大学物理(第四版)课后习题及答案-磁场

合集下载

大学物理-磁学习题课和答案解析

大学物理-磁学习题课和答案解析
3.铜的相对磁导率μr=0.9999912,其磁化率χm= 它是 磁性磁介质. -8.8×10-6 抗 ,
2. 均匀磁场的磁感应强度 B 垂直于半径为r的圆面.今
4. 如图,在面电流线密度为 j 的均匀载流无限大平板附近, 有一载流为 I 半径为 R的半圆形刚性线圈,其线圈平面与载流 大平板垂直.线圈所受磁力矩为 ,受力 0 0 为 .
μ
5、(本题3分) 长直电缆由一个圆柱导体和一共轴圆筒状导体组成,两导体 中有等值反向均匀电流I通过,其间充满磁导率为μ的均匀磁介 质.介质中离中心轴距离为r的某点处的磁场强度的大小H I =________________ ,磁感强度的大小B =__________ . I 2 r 2 r
B (A) B (B) √ R B x (D) O 圆筒 电流 O x
B
0 I (r R) 2r
(r R)
O B
R
x O (C) x O
B
(E)
B0
O
R
R
x
R
x
2、(本题3分)一匀强磁场,其磁感强度方向垂直于纸面(指 向如图),两带电粒子在该磁场中的运动轨迹如图所示,则 (A) 两粒子的电荷必然同号. (B) 粒子的电荷可以同号也可以异号. (C) 两粒子的动量大小必然不同. (D) 两粒子的运动周期必然不同.
(C) B dl B dl , BP BP 1 2
(D) B dl B dl , BP1 BP2
L1 L2
L1
L2
L1
L2
[ ]
5.有一矩形线圈 AOCD ,通以如图示方向的电流 I,将它置 于均匀磁场 B 中,B 的方向与X轴正方向一致,线圈平面与X 轴之间的夹角为 , 90 .若AO边在OY轴上,且线圈可 绕OY轴自由转动,则线圈 (A)作使 角减小的转动. (B)作使 角增大的转动. (C)不会发生转动. (D)如何转动尚不能判定.

大学物理(第四版)课后习题及答案 磁介质

大学物理(第四版)课后习题及答案 磁介质

题11.1:如图所示,一根长直同轴电缆,内、外导体间充满磁介质,磁介质的相对磁导率为)1(r r <μμ,导体的磁化率可以略去不计。

电缆沿轴向有稳恒电流I 通过,内外导体上电流的方向相反。

求(1)空间各区域内的磁感强度和磁化强度;(2)磁介质表面的磁化电流。

题11.2:在实验室,为了测试某种磁性材料的相对磁导率r μ,常将这种材料做成截面为矩形的环形样品,然后用漆包线绕成一螺绕环,设圆环的平均周长为0.01 m ,横截面积为24m 1005.0-⨯,线圈的匝数为200匝,当线圈通以0.01 A 的电流时测得穿过圆环横截面积的磁通为Wb 100.65-⨯,求此时该材料的相对磁导率r μ。

题11.3:一个截面为正方形的环形铁心,其磁导率为μ。

若在此环形铁心上绕有N 匝线圈,线圈中的电流为I ,设环的平均半径为r ,求此铁心的磁化强度。

题11.4:如图所示的电磁铁有许多C 型的硅钢片重叠而成,铁心外绕有N 匝载流线圈,硅钢片的相对磁导率为r μ,铁心的截面积为S ,空隙的宽度为b ,C 型铁心的平均周长为l 4,求空隙中磁感强度的值。

题11.5:一铁心螺绕环由表面绝缘的导线在铁环上密绕1000匝而成,环的中心线mm 500=L ,横截面积23mm 100.1⨯=s 。

若要在环内产生T 0.1=B 的磁感应强度,并由铁的H B -曲线查得此时铁的相对磁导率796r =μ。

导线中需要多大的电流?若在铁环上开一间隙(mm 0.2=d ),则导线中的电流又需多大?题11.1解:(1)取与电缆同轴的圆为积分路径,根据磁介质中的安培环路定理,有 对1R r <, 22f r R I I ππ=∑ 得 2112R Ir H π= 忽略导体的磁化(即导体相对磁导率1r =μ)有对12R r R >> I I =∑f得 r IH π22=填充的磁介质相对磁导率为r μ,有rIMπμ2)1(r2-=;rIBπμμ2r2=对23RrR>>)()(2222223fRrRRIII---=∑ππ得)(2)(22232233RRrrRIH--=π同样忽略导体得磁化,有对3Rr>0f=-=∑III得04=H04=M04=B(2)由rMIπ2s⋅=。

大学物理第四版下册课后题答案(供参考)

大学物理第四版下册课后题答案(供参考)

习题1111-1.直角三角形ABC 的A 点上,有电荷C 108.191-⨯=q ,B 点上有电荷C 108.492-⨯-=q ,试求C 点的电场强度(设0.04m BC =,0.03m AC =)。

解:1q 在C 点产生的场强:11204ACq E i r πε=, 2q 在C 点产生的场强:22204BCq E j r πε=,∴C 点的电场强度:4412 2.710 1.810E E E i j =+=⨯+⨯;C 点的合场强:22412 3.2410VE E E m =+=⨯,方向如图: 1.8arctan33.73342'2.7α===。

11-2.用细的塑料棒弯成半径为cm 50的圆环,两端间空隙为cm 2,电量为C 1012.39-⨯的正电荷均匀分布在棒上,求圆心处电场强度的大小和方向。

解:∵棒长为2 3.12l r d m π=-=, ∴电荷线密度:911.010q C m l λ--==⨯⋅可利用补偿法,若有一均匀带电闭合线圈,则圆心处的合场强为0,有一段空隙,则圆心处场强等于闭合线圈产生电场再减去m d 02.0=长的带电棒在该点产生的场强,即所求问题转化为求缺口处带负电荷的塑料棒在O 点产生的场强。

解法1:利用微元积分:21cos 4O x Rd dE R λθθπε=⋅,∴2000cos 2sin 2444O dE d R R R ααλλλθθααπεπεπε-==⋅≈⋅=⎰10.72V m -=⋅;解法2:直接利用点电荷场强公式:由于d r <<,该小段可看成点电荷:112.010q d C λ-'==⨯,则圆心处场强:1191220 2.0109.0100.724(0.5)O q E V mR πε--'⨯==⨯⨯=⋅。

方向由圆心指向缝隙处。

11-3.将一“无限长”带电细线弯成图示形状,设电荷均匀分布,电荷线密度为λ,四分之一圆弧AB 的半径为R ,试求圆αi2cm O R x αα心O 点的场强。

大学物理(第四版)课后习题及答案 刚体

大学物理(第四版)课后习题及答案 刚体

题4.1:一汽车发动机曲轴的转速在s 12内由13min r 102.1-⋅⨯均匀的增加到13min r 107.2-⋅⨯。

(1)求曲轴转动的角加速度;(2)在此时间内,曲轴转了多少转?题4.1解:(1)由于角速度ω =2πn (n 为单位时间内的转数),根据角加速度的定义td d ωα=,在匀变速转动中角加速度为()200s rad 1.132-⋅=-=-=tn n t πωωα(2)发动机曲轴转过的角度为()t n n t t t 0020221+=+=+=πωωαωθ在12 s 内曲轴转过的圈数为 圈390220=+==t n n N πθ 题4.2:某种电动机启动后转速随时间变化的关系为)1(0τωωte --=,式中10s rad 0.9-⋅=ω,s 0.2=τ。

求:(1)s 0.6=t 时的转速;(2)角加速度随时间变化的规律;(3)启动后s 0.6内转过的圈数。

题4.2解:(1)根据题意中转速随时间的变化关系,将t = 6.0 s 代入,即得100s 6.895.01--==⎪⎪⎭⎫⎝⎛-=ωωωτte(2)角加速度随时间变化的规律为220s 5.4d d ---===tte e t ττωωα(3)t = 6.0 s 时转过的角度为 rad 9.36d 1d 60060=⎪⎪⎭⎫⎝⎛-==⎰⎰-s tst e t τωωθ 则t = 6.0 s 时电动机转过的圈数圈87.52==πθN 题4.3:如图所示,一通风机的转动部分以初角速度0ω绕其轴转动,空气的阻力矩与角速度成正比,比例系数C 为一常量。

若转动部分对其轴的转动惯量为J ,问:(1)经过多少时间后其转动角速度减少为初角速度的一半?(2)在此时间内共转过多少转?题4.3解:(1)通风机叶片所受的阻力矩为ωM C -=,由转动定律αM J =,可得叶片的角加速度为JC t ωωα-==d d (1) 根据初始条件对式(1)积分,有⎰⎰-=ωωω00d d d t t J C t由于C 和J 均为常量,得t JC e-=0ωω当角速度由0021ωω→时,转动所需的时间为2ln CJt = (2)根据初始条件对式(2)积分,有⎰⎰-=tt JC t e00d d ωθθ即CJ 20ωθ=在时间t 内所转过的圈数为 CJ N πωπθ420==题4.4:一燃气轮机在试车时,燃气作用在涡轮上的力矩为m N 1003.23⋅⨯,涡轮的转动惯量为2m kg 0.25⋅。

大学物理(第四版)课后习题及答案 静电场

大学物理(第四版)课后习题及答案 静电场

题7.1:1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带e 32的上夸克和两个带e 31-下夸克构成,若将夸克作为经典粒子处理(夸克线度约为10-20 m ),中子内的两个下夸克之间相距2.60⨯10-15 m 。

求它们之间的斥力。

题7.1解:由于夸克可视为经典点电荷,由库仑定律r r 220r 2210N 78.394141e e e F ===r e r q q πεπεF 与r e 方向相同表明它们之间为斥力。

题7.2:质量为m ,电荷为-e 的电子以圆轨道绕氢核旋转,其动能为E k 。

证明电子的旋转频率满足42k20232me E εν=其中是0ε真空电容率,电子的运动可视为遵守经典力学规律。

题7.2分析:根据题意将电子作为经典粒子处理。

电子、氢核的大小约为10-15 m ,轨道半径约为10-10 m ,故电子、氢核都可视作点电荷。

点电荷间的库仑引力是维持电子沿圆轨道运动的向心力,故有220241r e r v m πε= 由此出发命题可证。

证:由上述分析可得电子的动能为re mv E 202k 8121πε==电子旋转角速度为30224mr e πεω=由上述两式消去r ,得43k 20222324me E επων== 题7.3:在氯化铯晶体中,一价氯离于Cl -与其最邻近的八个一价格离子Cs +构成如图所示的立方晶格结构。

(1)求氯离子所受的库仑力;(2)假设图中箭头所指处缺少一个铯离子(称作品格缺陷),求此时氯离子所受的库仑力。

题7.3分析:铯离子和氯离子均可视作点电荷,可直接将晶格顶角铯离子与氯离子之间的库仑力进行矢量叠加。

为方便计算可以利用晶格的对称性求氯离子所受的合力。

解:(l )由对称性,每条对角线上的一对铯离子与氯离子间的作用合力为零,故01=F (2)除了有缺陷的那条对角线外,其它铯离子与氯离子的作用合力为零,所以氯离子所受的合力2F 的值为N 1092.134920220212-⨯===ae rq q F πεπε2F 方向如图所示。

4大学物理习题_稳恒磁场

4大学物理习题_稳恒磁场

稳恒磁场一、选择题1.一个半径为r 的半球面如右图放在均匀磁场中,通过半球面的磁通量为 (A )22r B π; (B )2r B π;(C )22cos r B πα; (D )2cos r B πα。

2.下列说法正确的是:(A )闭合回路上各点磁感应强度都为零时,回路内一定没有电流穿过; (B )闭合回路上各点磁感应强度都为零时,回路内穿过电流的代数和必为零; (C )磁感应强度沿闭合回路的积分为零时,回路上各点的磁感应强度必为零;(D )磁感应强度沿闭合回路的积分不为零时,回路上任意一点的磁感应强度都不可能为零。

3.如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,则由安培环路定理可知(A )0=⋅⎰Ll d B,且环路上任意一点0=B 。

(B )0=⋅⎰Ll d B,且环路上任意一点0≠B 。

(C )0≠⋅⎰Ll d B ,且环路上任意一点0≠B 。

(D )0≠⋅⎰Ll d B,且环路上任意一点=B 常量。

4.图中有两根“无限长” 载流均为I 的直导线,有一回路L ,则正确的是(A )0=⋅⎰Ll d B,且环路上任意一点0=B ;(B )0=⋅⎰Ll d B,且环路上任意一点0≠B ;(C )0≠⋅⎰Ll d B,且环路上任意一点0≠B ;(D )0≠⋅⎰Ll d B,且环路上任意一点0=B 。

5.取一闭合积分回路L ,使三根载流导线穿过它所围成的面,现改变三根导线之间的相互间隔,但不越出积分回路,则:·LOI图(A )回路L 内的I ∑不变,L 上各点的B不变;(B )回路L 内的I ∑不变,L 上各点的B改变;(C )回路L 内的I ∑改变,L 上各点的B不变; (D )回路L 内的I ∑改变,L 上各点的B改变。

6.在球面上竖直和水平的两个载流圆线圈中,通有相等的电流I ,方向如图所示,则圆心处磁感应强度B的大小为(A )R I 0μ(B )R I20μ (C )RI 220μ(D )R I40μ7.一长直载流I 的导线,中部折成图示一个半径为R 的圆,则圆心的磁感应强度大小为 (A )R I 20μ;(B )RIπ20μ; (C )RIRIπ2200μμ+;(D )0。

大学物理第四版课后习题答案

大学物理第四版课后习题答案

大学物理第四版课后习题答案大学物理第四版课后习题答案大学物理是一门广受学生喜爱的学科,它涵盖了众多的知识点和概念,需要学生付出大量的努力来掌握。

而课后习题则是检验学生对所学知识的理解和掌握程度的重要方式之一。

然而,对于大多数学生来说,完成课后习题往往是一项具有挑战性的任务。

因此,有一本完整的课后习题答案对学生来说无疑是非常有帮助的。

在大学物理第四版中,课后习题是根据每一章节的内容设计的。

这些习题旨在帮助学生巩固所学的知识,并提供一些实际应用的练习。

然而,由于习题的难度和复杂性不同,学生在解答时可能会遇到一些困难。

因此,拥有一本详细的习题答案可以帮助他们更好地理解和解决问题。

对于大学物理第四版的课后习题,以下是一些可能的答案和解决方法:1. 机械振动和波动习题:一个质点以振幅为0.2m的简谐运动在频率为5Hz的弹簧上进行,求其最大速度和最大加速度。

答案:根据简谐运动的公式,最大速度v_max = Aω,其中A为振幅,ω为角频率。

最大加速度a_max = Aω²。

代入数据,可得到v_max = 0.2m × 2π × 5Hz ≈ 6.28m/s,a_max = 0.2m × (2π × 5Hz)² ≈ 62.8m/s²。

2. 电磁场和电磁波习题:一个半径为0.1m的圆形线圈中通有电流,求该线圈在中心处产生的磁场强度。

答案:根据安培环路定理,磁场强度B = μ₀I/(2πr),其中μ₀为真空中的磁导率,I为电流,r为距离。

代入数据,可得到B = (4π × 10⁻⁷T·m/A) × I/(2π × 0.1m) ≈ 2 × 10⁻⁵T。

3. 热力学习题:一个理想气体从初始状态(P₁,V₁,T₁)经历了一个等温过程,最终达到状态(P₂,V₂,T₁),求气体对外做功。

答案:由于等温过程中气体的温度保持不变,根据理想气体状态方程PV = nRT,可得到P₁V₁ = P₂V₂。

《大学物理》习题册题目及答案第12单元稳恒电流的磁场

《大学物理》习题册题目及答案第12单元稳恒电流的磁场

第12单元 稳恒电流的磁场 第七章 静电场和恒定磁场的性质(三)磁感应强度序号序号 学号学号 姓名姓名 专业、班级专业、班级一 选择题[ C ]1.一磁场的磁感应强度为B ai bj ck =++(T ),则通过一半径为R ,开口向z 正方向的半球壳表面的磁通量的大小是:向的半球壳表面的磁通量的大小是: (A) Wb 2a R p(B) Wb 2b R p (C) Wb 2c R p (D) Wb 2abc R p[ B ]2. ]2. 若要使半径为若要使半径为4×103-m 的裸铜线表面的磁感应强度为7.07.0××105- T T,则铜线中需,则铜线中需要通过的电流为要通过的电流为((μ0=4π×107-T ·m ·A 1-)(A) 0.14A (B) 1.4A (C) 14A (D) 28A[ B ]3. [ B ]3. 一载有电流一载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管(R=2r)(R=2r),,两螺线管单位长度上的匝数相等,两螺线管中的磁感应强度大小R B 和r B 应满足: (A) R B =2r B(B) R B =rB (C) 2R B =r B (D) R B R=4r B[ D ]4.如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感应强度B 沿图中闭合路径L 的积分l B d ×ò等于等于(A)I 0m(B)I 031m (C) I041m(D)I032m[ D ]5. [ D ]5. 有一由有一由N 匝细导线绕成的平面正三角形线圈,边长为a ,通有电流I ,置于均匀外磁场外磁场 B 中,当线圈平面的法向与外磁场同向时,该线圈所受的磁力矩mM(A) 2/32IB Na (B) 4/32IB Na (C) 0260sin 3IB Na (D) 0abcdI L1201I 2I 1R 2R二 填空题1.1.一无限长载流直导线,通有电流一无限长载流直导线,通有电流I ,弯成如图形状,设各线段皆在纸面内,则P 点磁感应强度强度 B B 的大小为aIp m 830。

《大学物理》磁学习题及答案

《大学物理》磁学习题及答案

AI I一、选择题1.在磁感强度为的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量与的夹角为α ,则通过半球面S 的磁通量(取弯面向外为正)为 (A) πr 2B . (B) 2 πr 2B (C) -πr 2B sin α (D) -πr 2B cos α 2.边长为l 的正方形线圈中通有电流I ,此线圈在A 点(见图)产生的磁感强度(A)(B) (C) (D) 以上均不对3.如图所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点。

若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度(A) 方向垂直环形分路所在平面且指向纸内 (B) 方向垂直环形分路所在平面且指向纸外 (C) 方向在环形分路所在平面,且指向b(D) 方向在环形分路所在平面内,且指向a (E) 为零4.通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为:(A) B P > B Q > B O (B) B Q > B P > B O(C)B Q > B O > B P (D) B O > B Q > B P5.电流I 由长直导线1沿垂直bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点流出,经长直导线2沿cb 延长线方向返回电源(如图)。

若载流直导线1、2和三角形框中的电流在框中心O 点产生的磁感强度分别用、和表示,则O 点的磁感强度大小(A) B = 0,因为B 1 = B 2 = B 3 = 0(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但,B 3 = 0(C) B ≠ 0,因为虽然B 3 = 0、B 1= 0,但B 2≠ 0(D) B ≠ 0,因为虽然,但≠ 06.电流由长直导线1沿半径方向经a 点流入一电阻均匀的圆环,再由b 点沿切向从圆环流出,经长导线2返回电源(如图)。

大学物理学(第四版)课后习题答案(下册)

大学物理学(第四版)课后习题答案(下册)

大学物理学课后习题答案(下册)习题99.1 选择题(1)正方形的两对角线处各放置电荷Q,另两对角线各放置电荷q,若Q 所受到合力为零,则Q 与q 的关系为:()(A )Q=-2 3/2q (B) Q=2 3/2q (C) Q=-2q (D) Q=2q[答案:A](2)下面说法正确的是:()(A )若高斯面上的电场强度处处为零,则该面内必定没有电荷;(B )若高斯面内没有电荷,则该面上的电场强度必定处处为零;(C)若高斯面上的电场强度处处不为零,则该面内必定有电荷;(D )若高斯面内有电荷,则该面上的电场强度必定处处不为零。

[答案:D](3)一半径为R 的导体球表面的面点荷密度为σ,则在距球面R 处的电场强度()(A )σ/ε0(B)σ/2ε0(C)σ/4ε0(D )σ/8ε0[答案:C](4)在电场中的导体内部的()(A )电场和电势均为零;(B)电场不为零,电势均为零;(C)电势和表面电势相等;(D)电势低于表面电势。

[答案:C]9.2 填空题(1)在静电场中,电势不变的区域,场强必定为。

[ 答案:相同](2)一个点电荷q 放在立方体中心,则穿过某一表面的电通量为,若将点电荷由中心向外移动至无限远,则总通量将。

[ 答案:q/6ε0, 将为零](3)电介质在电容器中作用(a)——(b)——。

[ 答案:(a)提高电容器的容量;(b) 延长电容器的使用寿命](4)电量Q 均匀分布在半径为R 的球体内,则球内球外的静电能之比。

[ 答案:5:6]9.3 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1) 在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡( 即每个电荷受其他三个电荷的库仑力之和都为零)?(2) 这种平衡与三角形的边长有无关系?解: 如题9.3 图示(1)以A 处点电荷为研究对象,由力平衡知:q 为负电荷2 14π0qcos30a 214π(qq3a)23解得(2)与三角形边长无关.q3q3题9.3 图题9.4 图9.4 两小球的质量都是m,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2 , 如题9.4 图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量.解: 如题9.4 图示T sin T cosF emg14π 0 (2lq 2sin ) 2解得q2l sin 4 0 mg t an9.5 根据点电荷场强公式 Eq4 0 r,当被考察的场点距源点电荷很近(r→0)时,则场强→∞,这是没有物理意义的,对此应如何理解?q解: E4 π0rr0 仅对点电荷成立,当r0 时,带电体不能再视为点电荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.9.6 在真空中有 A ,B 两平行板,相对距离为 d ,板面积为S ,其带电量分别为+ q 和- q .则q 2 这两板之间有相互作用力 f ,有人说 f =4 d 2, 又有人说,因为 f = qE , Eq,所S222d2l l 22以 f =q .试问这两种说法对吗 ?为什么 ? f 到底应等于多少 ?S解: 题中的两种说法均不对. 第一种说法中把两带电板视为点电荷是不对的,第二种说法把q合场强 E看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个S板的电场为 E q,另一板受它的作用力fq q q2,这是两板间相互作用的电场力.2 0 S2 0 S2 0 S9.7 长 l =15.0cm 的直导线 AB 上均匀地分布着线密度=5.0x10 -9C 2 m-1的正电荷.试求:(1) 在导线的延长线上与导线B 端相距a 1 =5.0cm 处 P 点的场强; (2) 在导线的垂直平分线上与导线中点相距d 2 =5.0cm 处 Q 点的场强.解: 如题 9.7 图所示(1) 在带电直线上取线元dx ,其上电量dq 在 P 点产生场强为 dE PE P14 π 0 ( adE Pdxx) 22 dx题 9.7 图4π 02(a x) 2[ 11]4π 0a l al 2 2lπ 0 (4 al 2)用 l15 cm ,5.0 10 9 C m 1, a 12.5 cm 代入得(2) 同理2E P6.74 10 N CdE1 dx 1方向水平向右方向如题 9.7 图所示Q 4 π 0 x2由于对称性dE Qxl0 ,即 E Q 只有 y 分量,2d 220 l 1∵dE Qy1x d2 224 π 0 xd 2x22EdEd 2 2 dxQylQyl4π 2l 2(x23d 2 )22π 0 l4d2以5.0 10 9C cm , l 15 cm , d 2 5 cm 代入得E Q E Qy14.96 102 N C ,方向沿 y 轴正向9.8一个半径为 R 的均匀带电半圆环,电荷线密度为, 求环心处 O 点的场强.解: 如 9.8 图在圆上取 dl Rd题 9.8 图dqdl R d ,它在 O 点产生场强大小为Rd dE24π 0 R方向沿半径向外则dE xdE sinsin d 4π 0 RdE ydE cos()cos d 4π 0 R积 分 E xsin d4π 0 R2π 0 RE ycos d 04π 0 R∴E E x2π R,方向沿x 轴正向.122222 229.9均匀带电的细线弯成正方形,边长为 l ,总电量为 q .(1) 求这正方形轴线上离中心为 r处的场强 E ; (2) 证明:在 rl 处,它相当于点电荷 q 产生的场强 E .解: 如 9.9 图示,正方形一条边上电荷q在 P 点产生物强4dE P 方向如图,大小为dE Pcos 4π 0 1 cos 2 l2r24∵cos 1l22r 2l 2∴dE Pcos 2cos 1ll2l24π0 rr42dE P 在垂直于平面上的分量dE∴dEl dE P cosr4π 0 rlr 2lr2l424题 9.9 图由于对称性, P 点场强沿 OP 方向,大小为E P 4 dE∵4π 0(r 2q 4l4 lr l2l2) r 24222e .e内r 0 内1∴E P4π 0 (r qrl) r 2l4 2方向沿OP9.10(1) 点电荷q 位于一边长为a的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2) 如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?解: (1) 由高斯定理 E dS qs立方体六个面,当q 在立方体中心时,每个面上电通量相等∴各面电通量q 6 0(2) 电荷在顶点时,将立方体延伸为边长2a 的立方体,使q 处于边长2a 的立方体中心,则边长2a 的正方形上电通量q 6 0对于边长 a 的正方形,如果它不包含q 所在的顶点,则qe,24 0如果它包含q 所在顶点则 e 0 .如题9.10 图所示.题9.10 图9.11均匀带电球壳内半径6cm,外半径10cm,电荷体密度为238cm ,12cm 各点的场强.10 5 C2 m-3 求距球心5cm,解: 高斯定理 E dSsq2q , E4πr0 0当r 5 cm时,q 0 , E 0r 8 cm 时,q4π3p (r r 3 ) 34πr 3 r 2∴ E34π 23.48 10 4 N C ,方向沿半径向外.22外3 r 3r 12 cm 时, q4π(r3 r 内)4π 3 外 ∴E33r 内 4.10 10 4N C1沿半径向外 .4π 0 r9.12半径为 R 1 和 R 2 ( R 2 > R 1 ) 的两无限长同轴圆柱面,单位长度上分别带有电量 和-, 试求:(1)r < R 1 ; (2) R 1 < r < R 2 ;(3) r > R 2 处各点的场强.解: 高斯定理qE dSs取同轴圆柱形高斯面,侧面积则S E d S S2πrl E 2πrl对(1)r R 1 q 0, E 0(2)R 1rR 2q l∴E2π 0 r沿径向向外(3)∴r R 2q 0E题 9.13 图9.13 两个无限大的平行平面都均匀带电,电荷的面密度分别为 1 和 2 ,试求空间各处场强. 解:如题 9.13 图示,两带电平面均匀带电,电荷面密度分别为1 与2 ,两面间,E1( 2 02)n1 面外,E1 (1 2)n20 210 1 2 面外, E(12 02) nn :垂直于两平面由1 面指为2 面.9.14半径为 R 的均匀带电球体内的电荷体密度为, 若在球内挖去一块半径为r < R 的 小球体,如题 9.14图所示.试求:两球心 O 与 O 点的场强,并证明小球空腔内的电场是均匀的. 解:将此带电体看作带正电的均匀球与带电的均匀小球的组合,见题9.14 图 (a) .(1)球在 O 点产生电场球在 O 点产生电场 E 10E 200,4 πr 33OO' 4π 0d∴O 点电场 E 0r33 d3OO ';4 d 3(2)在 O 产生电场 E 103 4π 0dOO '球在 O 产生电场 E 20∴ O 点电场E 0OO'3 0题 9.14 图(a)题 9.14 图 (b)(3) 设空腔任一点 P 相对 O 的位矢为 r ,相对 O 点位矢为 r ( 如 题 8-13(b) 图)r 则E PO,3r E PO,3 03 3q -8r0 6OO∴E PE PO E PO(r r )3 0 OO' d3 0 3 0∴腔内场强是均匀的.-69.15 一电偶极子由 =1.0 3 10 C 的两个异号点电荷组成,两电荷距离d=0.2cm ,把这电5-1偶极子放在 1.0 3 10 N2 C的外电场中,求外电场作用于电偶极子上的最大力矩.解:∵ 电偶极子 p 在外场 E 中受力矩Mp E∴M maxpE qlE 代入数字M max1.0 1062 1031.0 1052.0 10 4N m9.16 两点电荷1 =1.5 3 10 C , -82 =3.03 10C ,相距 r 1 =42cm ,要把它们之间的距离变为r 2 =25cm ,需作多少功 ?解: Ar 2 F drr 2 q 1 q 2dr q 1q 2(11 ) r 1r 24π 24π 0 r 1r 26.55 10 J外力需作的功AA 6.55 106J题 9.17 图9.17 如题 9.17图所示,在 A , B 两点处放有电量分别为+q ,- q 的点电荷, AB 间距离为2 R ,现将另一正试验点电荷q 0 从 O 点经过半圆弧移到 C 点,求移动过程中电场力作的功. 解:如题 9.17 图示U 1 ( q 4π 0 Rq) 0 RU 1 ( q q ) 4π 0 3 R Rq 6 π 0 Rq q4-31-19∴A q 0 (U O U C )q o q 6π 0 R9.18 如题 9.18图所示的绝缘细线上均匀分布着线密度为 的正电荷 , 两直导线的长度和半圆环的半径都等于R .试求环中心 O 点处的场强和电势.解: (1) 由于电荷均匀分布与对称性, AB 和 CD 段电荷在 O 点产生的场强互相抵消,取dl Rd则 dqRd 产生 O 点 d E 如图,由于对称性, O 点场强沿 y 轴负方向题 9.18 图EdE2Rd cosy24π 0 R[ sin() 4 π 0 R2sin]22 π 0 R(2)AB 电荷在 O 点产生电势,以 UAdx 1B4 π 0 x2 R dxR4π 0 x4π 0ln 2同理 CD 产生半圆环产生U 24 π 0πR 3ln 24π 0 R4 0∴U O U 1 U 2 U 32π 0ln 24 09.19 一电子绕一带均匀电荷的长直导线以23 10 m 2 s 的匀速率作圆周运动. 求带电直线上的线电荷密度. ( 电子质量m 0 =9.1 3 10 kg ,电子电量 e =1.60 3 10 C)2U U -1E 解:设均匀带电直线电荷密度为 ,在电子轨道处场强E2π 0 r电子受力大小F eeEe 2 π 0 r∴e mv2π 0 rr2π 0 得mv 2 12.5 10 13 C m 1e-19.20 空气可以承受的场强的最大值为=30kV2 cm,超过这个数值时空气要发生火花放 电. 今有一高压平行板电容器,极板间距离为 d =0.5cm ,求此电容器可承受的最高电压. 解:平行板电容器内部近似为均匀电场UEd 1.5 104V9.21 证明:对于两个无限大的平行平面带电导体板 ( 题9.21 图) 来说, (1) 相向的两面上,电荷的面密度总是大小相等而符号相反; (2) 相背的两面上,电荷的面密度总是大小相等而符号相同. 证:如题 9.21 图所示,设两导体 A 、B 的四个平面均匀带电的电荷面密度依次为1 ,2 ,3 ,4题 9.21 图(1) 则取与平面垂直且底面分别在A 、B 内部的闭合柱面为高斯面时,有E d S ( s3) S 0∴2 3说明相向两面上电荷面密度大小相等、符号相反;(2) 在 A 内部任取一点 P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即2212342 02222-77又∵2 3∴1 4说明相背两面上电荷面密度总是大小相等,符号相同.9.22 三个平行金属板 A , B 和 C 的面积都是 200cm , A 和 B 相距 4.0mm , A 与 C 相距 2.0 mm . B , C 都接地,如题 9.22图所示.如果使 A 板带正电 3.0 3 10 C ,略去边缘效应,问 B 板和 C 板上的感应电荷各是多少 ?以地的电势为零,则 A 板的电势是多少 ? 解: 如题 9.22 图示,令 A 板左侧面电荷面密度为1 ,右侧面电荷面密度为2题 9.22 图(1) ∵U AC U AB ,即∴E AC d ACE AB d A B1E AC d AB ∴22E AB且1 +2q A23S d ACq A S2 q A 13S而qCS 2q 32 10 7Cq B2S1 10 C(2)U A E AC d A Cd AC2.3 103V9.23 两个半径分别为R 1 和 R 2 ( R 1 < R 2 ) 的同心薄金属球壳,现给内球壳带电+ q ,试计算:(1) 外球壳上的电荷分布及电势大小;(2) 先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势; *(3) 再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量.得, 1A 1R 2解: (1) 内球带电q ;球壳内表面带电则为 q , 外表面带电为 q ,且均匀分布,其电势qdrq UE drRR4π r 2 4π R22题 9.23 图(2) 外壳接地时,外表面电荷 q 入地,外表面不带电,内表面电荷仍为 q .所以球壳电势由内球q 与内表面 q 产生:Uq 4π 0 R 2q 04π 0 R 2(3) 设此时内球壳带电量为q ;则外壳内表面带电量为 q ,外壳外表面带电量为 q q( 电荷守恒 ) ,此时内球壳电势为零,且q' q' U Aq q' 04 π 0 R 14π 0 R 24π 0 R 2得外球壳上电势UqR 1 qR 2q' q'q q'R 1 R 2 qB4π 0 R 24π 0 R 24π 0 R 24π 0 29.24 半径为 R 的金属球离地面很远,并用导线与地相联,在与球心相距为一点电荷 + q ,试求:金属球上的感应电荷的电量. d3R 处有解:如题 9.24 图所示,设金属球感应电荷为q ,则球接地时电势 U O由电势叠加原理有:题 9.24 图q' q O4π 0 R4π 0 3 RUF 01223得qq 39.25 有三个大小相同的金属小球,小球1, 2带有等量同号电荷,相距甚远,其间的库仑力为 F 0 .试求:(1) 用带绝缘柄的不带电小球3先后分别接触 1,2后移去,小球 1,2之间的库仑力;(2) 小球 3依次交替接触小球 1, 2很多次后移去,小球 1, 2之间的库仑力.解: 由题意知q 4π 0r2(1) 小球 3 接触小球 1后,小球 3 和小球 1均带电qq ,2小球 3 再与小球 2 接触后,小球 2 与小球 3 均带电q3 q 4∴此时小球 1与小球 2 间相互作用力3 q 2F q' q" 8 3 F 4π 0 r4π 0 r8(2) 小球 3 依次交替接触小球 1、 2 很多次后,每个小球带电量均为2q .3∴小球 1 、 2 间的作用力 F 22 23 q 3 q 40 4π 0r 299.26 在半径为R 1 的金属球之外包有一层外半径为R 2 的均匀电介质球壳, 介质相对介电常数为r ,金属球带电Q .试求:(1) 电介质内、外的场强; (2) 电介质层内、外的电势; (3) 金属球的电势.解: 利用有介质时的高斯定理D dS qS(1) 介质内(R 1 rR 2 ) 场强DQr4 πr, E 内 Qr ;4 π 0 r r20 F 3r外 2介质外 (r R 2 ) 场强DQr 4πr 3, E 外Qr4 π 0 r(2) 介质外 (rR 2 ) 电势UE drrQ 4 π 0 r介质内(R 1 rR 2 ) 电势UE 内 dr rE 外 drrq1 ( 4π 0 r r 1 Q )R 2 4 π 0 R 2(3) 金属球的电势Q(1 r1 4π 0 r rR 2R 2 U E 内 drE 外 drR 1 R 2R 2 Qdr QdrR4π 0 r R 24 π 0rQ4π 0( 1 r1 rR 1R 29.27 如题 9.27图所示,在平行板电容器的一半容积内充入相对介电常数为 r 的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值. 解: 如题 9.27 图所示,充满电介质部分场强为E 2 ,真空部分场强为 E 1 ,自由电荷面密度分别为2 与1由 D dSq 0 得D 11 ,D 22而D 1E 1 , D 20 rE 23)2)2E 1 E 2∴2 U d0 rE 2 r10 E 1题 9.27 图题 9.28 图9.28 两个同轴的圆柱面,长度均为l ,半径分别为 R 1 和 R 2 ( R 2 > R 1 ) , 且 l >> R 2 - R 1 ,两柱面之间充有介电常数的均匀电介质 . 当两圆柱面分别带等量异号电荷Q 和- Q 时,求:(1) 在半径 r 处(R 1 < r < R 2 =,厚度为 dr ,长为 l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量; (2) 电介质中的总电场能量; (3) 圆柱形电容器的电容.解: 取半径为 r 的同轴圆柱面(S)则D d S ( S)2πrlD当 (R 1 r∴R 2 ) 时,q QDQ 2 πrl D 2Q2 (1) 电场能量密度w2 8π2r 2l 2Q2 Q 2dr 薄壳中 dWwd8π2r 2l22πrdrl4π rl(2) 电介质中总电场能量WdWR 2 Q2drQ lnR 2VR 14πrl4πl R 1(3) 电容:∵WQ2C2Q 2 2πl∴C2W ln( R2 / R1 )题9.29 图9.29 如题9.29 图所示,C1 =0.25 F,C2 =0.15 F,C3 =0.20 F .C1上电压为50V.求:U AB .解: 电容C1 上电量Q1 C1U 1电容C2 与C3 并联C23 C2 C3其上电荷∴Q23 Q1Q232C1U 125 50UABC23U 1 U 2C2350(13525)3586 V9.30C1 和C2 两电容器分别标明“200 pF 、500 V ”和“300 pF 、900 V ”,把它们串联起来后等值电容是多少?如果两端加上1000 V 的电压,是否会击穿?解: (1) C1 与C2 串联后电容C C1C2200 300 120pF(2) 串联后电压比C1 C2U 1 C2200 300 3U 2 C1,而U 1 U 221000∴U 1600 V , U 2400 V即电容C1 电压超过耐压值会击穿,然后C2 也击穿.9.31半径为R1 =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为R2 =4.0cmU2222 2和 R 3 =5.0cm ,当内球带电荷 Q =3.0 3 10 C 时,求:(1) 整个电场储存的能量;(2) 如果将导体壳接地,计算储存的能量; (3) 此电容器的电容值.解: 如图,内球带电 Q ,外球壳内表面带电Q ,外表面带电 Q(1) 在 rR 1 和 R 2题 9.31 图r R 3 区域在 Rr R 时E 0E Qr 1214π 0 rrR 3 时Qr 24π 0 r∴在 R 1rR 2 区域W 1R 2 1 R 1 2Q( 2 4π 0 r) 24πr drR 2 Q drQ( 1 1 ) R 18π 0 r8π 0 R 1R 2在 rR 3 区域W 1 ( Q) 2 4πr 2drQ 1R 32 0 4π 0 r8π0 R 3∴ 总能量W W 1 W 2Q( 1 1 1 ) 8π 0 R 1R 2R 31.82 10 4J(2) 导体壳接地时,只有R 1rR 2 时 EQr , W 2 04π 0 r2 -83E 3 22312∴W W 1Q21( 8π 0 R 11 ) 1.01 R 210 4 J(3) 电容器电容C2W Q2 4 π 0 /(11 ) R 1R 24.49 10F习 题 1010.1 选择题(1) 对于安培环路定理的理解,正确的是:( A )若环流等于零,则在回路 L 上必定是 H 处处为零; ( B )若环流等于零,则在回路 L 上必定不包围电流;( C )若环流等于零,则在回路L 所包围传导电流的代数和为零;( D )回路 L 上各点的 H 仅与回路 L 包围的电流有关。

大学物理(第四版)课后知识题及答案解析磁场

大学物理(第四版)课后知识题及答案解析磁场

习题题10.1:如图所示,两根长直导线互相平行地放置,导线内电流大小相等,均为I = 10 A,方向相同,如图所示,求图中M、N两点的磁感强度B的大小和方向(图中r0 = 0.020 m)。

题10.2:已知地球北极地磁场磁感强度B的大小为6.0 105 T。

如设想此地磁场是由地球赤道上一圆电流所激发的(如图所示),此电流有多大?流向如何?题10.3:如图所示,载流导线在平面内分布,电流为I,它在点O的磁感强度为多少?题10.4:如图所示,半径为R的木球上绕有密集的细导线,线圈平面彼此平行,且以单层线圈覆盖住半个球面,设线圈的总匝数为N,通过线圈的电流为I,求球心O处的磁感强度。

题10.5:实验中常用所谓的亥姆霍兹线圈在局部区域内获得一近似均匀的磁场,其装置简图如图所示,一对完全相同、彼此平行的线圈,它们的半径均为R ,通过的电流均为I ,且两线圈中电流的流向相同,试证:当两线圈中心之间的距离d 等于线圈的半径R 时,在两线圈中心连线的中点附近区域,磁场可看成是均匀磁场。

(提示:如以两线圈中心为坐标原点O ,两线圈中心连线为x 轴,则中点附近的磁场可看成是均匀磁场的条件为x B d d = 0;0d d 22=xB ) 题10.6:如图所示,载流长直导线的电流为I ,试求通过矩形面积的磁通量。

题10.7:如图所示,在磁感强度为B 的均匀磁场中,有一半径为R 的半球面,B 与半球面轴线的夹角为α,求通过该半球面的磁通量。

题10.8:已知10 mm 2裸铜线允许通过50 A 电流而不会使导线过热。

电流在导线横截面上均匀分布。

求:(1)导线内、外磁感强度的分布;(2)导线表面的磁感强度。

题10.9:有一同轴电缆,其尺寸如图所示,两导体中的电流均为I ,但电流的流向相反,导体的磁性可不考虑。

试计算以下各处的磁感强度:(1)r <R 1;(2)R 1<r <R 2;(3)R 2<r <R 3;(4)r >R 3。

大学物理(第四版)课后习题集与答案解析磁场

大学物理(第四版)课后习题集与答案解析磁场

习题题10.1:如图所示,两根长直导线互相平行地放置,导线电流大小相等,均为I = 10 A,方向相同,如图所示,求图中M、N两点的磁感强度B的大小和方向(图中r0 = 0.020 m)。

题10.2:已知地球北极地磁场磁感强度B的大小为6.0⨯10-5 T。

如设想此地磁场是由地球赤道上一圆电流所激发的(如图所示),此电流有多大?流向如何?题10.3:如图所示,载流导线在平面分布,电流为I,它在点O的磁感强度为多少?题10.4:如图所示,半径为R的木球上绕有密集的细导线,线圈平面彼此平行,且以单层线圈覆盖住半个球面,设线圈的总匝数为N,通过线圈的电流为I,求球心O处的磁感强度。

题10.5:实验中常用所谓的亥姆霍兹线圈在局部区域获得一近似均匀的磁场,其装置简图如图所示,一对完全相同、彼此平行的线圈,它们的半径均为R,通过的电流均为I,且两线圈中电流的流向相同,试证:当两线圈中心之间的距离d等于线圈的半径R时,在两线圈中心连线的中点附近区域,磁场可看成是均匀磁场。

(提示:如以两线圈中心为坐标原点O ,两线圈中心连线为x 轴,则中点附近的磁场可看成是均匀磁场的条件为x B d d = 0;0d d 22=xB ) 题10.6:如图所示,载流长直导线的电流为I ,试求通过矩形面积的磁通量。

题10.7:如图所示,在磁感强度为B 的均匀磁场中,有一半径为R 的半球面,B 与半球面轴线的夹角为α,求通过该半球面的磁通量。

题10.8:已知10 mm 2裸铜线允许通过50 A 电流而不会使导线过热。

电流在导线横截面上均匀分布。

求:(1)导线、外磁感强度的分布;(2)导线表面的磁感强度。

题10.9:有一同轴电缆,其尺寸如图所示,两导体中的电流均为I ,但电流的流向相反,导体的磁性可不考虑。

试计算以下各处的磁感强度:(1)r <R 1;(2)R 1<r <R 2;(3)R 2<r <R 3;(4)r >R 3。

大学物理(第四版)课后习题及答案_量子物理

大学物理(第四版)课后习题及答案_量子物理

第十七第十七 章量子物理章量子物理题17.1:天狼星的温度大约是11000℃。

试由维思位移定律计算其辐射峰值的波长。

℃。

试由维思位移定律计算其辐射峰值的波长。

题17.1解:由维思位移定律可得天狼星单色辐出度的峰值所对应的波长该波长nm 257m 1057.27m =´==-Tbl属紫外区域,所以天狼星呈紫色属紫外区域,所以天狼星呈紫色题17.2:已知地球跟金星的大小差不多,金星的平均温度约为773 773 KK ,地球的平均温度约为293 K 。

若把它们看作是理想黑体,这两个星体向空间辐射的能量之比为多少?题17.2解:由斯特藩一玻耳兹曼定律4)(T T M s =可知,这两个星体辐射能量之比为可知,这两个星体辐射能量之比为4.484=÷÷øöççèæ=地金地金T T M M 题17.3:太阳可看作是半径为7.0 ´ 108 m 的球形黑体,试计算太阳的温度。

设太阳射到地球表面上的辐射能量为1.4 ´ 103W ×m -2,地球与太阳间的距离为1.5 ´ 1011m 。

题17.3解:以太阳为中心,地球与太阳之间的距离d 为半径作一球面,地球处在该球面的某一位置上。

太阳在单位时间内对外辐射的总能量将均匀地通过该球面,因此有 2244)(REd T M p p= (1)4)(T T M s = (2)由式(1)、(2)可得)可得K 58004122=÷÷øöççèæ=s R E d T题17.4:钨的逸出功是4.52 eV,钡的选出功是2.50 eV ,分别计算钨和钡的截止频率。

哪一种金属可以用作可见光范围内的光电管阴极材料?题17.4解:钨的截止频率钨的截止频率 Hz 1009.115101´==h W n 钡的截止频率 Hz 1063.015202´==hWn对照可见光的频率范围可知,钡的截止频率02n 正好处于该范围内,而钨的截止频率01n 大于可见光的最大频率,因而钡可以用于可见光范围内的光电管材料。

大学物理(第四版)课后习题及答案 磁场

大学物理(第四版)课后习题及答案 磁场

习题之阳早格格创做题10.1:如图所示,二根少直导线互相仄止天搁置,导线内电流大小相等,均为I = 10 A,目标相共,如图所示,供图中M、N二面的磁感强度B的大小战目标(图中r0= 0.020 m).题10.2:已知天球北极天磁场磁感强度B的大小为105 T.如设念此天磁场是由天球赤讲上一圆电流所激励的(如图所示),此电流有多大?流背怎么样?题10.3:如图所示,载流导线正在仄里内分散,电流为I,它正在面O的磁感强度为几?题10.4:如图所示,半径为R 的木球上绕有散集的细导线,线圈仄里相互仄止,且以单层线圈覆挡住半个球里,设线圈的总匝数为N ,通过线圈的电流为I ,供球心O 处的磁感强度.题10.5:真验中时常使用所谓的亥姆霍兹线圈正在局部天区内赢得一近似匀称的磁场,其拆置简图如图所示,一对于真足相共、相互仄止的线圈,它们的半径均为R ,通过的电流均为I ,且二线圈中电流的流背相共,试证:当二线圈核心之间的距离d 等于线圈的半径R 时,正在二线圈核心连线的中面附近天区,磁场可瞅成是匀称磁场.(提示:如以二线圈核心为坐标本面O ,二线圈核心连线为x 轴,则中面附近的磁场可瞅成是匀称磁场的条件为x B d d = 0;0d d 22 xB ) 题10.6:如图所示,载流少直导线的电流为I ,试供通过矩形里积的磁通量.题10.7:如图所示,正在磁感强度为B的匀称磁场中,有一半径为R的半球里,B与半球里轴线的夹角为 ,供通过该半球里的磁通量.题10.8:已知10 mm2裸铜线允许通过50 A电流而没有会使导线过热.电流正在导线横截里上匀称分散.供:(1)导线内、中磁感强度的分散;(2)导线表面的磁感强度.题10.9:有一共轴电缆,其尺寸如图所示,二导体中的电流均为I,但是电流的流背好异,导体的磁性可没有思量.试估计以下各处的磁感强度:(1)r<R1;(2)R1<r<R2;(3)R2<r<R3;(4)r>R3.绘出B-r图线.题10.10:如图所示.N匝线圈匀称稀绕正在截里为少圆形的中空骨架上.供通进电流I后,环内中磁场的分散.题10.11:设有二无限大仄止载流仄里,它们的电流稀度均为j,电流流背好异,如图所示,供:(1)二载流仄里之间的磁感强度;(2)二里除中空间的磁感强度.题10.12:测定离子品量的量谱仪如图所示,离子源S爆收品量为m,电荷为q的离子,离子的初速很小,可瞅做是停止的,经电势好U加速后离子加进磁感强度为B的匀称磁场,并沿一半圆形轨讲到达离出心处距离为x的感光底片上,试说明该离子的品量为题10.13:已知大天上空某处天磁场的磁感强度B= ×10-4T,目标背北.若宇宙射线中有一速率17s⨯v的量子,笔=⋅5.0-m10直天通过该处.如图所示,供:(1)洛伦兹力的目标;(2) 洛伦兹力的大小,并与该量子受到的万有引力相比较.题10.14:正在一个隐像管的电子束中,电子有eV 101.24⨯的能量,那个隐像管安顿的位子使电子火仄天由北背北疏通.天球磁场的笔直分量5105.5-⊥⨯=B T ,而且目标背下,供:(1)电子束偏偏转目标;(2)电子束正在隐像管内通过20 cm 到达屏里时光面的偏偏转间距.题10.15:如图所示,设有一品量为m e 的电子射进磁感强度为B 的匀称磁场中,当它位于面M 时,具备与磁场目标成α角的速度v ,它沿螺旋线疏通一周齐达面N ,试证M 、N 二面间的距离为题10.16:利用霍耳元件不妨丈量磁场的磁感强度,设一霍耳元件用金属资料造成,其薄度为0.15 mm ×1024 m —3.将霍耳元件搁进待测磁场中,测得霍耳电压为42V μ,电流为10 mA.供此时待测磁场的磁感强度.题10.17:试说明霍耳电场强度与稳恒电场强度之比 那里ρ为资料电阻率,n 为载流子的数稀度.题10.18:载流子浓度是半导体资料的要害参数,工艺上通过统造三价或者五价掺纯本子的浓度,去统造p 型或者n 型半导体的载流子浓度,利用霍耳效力不妨丈量载流子的浓度战典型,如图所示一齐半导体资料样品,匀称磁场笔直于样品表面,样品中通过的电流为I ,现测得霍耳电压为U H ,说明样品载流子浓度为n = HedU IB 题10.19:一通有电流为I 的导线,直成如图所示的形状,搁正在磁感强度为B的匀称磁场中,B 的目标笔直纸里背里,供此导线受到的安培力为几?题10.20:背去流变电站将电压为500kV 的直流电,通过二条截里没有计的仄止输电线输背近圆,已知二输电导线间单位少度的电容为111103.0--⋅⨯m F ,若导线间的静电力与安培力正佳对消,供:(1)通过输电线的电流;(2)输收的功率.题10.21:将一电流匀称分散的无限大载流仄里搁进磁感强度为B 0的匀称磁场中,电流目标与磁场笔直,搁进后,仄里二侧磁场的磁感强度分别为B 1战B 2(图),供该载流仄里上单位里积所受的磁场力的大小战目标.题10.22:正在直径为1.0 cm 的铜棒上,切割下一个圆盘,设念那个圆盘的薄度惟有一个本子线度那么大,那样正在圆盘上约有6.2⨯1014个铜本子,每个铜本子有27个电子,每个电子的自旋磁矩为224e m A 109.3⋅⨯=-μ,咱们假设所有电子的自旋磁矩目标皆相共,且仄止于铜棒的轴线,供:(1)圆盘的磁矩;(2)如那磁矩是由圆盘上的电流爆收的,那么圆盘边沿上需要有多大的电流.题10.23:通有电流I 1 = 50 A 的无限少直导线,搁正在如图所示的弧形线圈的轴线上,线圈中的电流I 2 = 20 A ,线圈下h = 7R /3.供效率正在线圈上的力.题10.24:如图所示,正在一通有电流I 的少直导线附近,有一半径为R ,品量为m 的细小线圈,细小线圈可绕通过其核心与直导线仄止的轴转化,直导线与细小线圈核心相距为d ,设d >>R ,通过小线圈的电流为I '.若启初时线圈是停止的,它的正法线矢量n e 的目标与纸里法线n e '的目标成0θ角.问线圈仄里转至与屏幕里沉叠时,其角速度的值为多大?题10.25:如图所示,电阻率为ρ的金属圆环,其内中半径分别为R 1战R 2,薄度为d .圆环搁进磁感强度为α的匀称磁场中,B的目标与圆环仄里笔直,将圆环内中边沿分别接正在如图所示的电动势为ε的电源二极,圆环可绕通过环心笔直环里的轴转化,供圆环所受的磁力矩.题10.26:如图所示,半径为R的圆片匀称戴电,电荷里稀度为σ,令该圆片以角速度ω绕通过其核心且笔直于圆仄里的轴转化.供轴线上距圆片核心为x处的面P的磁感强度战转化圆片的磁矩.题10.27:如图所示是一种正正在钻研中的电磁轨讲炮的本理图.该拆置可用于收射速度下达10 -1的炮弹,炮弹置于二条仄止轨讲之间与轨讲相交战,轨讲是半径为r的圆柱形导体,轨讲间距为d.炮弹沿轨讲不妨自由滑动.恒流电源ε、炮弹战轨讲形成一关合回路,回路中电流为I.(1)说明效率正在炮弹上的磁场力为(2)假设I = 4 500 kA,d = 120 mm,r = cm,炮弹从停止起通过一段路途L= m加速后的速度为多大?(设炮弹品量m = kg)习 题 解 问题10.1解:距离无限少直载流导线为r 处的磁感强度 磁感强度1B 战2B 的目标不妨根据左脚定则判决. 根据磁场叠加本理B = B 1+B 2,思量到磁场的对于称性,面M 的磁感强度000021M π2π2r I μr I μB B B -=-= = 0面N 的磁感强度由左脚定则可知NB 的目标沿火仄背左. 题10.2解:设赤讲电流为I ,则圆电流轴线上北极面的磁感强度果此赤讲上的等效圆电流为由于正在天球里里,天磁场由北极指背北极,根据左脚螺旋规则不妨推断赤讲圆电流该当是由西背东流,与天球自转目标普遍.题10.3解:将载流导线瞅做圆电流战少直电流,由叠加本理可得0B 的目标笔直屏幕背里.题10.4解:现将半球里分隔为无数薄圆盘片,则任一薄圆盘片均可等效为一个圆电流,任一薄圆盘片中的电流为该圆电流正在球心O 处激励的磁场为球心O 处总的磁感强度B 为由图可知θR y R x sin cos ==;θ,将它们代进上式,得 磁感强度B 的目标由电流的流背根据左脚定则决定.题10.5证:与二线圈核心连线的中面为坐标本面O ,二线圈核心轴线为x 轴,正在x 轴上任一面的磁感强度 则当 0}])2([)2(3)2()2(3{2d )(d 22220=+++--+-=x d/R x d/x d/R x d/IR μx x B 时,磁感强度正在该面附近小天区内是匀称的,该小天区的磁场为匀称磁场.由 0d )(d =xx B ,解得0=x 由 0d )(d 022==x x x B ,解得R d =那标明正在d = R 时,中面(x = 0)附近天区的磁场可视为匀称磁场.题10.6解:正在矩形仄里上与一矩形里元d S = I d x ,载流少直导线的磁场脱过该里元的磁通量为矩形仄里的总磁通量题10.7解:由磁场的下斯定理⎰=⋅,0d S B 脱过半球里的磁感线局部脱过圆里S ,果此有题10.8解:(1)盘绕轴线与共心圆为环路L ,与其绕背与电流成左脚螺旋关系,根据安培环路定理,有 正在导线内∑==<2222ππR Ir r R I I R r ,,果而正在导线中∑=>,I I R r ,果而(2)正在导线表面磁感强度连绝,由3101.78/π A,50-⨯===S R I m ,得题10.9解:由安培环路定理⎰∑=⋅I 0d μl B ,得R 1<r <R 2 I r B02π2μ=⋅B 2 = rμπ2I 0R 2<r <R 3 rBπ23⋅=]π22232220I )R π(R )R (r I ---[μ B 3 =22232230 π2R R rR r I --⋅μr >R 3 rBπ24⋅=μo (I I ) = 0B 4 = 0磁感强度B(r )的分散直线如图. 题10.10解:由安培环路定理,有r B π2⋅=μ0∑I R <R 1 rBπ21⋅= 0B 1 = 0 R 2>r >R 1 rBπ22⋅=μ0NIB 2 =rNIμπ20r >R 2 rBπ23⋅= 0B 3 = 0正在螺线管内磁感强度B 沿圆周,与电流成左脚螺旋,若R 2-R 1<<R 1战R 2,则环内的磁场不妨近似视做匀称分散,设螺线环的仄稳半径R =21(R 1+R 2),则环内的磁感强度近似为B RNI μπ20≈题10.11解:由安培环路定理,可供得单块无限大载流仄里正在二侧的磁感强度大小为2/0j μ,目标如图所示,根据磁场的叠加本理可得(1)与笔直于屏幕背里为x 轴正背,合磁场为B = i i i j μjμjμ00022=+(2)二导体载流仄里除中,合磁场的磁感强度B = 02200=-i i jjμμ题证:由离子源爆收的离子正在电势好为U 的电场中加速,根据动能定理,有qU mv=221 (1)离子以速率v 加进磁场后,正在洛伦兹力的效率下做圆周疏通,其能源教圆程为qvB = m2/2x v 由上述二式可得228x Uq B m =题10.13解:(1)依照F L = q v ⨯B 可知洛伦兹力F L 目标为B v ⨯的目标,(2)果v ⊥B ,量子所受的洛伦兹力F L = qvB = 1016N正在天球表面量子所受的万有引力G = m p g =1026N果而,有F L /G = 1.95⨯1010,即量子所受的洛伦兹力近大于沉力 题10.14解:(1)如图所示,由洛伦兹力F = q v ⨯B不妨推断电子束将偏偏背东侧(2)正在如图所示的坐标中,电子正在洛伦兹力效率下,沿圆周疏通,其轨讲半径R 为R = m 6.712k ==eBmE eBmv由题知y = 20cm ,并由图中的几许关系可得电子束偏偏背东侧的距离即隐现屏上的图像将真足背东仄移近3 mm ,那种仄移本去没有会效率整幅图像的品量题10.15证:将进射电子的速度沿磁场目标战笔直磁场目标领会⊥v 战v //,正在磁场目标前进一螺距MN 所需的时间T =αcos //v MN v MN =(1)正在笔直磁场目标的仄里内,电子做匀速圆周疏通的周期T =eBv R emπ2π2=⊥(2)由式(1)战式(2),可得题10.16解:由霍耳效力中霍耳电压与电流、磁感强度的关系,有B = T 010H HH.nq I d U I Rd U== 题10.17证:由欧姆定律的微分形式知,正在导体内稳恒电场强度为由霍耳效力,霍耳电场强度E H =B v ⨯-果载流子定背疏通目标与磁感强度正接,故E H = vB ,果而 题10.18证:通电半导体的载流子正在洛伦兹力的效率下,渐渐积散正在相距为b 的导体二侧,产死霍耳电压U H = vBb而流经导体横截里S (S = bd )的电流I = jbd = nevbd由此可解得载流子浓度n =HedU IB题10.19解:由对于称性可知,半圆弧所受安培力F 1的火仄分量相互对消为整,故有F 1 =⎰⎰==πBIR BIR Fy12d sin d θθ二段直线部分所受安培力大小相等,但是目标好异,当导体形状没有变时,该二力仄稳,果而,所有导线所受安培力F = 2BIR j题10.20解:(1)单位少度导线所受的安培力战静电力分别为f B = BI =d I μπ22f E = E λ=d U C 022π2ε由f B +f E = 0可得 解得 I =A 105.4300⨯=μεCU(2)输出功率N = IU = 2.25⨯109 W题10.21解:无限大载流仄里二侧为匀称磁场,磁感强度大小为j 021μ,则B 1 = B 0j 2μ- (1)B 2 = B 0+j 2μ (2)由式(1)、(2)解得B 0 = )(2121B B +中磁场B 0效率正在单位里积载流仄里上的安培力 依照左脚定则可知磁场力的目标为火仄指背左侧.题10.22解:(1)果为所有电子的磁矩目标相共,则圆盘的磁矩(2)由磁矩的定义,可得圆盘边沿等效电流I = m /S = ⨯10-3 A题10.23解:修坐如图坐标,将关合线圈领会为圆弧⋂bc 战⋂da ,直线ab 战cd四段,由安培力B ⨯=l F d d I 可知圆弧线所受磁力为整,直线ab 战cd 上I 1激励的磁感强度大小均为 B =RI μπ210,则直线ab 战cd 所受磁力大小均为F 0 =i IlB -,其合力F= 2F 0 = 2I 2lB i = ⨯10-4i N.题10.24解:小线圈正在任性位子受到的磁力矩 B m M ⨯=0则 M = θμsin π2π02dIRI '根据转化惯量的定义,由图可供得小线圈绕OO ′轴转化的转化惯量J = ⎰⎰==πββ20222221d π2sin d mR m R m r式中m 为圆环的品量,由于磁力矩目标战角位移目标好异,由动能定理有 积分后即可解得题10.25解:若正在金属环上与如图所示的微元,该微元沿径背的电阻d R =rdrπ2d ρ积分可得金属圆环的径背电阻R =⎰=2112ln π2π2d R R R R d ρrd r ρ径背电流I =)/R (R ρdRε12ln π2ε=将圆环径背电流分隔为线电流θI I d 2πd =,线电流元受到的磁力为,d d d rB I F =目标沿圆周切背,该力对于轴的磁力矩大小为圆环里上电流元对于轴的磁力矩目标相共,为笔直屏幕沿转轴背中,果而金属圆环所受的磁力矩⎰⎰=I r rB M d d =⎰⎰-=21)()/ln(πd d )/ln(212212π2012R RR R R R d B r r R R Bdρεθρω磁力矩目标笔直屏幕沿轴线背中题10.26解:转化的戴电圆盘不妨等效为一组共心圆电流,如图所示,正在圆盘里上与宽度为d r 的细圆环,其等效圆电流此圆电流正在轴线上面P 处激励的磁感强度的大小为 积分,得 ⎥⎥⎦⎤⎢⎢⎣⎡-++=+=⎰x R x x R μx r r μB R 222)(dr 22222 003/22230σωσω 圆片的磁矩m 的大小为B 战m 的目标均沿Ox 轴正背题10.27解:与对于称轴线为x 轴,由题意,炮弹处的磁感强度可近似当做二根半无限少的载流圆柱正在该面激励的磁感强度之战炮弹所受磁场力的大小为⎰-=d/2d/2d yBI F = y y)d/(r y)d/(r I μd/d/d ]2121[π42220⎰--++++ =rrd I μ+lnπ220 炮弹出心时的速率。

大学物理第四版)课后习题及答案 磁场

大学物理第四版)课后习题及答案 磁场

习题题10.1:如图所示,两根长直导线互相平行地放置,导线内电流大小相等,均为I = 10 A,方向相同,如图所示,求图中M、N两点的磁感强度B的大小和方向(图中r0 = 0.020 m)。

题10.2:已知地球北极地磁场磁感强度B的大小为6.0⨯10-5 T。

如设想此地磁场是由地球赤道上一圆电流所激发的(如图所示),此电流有多大?流向如何?题10.3:如图所示,载流导线在平面内分布,电流为I,它在点O的磁感强度为多少?题10.4:如图所示,半径为R的木球上绕有密集的细导线,线圈平面彼此平行,且以单层线圈覆盖住半个球面,设线圈的总匝数为N,通过线圈的电流为I,求球心O处的磁感强度。

题10.5:实验中常用所谓的亥姆霍兹线圈在局部区域内获得一近似均匀的磁场,其装置简图如图所示,一对完全相同、彼此平行的线圈,它们的半径均为R,通过的电流均为I,且两线圈中电流的流向相同,试证:当两线圈中心之间的距离d等于线圈的半径R时,在两线圈中心连线的中点附近区域,磁场可看成是均匀磁场。

(提示:如以两线圈中心为坐标原点O,两线圈中心连线为x轴,则中点附近的磁场可看成是均匀磁场的条件为x B d d = 0;0d d 22=xB)题10.6:如图所示,载流长直导线的电流为I ,试求通过矩形面积的磁通量。

题10.7:如图所示,在磁感强度为B 的均匀磁场中,有一半径为R 的半球面,B 与半球面轴线的夹角为α,求通过该半球面的磁通量。

题10.8:已知10 mm 2裸铜线允许通过50 A 电流而不会使导线过热。

电流在导线横截面上均匀分布。

求:(1)导线内、外磁感强度的分布;(2)导线表面的磁感强度。

题10.9:有一同轴电缆,其尺寸如图所示,两导体中的电流均为I ,但电流的流向相反,导体的磁性可不考虑。

试计算以下各处的磁感强度:(1)r <R 1;(2)R 1<r <R 2;(3)R 2<r <R 3;(4)r >R 3。

大学物理学第四版课后习题答案(赵近芳)上册

大学物理学第四版课后习题答案(赵近芳)上册

大学物理学第四版课后习题答案(赵近芳)上册大学物理学第四版课后习题答案(赵近芳)上册I. 力学基础1.1 物理量、单位和量纲1.2 一维运动1.3 二维运动1.4 多维运动1.5 动力学定律1.6 四个基本定律的应用II. 力学进阶2.1 万有引力定律2.2 物体的机械平衡2.3 力的合成和分解2.4 刚体的平衡条件2.5 动力学定律的矢量形式2.6 力的合成与分解在动力学中的应用III. 力学应用3.1 动量和冲量3.2 动量定理和动量守恒定律3.3 质心运动3.4 矩和对称性3.5 碰撞和动能IV. 振动与波动4.1 简谐振动的基本概念4.2 简谐振动的物理规律4.3 简谐振动的叠加4.4 波的基本概念4.5 机械波的传播4.6 声波的特性V. 热学基础5.1 温度和热量5.2 热学平衡5.3 理想气体状态方程5.4 热力学第一定律5.5 热力学第二定律5.6 热力学循环VI. 热学进阶6.1 热传导6.2 理想气体的物态方程6.3 热机的工作原理6.4 理想气体的热力学过程6.5 热力学第三定律6.6 热力学中的熵VII. 光学基础7.1 几何光学的基本假设7.2 反射和折射7.3 薄透镜的成像7.4 光的衍射7.5 光的干涉与衍射VIII. 光学进阶8.1 光的波动性8.2 波动光学中的衍射现象8.3 干涉与衍射的应用8.4 偏振光的特性和产生8.5 偏振的应用IX. 电学基础9.1 电荷和电场9.2 电场中的电荷9.3 静电场中的电势能9.4 电介质中的电场9.5 电容器和电容9.6 电容器在电场中的应用X. 电学进阶10.1 电流和电阻10.2 欧姆定律和电功率10.3 理想电源和内阻10.4 串联和并联电路10.5 微观电流与输运过程10.6 磁场和电流的相互作用XI. 磁学基础11.1 磁场的基本概念11.2 安培力和磁场的作用11.3 安培环路定理和比奥-萨伐尔定律11.4 磁场中的磁矩和磁矢势11.5 磁场中的电荷和电流XII. 电磁感应12.1 法拉第电磁感应定律12.2 电磁感应的应用12.3 洛伦兹力和电磁感应的关系12.4 电磁感应中的能量转换XIII. 光学和电磁波13.1 光的多普勒效应13.2 光的全反射和光导纤维13.3 电磁波的基本特性13.4 电磁波的干涉和衍射13.5 电磁波的产生和传播XIV. 原子物理14.1 原子的组成和结构14.2 原子能级和辐射14.3 布拉格衍射和X射线的产生14.4 原子谱和拉曼散射14.5 布居和粒子统计XV. 物质内部结构15.1 固体的晶体结构15.2 固体的导电性15.3 半导体的性质和应用15.4 介质的极化和磁化15.5 核能和放射性以上是《大学物理学第四版课后习题答案(赵近芳)上册》的大纲,根据各个章节的内容进行详细解答可帮助学生更好地掌握物理学知识。

《大学物理》练习题及详细解答-—电磁感应.docx

《大学物理》练习题及详细解答-—电磁感应.docx

法拉第电磁感应定律10-1如图10-1所示,一半径a=0.10m,电阻7?=1.OX1O 3Q 的圆形导体回路置于均匀磁场中,磁场方向与回路面积的法向之间的夹角为TT /3,若磁场变化的规律为3(f ) = (3" +8/ + 5)X 10-4T求:(1) f=2s 时回路的感应电动势和感应电流;(2)最初2s 内通过回路截面的电量。

解:(1) <t>^B S^BScosO图 10-1a —3 ? x 10 -5t = 2s, & =—3.2x107, I =_=------ =—2x10—2 AR -负号表示与方向与确定五的回路方向相反(2) / = ;(0 -Q )=;留(0)-8(2)]• S• cos 。

= 28x1" 1*0.1 - =4.4xl0-2 CR R 1x10 x210-2如图10-2所示,两个具有相同轴线的导线回路,其平面相互平行。

大回路中有电流/,小的回路在大 dx的回路上面距离X 处,X»R,即/在小线圈所围面积上产生的磁场可视为是均匀的。

若—=v 等速 dt 率变化,(1)试确定穿过小回路的磁通量e 和X 之间的关系;(2)当x=NR (N 为一正数),求小回 路内的感应电动势大小;(3)若v>0,确定小回路中感应电流方向。

解:(1)大回路电流/在轴线上x 处的磁感应强度大小B = cl" 2、3 2 '方向竖直向上。

2(舟+》2产x»R 时,® = B ・S = BS = B •兀尸=“祁:"2疽 2x3(2)=1. ju JR-TIP 2x 4 — , x = NR 时, dt 2dt (3)由楞次定律可知,小线圈中感应电流方向与/相同。

动生电动势10-3 一半径为R 的半圆形导线置于磁感应强度为W 的均匀磁场中,该导线以 速度v沿水平方向向右平动,如图10-3所不,分别采用(1)法拉第电磁 感应定律和(2)动生电动势公式求半圆导线中的电动势大小,哪一端电 势高?解:(1)假想半圆导线在宽为2R 的U 型导轨上滑动,设顺时针方向为回路方向,在x 处O…, = (2Rx+-兀R2 )B , s = 一^^ = -2RB — = -2RBv2 dt dt由于静止U 型导轨上电动势为零,所以半圈导线上电动势为 8 = -2RBv 负号表示电动势方向为逆时针,即上端电势高。

《大学物理》恒定磁场练习题及答案

《大学物理》恒定磁场练习题及答案

《大学物理》恒定磁场练习题及答案一、简答题1、如何使一根磁针的磁性反转过来?答:磁化:比如摩擦,用一个磁体的N 极去摩擦小磁针的N 极可以让它变为S 极,另一端成N 极。

2、为什么装指南针的盒子不是用铁,而是用胶木等材料做成的? 答:铁盒子产生磁屏蔽使得指南针无法使用。

3、在垂直和水平的两个金属圆中通以相等的电流,如图所示,问圆心O 点处的磁场强度大小及方向如何?答:根据圆电流中心处磁感应强度公式,水平金属圆在O 点的磁感应强度大小为RI20μ;方向垂直向下,竖直金属圆在O 点的磁感应强度大小为RI20μ;方向垂直指向纸面内。

故O 点叠加后的磁感应强度大小为RI220μ;方向为斜下450指向纸面内。

4、长直螺旋管中从管口进去的磁力线数目是否等于管中部磁力线的数目? 为什么管中部的磁感应强度比管口处大?答:因为磁力线是闭合曲线,故磁力线数目相等。

根据载流长直螺旋管磁感应强度计算公式)cos (cos 21120θθμ-=nI B 可知,管口处21πθ→,0cos 1=θ,管口处磁感应强度为20cos 21θμnI B =;中心处212cos 2cos cos θθθ'='-',故中心处磁感应强度为20cos θμ'=nI B ,因为22θθ>',所以中心处磁感应强度比管口处大。

5、电荷在磁场中运动时,磁力是否对它做功? 为什么? 答:不作功,因为磁力和电荷位移方向成直角。

6、在均匀磁场中,怎样放置一个正方型的载流线圈才能使其各边所受到的磁力大小相等?答:磁力线垂直穿过正四方型线圈的位置。

因为线圈每边受到的安培力为B Ia F ⨯=,由于处在以上平面时,每边受到的磁力为IaB F =。

7、一个电流元Idl 放在磁场中某点,当它沿x 轴放置时不受力,如把它转向y 轴正方向时,则受到的力沿z 铀负方向,问该点磁感应强度的方向如何?答:由安培力公式B Idl dF ⨯=可知,当Idl 沿x 轴放置时不受力,即0=dF ,可知B 与Idl 的方向一致或相反,即B 的方向沿x 轴线方向。

大学物理(第四版)课后习题及答案 感应与场

大学物理(第四版)课后习题及答案 感应与场

第十二章电磁感应电磁场题12.1:如图所示,在磁感强度T 106.74-⨯=B 的均匀磁场中,放置一个线圈。

此线圈由两个半径均为3.7 cm 且相互垂直的半圆构成,磁感强度的方向与两半圆平面的夹角分别为 62和 28。

若在s 105.43-⨯的时间内磁场突然减至零,试问在此线圈内的感应电动势为多少? 题12.1分析:由各种原因在回路中所引起的感应电动势,均可由法拉第电磁感应定律求解,即⎰⋅-=-=Sd d d d d S B t t Φε但在求解时应注意下列几个问题: 1.回路必须是闭合的,所求得的电动势为回路的总电动势。

2.Φ应该是回路在任意时刻或任意位置处的磁通量。

它由⎰⋅=Sd S B Φ计算。

对于均匀磁场则有θcos d SBS Φ=⋅=⎰S B ,其中⊥=S S θcos 为闭会回路在垂直于磁场的平面内的投影面积。

对于本题,2211cos cos θθBS BS Φ+=中1θ和2θ为两半圆形平面法线n e 与B 之间的夹角。

3.感应电动势的方向可由tΦd d -来判定,教材中已给出判定方法。

为方便起见,所取回路的正向(顺时针或逆时针)应与穿过回路的B 的方向满足右螺旋关系,此时Φ恒为正值,这对符号确定较为有利。

题12.1解:迎着B 的方向,取逆时针为线圈回路的正向。

由法拉第电磁感应定律V 1091.4)cos cos (cos cos d d cos cos d d d d 4221122112211-⨯=+∆∆-=+-=+-=-=θθθθθθεS S tB S S t B BS BS t t Φ)()(0>ε,说明感应电动势方向与回路正向一致题12.2:一铁心上绕有线圈100匝,已知铁心中磁通量与时间的关系为t Φ)s 100s i n ()Wb 100.8(15--⨯=π,求在s 100.12-⨯=t 时,线圈中的感应电动势。

题12.2解:线圈中总的感应电动势t t ΦN )s 100cos()V 51.2(d d 1-=-=πε当 s 100.12-⨯=t 时, ε= 2.51 V 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习 题题10.1:如图所示,两根长直导线互相平行地放置,导线内电流大小相等,均为I = 10 A ,方向相同,如图所示,求图中M 、N 两点的磁感强度B 的大小和方向(图中r 0 = 0.020 m )。

题10.2:已知地球北极地磁场磁感强度B 的大小为6.0105 T 。

如设想此地磁场是由地球赤道上一圆电流所激发的(如图所示),此电流有多大?流向如何?题10.3:如图所示,载流导线在平面内分布,电流为I ,它在点O 的磁感强度为多少?题10.4:如图所示,半径为R 的木球上绕有密集的细导线,线圈平面彼此平行,且以单层线圈覆盖住半个球面,设线圈的总匝数为N ,通过线圈的电流为I ,求球心O 处的磁感强度。

题10.5:实验中常用所谓的亥姆霍兹线圈在局部区域内获得一近似均匀的磁场,其装置简图如图所示,一对完全相同、彼此平行的线圈,它们的半径均为R ,通过的电流均为I ,且两线圈中电流的流向相同,试证:当两线圈中心之间的距离d 等于线圈的半径R 时,在两线圈中心连线的中点附近区域,磁场可看成是均匀磁场。

(提示:如以两线圈中心为坐标原点O ,两线圈中心连线为x 轴,则中点附近的磁场可看成是均匀磁场的条件为x B d d = 0;0d d 22 xB )题10.6:如图所示,载流长直导线的电流为I,试求通过矩形面积的磁通量。

题10.7:如图所示,在磁感强度为B的均匀磁场中,有一半径为R的半球面,B与半球面轴线的夹角为 ,求通过该半球面的磁通量。

题10.8:已知10 mm2裸铜线允许通过50 A电流而不会使导线过热。

电流在导线横截面上均匀分布。

求:(1)导线内、外磁感强度的分布;(2)导线表面的磁感强度。

题10.9:有一同轴电缆,其尺寸如图所示,两导体中的电流均为I,但电流的流向相反,导体的磁性可不考虑。

试计算以下各处的磁感强度:(1)r<R1;(2)R1<r<R2;(3)R2<r<R3;(4)r>R3。

画出B-r图线。

题10.10:如图所示。

N匝线圈均匀密绕在截面为长方形的中空骨架上。

求通入电流I后,环内外磁场的分布。

题10.11:设有两无限大平行载流平面,它们的电流密度均为j,电流流向相反,如图所示,求:(1)两载流平面之间的磁感强度;(2)两面之外空间的磁感强度。

题10.12:测定离子质量的质谱仪如图所示,离子源S产生质量为m,电荷为q的离子,离子的初速很小,可看作是静止的,经电势差U加速后离子进入磁感强度为B的均匀磁场,并沿一半圆形轨道到达离入口处距离为x 的感光底片上,试证明该离子的质量为228x Uq B m =题10.13:已知地面上空某处地磁场的磁感强度B = 0.4×10-4 T ,方向向北。

若宇宙射线中有一速率17s m 105.0-⋅⨯=v 的质子,垂直地通过该处。

如图所示,求:(1)洛伦兹力的方向;(2) 洛伦兹力的大小,并与该质子受到的万有引力相比较。

题10.14:在一个显像管的电子束中,电子有eV 101.24⨯的能量,这个显像管安放的位置使电子水平地由南向北运动。

地球磁场的垂直分量5105.5-⊥⨯=B T ,并且方向向下,求:(1)电子束偏转方向;(2)电子束在显像管内通过20 cm 到达屏面时光点的偏转间距。

题10.15:如图所示,设有一质量为m e 的电子射入磁感强度为B 的均匀磁场中,当它位于点M 时,具有与磁场方向成α角的速度v ,它沿螺旋线运动一周到达点N ,试证M 、N 两点间的距离为eBαv m MN cos π2e =题10.16:利用霍耳元件可以测量磁场的磁感强度,设一霍耳元件用金属材料制成,其厚度为0.15mm ,载流子数密度为1.0×1024 m —3。

将霍耳元件放入待测磁场中,测得霍耳电压为42V μ,电流为10 mA 。

求此时待测磁场的磁感强度。

题10.17:试证明霍耳电场强度与稳恒电场强度之比ρne B E E //C H =这里ρ为材料电阻率,n 为载流子的数密度。

题10.18:载流子浓度是半导体材料的重要参数,工艺上通过控制三价或五价掺杂原子的浓度,来控制p 型或n 型半导体的载流子浓度,利用霍耳效应可以测量载流子的浓度和类型,如图所示一块半导体材料样品,均匀磁场垂直于样品表面,样品中通过的电流为I ,现测得霍耳电压为U H ,证明样品载流子浓度为n =HedU IB题10.19:一通有电流为I 的导线,弯成如图所示的形状,放在磁感强度为B 的均匀磁场中,B 的方向垂直纸面向里,求此导线受到的安培力为多少?题10.20:一直流变电站将电压为500 kV 的直流电,通过两条截面不计的平行输电线输向远方,已知两输电导线间单位长度的电容为111103.0--⋅⨯m F ,若导线间的静电力与安培力正好抵消,求:(1)通过输电线的电流;(2)输送的功率。

题10.21:将一电流均匀分布的无限大载流平面放入磁感强度为B 0的均匀磁场中,电流方向与磁场垂直,放入后,平面两侧磁场的磁感强度分别为B 1和B 2(图),求该载流平面上单位面积所受的磁场力的大小和方向。

题10.22:在直径为1.0 cm 的铜棒上,切割下一个圆盘,设想这个圆盘的厚度只有一个原子线度那么大,这样在圆盘上约有6.2⨯1014个铜原子,每个铜原子有27个电子,每个电子的自旋磁矩为224e m A 109.3⋅⨯=-μ,我们假设所有电子的自旋磁矩方向都相同,且平行于铜棒的轴线,求:(1)圆盘的磁矩;(2)如这磁矩是由圆盘上的电流产生的,那么圆盘边缘上需要有多大的电流。

题10.23:通有电流I 1 = 50 A 的无限长直导线,放在如图所示的弧形线圈的轴线上,线圈中的电流I 2 = 20 A ,线圈高h = 7R /3。

求作用在线圈上的力。

题10.24:如图所示,在一通有电流I 的长直导线附近,有一半径为R ,质量为m 的细小线圈,细小线圈可绕通过其中心与直导线平行的轴转动,直导线与细小线圈中心相距为d ,设d >>R ,通过小线圈的电流为I '。

若开始时线圈是静止的,它的正法线矢量n e 的方向与纸面法线ne '的方向成0θ角。

问线圈平面转至与屏幕面重叠时,其角速度的值为多大?题10.25:如图所示,电阻率为ρ的金属圆环,其内外半径分别为R 1和R 2,厚度为d 。

圆环放入磁感强度为α的均匀磁场中,B 的方向与圆环平面垂直,将圆环内外边缘分别接在如图所示的电动势为ε的电源两极,圆环可绕通过环心垂直环面的轴转动,求圆环所受的磁力矩。

题10.26:如图所示,半径为R 的圆片均匀带电,电荷面密度为σ,令该圆片以角速度ω绕通过其中心且垂直于圆平面的轴旋转。

求轴线上距圆片中心为x 处的点P 的磁感强度和旋转圆片的磁矩。

题10.27:如图所示是一种正在研究中的电磁轨道炮的原理图。

该装置可用于发射速度高达10km.s -1的炮弹,炮弹置于两条平行轨道之间与轨道相接触,轨道是半径为r 的圆柱形导体,轨道间距为d 。

炮弹沿轨道可以自由滑动。

恒流电源ε、炮弹和轨道构成一闭合回路,回路中电流为I 。

(1)证明作用在炮弹上的磁场力为rrd I μF +=ln)π(2120 (2)假设I = 4 500 kA ,d = 120 mm ,r = 6.7 cm ,炮弹从静止起经过一段路程L = 4.0 m 加速后的速度为多大?(设炮弹质量m = 10.0 kg )习 题 解 答题10.1解:距离无限长直载流导线为r 处的磁感强度RIμB B π2021== 磁感强度1B 和2B 的方向可以根据右手定则判定。

根据磁场叠加原理B = B 1+B 2,考虑到磁场的对称性,点M 的磁感强度00021M π2π2r Iμr I μB B B -=-= = 0 点N 的磁感强度T100122π24πcos )(40021N -⨯=⋅=+=. r I μB B B由右手定则可知N B 的方向沿水平向左。

题10.2解:设赤道电流为I ,则圆电流轴线上北极点的磁感强度RI μR R IR μB /24)(20232220=+=因此赤道上的等效圆电流为A 107312490⨯==.μRBI 由于在地球内部,地磁场由南极指向北极,根据右手螺旋法则可以判断赤道圆电流应该是由西向东流,与地球自转方向一致。

题10.3解:将载流导线看作圆电流和长直电流,由叠加原理可得RIμR I μB π22000-=0B 的方向垂直屏幕向里。

题10.4解:现将半球面分割为无数薄圆盘片,则任一薄圆盘片均可等效为一个圆电流,任一薄圆盘片中的电流为I θR RNN I I ⋅⋅==d π2d d 该圆电流在球心O 处激发的磁场为I y x y μB /d )(2d 232220+=球心O 处总的磁感强度B 为θR RN y x I y μ/d π2)(2B 2/0232220⋅+⋅=⎰π 由图可知θR y R x sin cos ==;θ,将它们代入上式,得RNIμR NI μB π/4d sin π02200==⎰θθ 磁感强度B 的方向由电流的流向根据右手定则确定。

题10.5证:取两线圈中心连线的中点为坐标原点O ,两线圈中心轴线为x 轴,在x 轴上任一点的磁感强度232220232220])2([2])2([2//x d/R IR μx d/R IR μB +++-+=则当 0}])2([)2(3)2()2(3{2d )(d 22220=+++--+-=x d/R x d/x d/R x d/IR μx x B0=++-++-+--=}])2([)2(4])2([)2(4{23d )(d 272222722222022//x d/R R x d/x d/R R x d/IR μx x B时,磁感强度在该点附近小区域内是均匀的,该小区域的磁场为均匀磁场。

由0d )(d =xx B ,解得0=x 由0d )(d 022==x x x B ,解得R d =这表明在d = R 时,中点(x = 0)附近区域的磁场可视为均匀磁场。

题10.6解:在矩形平面上取一矩形面元d S = I d x ,载流长直导线的磁场穿过该面元的磁通量为x l xIμΦd π2d d 0=⋅=S B 矩形平面的总磁通量⎰==ΦΦd ⎰=211200ln π2d π2d d d dl I μx l x I μ 题10.7解:由磁场的高斯定理⎰=⋅,0d S B 穿过半球面的磁感线全部穿过圆面S ,因此有αcos π2B R Φ=⋅=S B题10.8解:(1)围绕轴线取同心圆为环路L ,取其绕向与电流成右手螺旋关系,根据安培环路定理,有⎰∑=⋅=⋅I r B 0π2d μl B在导线内∑==<2222ππR Ir r R I I R r ,,因而20π2R r I μB =在导线外∑=>,I I R r ,因而rIμB π20=(2)在导线表面磁感强度连续,由3101.78/π A,50-⨯===S R I m ,得T 1065π2300-⨯==.RIμB 题10.9解:由安培环路定理⎰∑=⋅I 0d μl B ,得1R r < 2211πππ2r R Iμr B =⋅ 2101π2R IrμB =R 1<r <R 2 I r B 02π2μ=⋅B 2 =rμπ2I0 R 2<r <R 3r B π23⋅=]π22232220I )R π(R )R (r I ---[μ B 3 =22232230 π2R R rR r I --⋅μ r >R 3 r B π24⋅=μo (I I ) = 0B 4 = 0磁感强度B(r )的分布曲线如图。

相关文档
最新文档