景观格局分析方法
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
景观指数应用举例
通过计算一些景观指数,可以比较两个景观的结构特 征(图)
两个具有不同空间格局的景观及其相应的一些景观指 数
景观指数可以用来定量地描述和监测景观结构特征随时间的变化 (图)
美国本土的原始森林由于人类活动从1620年1990年间锐减的情形 美国亚利桑那洲凤凰城地区从1912年到1995年城市扩张的情形
空间自相关分析:检验某一空间变量的取值是否与相 邻空间上该变量的取值大小相关,以及相关程度如何。 空间自相关系数:度量物理或生态学变量在空间上的 分布特征及其对其邻域的影响程度。
若某一空间变量的值随着测定距离的缩小而变得更相 似,则这一变量呈空间正相关;若所测值随距离的缩 小而更为不同,则这一变量呈空间负相关;若表现出 任何空间依赖关系,则这所测值变量表现出空间不相 关性或空间随机性。
多层空间数据分析的精确度
遥感、地理信息系统 在景观生态学中的应用
第一节
遥
感(RS)
一、遥感技术在生态学应用中经历的阶段
二、遥感技术的基本原理 三、遥感技术的优点 四、遥感数据的基本特征 五、遥感在景观生态学中的应用方面
遥感在生态学应用中经历的阶段
航空摄影阶段:始于19世纪后期。 从航空摄影向航天摄影过渡的阶 段:大约从20世纪50年代至70年代。 航天摄影阶段: 以各种遥感卫星和先进的
遥感资料在景观生态学中的应用可以 归纳为3类:
植被和土地利用分类 生态系统和景观特征的定量化 景观动态以及生态系统管理方面 的研究
第二节
一、概述
地理信息系统(GIS)
二、GIS的数据层及数据获取
三、GIS的功能
四、GIS在景观生态学中的应用
GIS是一系列用来收集、存贮、提取、转换和 显示空间数据的计算机工具。
景观格局变化的定量描述 以10个景观指数举例说明美国凤凰城地区从1912年至1995年土地利用变化
第四节 空间统计学方法
空间自相关分析
景观格局的最大特征就是空间自相关性——被 称为是地理学第一定律,指在空间上越靠近的 事物或现象就越相似,即景观特征或变量在邻 近范围内的变化往往表现出对空间位置的依赖 关系。
图像处理技术为标志。
遥感技术的基本原理
指通过任何不接触被观测物体 的手段来获取信息的过程和方法。
遥感
遥感技术的基本原理
是用光谱扫描仪或红外扫描仪对地球表面的地 物光谱或温度特征进行记录,通过计算机的数 据或图像处理分析地表特征。
遥感技术的优点
避免研究者对研究对象的直接干扰。 能够提供大范围的瞬间静态图像,是生态学家 目前获取大尺度上各种生态和物理信息的主要手 段。 提供了大面积重复观测的可能,为资料的快速 获取与更新、为多时段的对比研究和动态分析提 供了基础,是大尺度格局动态的唯一监测手段。
P是斑块的周长,A是斑块的面积,D是分维 数,k是常数。对于栅格景观而言,k=4。一 般地说,欧几里德几何形状的分维为1,具有 复杂边界斑块的分维则大于1,但小于2。
三
景观异质性指数
1)景观斑块密度和边缘密度
A:景观斑块密度 B:景观边缘密度
2)景观多样性
A: 多样性指数与均匀度 B: 景观要素优势度
如:稻田总是与河流或渠道并存是正相关空间联结的实 例;平原的稻田区很少有大片林地出现是负相关的实例。
三、景观格局分析概念
用来研究景观结构组成特征和空间配 置关系的分析方法。
通过研究空间格局可以更好地理解生态学过程。
第二节 景观格局分析的基本步骤
一 景观格局研究的目的
确定产生和控制空间格局的因子及其作用机制;
空间自相关分析的步骤
对所检验的空间单元进行取样 计算空间自相关系数(Moran的I系数和Geary的c系数)
I n wij ( xi x )( x j x ) ( wij ) ( xi x )
i 1 j 1 i 1 i 1 j 1 n n n 2 n n
Pk为斑块类型k在景观中出现的概率;m为景观中斑块 类型总数。
Simpson多样性指数:
H ' 1 Pk2
k 1 m
H 'max 1 (1 / m)
景观均匀度指数
反映景观中各斑块类型在面积上分布的均匀程 度。 以Shannon多样性指数为例:
Pk ln( Pk )
遥感数ຫໍສະໝຸດ Baidu的基本特征
航空像片数据的空间分辨率反映在像片 的比例尺和胶片的灵敏程度上; 数字遥感数据对地物记录的详细程度主 要反映在空间分辨率上。
遥感在景观生态学中的应用方面
表 卫星波段及其能够测量的生态学特征
主要生态学应用 识别水体、土壤及植被 识别常绿针叶植被与落叶阔叶植被 识别人为的(非自然)地表特征 对植被绿光反射高峰较敏感,用于测量植被绿光反射峰值 识别人为的(非自然)地表特征 对叶绿素吸收光的作用敏感,用于检测叶绿素吸收 识别植被类型 识别人为的(非自然)地表特征 识别植被类型及生物量 识别水体和土壤水分特征 识别土壤湿度及植物含水量 识别雪和云 识别植物受胁迫(stress)程度、土壤水分条件分类 测量地表热量,用于热红外绘图 区别矿物及岩石类型 识别植被含水量
景观格局分析方法
第一节 概念 第二节 景观格局分析的基本步骤 第三节 景观指数 第四节 空间统计学方法 第五节 景观格局分析中的误差问题
第一节 概念 一、景观格局(景观空间格局)的概念 景观要素在景观空间内的配置和 组合形式。
二、景观格局的基本类型
1)规则或均匀分布格局 2)聚集(团聚)型分布格局 3)线状格局 4)平行格局 5)特定的组合或空间联结格局
3)线状格局
指同一类景观要素的斑块呈线性分布。
如:沿公路零散分布的房屋,干旱地区(或山地)沿 河分布的耕地。
4)平行格局
指同一类型的景观要素斑块呈平行分
布。
如:侵蚀活跃地区的平行河流廊道,以及山地景观中沿山 脊分布的林地。
5)特定的组合或空间联结格局
指不同的景观要素类型由于某种原因经 常相联结分布。空间联结可以是正相关,也 可以是负相关。
1 M M ED Pij A i 1 j 1
1 ED i Ai
P
j 1
M
ij
Pij——景观中第i类景观要素斑块与相邻第j类 景观要素斑块间的边界长度。
A: 多样性指数与均匀度
景观多样性指数
Shannon多样性指数:
H Pk ln( Pk )
k 1 m
H max ln(m)
比较不同景观镶嵌体的特征和它们的变化; 探讨空间格局的尺度性质; 确定景观格局和功能过程的相互关系; 为景观的合理管理提供有价值的资料。
二 景观格局分析的基本步骤 以研究目的和方案为指导,收集和处理景 观数据
将真实的景观系统转换为数字化的景观,选
用适当的格局研究方法进行分析
1 Ni
A
Ni j 1
ij
Ai
2
Si Ci 100 % Ai
B: 内部生境面积
类斑块内部生境总面积:该类生境全部斑块内部 面积之和。
AI i Aij EAij
Ni j 1
式中
AIi——第i类生境的内部生境总面积; Aij——第i类生境的斑块平均内部生境面积; EAij——第i类景观要素第j斑块的边际带面积;
者有关的种种原因造成。
数据处理和分类过程引入的误差: 空间分析过程本身所引入的误差:各种景观指数和空间
统计学方法的局限性和非确定性;采用这些方法的人的实际操作水平和对 结果的解译能力。
景观空间分析中的误差
这些不同阶段所产生的误差还可能相互作用,不断放大,即 所谓的误差繁衍(error propagation)现象。
二、景观要素斑块特征分析
1 景观要素斑块规模
A: 斑块面积
B: 内部生境面积
2 景观要素斑块形状
A:景观要素斑块形状指数 B:景观要素斑块分维数
A: 斑块面积
类斑块平均面积:景观中某类景观要素斑块面积 的算术平均值。
1 Ai Ni
式中:
A
j 1
Ni
ij
Ni——第i类景观要素的斑块总数;
Aij——第i类景观要素第j个斑块的面积。
最大和最小斑块面积:指景观中某类景观要素最 大和最小斑块的面积。
Ai max max Aij Ai min min Aij
类斑面积标准差(Si)和变动系数(Ci):是指景观 中某类景观要素斑块面积的统计标准差和变动系 数。
Si
平均内部生境面积:该类生境全部斑块内部面积算 术平均值。
1 AI i Ni
A
Ni j 1
ij
EAij
A: 景观要素斑块形状指数
斑块形状指数D:通过计算某一斑块形状与相 同面积的圆或正方形之间的偏离程度来测量其 形状的复杂程度。 以圆为参照: D P / 2 A
以正方形为参照: D 0.25 P / A P为斑块周长;A为斑块面积。斑块的形状 越复杂或越扁长,D的值就越大。
大大拓宽了人类观测地球的光谱分辨能力。
可以提供高空间分辨率的资料,可以有效地 为景观生态学研究提供所必需的多尺度上的资料。 遥感数据一般都是空间数据,这也是研究景 观的结构、功能和动态所必需的数据形式。 现代遥感技术直接提供数字化空间信息,从 而大大地促进了景观生态学资料的收集、贮存, 以及处理和分析过程,并且使遥感、GIS和计算机 模型的密切配合成为必然。
B: 景观要素斑块分维数
分形维数(fractal dimension) 分形:不规则的非欧几里德几何形状可通称为分 形。组成部分以某种方式与整体相似的形体称分 形。 分形维数或分维数:不规则几何形状的非整数维 数。
对于单个斑块:
P kA
D/ 2
P D 2 ln( ) / ln( A) k
1)规则或均匀分布格局:指某一特定类型景
观要素间的距离相对一致的一种景观。
美国华盛顿 洲贝克山山 坡针叶林中 砍伐斑块的 规则分布格 局
2)聚集(团聚)型分布格局
同一类型的景观要素斑块相对聚集 在一起,同类景观要素相对集中,在景观 中形成若干较大面积的分布区,再散布在 整个景观中。
如:在丘陵农业景观中,农田多聚集在村 庄附近或道路的一端。
波段 波段 1(0.45~0.52μ m) 可见蓝光区 波段 2(0.52~0.60μ m) 可见绿光区 波段 3(0.60~0.90μ m) 可见红光区 波段 4(0.76~0.90μ 近红外反射区 波段 5(1.55~1.75μ 中红外反射区 波段 6(10.4~12.5μ 远红外反射区 波段 7(2.08~2.35μ 中红外反射区 m) m) m) m)
A:景观斑块密度
1 M PD N i A j 1
PD i
Ni
Ai
式中:PD——景观斑块密度:类型斑块总数/类型总面积。
PDi——景观要素的斑块密度:景观中某类景观要素的单位面积
斑块数。
M——研究范围内某空间分辨率上景观要素类型总数
A——研究范围景观总面积。
B: 景观边缘密度(边界密度)
栅格化数据
矢量化数据 最后对分析结果加以解释和综合
收集景观数据 野外考察、测量(获得植被、森林、土壤等 相关资料) 遥感数据:航空遥感 卫星遥感
景观格局分析图示
在进行景观格局分析时,实际景观首先要经过取样、数字化 过程转化为栅格型或矢量型数字地图
第三节 景观指数
一、景观指数
能够高度浓缩景观格局信息,反映 其结构组成和空间配置某些方面特征的简 单定量指标。
c
(n 1) wij ( xi x j ) 2 2( wij ) ( xi x j ) 2
i 1 j 1 i 1 j 1 n i 1 j 1 n n n
n
n
进行显著性检验
第五节 景观格局分析中的误差问题
景观格局分析中误差的来源
原始数据收集过程引入的误差:技术方法本身和与观察
k 1 m
H E H max
ln(m)
E<=1,当E趋于1时,景观斑块类型分布的均匀程度也 趋于最大。
景观要素优势度
描述景观由少数几类斑块控制的程度。通 常,较大的D(RD)对应于一个或少数几个斑 块类型占主导地位的景观。 优势度指数D: D = Hmax – H 相对优势度RD: RD = 1 - E = 1 —(H / Hmax)