什么是数字信号处理

合集下载

数字信号处理的三种基本运算

数字信号处理的三种基本运算

数字信号处理的三种基本运算
数字信号处理(DSP)是涉及对数字信号进行各种操作的过程,包括分析、变换、滤波、调制和解调等。

以下是数字信号处理的三种基本运算:
1. 线性运算
线性运算是数字信号处理中最基本的运算之一。

线性运算是指输出信号与输入信号成正比,即输出信号的幅度与输入信号的幅度成正比。

线性运算可以用数学表达式表示为y(n)=kx(n),其中y(n)和x(n)分别是输出信号和输入信号,k是常数。

2. 离散化运算
离散化运算是将连续信号转换为离散信号的过程。

在实际的数字信号处理中,所有的信号都是离散的,这是因为我们的采样设备只能获取有限数量的样本点。

离散化运算可以通过采样和量化来实现。

采样是将连续信号转换为时间离散的信号,量化是将采样值转换为有限数量的幅度离散值。

3. 周期化运算
周期化运算是指将一个非周期信号转换为周期信号的过程。

周期化运算可以帮助我们更好地理解信号的特性,例如通过将一个非周期性的噪声信号转换为周期性的信号,我们可以更容易地识别出噪声的类型和来源。

周期化运算可以通过傅里叶变换等工具来实现。

以上三种基本运算在数字信号处理中具有广泛的应用,是理解和处理数字信号的重要工具。

电子工程师中的数字信号处理

电子工程师中的数字信号处理

电子工程师中的数字信号处理随着信息技术的日益发展,数字信号处理已经成为了现代电子工程的基础和重要组成部分。

作为一个电子工程师,掌握数字信号处理是至关重要的。

本文将从数字信号处理的基础概念、应用领域及未来发展趋势等方面介绍数字信号处理在电子工程师中的重要性。

一、数字信号处理基础概念数字信号处理是以数字信号为对象,进行信号的采样、量化、编码、运算等一系列处理的技术。

与模拟信号处理相比,数字信号处理具有精度高、计算速度快等优点。

数字信号处理常用的处理器有DSP、FPGA等。

数字信号的采样是指将模拟信号变为离散的过程。

采样的频率越高,转化后的数字信号越接近原始模拟信号。

量化则是将模拟信号的连续数值转化成离散的数值。

采样和量化后,数字信号将以离散的形式进行处理和传输。

数字信号处理的主要运算包括傅里叶变换、滤波、编码等。

傅里叶变换是将时域信号转换到频域的重要数学工具,可用于信号的频谱分析和滤波器的设计。

滤波是一种常用的数字信号处理方法,用于滤去不需要的信号或保留需要的信号。

编码是将数字信号表示成二进制数的过程,常见的编码方式包括PCM、Delta、ADPCM等。

二、数字信号处理在电子工程师中的应用领域数字信号处理在电子工程师中的应用非常广泛,以下列举几个典型的应用领域。

1、数字通信系统数字信号处理在数字通信系统中扮演着核心作用。

数字通信系统基于数字信号处理技术,能够在不同介质进行高效的数字信号传输。

其中的主要技术包括调制解调、信道编码、信号处理、多路复用等。

2、音视频处理数字信号处理技术在音视频处理中也有广泛应用。

例如数字音频的压缩、编解码、降噪等技术,数字视频的编解码、压缩等技术,以及语音识别、人脸识别、图像处理等技术。

3、医疗影像处理在医疗领域,数字信号处理技术常用于医疗影像的处理和分析。

例如,MRI和CT扫描技术中,数字信号处理用于图像的重新构建和去噪,为医生提供更准确的诊断结果。

4、雷达信号处理雷达信号处理也是数字信号处理的重要应用领域。

什么是数字信号如何处理数字信号

什么是数字信号如何处理数字信号

什么是数字信号如何处理数字信号数字信号是一种在计算机科学和通信领域中广泛使用的信号类型。

它是通过离散的数字值来表示信息或数据的信号。

与模拟信号相比,数字信号具有许多优势,如抗干扰能力强、传输距离远、易于处理和复制等。

数字信号的处理是指对数字信号进行各种操作和算法,以获取所需的信息或实现特定的功能。

以下是数字信号处理的几个关键步骤:1. 采样(Sampling):数字信号处理的第一步是对模拟信号进行采样,将连续的模拟信号转换为离散的数字信号。

采样过程中需要确定采样频率,以充分保留原始信号的频率信息。

2. 量化(Quantization):量化是将连续的采样值映射到有限数量的离散级别的过程。

通过量化,将连续的采样值转换为离散的数字值,以表示信号在某个时刻的幅值。

3. 编码(Encoding):编码是将量化后的数字信号转换为二进制形式,以便于存储和传输。

常用的编码方式包括脉冲编码调制(PCM)和压缩编码等。

4. 解码(Decoding):解码是将接收到的二进制信号转换回原始的数字信号。

解码过程与编码过程相反,将二进制信号转换为量化的数字值。

5. 滤波(Filtering):滤波是指通过滤波器对数字信号进行滤波,以去除噪声或不需要的频率成分。

滤波可以通过低通滤波器、高通滤波器、带通滤波器等方式进行。

6. 压缩(Compression):压缩是指对数字信号进行压缩编码,以减少存储或传输所需的数据量。

压缩可以通过无损压缩和有损压缩两种方式实现。

7. 解压缩(Decompression):解压缩是将压缩后的数字信号恢复为原始的数字信号。

解压缩过程与压缩过程相反,通过解码和滤波等操作还原信号的原始形态。

数字信号处理在各个领域都有广泛的应用,例如音频处理、图像处理、语音识别、通信系统等。

它不仅可以改善信号的质量和可靠性,还可以提供更多的功能和性能。

总结起来,数字信号是通过离散的数字值来表示信息或数据的信号,处理数字信号涉及采样、量化、编码、解码、滤波、压缩和解压缩等步骤。

汽车音响的dsp应用原理是什么

汽车音响的dsp应用原理是什么

汽车音响的DSP应用原理是什么1. 什么是DSP数字信号处理(DSP)是一种通过数字技术来处理模拟信号的技术,它可以对音频信号进行多种处理,以达到优化音质的目的。

2. DSP在汽车音响中的应用DSP在汽车音响中被广泛应用,可以对音频信号进行各种处理,例如音效调节、均衡器调节、环绕声模拟、降噪等。

下面将介绍几种常见的音频信号处理技术及其原理。

2.1 音效调节音效调节是指通过改变音频信号的频率、相位和振幅等参数,以调整声音的声场效果。

常见的音效调节包括混响、延迟、回声等。

•混响:通过模拟音乐演奏场所的声音反射特性,增加音频的粘滞度和空间感,使听者感觉音乐更加自然。

•延迟:根据声音的传播速度来制造时间差,使音频信号在不同的扬声器上以不同的时间到达,以增加音场深度和立体感。

•回声:通过模拟声音在不同的场景中反射、反弹产生的声音,增加音频的深度和层次感。

2.2 均衡器调节均衡器调节是指通过改变不同频率段上的声音增益,对音频信号的频率分布进行调整,以达到改善音效的目的。

•低音调节:通过增加低频信号的增益,增强低音效果,使得音响表现的更加饱满。

•高音调节:通过增加高频信号的增益,增加音乐的明亮度,使音响表现的更加清晰。

•中音调节:通过增加或减少中频信号的增益,调整人声的表现效果,使得音响表现的更加自然。

2.3 环绕声模拟环绕声模拟是通过处理音频信号,使得听者可以感受到音乐或声音来自于不同的方向,增加音场的立体感。

•空间定位:通过处理音频信号的相位和延迟,使得听者可以感受到音源来自于左、右、前、后等不同的方向。

•远近感:通过处理音频信号的各种参数,使得听者可以感受到音源的远近距离,增加音场的深度感。

2.4 降噪降噪是指通过处理音频信号,减少噪音对音乐或声音的影响,使得音质更加纯净。

•主动降噪:通过采集车内噪音,然后通过反向相位信号输出到喇叭上,从而消除噪音。

•自适应降噪:通过使用麦克风采集外界噪音,通过算法分析并减少噪声对音频信号的干扰。

什么是数字信号处理

什么是数字信号处理

什么是数字信号处理?有哪些应用?利用数字计算机或专用数字硬件、对数字信号所进行的一切变换或按预定规则所进行的一切加工处理运算。

例如:滤波、检测、参数提取、频谱分析等。

对于DSP:狭义理解可为Digital Signal Processor 数字信号处理器。

广义理解可为Digital Signal Processing 译为数字信号处理技术。

在此我们讨论的DSP的概念是指广义的理解。

数字信号处理是利用计算机或专用处理设备,以数字形式对信号进行采集、变换、滤波、估值、增强、压缩、识别等处理,以得到符合人们需要的信号形式。

信号处理的实质是对信号进行变换。

信号处理的目的是获取信号中包含的有用信息,并用更直观的方式进行表达。

DSP的应用几乎遍及电子学每一个领域。

▲通用数字信号处理器:自适应滤波,卷积,相关,数字滤波,FFT, 希尔伯特变换,波形生成,窗函数等等。

▲语音信号处理:语音增强、识别、合成、编码、信箱等,文字/语音转换▲图形/图像处理:三维动画,图象鉴别/增强/压缩/传输,机器人视觉等等图▲特殊应用数字信号处理:振动和噪声分析与处理,声纳和雷达信号处理,通信信号处理, 地震信号分析与处理,汽车安全及全球定位,生物医学工程等等。

在医疗、军事、汽车等行业,以及通信市场、消费类电子产品等中具有广阔的市场前景。

数字信号处理系统的基本组成:前置预滤波器(PrF)、a/d变换器(ADC)、数字信号处理器(DSP)、d/a变换器(DAC)、模拟滤波器(PoF)数字信号处理特点:1.大量的实时计算(FIR IIR FFT),2.数据具有高度重复(乘积和操作在滤波、卷积和FFT中等常见)数字信号处理技术的意义、内容数字信号处理技术是指数字信号处理理论的应用实现技术,它以数字信号处理理论、硬件技术、软件技术为基础和组成,研究数字信号处理算法及其实现方法。

意义:在21世纪,数字信号处理是影响科学和工程最强大的技术之一它是科研人员和工程师必须掌握的一门技巧DSP芯片及其特点▲采用哈佛结构体系:独立的程序和数据总线,一个机器周期可同时进行程序读出和数据存取。

dsp是什么

dsp是什么

D S P 是什么数字信号处理(Digital Signal Processing,简称DSP)是一门涉及许多学科而又广泛应用于许多领域的新兴学科。

20世纪60年代以来,随着计算机和信息技术的飞速发展,数字信号处理技术应运而生并得到迅速的发展。

数字信号处理是一种通过使用数学技巧执行转换或提取信息,来处理现实信号的方法,这些信号由数字序列表示。

在过去的二十多年时间里,数字信号处理已经在通信等领域得到极为广泛的应用。

德州仪器、Freescale等半导体厂商在这一领域拥有很强的实力。

DSP 开发板开发板,就是针对某个芯片,以这个芯片为核心,将这个芯片的功能都扩展出来,将每一部分都通过程序把功能都演示出来。

同时,提供源程序和原理图,这样客户就能够以最小的代价,最快的速度去学习这款芯片的使用,达到事半功倍的效果。

DSP,就是数字信号处理器。

通常用于数据算法处理,跟其他处理器相比,其强大的数据处理能力和运行速度,流水线结构是其最大的特点。

DSP开发板,就是围绕DSP的功能进行研发,推出用于DSP芯片开发的线路板,并提供原理图和源代码给客户。

DSP尤以TI公司的DSP市场占有率最大,拥有的客户群很广泛。

在DSP开发板方面,北京大道纵横科技有限公司(开发板之家)推出了Easy系列DSP开发板,包括Easy2812开发板,Easy5509开发板,特别适合学生学习使用。

还推出QQ系列开发板,包括QQ2812开发板,QQ5509开发板等,适合公司研发人员使用。

消费者迫切需求的辅助驾驶系统技术需要具有先进精密功能且外形尺寸又非常小的高可靠性元件。

由于这些系统尺寸很小,而且彼此非常靠近,因此还要求器件具有超低功耗和良好的耐久性。

空间受限的系统在设计方面存在的热可靠性问题可通过采用较少的元件及超低的功耗来解决。

Actel公司以Flash为基础的ProASIC3 FPGA具有固件错误免疫力、低功耗和小外形尺寸等优势,因而消除了FPGA(现场可编程门阵列)用于安全关键汽车应用领域的障碍。

单片机中的数字信号处理与接口技术

单片机中的数字信号处理与接口技术

单片机中的数字信号处理与接口技术数字信号处理(Digital Signal Processing,DSP)是将连续时间变化的模拟信号转换为离散时间的数字信号的过程。

在单片机中,数字信号处理与接口技术是非常重要的一部分,它涉及到信号的采集、处理和输出等方面,对于实现各种功能和应用起着至关重要的作用。

首先,数字信号处理在单片机中的应用非常广泛。

通过AD(模数转换)和DA(数模转换)模块,可以将模拟信号转换为数字信号,再对数字信号进行各种算法处理,例如滤波、傅里叶变换、微分和积分等操作,最后再将处理后的数字信号转换为模拟信号输出。

这样可以实现对各种传感器信号的采集和处理,满足各种控制系统的需求。

其次,接口技术也是单片机中必不可少的一部分。

单片机通过各种接口与外部设备进行通信,包括串口、并口、SPI(串行外设接口)、I2C(串行总线接口)等。

这些接口技术可以实现单片机与各种外设的数据交换和通信,比如与PC机通信传输数据,与传感器模块进行数据采集等。

在数字信号处理和接口技术的结合中,单片机可以实现各种复杂的功能和应用,比如音频处理、图像处理、通信系统、控制系统等。

其中,音频处理是单片机数字信号处理的典型应用之一,通过对音频信号的采集、数字滤波和编解码等处理,可以实现音频的实时处理和变换,例如降噪、均衡、混响等效果。

另外,数字信号处理和接口技术在控制系统中也有着广泛的应用。

单片机可以通过采集各种传感器信号,如温度、湿度、光照等,进行实时处理和控制,控制各种执行器的运动,实现自动化控制系统。

这种数字信号处理和接口技术的应用,大大提高了控制系统的精度和可靠性。

总的来说,数字信号处理与接口技术是单片机应用中的核心技术之一,它使得单片机可以实现各种复杂的功能和应用。

通过对数字信号的处理和接口的应用,单片机可以实现音频处理、图像处理、通信系统、控制系统等多种功能,为现代电子产品的发展和应用提供了强大的技术支持。

什么是数字信号处理芯片如何选择合适的数字信号处理芯片

什么是数字信号处理芯片如何选择合适的数字信号处理芯片

什么是数字信号处理芯片如何选择合适的数字信号处理芯片数字信号处理芯片 (Digital Signal Processing Chip,简称DSP芯片)是一种硬件设备,能够对数字信号进行高效的处理与分析。

数字信号处理(Digital Signal Processing,简称DSP)是指对数字信号进行滤波、变换、降噪、编码等一系列算法的处理。

数字信号处理芯片由专门的处理器和相关硬件构成,广泛应用于音频、视频、通信、雷达以及医疗设备等领域。

数字信号处理芯片的选择非常重要,因为不同的芯片具有不同的性能、功耗、价格等方面的特点。

以下是选择合适的数字信号处理芯片时需要考虑的几个因素:1. 性能:性能是选择数字信号处理芯片的关键因素之一。

性能包括芯片的处理速度、噪声性能、精度、频率响应等。

在选择芯片时,需要根据具体的应用需求来确定所需的性能指标。

2. 功耗:功耗也是选择数字信号处理芯片时需要考虑的一个重要因素。

功耗的高低会直接影响设备的运行时间和使用寿命。

通常情况下,功耗越低越好,但需要根据具体的应用场景来平衡性能和功耗之间的关系。

3. 接口:数字信号处理芯片与其他设备之间的通信需要通过接口来实现。

在选择芯片时,需要确保芯片具有与其他设备兼容的接口,如UART、I2C、SPI等。

4. 支持的算法:不同的应用场景需要用到不同的算法。

在选择芯片时,需要确保芯片支持所需的算法,如滤波、变换、编码等。

5. 可编程性:可编程性是指芯片是否具备可以自定义算法的能力。

对于一些特殊需求或者未来可能会有新的算法需求的应用,可编程性是一个重要的考虑因素。

6. 价格:价格是选择数字信号处理芯片时需要考虑的一个重要因素。

不同的芯片价格可能会有较大的差异,需要根据预算来选择合适的芯片。

在选择数字信号处理芯片时,可以参考厂商提供的技术文档和产品手册,了解芯片的性能参数、功能特点等。

同时,还可以查阅相关的评测和用户反馈,获取更多的信息。

综上所述,选择合适的数字信号处理芯片需要综合考虑性能、功耗、接口、算法支持、可编程性以及价格等因素。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

什么是数字信号处理?有哪些应用?利用数字计算机或专用数字硬件、对数字信号所进行的一切变换或按预定规则所进行的一切加工处理运算。

例如:滤波、检测、参数提取、频谱分析等。

对于DSP:狭义理解可为Digital Signal Processor 数字信号处理器。

广义理解可为Digital Signal Processing 译为数字信号处理技术。

在此我们讨论的DSP的概念是指广义的理解。

数字信号处理是利用计算机或专用处理设备,以数字形式对信号进行采集、变换、滤波、估值、增强、压缩、识别等处理,以得到符合人们需要的信号形式。

信号处理的实质是对信号进行变换。

信号处理的目的是获取信号中包含的有用信息,并用更直观的方式进行表达。

DSP的应用几乎遍及电子学每一个领域。

▲通用数字信号处理器:自适应滤波,卷积,相关,数字滤波,FFT, 希尔伯特变换,波形生成,窗函数等等。

▲语音信号处理:语音增强、识别、合成、编码、信箱等,文字/语音转换▲图形/图像处理:三维动画,图象鉴别/增强/压缩/传输,机器人视觉等等图▲特殊应用数字信号处理:振动和噪声分析与处理,声纳和雷达信号处理,通信信号处理, 地震信号分析与处理,汽车安全及全球定位,生物医学工程等等。

在医疗、军事、汽车等行业,以及通信市场、消费类电子产品等中具有广阔的市场前景。

数字信号处理系统的基本组成:前置预滤波器(PrF)、a/d变换器(ADC)、数字信号处理器(DSP)、d/a变换器(DAC)、模拟滤波器(PoF)数字信号处理特点:1.大量的实时计算(FIR IIR FFT),2.数据具有高度重复(乘积和操作在滤波、卷积和FFT中等常见)数字信号处理技术的意义、内容数字信号处理技术是指数字信号处理理论的应用实现技术,它以数字信号处理理论、硬件技术、软件技术为基础和组成,研究数字信号处理算法及其实现方法。

意义:在21世纪,数字信号处理是影响科学和工程最强大的技术之一它是科研人员和工程师必须掌握的一门技巧DSP芯片及其特点▲采用哈佛结构体系:独立的程序和数据总线,一个机器周期可同时进行程序读出和数据存取。

对应的:冯·诺依曼结构。

▲采用流水线技术:▲硬件乘法器:具有硬件连线的高速“与或”运算器▲多处理单元:DSP内部包含多个处理单元。

▲特殊的DSP指令:指令具有多功能,一条指令完成多个动作;如:倒位序指令等▲丰富的外设▲功耗低:一般DSP芯片功耗为0.5~4W。

采用低功耗技术的DSP芯片只有0.1W/3.3V、1.6V (电池供电)DSP芯片的类别和使用选择▲按特性分:以工作时钟和指令类型为指标分类▲按用途分:通用型、专用型DSP芯片▲按数据格式分:定点、浮点各厂家还根据DSP芯片的CPU结构和性能将产品分成若干系列。

TI公司的TMS320系列DSP芯片是目前最有影响、最为成功的数字信号处理器,其产品销量一直处于领先地位,公认为世界DSP霸主。

•目前市场上的DSP芯片有:•美国德州仪器公司(TI):TMS320CX系列占有90%•还有AT&T公司dsp16,dsp32系列•Motorola公司的dsp56x,dsp96x系列•AD公司的ADSP21X,ADSP210X系列定点芯片:▲TMS320C2000系列√TMS320C20X: C203, F206√TMS320C24X: LF2407 √TMS320C28X: F2810, F2812▲TMS320C5000系列: C5402, C5410, C5509▲TMS320C6000:C6204, C6416,C6455浮点芯片:▲TMS320C3X: C30, C31, C32, VC33▲TMS320C4X: C40, C44▲TMS320C67XX: C6701, C6711, C6712多处理芯片:▲TMSC8X: C80, C82使用选择:▲性能: 描述DSP性能的最重要的技术指标是运算速度▲片内硬件资源:包括片内RAM、ROM的数量、I/O接口、总线、驱动能力、外部可扩展的程序和数据空间等等▲价格:量大价格便宜,厂家主推的产品,价格便宜。

DSP的应用领域• 1.网络• 2.无线通信• 3.家电• 4.另外还有虚拟现实,噪声对消技术,电机控制,图像处理等等•可以说DSP是现代信息产业的重要基石,它在网络时代的地位与CPU在PC时代的地位是一样的。

三大类TI的DSP芯片各自的适用领域TMS320F2812主要特点▲高性能静态CMOS技术:150MHz时钟、低功耗设计、编程电压3.3V。

▲JTAG边界扫描(Boundary Scan)支持▲高性能的32位中央处理器:哈佛总线结构、双16位乘加单元、迅速的中断响应和处理▲片内存储器:128KFlash、2个4K的随机存储器、1个8K的SARAM,2个1K的SARAM▲根只读存储器(Boot ROM)4K×16位▲外部存储器接口:可编程等待状态:▲时钟与系统控制:片上振荡器、看门狗定时器模块▲三个外部中断▲外部中断扩展(PIE)模块:可支持45个外部中断▲128位的密钥▲3个32位的CPU定时器▲马达控制外围设备:两个事件管理器▲串口外围设备:SPI /SCI/ UART/eCAN/McBSP▲12位的ADC,16通道:80ns/12.5MSPS▲有56个独立的可编程、多用途通用输入/输出(GPIO)引脚▲高级的仿真特性:分析和设置断点的功能,实时硬件调试功能▲开发工具: ANSI C/C++编译器/汇编程序/连接器、支持TMS320C24x/240x的指令、代码编辑集成环境、DSP/BIOS、硬件评估板2812外设资源有哪些,“外设”???主要包括配置寄存器、输入寄存器、输出寄存器和状态寄存器。

每个外设只要通过简单的访问存储器中的寄存器就可以使用该设备。

外设:事件管理器通用I/O 模数转换模块SPI和SCI通信接口CAN总线通信模块看门狗PLL时钟模块多通道缓冲串口外部中断接口存储器及其接口1、F2812 的片内资源2812有3 个32位的CPU定时器,支持动态的改变锁相环的频率,有片内振荡器和看门狗定时器模块。

2812具有3个外部中断,但是2812具有外部中断的扩展模块(PIE),它可支持96个外部中断,不过当前仅仅使用了45个外部中断,其他为保留。

具有128位的密钥,用于保护FLASH、OTP 和L0、L1 中的内容不被盗读。

2.、F2812 的片内外设:1. 2个事件管理器EV A、EVB2. 2个串行通信接口SCI,标准的UART(SCIA SCIB)。

3. 1个串行外围接口SPI。

4. 改进的CAN通信ECAN。

5. 多通道缓冲串行接口McBSP。

6. 12位的ADC,一共有16 个通道,实现AD转换的功能7. 最多有56个可独立编程的,多功能复用的GPIO引脚。

8. XINTF外部扩展接口--异步,非复用的总线结构--用于扩展并口外设2812 组成和功能框图/示意图▲特点—— 32位定点改进哈佛结构循环的寻址方式。

▲组成——内核存储器片内外设2812内部总线结构▲存储器接口有3组地址总线:1.PAB(Program Address Bus)程序地址总线:PAB用来传送来自程序空间的读写地址。

PAB是一个22位的总线。

2.DRAB(Data-Read Address Bus)数据读地址总线:32位的DRAB用来传送来自数据空间的读地址。

3.DWAB(Data-Write Address Bus)数据写地址总线:32位的DW AB用来传送来自数据空间的写地址。

▲存储器接口还有3组数据总线:1.PRDB(Program-Read DataBus)程序读数据总线:PRDB在读取程序空间时用来传送指令或数据。

PRDB是一个32位的总线。

2.DRDB(Data-ReadDataBus)数据读数据总线:DRDB在读取数据空间时用来传送数据。

DRDB是一个32位的总线。

3.DWDB(Data/Program-WriteDataBus)数据/程序写数据总线:32位的DWDB在对数据空间和程序空间写数据时用来传送数据。

什么是中断;中断处理过程;在CPU运行过程中,由于内部或外部某个随机事件的发生,使CPU暂停正在运行的程序,而转去执行处理引起中断事件的程序,完成后返回原来的程序继续执行的过程中断处理过程:CPU暂停当前的工作转而去处理中断事情处理完以后,再回到原来被中断的地方,继续原来的工作显然,服务一个中断包括保存当前处理现场,完成中断任务,恢复各寄存器和现场,返回继续执行被暂时中断的程序。

请示CPU中断的请求源称为中断源。

这些中断源可以是片内的,如定时器等;也可以是片外的,如A/D 转换及其它片外装置。

2812中断机制;2812的CPU为了能够及时有效的处理好各个外设的中断请求,特别设计了一个专门处理外设中断的扩展模块(the Peripheral Interrupt Expansion block),叫做外设中断控制器PIE,它能够对各种中断请求源(例如来自于外设或者其他外部引脚的请求)做出判断以及相应的决策。

2812的中断是3 级中断机制,分别是外设级,PIE级以及CPU级,对于某一个具体的外设中断请求,任意一级的不许可,CPU 最终都不会执行该外设中断。

就像一个文件需要三级领导批示一样,任意一级领导的不同意,都不能被送至上一级领导,更不可能得到最终的批准,中断机制的原理也是如此。

2812中断控制;(可屏蔽中断处理过程)p134CPU定时器0的中断实现;p135什么是GPIO?General Purpose Input Output 通用数字量输入输出端口⏹什么是GPIO的复用?数字IO口,外设⏹GPxMUX:GPIO的复用控制Mux控制寄存器(功能选择控制寄存器) 。

用来选择这些接脚被拿来当做数字I/O(GPxMUX.bit=0)还是外设I/O(GPxMUX.bit=1)。

当DSP重置时,所有I/O 预设为数字I/O。

⏹2812 GPIO 引脚分配-----了解物理意义⏹2812各类时钟:晶振时钟、系统时钟、高速外设时钟、低速外设时钟的关系p100⏹PLL/ HISPCP/LOSPCP的作用理解锁相环(PLL)模块主要用来控制DSP内核的工作频率,外部提供一个参考时钟输入,经过锁相环倍频或分频后提供给DSP内核。

C281 x数字信号处理器能够实现0.5~10倍的倍频。

什么是看门狗?理解看门狗的作用看门狗,又叫watchdog timer,是一个定时器电路, 一般有一个输入,叫喂狗(kicking the dog or service the dog),一个输出到MCU的RST 端,MCU正常工作的时候,每隔一端时间输出一个信号到喂狗端,给WDT 清零,如果超过规定的时间不喂狗,(一般在程序跑飞时),WDT 定时超过,就回给出一个复位信号到MCU,是MCU 复位. 防止MCU 死机. 看门狗的作用就是防止程序发生死循环,或者说程序跑飞。

相关文档
最新文档