动
圆弧圆柱蜗杆传动
其蜗杆的螺旋面是用刃边为凸圆弧形 的车刀切制而成的。
2、蜗杆传动的润滑
润滑的主要目的在于减摩与散热。具体润滑方法与齿轮传动的润滑相近。
润滑油
润滑油粘度及给油方式
润滑油量
润滑油的种类很多,需根据蜗杆、蜗轮配对材料和运转条件选用。
一般根据相对滑动速度及载荷类型进行选择。给油方法包括:油池润 滑、喷油润滑等,若采用喷油润滑,喷油嘴要对准蜗杆啮入端,而且要控 制一定的油压。
高速重载的蜗杆常用15Cr、20Cr渗碳淬火,或45钢、40Cr淬火。
低速中轻载的蜗杆可用45钢调质。
蜗轮常用材料有:铸造锡青铜、铸造铝青铜、灰铸铁等。
6.15.4 蜗杆传动的材料和结构
二、 蜗杆、蜗轮的结构
1.蜗杆的结构
蜗杆螺旋部分的直径不大,所以常和轴做成一个整体。当蜗杆螺旋 部分的直径较大时,可以将轴与蜗杆分开制作。
查表6.15,蜗轮材料的基本许用弯曲应力为
机械原理蜗杆传动
b)蜗杆法面齿形
c主要参数及几何尺寸
★中间平面(主平面)
——通过蜗杆轴线并垂 直 于蜗轮轴线的平面 :
蜗杆的轴(x面)
蜗轮的端面(t面)
主要参数
1、模数m、压力角 α ★标准参数——∵中间平
面内→相当于齿轮齿条啮
合∴取中间平面的参数为
标准参数※
① 标准压力角 = 20
1、润滑油及其添加剂
为提高蜗杆传动的抗胶合性能,常采用黏度较大的矿物油、或在润滑油中加入适量 的添加剂,如抗氧化剂、抗磨剂、油性极压添加剂等。在表11-20中列出了蜗杆传动常用 的润滑油牌号。
2、润滑油粘度及给油方法
在表11-21中列出了不同滑动速度时推荐选用的润滑油运动粘度值,供设计时选用。
闭式蜗杆传动常用润滑方法主要有油池浸油润滑、循环喷油润滑等方式。具体选择可根 据蜗杆传动的滑动速度大小确定。若采用压力喷油润滑,应注意控制油压,并应使喷油 嘴对准蜗杆啮入端;蜗杆正反转时两边都要装喷油嘴。
⒉ 蜗杆轴刚度计算
影响蜗杆传动性能的弹性变形主要是蜗杆的挠曲变形。引起蜗杆产生挠取 变形的作用力主要有径向力Fr和圆周力Ft。在这两个力的作用下,蜗杆将在两 个方向上产生弹性变形。为简化计算,通常把蜗杆螺纹部分视为以蜗杆齿根圆 直径为直径的轴段。于是可得
y
yt21
yt22
l3 48EI
Ft21 Fr21 y
滑动轴承为 η3=0.97~0.98
vs
v21
v1
cos
v1
d1n1
60 1000
mz1n1
60 1000
v2
d2n2
60 1000
mz2n2
60 1000
γ
(二)蜗杆传动的润滑
机械设计基础-蜗杆传动(PPT58页)
通常情况下取蜗轮齿数z2 =28~80。若z2 <28,会使传动 的平稳性降低,且易产生根切;若z2过大,蜗轮直径 增大,与之相应蜗杆的长度增加,刚度减小,从而影
响啮合的精度。z1、z2可根据传动比i按表10-1选取。
传动比i
7~13
14~27
28~40
>40
蜗杆头数z1
4
2
2,1
1
蜗轮齿数z2 28~52
第一节 概述
一、蜗杆传动的组成
螺杆与螺纹一样,有单头、多头之分,也有左旋、右 旋之分。蜗轮的形状像斜齿轮, 它的螺旋角的大小、方向和螺 杆螺旋升角的大小、方向相同, 为了改善蜗杆与蜗轮的啮合情 况,通常将蜗轮圆柱表面的母 线做成圆弧形,部分地包围着 蜗杆,故在轴向剖面中,蜗轮 轮齿沿齿宽方向是圆弧形。
通常λ=3.5°~27°,升角小时传动效率低,但可实现 自锁;升角大时传动效率高,但加工较困难。
3.蜗杆分度圆直径d1和蜗杆直径系数q 加工蜗杆时,蜗杆滚刀的参数应与相啮合的蜗杆完全 相同,几何尺寸基本相同。由
tan L d1z1 dm 1zd 1m 1
可得蜗杆的分度圆直径可写成
d1mtaz1n
第二节 蜗杆传动的主要参数和几何尺寸计算
在中间平面上,蜗轮与蜗杆的啮合相当于渐开线齿轮 与齿条的啮合,因此,设计蜗杆传动时,其参数和尺 寸均在中间平面内确定,并沿用渐开线圆柱齿轮传动 的计算公式。
一、蜗杆传动的主要参数
1.蜗杆头数z1、蜗轮齿数z2 蜗杆头数(齿数) z1即为蜗杆螺旋线的数目,蜗杆的 头数z1一般取1、2、4。当传动比大于40或要求蜗杆自 锁时,取z1 =1;当传递功率较大时,为提高传动效率 、减少能力损失,常取z1为2、4。蜗杆头数越多,加 工精度越难保证。
第十一章 蜗杆传动
3. 相对速度较大,效率较低,摩擦磨损较严重,不适用于大功率 长期连续工作。 4.为防止或减轻磨损及胶合,常用青铜等贵重金属制造蜗轮,成 本高。 5. 为了避免过热,需要良好的润滑条件和散热装置。 6.反行程自锁,如铸工车间运铁水包的升降机构。
第二节 阿基米德圆柱蜗杆传动
一、 蜗杆传动的主要参数和几何尺寸计算 蜗轮蜗杆啮合时, 通过蜗杆轴线并垂 直于蜗轮轴线的平 面被称为中间平面 或主平面。 在中间平面上与阿基米德蜗杆相配的蜗轮是渐开线 齿廓,蜗杆与蜗轮的啮合传动相当于齿条与齿轮的传 动,因此,中间平面是蜗杆传动设计计算的基准面。
d1 q m
5.蜗杆头数 z 1 和蜗轮齿数 z 2
由传动比并考虑效率来选定。一般为 z1 =1~4。
①传递运动,要求传动比大, z1 取小值。
②传递动力 , z1取大值 ,传动效率和承载能力高;但太多, 蜗杆加工困难。 蜗轮齿数 z2 应根据传动比 i 和 z1 选取。不宜大于80。
6.传动比 i 和齿数比
蜗杆传动的变位图
( a)
(a)凑中心距 a (c)凑中心距
( b)
( c)
; (b)不变位 。
a , x2 0
, x2 0
x0
;
a a
2.调整传动比
设变位前后蜗轮的齿数分别为
z2 和 z 2
1 1 则有 a mq z 2 a mq 2 x z 2 2 2
求导并令其导数为零,得到当 45 对 在 40 左右时 1 有最大值。 即
tan 由公式 1 tan v
v
2
时
蜗杆传动 的效率与导 程角的关系
蜗轮传动的自锁现象:
tan v 蜗轮主动时 1 tan
机械设计-蜗杆传动
继续…
传动的热平衡。
蜗轮轮齿折断
返回原处
蜗轮齿面磨损
返回原处
蜗轮齿面胶合
返回原处
蜗杆齿面点蚀
返回原处
§3. 蜗杆传动的主要失效形式
三、常用材料
高速重载
蜗杆
低碳合金钢+渗碳淬火 中碳钢或中碳合金钢+表面淬火
低速中载
中碳钢+调
质
vs≥3 m/s 重要传动
铸造锡青铜
蜗轮 vs≤4 m/s 一般传动
蜗轮齿根弯曲疲劳强度计算
二 、
校核计算公式
F1.m 53 K 1d2 T2YF2aY[F]
强 度 计
设计计算公式
m2d11z.523KFT2YFa2Y
算 [F] ——蜗轮的许用弯曲应力, [F] =KFN [F]'
[F]' ——表11-8。 YFa2——齿形系数,图11-19
Y——螺旋角影响系数 Y 1140
铸造铝铁青铜
vs<2 m/s 不重要传动
灰铸铁
§4. 蜗杆蜗轮常见结构
蜗 杆 结 构
§4. 蜗杆蜗轮常见结构
蜗轮结构
整体式
拼铸式 螺栓联接式 齿圈式 组合式
§5. 蜗杆传动的承载能力计算
Ft1
Fa2
2T1 d1
Fa1
Ft 2
2T2 d2
T2T1i12
Fr1 Fr 2 Ft 2tg
Fn
Fa1 cos n cos
)2
计 算
K ——载荷系数,K=KAKKV。
[]H ——蜗轮许用接触应力。
ZE ——弹性系数,青铜或铸铁蜗轮与钢蜗杆
配对时, ZE =160MPa1/2
第十一章蜗杆传动精讲PPT课件
19
蜗轮蜗杆轮齿旋向相同.
若 ∑ =90° =β1+β2
∵ γ1+β1 =90° ∴ γ1=β2
蜗轮右旋
蜗杆右旋
t β1
β2 ∑
3.蜗杆的分度圆直径d1 定义s=e的圆柱称为蜗杆的分度圆柱。
β1
γ1 t
es
d1
01.06.2020
. d2
20
tanz1px z1mz1m d1 d1 d1
px px
中心距
.
计算公式
蜗杆
蜗轮
d1 =mq
d2=mz2
ha=m
ha=m
df =1.2mq
df =1.2mq
da1=m(q+2) da1=m(q+2) df1=m(q-2.4) df2=m(q-2.4)
pa1=pt2= px=π m
c=0.2 m
a=0.5(d1 + d2) m=0.5m(q+3z12)
§11-3 普通蜗杆传动的承载能力计算
最常用
阿基米德蜗杆
普通圆柱 渐开线蜗杆
蜗杆传动 法向直廓蜗杆
圆柱蜗杆传动
锥面包络圆柱蜗杆
类 型
环面蜗杆传动 圆弧圆柱 蜗杆传动
锥蜗杆传动
锥蜗杆传动特点:
1)同时接触的点数较多,重合度大; 2)传动比范围大,一般为10~360; 3)承载能力和传动效率高; 401.0)6.2020制造安装简便,工艺性. 好。
(一)蜗杆传动的失效形式、设计准则及常蜗用杆传材动的料特点是齿面相对滑动速度大, 导致发热严重和磨损加剧。 1、失效形式 与齿轮传动类似:点蚀、胶合、磨损、折断
.
30
(三)圆柱蜗杆传动几何尺寸的计算
机械设计课件第11章蜗杆传动
保养蜗杆传动的窍门和故障分析
ቤተ መጻሕፍቲ ባይዱ
1
日常保养
定期检查润滑情况、防止腐蚀和氧化等,
常见故障原因
2
可延长蜗杆传动的使用寿命。
包括蜗杆齿面磨损、蜗杆轴承故障、润
滑油污染等,需进行故障分析。
3
故障维修注意事项
需采用专业的维修工具和方法,保障维 修质量和安全。
总结:深入掌握蜗杆传动理论 与应用
润滑方式
正确选用适合的润滑方式和润滑 剂,可有效降低传动系统的摩擦 和磨损。
传动效率提升
可通过优化结构、降低摩擦损失 等方式来提高蜗杆传动的效率。
了解蜗杆传动的制造工艺和材料选择
加工工艺
常用工艺有机床加工、镗削 加工、铸造等。
材料选择
可选用合金钢、铸铁、黄铜 等材质,根据实际使用情况 选择。
质量控制
蜗杆传动是机械设计中一种非常重要的传动方式,在各类机械系统中应用广 泛。希望通过本课件的学习,能让大家对蜗杆传动的基本概念、计算与设计、 制造工艺与材料选择以及常见故障分析等方面有更深入的了解。
3 应用领域
广泛应用于涡轮增压机、 搅拌机等机械系统中。
掌握蜗杆传动的设计技巧
计算方法
需要考虑的参数有齿数、模数、压力角等,可使用 专业软件辅助计算。
优化设计
可通过增加蜗杆齿数、改变加工工艺等方式来提高 传动效率。
解决蜗杆传动的精度和效率问题
精度管理
需要保证蜗杆和蜗轮的加工精度 和配合质量,避免滑动和磨损。
探索机械设计世界:蜗杆 传动
蜗杆传动是一种广泛运用于机械系统中的传动方式。本课件第11章将深入讲 解其基本概念、优点和应用、计算和设计、故障分析等方面。一起来探索这 个奇妙的机械设计世界吧!
第11章蜗杆传动PPT课件
拼铸式
在铸铁轮芯上加铸青铜齿圈,后 切齿
第38页/共40页
第39页/共40页
感谢您的观看!
第40页/共40页
热平衡计算准则:单位时间内,发热量H1≤散热量H2
发热量 — 摩擦功耗 :
H1 = 1000P(1- η) 散热量:
H2 =αd S(t0 – ta) t0 – 油的工作温度;ta — 环境温度; αd — 传热系数; S — 散热面积。
油温:
t0
ta
1000P 1 S 第30页d /共40页
Ft 2 cos n cos
2T2 d2 cos n
cos
第18页/共40页
左手定则
Ft — 主动轮:与n1方向相反;Ft1 = - Fa2
各
从动轮:与n2方向相同;Ft2 = - Fa1
力 方
Fr — 指向轮心;
Fr1 = - Fr2
Fa — 左(右)手定则; Fa1 = - Ft2
向
例题:
装有循环冷却管路的蜗杆传动
第33页/共40页
§5 普通圆柱蜗杆和蜗轮结构设计
第34页/共40页
蜗轮的结构形式
齿 圈 式
青铜齿圈及铸铁轮芯 用于尺寸不大, 温度变化小的地方
第35页/共40页
用
用螺
联
寸栓 大或 或铰
接 式
易制
磨孔
损螺
的栓
蜗联
轮接
:
第36页/共40页
整体浇注式 用于尺寸小的铸铁蜗轮 或青铜蜗轮
第26页/共40页
§4 蜗杆传动的效率、润滑 及热平衡计算
一、传动效率 功耗 —— 啮合摩擦、轴承摩擦、溅油损耗
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
z1πm z1m tan γ = = d1 πd1 在m和d1为标准值时,z1↑→γ↑
普通蜗杆传动的参数与尺寸2
πm
z1π m
正确啮合时,蜗轮蜗杆螺旋线方向 相同,且γ1=β2 5,传动比 i 6,蜗轮齿数z2
γ
πd1 (分度圆周长)
i=
n1 z 2 d 2 = ≠ n2 z1 d1
蜗轮齿数主要取决于传动比,即z2= i z1 . z2不宜太小(如z2<26), 否则将使传动平稳性变差. z2也不宜太大,否则在模数一定时,蜗轮直 径将增大,从而使相啮合的蜗杆支承间距加大,降低蜗杆的弯曲刚度. 7,中心距
在不计摩擦力时,有以下关系: 2T Ft1 = Fa2 = 1 d1
Fa1 = Ft2 =
2T2 d2
Fr1 = Fr2 = Ft2 tan α
2T2 Fn = d 2 cosα n cos γ
蜗杆传动受力方向判断 五,蜗杆传动强度计算
普通蜗杆传动的效率,润滑与热平衡
一,蜗杆传动的效率
普通蜗杆传动的效率润滑与热 平衡1
有退刀槽,螺旋部分可用车制,也可用铣制加工,但该结构的刚度 较前一种差.
圆柱蜗杆和蜗轮的结构设计
二,蜗轮的结构
圆柱蜗杆和蜗轮的结构设计2
为了减摩的需要,蜗轮通常要用青铜制作.为了节省铜材,当蜗轮直 径较大时,采用组合式蜗轮结构,齿圈用青铜,轮芯用铸铁或碳素钢.常 用蜗轮的结构形式如下:
整体式蜗轮
配合式蜗轮
η1—计及啮合摩擦损耗的效率; η2—计及轴承摩擦损耗的效率; η3—计及溅油损耗的效率;
η = η1 ×η2 ×η3
η1是对总效率影响最大的因素,可由下式确定:
tan γ η1 = tan( γ + v )
式中:γ -蜗杆的导程角; v-当量摩擦角. Z1↑→γ↑→η↑
效率与蜗杆头数的大致关系为: 蜗杆头数 总效率 1 0.70 2 0.80 4 0.90 6 0.95
蜗杆传动的类型
蜗杆传动的类型
圆柱蜗杆传动
阿基米德蜗杆 渐开线蜗杆 其齿面一般是在车床上用直线刀刃的 普通圆柱蜗杆传动 车刀切制而成,车刀安装位置不同, 加工出的蜗杆齿面的齿廓形状不同. 法向直廓蜗杆 锥面包络圆柱蜗杆 圆弧圆柱蜗杆传动 其蜗杆的螺旋面是用刃边为凸圆弧形 的车刀切制而成的.
环面蜗杆传动
普通蜗杆传动的效率润滑 与热平衡5
冷却器
过滤器
通水
油泵
传动箱内装循环冷却管路
传动箱外装循环冷却器
圆柱蜗杆和蜗轮的计1
蜗杆螺旋部分的直径不大,所以常和轴做成一个整体.当蜗杆螺旋 部分的直径较大时,可以将轴与蜗杆分开制作.
无退刀槽,加工螺旋部分时只能用铣制的办法.
普通蜗杆传动的效率,润滑与热平衡
四,蜗杆传动的散热措施
普通蜗杆传动的效率润滑与热平衡4
当自然冷却的热平衡温度过高时,可采用以下措施: 1. 加散热片以增大散热面积或在蜗杆轴端加装风扇以加速空气流通.
散热片 溅油轮 风扇 过滤网 集气罩
空气流
空气流
普通蜗杆传动的效率,润滑与热平衡
2. 加冷却管路或散热器冷却.
其蜗杆体在轴向的外形是以凹弧面为母线所形成的旋转曲 面,这种蜗杆同时啮合齿数多,传动平稳;齿面利于润滑 油膜形成,传动效率较高;
锥蜗杆传动
同时啮合齿数多,重合度大;传动比范围大(10~360);承载 能力和效率较高;可节约有色金属.
普通蜗杆传动的参数与尺寸
一,主要参数及选择 1,模数m和压力角α 蜗杆与蜗轮啮合时,蜗杆的轴面模数,压力角应与蜗轮的端面模数, 压力角相等,即 2,蜗杆的分度圆直径d1 由于蜗轮是用与蜗杆尺寸相同的蜗轮滚刀配对加工而成的,为了限制 滚刀的数目,国家标准对每一标准模数规定了一定数目的标准蜗杆分度圆 直径d1.直径d1与模数m的比值(q= d1 /m)称为蜗杆的直径系数. 3,蜗杆的头数z1
z1m 因为 γ = tan d1
所以
普通蜗杆传动的效率,润滑与热平衡
二,蜗杆传动的润滑 润滑油 润滑油的种类很多,需根据蜗杆,蜗轮配对材料和运转条件选用.
润滑油
普通蜗杆传动的效率润滑与热平衡2
润滑的主要目的在于减摩与散热.具体润滑方法与齿轮传动的润滑相近.
润滑油粘度及给油方式 一般根据相对滑动速度及载荷类型进行选择.给油方法包括:油池润 滑,喷油润滑等,若采用喷油润滑,喷油嘴要对准蜗杆啮入端,而且要控 制一定的油压.
普通蜗杆传动的承载能力计算
一,蜗杆传动的失效形式
普通蜗杆传动的承载能力计算1
蜗杆传动的主要问题是摩擦磨损严重,这是设计中要解决的主要问题. 蜗轮磨损,系统过热,蜗杆刚度不足是主要的失效形式. 二,蜗杆传动的常用材料 为了减摩,通常蜗杆用钢材,蜗轮用有色金属(铜合金,铝合金). 高速重载的蜗杆常用15Cr,20Cr渗碳淬火,或45钢,40Cr淬火. 低速中轻载的蜗杆可用45钢调质. 蜗轮常用材料有:铸造锡青铜,铸造铝青铜,灰铸铁等. 三,蜗杆传动的设计准则 蜗轮的齿根弯曲疲劳强度计算 —— 蜗轮的齿面接触疲劳强度计算 防止齿面过度磨损引起的失效.
详细介绍
润滑油量 润滑油量的选择既要考虑充分的润滑,又不致产生过大的搅油损耗. 对于下置蜗杆或侧置蜗杆传动,浸油深度应为蜗杆的一个齿高; 当蜗杆上置时,浸油深度约为蜗轮外径的1/3.
普通蜗杆传动的效率,润滑与热平衡
三,蜗杆传动的热平衡
普通蜗杆传动的效率润滑与热平衡3
由于传动效率较低,对于长期运转的蜗杆传动,会产生较大的热量. 如果产生的热量不能及时散去,则系统的热平衡温度将过高,就会破坏润 滑状态,从而导致系统进一步恶化. 系统因摩擦功耗产生的热量为: Φ1 = 1000 P(1 η ) 自然冷却从箱壁散去的热量为: Φ2 = α d S (to t a )
αd-箱体表面的散热系数,可取αd =(8.15~17.45)W/(m2℃);
S -箱体的可散热面积(m2); t0-润滑油的工作温度(℃); 在热平衡条件下可得: ta-环境温度(℃).
to = ta +
1000 P (1 η ) 可用于系统热平衡验算,一般to≤70~80℃ αd S 1000 P (1 η ) S= 可用于结构设计 α d (to t a )
(Z1与Z2的荐用值表)
1 1 a = ( d1 + d 2 ) = ( q + z 2 ) m 2 2
普通蜗杆传动的参数与尺寸
普通蜗杆传动的参数与尺寸2
二,蜗杆传动变位的特点 1,为了配凑中心距或提高承载能力及传动效率,常采用变位蜗杆传动. 2,蜗杆尺寸不能变动,只能对蜗轮进行变位. 3,变位后,蜗轮的分度圆和节圆仍旧重合,只是蜗杆在中间平面上的节线 有所变动,不再与其分度线重合. 三,蜗杆传动的几何尺寸计算 见表11-3.
详细内容
普通蜗杆传动的参数与 尺寸1
ma1= mt2 = m αa1= αt2
较少的蜗杆头数(如:单头蜗杆)可以实现较大的传动比,但传动效 率较低;蜗杆头数越多,传动效率越高,但蜗杆头数过多时不易加工.通 常蜗杆头数取为1,2,4,6.
(蜗杆头数与传动效率关系)
普通蜗杆传动的参数与尺寸
4,导程角γ
第十一章 蜗杆传动
§11-1 蜗杆传动概述 §11-2 蜗杆传动的类型 §11-3 普通蜗杆传动的参数与尺寸 §11-4 普通蜗杆传动的承载能力计算 §11-5 普通蜗杆传动的效率,润滑与热平衡 §11-6 圆柱蜗杆和蜗轮的结构设计
蜗杆传动概述
蜗杆传动概述 蜗杆传动是一种在空间交错轴间传递运动的机构. 蜗杆传动的主要特点有: 1.传动比大,一般为i=5~80,大的可达300以上; 2.重合度大,传动平稳,噪声低; 3.摩擦磨损问题突出,磨损是主要的失效形式; 4.传动效率低,具有自锁性时,效率通常低于50%. 由于上述特点,蜗杆传动主要用于运动传递,而在动力传输中的应 用受到限制. 随着加工工艺技术的发展和新型蜗杆传动技术的不断出现,蜗杆传 动的优点得到进一步的发扬,而其缺点得到较好地克服.因此蜗杆传动 已普遍应用于各类运动与动力传动装置中.
拼铸式蜗轮
螺栓联接式蜗轮
�
蜗杆的刚度计算 —— 防止蜗杆刚度不足引起的失效. 传动系统的热平衡计算 —— 防止过热引起的失效.
普通蜗杆传动的承载能力计算
普通蜗杆传动的承载能力计算2 四,蜗杆传动的受力分析 蜗杆传动的受力分析与斜齿圆柱齿轮的受力分析相同,轮齿在受到法向 载荷Fn的情况下,可分解出径向载荷Fr,周向载荷Ft,轴向载荷Fa.