北师大版初一数学上册追赶小明_教学设计方案
北师大版初中数学七年级上册《6 应用一元一次方程—追赶小明》 公开课教案_3
应用一元一次方程—追赶小明(教学设计)教学目标(一)教学知识点1.进一步掌握列方程解应用题的步骤.2.能充分利用行程中的速度、路程、时间之间的关系列方程解应用题.(二)能力训练要求1.借助“线段图”分析复杂问题中的数量关系,从而建立方程,解决实际问题,发展分析问题、解决问题的能力.2.进一步体会方程模型的作用,提高应用数学的意识.3.培养学生文字语言、图形语言、符号语言这三种语言的转换的能力.(三)情感与价值观要求通过开放性的问题,为学生提供思维的空间,从而培养学生的创新意识,团队精神和克服困难的勇气.教学重点1.借助“线段图”分析复杂问题中的数量关系.从而建立方程,解决实际问题.2.熟悉路程问题中的速度、路程、时间之间的关系,从而实现从文字语言到图形语言,从图形语言到符号语言的转换.教学难点用“线段图”分析复杂问题中的等量关系,从而建立方程.教学方法教师启发与学生自主探索相结合.教师先从简单问题出发,启发诱导学生用“线段图”去寻找路程问题中的等量关系,从而学生在教师的启发诱导下自主探索复杂问题的解决过程,建立数学模型.教学过程:一、回顾基本知识:小学接触过一些行程问题,那么在行程问题中你知道有哪些量?它们是什么关系?学生很容易回答,s、v、t路程=速度x 时间速度=路程÷时间时间=路程÷速度在以后的行程问题中都是围绕这三个量来解决的,这节课我们继续学习行程问题。
二、展示本节课学习目标1.进一步掌握列方程解应用题的方法,能利用行程问题中的速度、路程、时间的关系解决实际问题。
2.借助“线段图”分析复杂问题中的数量关系,从而提高自己解决实际问题的能力。
3.体会文字语言、图形语言、符号语言三种语言的转换。
三、问题导学:A、B两地相距480千米,一列慢车从A地出发,每小时行55千米,一列快车从B地开出,每小时行65千米.1.两车同时开出,相向而行,x小时相遇,则由条件可列方程为_____________________。
北师大版七年级数学上册:5.6应用一元一次方程追赶小明教学设计
一、教学目标
(一)知识与技能
1.理解一元一次方程的概念,掌握一元一次方程的解法,并能运用到实际情境中。
2.能够根据实际问题,找出数量关系,正确列出相应的一元一次方程。
3.能够运用等式的性质,进行方程的化简与求解,解决实际问题。
4.通过解决实际问题,提高学生的观察、分析、归纳和解决问题的能力。
b.实例演示:给出具体实例,展示如何根据实际问题列出方程。
c.学生跟随:让学生跟随教师一起列出方程,加深理解。
d.知识拓展:介绍一元一次方程在其他实际问题中的应用,如购物、计费等。
(三)学生小组讨论
1.教学内容:小组合作,共同解决实际问题。
2.教学方法:采用分组合作、交流讨论的方式。
3.教学过程:
a.分组:将学生分成若干小组,每组分配一个实际问题。
1.培养学生积极参与数学学习的兴趣,激发学生学习数学的热情。
2.培养学生面对问题,勇于挑战、积极思考的良好习惯。
3.通过解决实际问题,让学生体会数学与生活的紧密联系,感受数学的实用价值。
4.培养学生合作交流、共同解决问题的团队精神,增强集体荣誉感。
在设计“应用一元一次方程追赶小明”的教学活动时,我将结合学生的实际情况,以生活情境为背景,引导学生运用一元一次方程解决实际问题。通过丰富多样的教学手段,激发学生的学习兴趣,培养学生的数学思维能力,提高他们解决实际问题的能力。同时,注重培养学生的情感态度与价值观,使他们在学习过程中,获得成功的体验,增强自信心,形成积极向上的学习态度。
4.精讲多练,提高学生的解题技能。在教学过程中,教师进行适当的讲解,为学生提供丰富的练习机会,使学生在实践中不断提高解题能力。
初中数学北师大七年级上册(2023年修订) 一元一次方程应用一元一次方程追赶小明教案
《追赶小明》教案一、教材及学情分析追赶小明是北师大版七年级(上)第五章应用一元一次方程最后一节的内容。
教材首先由一个实际实例“追赶小明”创设问题情境,激发学生去分析问题、探究解决问题的方法,然后通过画“线段图”建立一元一次方程模型解决问题.目的是培养学生把生活中的实际问题转化为数学模型的能力,让学生体会数学在生活中的作用.教学时是让学生根据事实提出问题并尝试去解决问题,让学生在自主探索、互相启迪、合作交流中提高分析问题和解决问题的能力,梳理所学知识,培养学生的数学能力.认知基础:学生在小学阶段学过有关行程问题的应用题,熟悉路程、时间、速度之间的关系.前几节课又学习了解一元一次方程及一些运用方程模型解决的实际问题的有关知识.学生是学习的“主人”,教学应以学生为中心,从学生已有的生活经验出发,创设有助于学生自主学习的情境,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,促使学生在教师的指导下生动活泼地、主动地、富有个性地学习.本节课让学生主动地参与数学活动,并通过亲身实践,演示追赶过程,更进一步认识和体会方程的作用.活动经验基础:学生在小学已能利用线段图来解决一些简单的应用题,并且在本章前几节的学习中,已初步感受到方程是解决实际问题的一种有效途径,学生已具备一定的分析问题、解决问题的能力,已初步形成合作、交流、勇于探究与实践的良好学风,学生间互相评价和师生互动气氛较浓.二、教学目标1.借助“线段图”分析复杂问题中的数量关系,从而建立方程解决实际问题,进一步掌握列方程解应用题的步骤.发展分析问题、解决问题的能力,进一步体会方程模型的作用.2.能充分利用行程中的速度、路程、时间之间的关系列方程解应用题.3.培养学生分析问题、解决问题的能力,进一步体会方程模型的作用,提高学生应用数学的意识.4.培养学生文字语言、图形语言、符号语言这三种语言转换的能力.三、教学重难点、教学重点:1.画出“线段图”找相等关系.2.会进行文字语言、图形语言、符号语言的相互转换.教学难点:借助画“线段图”寻找行程问题中的等量关系.四、教学设计情境创设小明每天早上要在7:50之前赶到距家1 000米的学校上学.一天,小明以80米/分钟的速度出发,5分钟后,小明的爸爸发现他忘了带语文书.于是爸爸以180米/分钟的速度去追小明.问题1:爸爸能追上小明吗?问题2:爸爸追上小明用了多长时间?问题3:追上小明时,距离学校还有多远?设计说明列方程解一些实际问题的过程是一个数学建模的过程,及时鼓励学生通过亲身体验、观察、分析找出其中的等量关系,并尝试用文字语言表述出来,通过画线段图让学生明白了数形结合的好处,教学中可以适当对文字语言、图形语言、符号语言的互相转换加以渗透,既提高了学生的语言表达能力,又培养学生对三种语言进行转换的能力.1.亲身演示,自主探索师:这是行程问题中的追赶问题,我们请两位同学分别扮演小明和爸爸来演示一下追赶的过程.2.语言描述师:根据刚才的演示,你发现了哪些等量关系?(1)爸爸要追上小明,爸爸的速度与小明的速度关系怎样?(2)爸爸从家出发到追上小明时,两人所用的时间有何关系?(3)两人所行的总路程有何关系?3.图形语言师:如下图,你能用简单的“线段图”表示演示的追赶过程吗?4.建立方程模型,得出结论路程、速度和时间三者之间有何关系呢?“线段图”反映了怎样的等量关系?教学说明在学生亲身体验追赶过程的基础上,比较容易画出“线段图”,可以让他们独立完成,教师可以适当帮助一些有问题的学生.充分利用生活实践自己去提出问题并解决问题,这样更有利于扩展学生的思考空间,亲身体会数学变式问题的趣味性,感受到数学的实用性.三种语言的转换在教师点拨引导、学生探究分析过程中自然渗透、自然转换,让学生体会各种表达方式的优越性.另外,求爸爸追上小明时离学校还有多远,由于学生的思路不同,学生的解决方法就不同,有“总路程减去小明走过的路程=剩余路程”,即1 000-80×(4+5)=280(米),也有“总路程减去爸爸走过的路程=剩余路程”,即1 000-180×4=280(米),出现这些不同的见解,教师就因势利导,培养学生的思维的灵活性,拓宽学生思路.活动一:小强和小斌每天早晨坚持跑步,小斌每秒跑4米,小强每秒跑6米。
北师大版初中数学七年级上册《6 应用一元一次方程—追赶小明》 优质课教案_1
第五章一元一次方程《应用一元一次方程—追赶小明》一、教学目标1、知识与技能目标知道列方程解应用题的步骤,能够在现实中运用他们。
进一步发展分析问题的能力、表达能力、抽象能力以及问题解决的能力。
2、过程与方法目标通过观察、探索、理解与运用,学生进一步体会到方程的模型作用,提高应用数学的意识。
借助“线段图”分析复杂问题中的数量关系,从而建立方程,解决实际问题。
3、情感与态度目标通过观察发现、自主探索、合作交流等活动,使学生体验到成功的喜悦,增强学习乐趣。
并通过师生的共同活动,积累一定的解决实际问题的经验。
二、教学重点和难点重点:熟悉追及问题中的路程、时间、速度之间的关系。
从而实现从文字语言到图形语言、从图形语言到符号语言的转化。
难点:借助“线段图”分析复杂问题中的数量关系,从而解决实际问题。
三、教学过程设计1、复习巩固、获得新知先在黑板上写出以下几个题目,并让学生举手回答:①兔子每秒跑4m,那么它5s跑 m。
②兔子4分钟能从比赛的起点跑到终点(全长200米),那么它的速度是m/min。
③假设比赛全程是1200米,兔子以4m/s的速度从起点跑到终点需要min。
④以上题目涉及到的三个量之间的关系是什么?以上四题都是关于路程、速度、时间的问题,虽然看似简单,但却是解决追及问题的前提,只有学生掌握了三个量之间的关系,才能更好地解决关于一元一次方程的应用问题。
2、创设情境、激趣导学小明每天早上要在7:50之前赶到距家1000米的学校上学。
一天,小明以80米/分的速度出发,5分钟后,小明的爸爸发现他忘了带语文书。
于是爸爸以180米/分的速度去追小明。
问题:1.爸爸追上小明用了多少时间?2.追上时距学校还有多远?完成自学指导3、当堂训练、应用强化设计了2道练习题:(1)小彬和小明每天早晨坚持跑步,小彬每秒跑4米,小明每秒跑6米。
①如果他们站在百米跑道的两端同时相向起跑,那么几秒后两人相遇?②如果小明站在百米跑道的起点处,小彬站在他前面10米处,两人同时同向起跑,几秒后小明能追上小彬?本题的目的在于让学生掌握基础知识,以便让学生更好地运用基础知识,解决较难的问题。
北师大版数学七年级上册《6 应用一元一次方程—追赶小明》教学设计
北师大版数学七年级上册《6 应用一元一次方程—追赶小明》教学设计一. 教材分析《6 应用一元一次方程—追赶小明》这一节内容是北师大版数学七年级上册的一部分,主要介绍了如何利用一元一次方程解决实际问题。
通过小明和同学之间的追赶游戏,引出一元一次方程在现实生活中的应用,让学生体会数学与生活的紧密联系。
本节内容旨在让学生掌握一元一次方程的解法,并能应用于解决实际问题。
二. 学情分析学生在学习这一节内容前,已经学习了二元一次方程和一元一次方程的解法,具备了一定的数学基础。
但部分学生对一元一次方程在实际问题中的应用还不够清晰,需要在教学中加以引导和培养。
此外,学生对于实际问题的分析能力、数学思维的培养也需要在教学过程中给予关注。
三. 教学目标1.知识与技能:使学生掌握一元一次方程的解法,并能应用于解决实际问题。
2.过程与方法:通过解决追赶小明的实际问题,培养学生运用一元一次方程解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,体会数学与生活的紧密联系。
四. 教学重难点1.重点:一元一次方程的解法及其在实际问题中的应用。
2.难点:如何将实际问题转化为一元一次方程,并运用解法求解。
五. 教学方法1.情境教学法:通过设置追赶小明的场景,激发学生兴趣,引导学生主动参与。
2.案例教学法:分析追赶小明的问题,引导学生发现并总结一元一次方程的解法。
3.小组合作学习:鼓励学生分组讨论,培养学生的团队协作能力和沟通能力。
4.引导发现法:教师引导学生发现问题、分析问题,培养学生的问题解决能力。
六. 教学准备1.教学课件:制作课件,展示追赶小明的场景和问题。
2.练习题:准备相关练习题,巩固学生对一元一次方程的掌握。
3.教学道具:准备一些实物道具,如小车、棋子等,用于模拟追赶游戏。
七. 教学过程1.导入(5分钟)利用课件展示追赶小明的场景,引导学生关注实际问题。
提问:“如何用数学方法表示小明和同学之间的距离和速度关系?”2.呈现(10分钟)呈现追赶小明的问题,引导学生分析问题,发现其中的数学关系。
北师大版数学七年级上册5.6《应用一元一次方程——追赶小明》教学设计
北师大版数学七年级上册5.6《应用一元一次方程——追赶小明》教学设计一. 教材分析《北师大版数学七年级上册5.6<应用一元一次方程——追赶小明>》这一节主要通过一个实际问题引导学生应用一元一次方程解决问题。
通过列方程、解方程的过程,让学生掌握一元一次方程在实际问题中的应用。
教材通过追赶小明的例子,让学生理解速度、时间和路程之间的关系,并运用一元一次方程求解实际问题。
二. 学情分析学生在之前的学习中已经接触过一元一次方程的基本概念和解法,但对于如何将实际问题转化为方程,并将方程应用于解决实际问题可能还有一定的困难。
因此,在教学过程中,教师需要引导学生将实际问题转化为方程,并通过实际问题让学生理解一元一次方程在实际生活中的应用。
三. 教学目标1.知识与技能:学生会将实际问题转化为一元一次方程,并能运用一元一次方程求解实际问题。
2.过程与方法:学生通过自主探究、合作交流的方式,掌握一元一次方程在实际问题中的应用。
3.情感态度与价值观:学生体会数学与生活的紧密联系,培养解决实际问题的能力。
四. 教学重难点1.重点:学生能将实际问题转化为一元一次方程,并能运用一元一次方程求解实际问题。
2.难点:学生如何将实际问题转化为方程,并理解方程在实际问题中的应用。
五. 教学方法采用问题驱动法、情境教学法和合作交流法。
通过设置追赶小明的实际问题,激发学生的学习兴趣,引导学生自主探究、合作交流,从而掌握一元一次方程在实际问题中的应用。
六. 教学准备1.教师准备:教师需要准备与追赶小明相关的实际问题,以及解题过程中可能用到的数学知识。
2.学生准备:学生需要预习相关的一元一次方程知识,并准备参与课堂讨论。
七. 教学过程1.导入(5分钟)教师通过讲解一个简单的实际问题,引导学生思考如何将实际问题转化为方程。
例如,教师可以提出一个问题:如果小明每分钟跑60米,小红每分钟跑70米,小明比小红慢多少米?让学生思考如何用数学方法表示这个问题。
北师大版七年级数学上册5.6一元一次方程追赶小明优秀教学案例
(一)情景创设
本节课通过设计“追赶小明”的情境,让学生在解决问题的过程中,自然地引入一元一次方程的概念和解法。教师可以利用多媒体展示小明和小华赛跑的情景,让学生观察并描述小华追上小明的过程。通过实际情境的创设,激发学生的学习兴趣,引发学生的思考。
(二)问题导向
教师以问题为导向,引导学生主动探究一元一次方程的解法。首先,教师可以提出问题:“小华追上小明时,他们的速度关系是什么?”让学生思考并引导学生用数学语言描述这个问题。然后,教师可以继续提问:“如何用数学方程来表示这个问题?”引导学生思考并引入一元一次方程的概念。接着,教师可以提出问题:“如何求解这个方程?”引导学生探究一元一次方程的解法。通过问题导向,激发学生的思考,培养学生的自主学习能力。
2.问题导向:教师以问题为导向,引导学生主动探究一元一次方程的解法。通过提出一系列具有挑战性和启发性的问题,激发了学生的思考,培养了学生的自主学习能力。问题导向的教学策略,使学生在解决问题的过程中,自然而然地掌握了一元一次方程的概念和解法。
3.小组合作:教师组织学生进行小组合作,共同探究一元一次方程的解法。在合作过程中,学生互相启发、互相学习,培养了学生的合作意识和团队精神。小组合作不仅提高了学生的学习效果,还使学生在交流互动中提升了数学思维能力。
(五)作业小结
在课堂的最后,我会布置与本节课相关的一元一次方程作业,让学生课后巩固所学知识。同时,我会提醒学生在完成作业的过程中,注意运用一元一次方程的解法,提高解题效率。作业小结环节,有助于学生巩固新知,培养学生的自主学习能力。
五、案例亮点
1.情境导入:通过设计小明和小华赛跑的实际情境,激发了学生的学习兴趣,让学生感受到数学与生活的紧密联系。情境导入既符合学生的认知水平,又能够引起学生的关注,为后续的教学环节打下了坚实的基础。
初中数学北师大七年级上册 一元一次方程应用一元一次方程 ——追赶小明_教案
应用一元一次方程——追赶小明【教学目标】1.知识技能(1)借助“线段图”分析复杂问题中的数量关系,从而建立方程解决实际问题,进一步掌握列方程解应用题的步骤。
(2)能充分利用行程中的速度、路程、时间之间的关系列方程解应用题。
2.能力训练要求(1)培养学生分析问题、解决问题的能力,进一步体会方程模型的作用,提高学生应用数学的意识。
(2)培养学生文字语言、图形语言、符号语言这三种语言转换的能力。
3. 情感与价值观要求(1)通过开放性的问题,为学生提供思维的空间,从而培养学生的创新意识,团队精神和克服困难的勇气。
(2)体验生活中的数学的应用与价值,感受数学来源于生活,感受数学与人类生活的密切联系,激发学生学数学,用数学的兴趣。
【教学重难点】利用一元一次方程解追击问题【教学过程】温故与预习1.列方程解应用题的一般步骤有哪些?2.行程问题主要研究、、三个量的关系。
第一环节:情境引入多媒体展示熊大熊二与光头强的追击视频。
目的:让学生感受生活中我们常常会遇到类似的问题,从学生熟悉的生活经历出发,选择学生身边的、感兴趣的动画视频,采用生动活泼的影像效果,激发学生的好奇心,进而轻松地引入本节所要探讨的主要问题、便于引起每位同学的兴趣。
二、第二环节:自主学习小明每天早上7:30从家出发,他要在7:50之前赶到距家1000米的学校上学。
一天,小明以80米/分的速度出发,5分钟后,小明的爸爸发现他忘了带语文书。
于是爸爸以180米/分的速度去追小明。
根据以上情景,让学生作出线段图,并尝试解答题目中的问题。
目的:此时让学生结合生活中的实际情况提出问题,使学生亲身体会到问题的实质所在,明确解决这些问题的必要性,教师没有直接提出如何解决问题,而是让学生自己思考,使课堂具有开放性,从而能引起学生的极大兴趣,产生强烈的思考欲望。
由学生分析,学生画出线段图师生一起分析题目中的等量关系。
目的:列方程解一些实际问题的过程是一个数学化的过程,及时鼓励学生通过观察、分析找出其中的等量关系,并尝试用文字语言表述出来,通过画线段图让学生明白了数形结合的好处,教学中可以适当对文字语言、图形语言、符号语言的互相转换加以渗透,既提高了学生的语言表达能力,又培养学生对三种语言进行转换的能力。
北师大版七年级数学上册:5.6应用一元一次方程-追赶小明(教案)
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《应用一元一次方程-追赶小明》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两个人在不同速度下走路,如何计算追上对方时间的情况?”这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索一元一次方程在解决追赶问题中的奥秘。
五、教学反思
在今天的教学中,我发现学生们对于一元一次方程解决实际问题的应用有着较高的兴趣。通过小明追赶的案例,他们能够形象地理解速度、时间、距离之间的关系,这让我感到很欣慰。不过,我也注意到在从实际问题抽象出一元一次方程的过程中,部分学生还存在一定的困难。这说明在今后的教学中,我需要更加注重培养学生的抽象思维能力。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解一元一次方程的基本概念。一元一次方程是只含有一个未知数,并且未知数的最高次数为一次的方程。它在解决实际问题中起着重要作用,可以帮助我们计算速度、时间和距离的关系。
2.案例分析:接下来,我们来看一个具体的案例。通过小明跑步的例子,展示如何将实际问题抽象为一元一次方程,并解决追赶问题。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了一元一次方程的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对一元一次方程解决实际问题的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-学会根据实际问题列出一元一次方程,并能正确求解。
-能够运用一元一次方程解决类似追赶小明的问题,从而解决生活中的实际问题。
北师大版七年级上册5.6应用一元一次方程——追赶小明教学设计
北师大版七年级上册5.6应用一元一次方程——追赶小明教学设计一、教学目的1.了解什么是一元一次方程。
2.掌握应用一元一次方程解决实际问题的方法和技巧。
3.引导学生探究数学问题,培养学生的问题解决能力。
4.培养学生的合作意识和团队精神。
二、教学内容1.一元一次方程的概念。
2.应用一元一次方程解决实际问题。
3.追赶问题的应用。
三、教学重点和难点1.教学重点:应用一元一次方程解决实际问题。
2.教学难点:追赶问题的应用。
四、教学准备1.教师准备:•教学PPT•小黑板、彩笔、橡皮•追赶问题的示意图和解答步骤2.学生准备:•计算器•学习笔记和必备工具五、教学步骤第一步:导入与引入1.教师向学生介绍今天的教学内容,重点是什么,难点是什么。
并询问之前的学习情况,为接下来的教学做好铺垫。
2.通过实例和图片引入追赶问题的应用。
第二步:基础概念讲解1.介绍一元一次方程的概念,如何表示和解决方程。
2.讲解如何化解包含绝对值的方程。
第三步:追赶问题的讲解1.解释追赶问题的含义,介绍它是怎样发生的。
2.引导学生通过观察和思考,自己提出问题,搜集数据,系统地分析产生追赶问题的原因。
3.通过示例和图片讲解追赶问题的解决方法和步骤。
4.讲解如何应用一元一次方程解决追赶问题,引导学生运用数学知识解决实际问题。
第四步:练习和实战1.通过课堂练习和习题让学生掌握课程知识,并巩固运用技巧。
2.通过设置实际情境,让学生到实地进行模拟实战演练。
第五步:作业布置结合教学内容,布置课后作业,以巩固自己的知识与技能。
六、教学反思通过这堂课的教学,学生掌握了一元一次方程的概念和应用技巧,也算是成功解决了课题中的教学难点——追赶问题应用。
但教学途中也暴露出来的一些问题,比如有的学生还是不能完全掌握知识点,有些操作不够规范等。
这也提醒我们教师不仅要关注班级整体水平的提升,更要关注每个学生的个体能力,为他们提供个性化的教学方案,确保他们都能学有所获,更好地实现知识的掌握。
北师大版数学七年级上册《6 应用一元一次方程—追赶小明》教案
北师大版数学七年级上册《6 应用一元一次方程—追赶小明》教案一. 教材分析《6 应用一元一次方程—追赶小明》这一节内容,主要让学生通过实际情境,理解一元一次方程的应用,培养学生运用数学知识解决实际问题的能力。
教材通过追赶小明的例子,让学生学会如何列出方程,求解未知数,从而找到解决问题的方法。
二. 学情分析七年级的学生已经学习了代数基础知识,对一元一次方程有一定的理解。
但学生在实际应用中,可能会对如何将实际问题转化为数学问题存在困惑。
因此,在教学过程中,教师需要引导学生正确地将实际问题转化为方程,并熟练地求解。
三. 教学目标1.让学生理解一元一次方程在实际问题中的应用。
2.培养学生运用数学知识解决实际问题的能力。
3.让学生掌握如何将实际问题转化为方程,并熟练求解。
四. 教学重难点1.重点:让学生通过实际情境,理解一元一次方程的应用。
2.难点:如何引导学生将实际问题转化为方程,并熟练求解。
五. 教学方法采用问题驱动法,让学生在解决问题的过程中,理解一元一次方程的应用。
同时,采用分组讨论法,让学生在小组内合作解决问题,提高学生的合作能力。
六. 教学准备1.准备相关的实际问题,用于引导学生思考。
2.准备课件,帮助学生直观地理解问题。
七. 教学过程1.导入(5分钟)教师通过讲解追赶小明的例子,引导学生思考如何用数学知识解决问题。
2.呈现(10分钟)教师呈现具体的问题,让学生尝试独立解决。
问题可以设置为:小明以每小时4公里的速度行走,小红以每小时6公里的速度追赶小明,请问小红需要多少时间才能追上小明?3.操练(10分钟)学生独立思考问题,并列出方程。
教师巡回指导,帮助学生解决遇到的问题。
4.巩固(10分钟)教师选取几个学生的解答,进行讲解和分析,让学生理解不同的解题思路。
5.拓展(10分钟)教师引导学生思考:如果小明的速度变为每小时5公里,小红的速度变为每小时7公里,小红需要多少时间才能追上小明?让学生独立求解。
最新北师大版七年级数学上册《应用一元一次方程——追赶小明》名师教案
5.6 应用一元一次方程——追赶小明教学目标:1.能利用行程中的速度、路程、时间之间的关系列方程解应用题,感知数学在生活中的作用.2.通过观察、抽象、探索、理解与运用,学生进一步体会到方程的模型作用,提高应用数学的意识.借助“线段图”分析复杂问题中的数量关系,从而建立方程,解决实际问题,发展分析问题、解决问题的能力.3.通过师生间、学生间的探索与交流以及情境的创设,激发学生的学习热情和求知欲望.从而进一步提高学习数学、应用数学解决实际问题的意识,养成良好的学习习惯.教学重点与难点:重点:分析题意,寻找等量关系,列方程解决行程问题.难点:利用线段图分析行程问题,寻找等量关系,建立数学模型.教法与学法指导:本节课主要是通过学生亲身的生活体验来展开,再加以延伸,从中抽象出数学问题,再通过建立模型解决实际问题.通过练习来巩固所学知识.消除了学生对新课、新知识的抵触情绪和畏惧心理,各个环节的过渡都非常自然.让学生在不知不觉中学完本节课.同时也体现出了从生活发现数学,让数学回归生活的设计理念.课前准备:制作课件,检查学生预习稿的完成情况,收集学生预习中遇到的问题信息.教学过程:一、创设情境,导入新课师:我们来看两张图片.(教师出示课件)生(热情洋溢地):是博尔特百米比赛,我们学校刚刚举行的运动会.师:看来同学们对这两张图片很熟悉,你知道其中蕴含着什么数学问题吗?生:路程、速度、时间.师:这三个量之间有怎样的关系呢?速度=路程÷时间路程=速度时间时间=路程÷速度行程问题中速度、路程、时间之间的关系?s=vt v=s/t t=s/v生:路程=速度⨯时间;速度=时间路程;时间=速度路程. 师:(展示课件)师:很好!那就用你的知识完成下面的问题吧.1.若小亮每秒跑4米,那么他10秒能跑多少____米.(路程=速度⨯时间)2.小亮用4分钟绕学校操场跑了两圈(每圈400米),那么他的速度为_____米/分. (速度=时间路程) 3.已知小亮家距离学校1000米,他以5米/秒的速度骑车到达学校需要_____分钟. (时间=速度路程) 师:好,看来同学们对这三个量的关系掌握的很好,请想一想生活中的行程问题都有那些?生:相遇问题、追及问题.(学生之间互相补充并说明特点)师:这节课我们就来共同研究有关相遇、追及等方面的问题.【教师板书课题:5.6 应用一元一次方程—追赶小明】【设计意图】通过图片的形式揭示生活中蕴含着我们数学的一个常见问题——追及问题,激发学生的好奇心,引起每位同学的兴趣,唤醒学生的思维和问题意识,进而轻松地引入本节所要探讨的主要问题.二、合作探究,获取新知师:(多媒体展示例题)例1 小明早晨要在7:20以前赶到距家1000米的学校上学,一天,小明以80米/分的速度出发.5分钟后,小明的爸爸发现他忘了带历史作业,于是,爸爸立即以180米/分的速度去追小明,并且在途中追上了他.(1)爸爸追上小明用了多长时间?(2)追上小明时,距离学校还有多远?(学生读题)师:同学们,你是否遇到过类似小明的经历呢.生(很兴奋,七嘴八舌):有的说有,有的说没有.师:家人要追上你与什么因素有关呢?生:绝大数学生都可能会说与速度有关,少数学生可能会说与距离有关等等.(学生仔细审题,理清题目中的数量关系,提高阅读能力.根据自己的理解口述题目中的内容.)师:在这个问题里已知条件是什么?求的是什么?生:小明家到学校距离1000m,小明的速度是80米/分,爸爸的速度是80米/分,小明提前5分钟出发.求的是爸爸追上小明的时间.师:这个问题中涉及了哪个数量关系?生:路程、速度、时间.师:你能将他们的行走过程用图形表示出来吗?(学生先自己画图但不够完整,教师适当点拨补充完善.)小明先走的路程小明又走的路程追及点家学校师:结合图形,你找到有几个等量关系?生:①小明走的路程=爸爸走的路程;②小明所用时间=5+爸爸所用时间.(对于第一个关系学生很容易得出,第二个关系需要教师提示.)师:你将用哪一个等量关系建立方程?生:小明走的路程=爸爸走的路程.师:如果设爸爸追上小明用了x分钟,你能将数量关系用线段图表示出来吗?生:生:80×5+80x=180x.师:好!根据我们的分析,你能将这题的步骤整理出来吗?(师生一起规范整理步骤)生:解:设爸爸追上小明用了x分钟,根据题意,得80×5+80x=180x.解得x=4.答:爸爸追上小明用了4分钟.师:你能独立完成问题(2)吗?生:(在前面的基础上学生比较容易得出结果.)180×4=720(米),1000-720=280(米).答:追上小明时,距离学校还有280米.(师生小结:追及问题若甲先走,乙后走则等量关系有:甲的路程=乙的路程;甲的时间=乙的时间+时间差.)【设计意图】从学生熟悉的生活经历出发,选择学生身边感兴趣的事件给学生提出有关的数学问题,唤起学生的思维和问题意识.三、变式训练,巩固提高变式训练(一):师:(多媒体展示问题)在前面的问题中如果小明的爸爸要赶时间上班,他必须在5分钟之内追上小明,那么爸爸的速度至少应是多少?生:表现出浓厚的兴趣,互相讨论.一部分同学借助上题的经验与方法,开始思考本道题的解题思路.师:这个问题与上面的问题有什么不同?生:本题限制了时间,所要解决的问题是爸爸的速度.师:(根据学生的讨论情况,进行适当的提示).1.如爸爸5分钟追上小明,这时小明共走了几分钟?2.追上小明时,小明走过的路程是多少?3.爸爸走的路程与小明所走的路程有什么关系?4.那么,爸爸的速度呢?生:在练习本上画出线段图,并完成书写步骤.(学生类比上题画出本题的线段图,互相交流改进补充完整.)小明前5分钟走的路程 小明后5分钟走的路程家生:解:设爸爸的速度为x 米/分,根据题意,得 5x=80×10.解这个方程,得 x=160.答:爸爸的速度至少应是160米/分.【设计意图】通过问题情境的转换,让学生在探索和教师的引导中进一步掌握用画线段图解决行程问题中的追赶问题,启发学生的思维,锻炼学生的解决问题能力.变式训练(二):师:(多媒体展示问题)在前面的问题中若当小明到校后才发现忘带语文课本,赶紧打电话给爸爸,爸爸立即以180米/分的速度从家出发,同时小明从学校以100米/分的速度从学校返回,两人几分钟后相遇?生:(阅读题目,理清题目中的逻辑关系)师:这个问题与上面的问题有什么区别?生:从两个地点相向而行.师:你能正确画出线段图并完成书写步骤吗?(教师进行点拨,规范.)生:(在练习本上画出线段图,并完成书写步骤.)生:解:设经过x 分钟相遇,根据题意,得 180x +100x =1000.解得x=257.答:经过257分钟相遇.(师生小结:相向而行,等量关系:甲所用时间=乙所用时间;甲的路程+乙的路程=总路程.)【设计意图】分析相遇问题,由于已有对上一个问题的理解故而学生能比较正确地画出线段图,并得出其中的等量关系,正确列出方程,解决问题,最终能规范写出解题过程.四、学以致用,解决问题师:(多媒体展示问题)育红学校七年级学生步行到郊外旅行.七(1)班学生组成前队,步行速度为4千米/时,七(2)班学生组成后队,速度为6千米/时.前队出发一小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为12千米/时.生:(积极的合作探究,根据上面的事实分组提出问题、讨论、交流,并尝试解答.)师:(在学生仔细读题后提问)这个问题与我们的例题有什么异同?生:(小组讨论,分析比较后得出)相同之处是有两个“人”一前一后,且后面的速度比前面的快,不同的是这个问题中有个联络员.师:提示学生从速度、时间、路程三个角度进行挖掘.生:通过小组讨论、交流比较容易得出:问题1:后队追上前队用了多长时间?解:设后队追上前队用了x小时,根据题意,得6x = 4x + 4×1.解这个方程,得x =2.答:后队追上前队时用了2小时.问题2:联络员第一次追上前队时用了多长时间?解:设联络员第一次追上前队时用了x小时.由题意,得12x = 4x + 4.解这个方程,得x =0.5.答:联络员第一次追上前队时用了0.5小时.问题3:后队追上前队时联络员行了多少路程?问题4:当后队追上前队时,他们已经行进了多少路程?问题5:联络员在前队出发多少时间后第一次追上前队?对于问题3、4、5学生不容易得出,教师适当引导提出问题,并鼓励学生课下利用方程解决问题.【设计意图】这是一个开放性的问题,答案不唯一,旨在拓展学生思维,寻求个性发展.教师应鼓励学生交流、讨论,结合例题大胆提出问题,如后队追上前队用了多少时间;后队追上前队时联络员行了多少路程;通讯员第一次追上前队时,用了多少时间;当后队追上前队时,他们已经行进了多少路程;联系员在前队出发多少时间后,第一次追上前队等,教师还应鼓励学生尝试利用方程去解决这些问题,并与同伴交流自己的问题和解决问题的过程.五、巩固训练,提升能力1.小兵每秒跑6米,小明每秒跑7米,小兵先跑4秒,小明几秒钟追上小兵.2.甲骑摩托车,乙骑自行车同时从相距150千米的两地相向而行,经过5小时相遇,已知甲每小时行驶的路程是乙每小时行驶的路程的3倍少6千米,求乙骑自行车的速度.3.七年级一班列队以每小时6千米的速度去甲地.王明从队尾以每小时10千米的速度赶到队伍的排头后又以同样的速度返回排尾,一共用了7.5分钟,求队伍的长.4.甲、乙两人相距280米,相向而行,甲从A地每秒走8米,乙从B地每秒走6米,那么甲出发几秒与乙相遇?【设计意图】进一步强化本节的内容,通过题目的练习让学生真正理解和掌握用画线段图来解决行程问题中的相遇和追赶问题.六、课堂小结,反思归纳师:今天你们学到了什么知识?是怎样学到的?还有什么疑问?(让学生自己总结,可以加深印象,提高学生学习的积极性.师适时点拨.)生1:借助“线段图”能帮助我们分析复杂问题中的数量关系,从而建立方程解决实际问题.生2:相遇问题:甲走的路程+乙走的路程=总路程.生3:追及问题:前者走的路程+两者间的距离=追者走的路程.生4:路程=速度×时间;时间=路程÷速度;速度=路程÷时间.【设计意图】强调本课的重点内容是要学会借线段图来分析行程问题,并能掌握各种行程问题中的规律及等量关系.引导学生自己对所学知识和思想方法进行归纳和总结,从而形成自己对数学知识的理解和解决问题的方法策略.七、达标检测,反馈矫正多媒体出示:1.A,B两地相距480千米,一列慢车从A地开出,每小时行60千米,一列快车从B 地开出,每小时行65千米,若两车同时开出,相向而行,x小时相遇,则由条件列出的方程为.2.甲乙两站相距450千米,一列慢车从甲站开出速度是52千米/时,一列快车从乙站开出速度是70千米/时,慢车开出0.5小时后快车开出,两车相向而行,问快车经过几小时与慢车相遇?设快车经过x小时与慢车相遇则可列方程()A、52x+70x=450B、70x=52x+52×0.5C、70x=52x+450D、52×0.5+52x+70x=4503.一架飞机飞行于两城市之间,顺风需要5小时30分,逆风需要6小时,已知风速每小时24千米,则顺风中飞机的速度为多少?逆风中飞机的速度为多少?【设计意图】通过达标检测及时反馈学生对本节课的知识点的掌握程度,以便有的放矢进行后续教学.七、布置作业,拓展延伸必做题:一个自行车队进行训练,训练时所有队员都以35千米/小时的速度前进.突然,1号队员一45千米/小时的速度独自行进,行进10千米后掉转车头,仍以45千米/小时的速度往回骑,直到与其他队员会合.1号队员从离队开始到与队员重新会合,经过了多长时间?选做题:给定方程2.5x+2.5(x+2)=55,你能联系生活实际编写一道数学问题吗?与同学探讨,并负责讲解.【设计意图】作业分层体现分层教学思想,让不同学生得到不同程度的发展.板书设计:教学反思:励志名言: 1、学习从来无捷径,循序渐进登高峰。
北师大版七年级数学上册:5.6应用一元一次方程追赶小明优秀教学案例
1.解题思路:引导学生总结解题思路,明确解决追赶问题的关键步骤。让学生从实际问题中提炼出关键信息,找出问题中的等量关系,列出方程,求解未知量。
2.解题方法:总结一元一次方程的解法,让学生掌握解题方法。强调解题步骤的重要性,让学生学会如何将实际问题转化为数学问题。
3.应用拓展:鼓励学生将所学知识应用到实际生活中,解决类似问题。引导学生关注身边的人和事,提高学生的数学应用意识。
3.媒体辅助:利用多媒体课件展示追赶问题的生活场景,让学生更直观地理解问题背景。通过动态演示,让学生观察和分析问题,找出问题中的等量关系。
(二)问题导向
1.自主探究:在解决问题的过程中,教师提出一系列问题,引导学生自主探究,激发学生的思考。例如,教师可以提问:“小明和小华的速度如何表示?他们分别跑了几分钟?如何列出方程解决问题?”
1.分组讨论:将学生分成若干小组,每组学生共同讨论解决问题。在讨论过程中,鼓励学生发表自己的观点,培养学生的团队协作精神和沟通能力。
2.分工合作:在小组内部,分工合作,明确每个学生的责任。例如,一个学生负责找出等量关系,另一个学生负责列出方程,共同解决问题。
3.互动评价:小组成员之间相互评价,共同提高。在小组合作过程中,鼓励学生相互倾听、相互反馈,培养学生的评价能力和自我反思能力。
3.教师评价:教师对学生的学习过程和结果进行评价,关注学生的成长。评价时,教师要以鼓励为主,充分激发学生的学习积极性,提高学生的自信心。
四、教学内容与过程
(一)导入新课
1.故事引入:以一个有趣的追赶小明的故事作为导入,引发学生的兴趣。教师讲述故事,让学生在轻松愉快的氛围中进入本节课的学习。故事中,小明和小华进行一场跑步比赛,小华要追赶小明,正好追上。引导学生思考:小华和小明分别跑了几分钟?他们的速度如何?
北师大版数学七年级上册《6 应用一元一次方程—追赶小明》教案2
北师大版数学七年级上册《6 应用一元一次方程—追赶小明》教案2一. 教材分析《6 应用一元一次方程—追赶小明》这一节内容,主要让学生学会运用一元一次方程解决实际问题。
通过小明追赶问题的实例,让学生理解速度、时间和路程之间的关系,并能够运用一元一次方程进行求解。
教材通过这个实例,让学生感受数学与生活的紧密联系,培养学生的数学应用能力。
二. 学情分析学生在学习这一节内容前,已经学习了简单的一元一次方程求解,对速度、时间和路程的关系有一定的了解。
但部分学生可能对这些概念之间的关系理解不深,对运用一元一次方程解决实际问题的方法不够熟练。
因此,在教学过程中,需要引导学生深入理解速度、时间和路程之间的关系,并通过实际问题,让学生学会运用一元一次方程进行求解。
三. 教学目标1.理解速度、时间和路程之间的关系。
2.学会运用一元一次方程解决实际问题。
3.培养学生的数学应用能力和解决实际问题的能力。
四. 教学重难点1.教学重点:运用一元一次方程解决实际问题。
2.教学难点:对速度、时间和路程之间关系的深入理解。
五. 教学方法采用问题驱动的教学方法,通过小明追赶问题的实例,引导学生理解速度、时间和路程之间的关系,并运用一元一次方程进行求解。
同时,运用小组合作学习的方法,让学生在讨论中深化对知识的理解,培养学生的团队协作能力。
六. 教学准备1.准备相关的小明追赶问题的实例。
2.准备课件,用于辅助教学。
七. 教学过程1.导入(5分钟)通过一个简单的小明追赶问题,引导学生思考速度、时间和路程之间的关系,激发学生的学习兴趣。
2.呈现(10分钟)呈现小明追赶问题的详细情况,让学生观察并提出问题。
引导学生运用一元一次方程解决实际问题。
3.操练(10分钟)让学生分组讨论,每组选择一个实例,运用一元一次方程进行求解。
教师巡回指导,解答学生的问题。
4.巩固(10分钟)对学生的解答进行评价,总结运用一元一次方程解决实际问题的方法和步骤。
让学生通过练习,进一步巩固所学知识。
北师大版七年级上册数学 5.6 应用一元一次方程——追赶小明 教学案设计例
应用一元一次方程——追赶小明【教材分析】《追赶小明》选自北师大版初中数学七年级上册第五章第六节,属于“数与代数”知识领域。
它是在学生已经学习了一元一次方程的认识及求解的基础上进行教学的,学生学好这部分知识将为今后进一步学习应用题及二元一次方程等知识打好基础,因此,这部分内容起着承上启下的作用,要使学生切实学好。
【学情分析】认知基础:学生在小学已经学过有关行程问题的应用题,熟悉路程、时间、速度之间的关系,已能利用“线段图”来解决一些简单的应用题。
通过本章前几节的学习,对一元一次方程的有关知识及应用也有了一定的了解及掌握,已初步感受到方程是解决实际问题的一种有效途径。
活动经验基础:在本章前几节的学习中,学生已具备一定的分析问题、解决问题的能力,已初步形成合作、交流、勇于探究与实践的良好学风,学生间互相评价和师生互动气氛较浓。
【教学目标】1、能借助“线段图”分析复杂问题中的数量关系,从而列出方程,解决问题.熟悉行程问题中路程、速度、时间之间的关系,从而实现从文字语言到符号语言的转换.2、经历画“线段图”找等量关系,列出方程解决问题的过程,进一步体验画“线段图”也是解决实际问题的有效途径.体会“方程”是解决实际问题的有效模型,并进一步培养学生的文字语言、符号语言、图形语言的转换能力.【教学重点】找出追及问题中的条件和要求的结论,并找出等量关系,列出方程,解决实际问题.【教学难点】借助“线段图”分析复杂问题中的数量关系【教学与教法】:教法:引导启发、变式教学学法:自主探究,合作交流【课前准备】教师准备:PPT、环形追击问题flash动画学生准备:课前先预习本节课的内容,完成预习作业,上网查找有关“追赶小明”的有关知识【教学过程设计】本节课设计了六个教学环节:第一环节:复习回顾;第二环节:情境导入,探究新课;第三环节:变式训练;第四环节:拓展提高;第五环节:归纳小结,随堂练习;第六环节:布置作业.教学流程:第一环节复习回顾1、利用一元一次方程解应用题的一般步骤是什么?2、行程问题中有哪些基本量?它们之间的关系是什么?第二环节情境导入,探究新课(一)情境:播放上学歌引出问题:追及问题小明家距学校1000米,小明以 80米/分的速度上学,5分钟后小明发现没带语文课本,……(学生结合生活经历,畅谈即将发生的情况)(设计意图)让学生感受生活中我们常常会遇到类似的问题,从学生熟悉的生活经历出发,选择学生身边的、感兴趣的“能否追上小明”这一事件,激发学生的好奇心,进而轻松地引入本节所要探讨的主要问题、便于引起每位同学的兴趣。
北师大版七年级上册数学5.6应用一元一次方程——追赶小明优秀教案
5.6应用一元一次方程——追赶小明1.能剖析行程问题中已知数与未知数之间的数目关系,利用行程、时间与速度三个量之间的关系式,列出一元一次方程 a 解应用题 .2.会用“线段图”剖析复杂问题中的数目关系,进而成立方程解决本质问题,培育剖析问题、解决问题的能力,进一步领会方程模型的作用.一、情境导入亲爱的同学们,你们读过名著《西游记》吗?对于孙悟空的故事你必定知道好多吧.有这样一首描绘孙悟空捉妖的诗:悟空顺风探妖踪,千里只用四分钟;归时四分行六百,风速多少才算准 .请你帮孙悟空算算当时的风速每分钟是多少里?二、合作研究研究点一:用一元一次方程解决相遇问题小明家离学校 2.9 千米,一天小明下学走了 5 分钟以后,他爸爸开始从家出发骑自行车去接小明,已知小明每分钟走60 米,爸爸骑自行车每分钟骑200 米,请问小明爸爸从家出发几分钟后接到小明?分析:此题等量关系:小明所走的行程+爸爸所走的行程=所有行程,但要注意小明比爸爸多走了 5 分钟,此外也要注意此题单位的一致.解:设小明爸爸出发x 分钟后接到小明,如下图,由题意,得200x+ 60( x+ 5)=2900.解得 x= 10.答:小明爸爸从家出发10 分钟后接到小明.方法总结:找出问题中的等量关系是列方程解应用题的重点,对于行程问题,往常借助“线段图”来剖析问题中的数目关系.这样能够比较直观地反应出方程中的等量关系.研究点二:用一元一次方程解决追及问题敌我两军相距25km,敌军以5km/h 的速度逃跑,我军同时以8km/h 的速度追击,并在相距1km 处发生战斗,问战斗是在开始追击后几小时发生的?分析:此题相等关系:我军所走的行程-敌军所走的行程=敌我两军相距的行程.解:设战斗是在开始追击后x 小时发生的 .依据题意,得8x- 5x= 25- 1.解得 x= 8.答:战斗是在开始追击后8 小时发生的 .研究点三:用一元一次方程解决环形问题甲、乙两人在一条长400 米的环形跑道上跑步,甲的速度为360 米 /分,乙的速度是 240 米/分.(1)两人同时同地同向跑,问第一次相遇时,两人一共跑了多少圈?(2)两人同时同地反向跑,问几秒后两人第一次相遇?分析:( 1)题本质上是追及问题,两人第一次相遇,本质上就是快者追上慢者一圈,其等量关系是追上时,甲走的行程-乙走的行程=400 米;( 2)题本质上是相遇问题,两人第一次相遇就是两人所走的行程之和为环行跑道一圈的长,其等量关系是相遇时,甲走的行程+乙走的行程= 400 米 .解:( 1)设 x 分钟后两人第一次相遇,由题意,得360x-240x=400.解得x=103(.103× 360+10× 240)÷400=5(圈) . 3答:两人一共跑了 5 圈 .( 2)设x 分钟后两人第一次相遇,由题意,得360x+ 240x= 400.解得x=2(分钟)=340(秒) .答: 40 秒后两人第一次相遇.方法总结:环形问题中的相等关系:两个人同地背向而行:相遇问题(初次相遇)甲的行程+乙的行程=一圈周长;两个人同地同向而行:追及问题(初次追上),甲的行程-乙的行程=一圈周长.三、板书设计,追赶小明→行程问题→相遇问题追及问题环形问题教课过程中,经过对开放性问题的商讨与沟通,学与人类生活的亲密联系,激发学生学习数学的兴趣,服困难的勇气.体验生活中数学的应用与价值,感觉数培育学生的创新意识、团队精神和克。
北师大版数学七年级上册《6 应用一元一次方程—追赶小明》教学设计2
北师大版数学七年级上册《6 应用一元一次方程—追赶小明》教学设计2一. 教材分析《6 应用一元一次方程—追赶小明》这一节内容,是在学生已经掌握了一元一次方程的基本概念和解法的基础上进行授课的。
通过这一节课的学习,让学生能够理解并掌握一元一次方程在实际生活中的应用,能够通过列方程来解决实际问题。
教材通过追赶小明的故事情境,引导学生运用一元一次方程来解决问题,培养学生解决实际问题的能力。
二. 学情分析学生在进入七年级之前,已经初步掌握了代数的基本概念和运算规则,对一元一次方程也有了一定的理解。
但是,学生在应用一元一次方程解决实际问题时,往往会因为对实际问题的理解不深,而导致列方程的错误。
因此,在教学过程中,需要引导学生深入理解实际问题,找出问题中的等量关系,从而正确列出一元一次方程。
三. 教学目标1.能够理解追赶小明问题的实际意义,并能够通过列方程来解决问题。
2.能够掌握一元一次方程在实际问题中的应用,提高解决实际问题的能力。
3.通过对追赶小明问题的讨论和解决,培养学生的逻辑思维能力和团队协作能力。
四. 教学重难点1.重点:理解追赶小明问题的实际意义,掌握一元一次方程在实际问题中的应用。
2.难点:如何引导学生找出实际问题中的等量关系,从而正确列出一元一次方程。
五. 教学方法1.情境教学法:通过追赶小明的故事情境,引导学生理解一元一次方程在实际问题中的应用。
2.问题驱动法:通过提出问题,引导学生思考和讨论,从而找出实际问题中的等量关系。
3.合作学习法:通过小组讨论和合作,培养学生解决实际问题的能力和团队协作能力。
六. 教学准备1.课件:制作课件,展示追赶小明的故事情境和相关的数学知识。
2.练习题:准备一些实际的追赶小明问题,用于学生的练习和巩固。
七. 教学过程1.导入(5分钟)利用课件展示追赶小明的故事情境,引导学生进入学习状态。
2.呈现(10分钟)提出追赶小明的问题,让学生思考和讨论,找出实际问题中的等量关系。
北师大版数学七年级上册《6 应用一元一次方程—追赶小明》教学设计3
北师大版数学七年级上册《6 应用一元一次方程—追赶小明》教学设计3一. 教材分析《6 应用一元一次方程—追赶小明》这一节的内容,主要让学生通过实际情境,掌握一元一次方程的应用。
教材通过追赶小明这个问题,引导学生理解并掌握一元一次方程的解法,以及如何将实际问题转化为方程问题。
二. 学情分析学生在学习这一节内容前,已经学习了关于一元一次方程的基本概念和解法,对于如何将实际问题转化为方程问题,可能还比较陌生。
因此,在教学过程中,需要引导学生通过实际问题,理解并掌握一元一次方程的应用。
三. 教学目标1.知识与技能:让学生通过实际问题,理解并掌握一元一次方程的应用。
2.过程与方法:通过实际问题的解决,培养学生将实际问题转化为方程问题的能力。
3.情感态度与价值观:培养学生对数学的兴趣,让学生感受数学与生活的紧密联系。
四. 教学重难点1.重点:让学生通过实际问题,理解并掌握一元一次方程的应用。
2.难点:如何将实际问题转化为方程问题。
五. 教学方法采用问题驱动法,让学生在解决问题的过程中,理解并掌握一元一次方程的应用。
同时,采用案例分析法,通过具体的案例,让学生理解并掌握如何将实际问题转化为方程问题。
六. 教学准备1.准备相关的实际问题,用于引导学生理解并掌握一元一次方程的应用。
2.准备案例分析材料,用于引导学生理解并掌握如何将实际问题转化为方程问题。
七. 教学过程1.导入(5分钟)通过一个简单的实际问题,引入本节的内容。
例如:小明从家出发,以每分钟80米的速度散步,10分钟后,小华以每分钟100米的速度追赶小明,问小华追上小明需要多少时间?2.呈现(10分钟)呈现上述问题,让学生思考如何解决这个问题。
引导学生将实际问题转化为方程问题。
3.操练(15分钟)让学生独立解决上述问题,并在课堂上进行分享。
引导学生通过解方程,找到问题的答案。
4.巩固(10分钟)通过一些类似的实际问题,让学生巩固所学的一元一次方程的应用。
北师大版数学七年级上册《6 应用一元一次方程—追赶小明》教案3
北师大版数学七年级上册《6 应用一元一次方程—追赶小明》教案3一. 教材分析《6 应用一元一次方程—追赶小明》这一节内容,主要让学生掌握如何运用一元一次方程解决实际问题。
通过追赶小明的故事情境,让学生理解速度、时间和路程之间的关系,并学会运用一元一次方程进行计算。
教材通过具体的案例,使学生能够将所学的数学知识与实际生活相结合,提高解决问题的能力。
二. 学情分析学生在学习本节内容前,已经掌握了一元一次方程的基本概念和计算方法。
但部分学生可能对实际问题与数学知识的结合还不够熟练,需要通过实例来进行引导和训练。
此外,学生可能对速度、时间和路程之间的关系有一定的了解,但需要通过数学方程来进行深入的解析和应用。
三. 教学目标1.理解速度、时间和路程之间的关系,并能够运用一元一次方程进行计算。
2.学会将实际问题转化为数学问题,提高解决问题的能力。
3.培养学生的逻辑思维和数学素养,使学生能够运用数学知识解释实际问题。
四. 教学重难点1.掌握速度、时间和路程之间的关系。
2.将实际问题转化为数学问题,并运用一元一次方程进行计算。
3.解决实际问题时,如何正确选择变量和建立方程。
五. 教学方法采用问题驱动的教学方法,通过追赶小明的故事情境,引导学生理解速度、时间和路程之间的关系。
利用实例,让学生动手尝试建立方程,并进行计算。
在教学过程中,注重学生的参与和思考,鼓励学生提出问题和解决问题。
同时,进行分组讨论和合作交流,提高学生的团队协作能力。
六. 教学准备1.准备追赶小明的案例材料,包括小明的行程路线、时间和速度等信息。
2.准备相关的一元一次方程计算练习题,用于巩固学生的计算能力。
3.准备黑板和粉笔,用于板书解题过程和重点知识。
七. 教学过程1.导入(5分钟)通过讲述一个关于追赶小明的故事,引导学生思考速度、时间和路程之间的关系。
提出问题:“如果你是追赶者,如何计算追赶所需的时间和距离?”2.呈现(10分钟)呈现小明的行程路线、时间和速度等信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次方程-追赶小明
李美红彰武县前福兴地九年制学校
指导教师赵忠明
一、概述
《一元一次方程-打折销售》是义务教育课程标准实验教材北师大版七年级上册的内容,是运用一元一次方程解决实际问题的起始课,它既是第三章第六节探索规律和本章前两节一元一次方程解法的继续,又是学习本章后几个实际问题的开端,更是今后学习函数等有关知识的重要基础,本节课通过对日历中数据规律的探索,运用方程来解决和日历相关的问题,让学生亲身经历和体验运用方程来解决实际问题的过程,体会方程是刻画现实世界的有效数学模型,培养学生抽象、概括、分析问题和解决问题的能力,使学生感受到“生活处处有数学”,提高应用数学的意识。
本节课重点是创设问题情境,恰当地引导学生探究出具体问题中的相等关系,列一元一次方程解决实际问题。
难点在于如何在具体的问题情境中,引导学生从不同角度思考问题,寻找相等关系,将实际问题抽象为方程模型。
二、教学目标分析
1、知识与技能
(1)能根据实际问题找出等量关系,列出一元一次方程;
(2)能够在实际问题中验证方程解的合理性。
2、过程与方法
(1)初步能够从数学角度去观察事物,思考问题,体验解决问题方法策略的多样性;
(2)经历将实际问题抽象为方程模型的过程,初步体会方程是刻画现实世界的有效数学模型和数学建模思想;
(3)能够尝试解决不同情境的生活问题,体验协作学习的过程。
3、情感态度价值观
(1)通过设置丰富的问题情境,鼓励学生从多角度思考、探索、交流,激发学生的好奇心和主动学习的欲望;
(2)对数学中方程的相关知识感兴趣,能够结合自己的生日编出一道隐含方程知识的数学题。
三、学习者特征分析
本节课的学习者特征分析主要是根据教师平时对学生的了解而做出的。
(1)学生是前福兴地九年制学校七年级学生;
(2)学生已经熟练掌握一元一次方程的解法;
(3)学生对生活中隐含数学问题的事件兴趣浓厚;
(4)学生运用数学知识解决实际问题的能力和数学建模的能力还不强。
四、教学策略选择与设计
(1)自主学习策略:学生通过自己独立思考隐藏在日历中的数学问题,促进学生思维的深层次加工和提高学生的课堂参与度;
(2)游戏激趣策略:通过猜日历中日期的游戏,有效激发学生学习的兴趣和求知欲,创设宽松活泼的课堂教学气氛,维持学生学习的动机;
(3)情境迁移策略:在完成课标要求的基础上,通过设置与生活实际紧密联系的问题情境,巩固提高学生运用方程解决生活问题的能力。
五、教学资源与工具设计
(1)每位同学准备一份日历;
(2)教师自制的多媒体课件
六、教学过程
教学过程是教法和学法的具体实践过程,根据教材的特点和学生实际情况,设计采用“问题情景—建立模型—解释、应用与拓展”的模式,安排以下五个环
节完成本节教学:
㈠师生互动,激趣导入。
1、游戏引入(大屏幕):教师背对日历找学生到讲台前面圈出日历中竖列上相邻的三个日期,把它们的和告诉老师,老师很快说出这三天的日期,换两组数试试,老师也能很快地说出答案。
2、设置疑问,引发思考:学生思考老师快速回答的诀窍,并且自己罗列出可能存在的解决方案:
①逐列求和(碰数)
②算术方法:用和除以3得中间的数,再加上7,减去7得上下的两个数。
③方程解法:因为学生已经有了有关方程知识的储备,个别同学可能想到
用方程解决。
3、引入课题:日历中的方程。
“你们想知道这里边的奥秘吗?那就让我们一起走进今天的数学乐园。
”
这样的设计,适合学生的年龄特点,能激发学生学习新知识的浓厚兴趣,成功地引起学生对新知识的好奇和探求之心。
㈡问题启发,合作探究。
1、借助引例当中的游戏,采用讨论交流、小组合作的方式提出探究性问题(大屏幕)
问题一:观察你手中的日历,一个竖列上相邻三个数之间有什么关系??
问题二:如果设其中的一个数为x,那么其他两个数怎样表示?你是怎样设未知数的?
(通过从具体数字之间的规律过渡到用含有x的代数式表示这三个数,从而培养学生的符号感,使学生体验到从特殊到一般的数学思想。
)
2、出示尝试性问题(大屏幕)
问题:小明想送妈妈一个生日礼物,可是却不知道妈妈的生日是几号,于是就问妈妈,可妈妈说我的生日那天在本月日历上竖列相邻、和为60的三个数字里面,并且中间的数就是我的生日,你能帮助小明解决吗?
此问题的出示意在解决两个问题:
①如何设未知数
②怎样列方程
鼓励学生独立思考,让更多的学生参与自主探索,教师仅给个别同学点拔指导。
通过独立思考、自主探索等有效途径体会实际问题相等关系的确立,进而列出方程,运用分析、比较等手段认识到设中间数为x所列方程的简便。
整个环节由浅入深,在与他人交流合作的过程中,同学们可以借助他人的想法来激发自己的灵感,体验问题解决多样化的学习策略,积累了学习数学的经验。
㈢例题示范,巩固提高。
例题示范:
1、安排两人一组做猜日期游戏(大屏幕):在各自的日历上任意圈出一个竖列上相邻的4个数,两人分别把自己所圈出4个数的和告诉同伴,由同伴求出这4个数;
2、正方形圈出日历上2×2的4个数,把它们的和告诉同伴,由同伴求出这4个数;
3、如果用正方形圈出的4个数的和是76,你所求这4天分别是几号?呈现例题。
巩固练习:
1、小彬假期外出旅行一周,这一周各天的日期之和是84,小彬是几号回的家?
2、你能在日历中圈出一个竖列上相邻的3个数,使得它们的是40吗?为什么?如果它们的和是75呢?
学生对列方程解决实际问题的一般步骤有了一定的了解,教师适时引导学生总结:(大屏幕)列一元一次方程解决实际问题的一般步骤,是:审、设、列、解、答。
说明注意的问题是:验证方程解的合理性。
自主编题:
四人一小组的形式,结合自己的生日,选择有创造性的框架结构开展自主编题活动,鼓励学生编出新颖的问题。
教师参与到活动当中,做弱势小组的组织者和指导者,并选择有代表性的题目通过投影展示给全体同学。
教师给予赞赏性评价。
这样的设计不仅使学生体会编题所带来的乐趣,还极大地拓展了学生思维的空间,学生可能创造出各种形式的框架结构,(大屏幕)例如:十字形、T形、工字形等,不仅仅增大了训练量,也进一步巩固了知识,形成了能力。
(四)、归纳总结,畅谈收获。
1、列方程解应用题需要哪些步骤?
2、需要注意什么问题?
3、解决实际问题经历怎样的思维过程?
(五)、课外研讨,迁移创新。
这一环节主要是课堂内容的延伸和发展。
问题一、有一些分别标有6,12,18,24,…的卡片,后一张卡片上的数比前一张卡片上的数大6,小明拿到了相邻的3张卡片,且这些卡片上的数之和为342。
(1)小明拿到了哪3张卡片?
(2)你能拿到相邻的3张卡片,使得这些卡片上的数之和是86吗?
问题二、教材中《日历中的方程》这一节课的页码向前翻10页就是《有趣的七巧板》,然后再向后翻8页就是精美的《图案设计》,恰好这三节课的页码数字相加的和是100,你能知道《日历中的方程》在几页吗?
通过这样两个创造性问题的设计,不仅拓宽了学生的思维领域,还能让学生走出课堂仍然面对问号,怀抱好奇,接下来他们就会留心观察生活中各种各样有趣的实际背景,使学生学习的评价过程成为一个生动活泼、富有个性的整体,真正使课堂成为点燃学生智慧的火把。
教学课件结构图
七、教学评价设计
学生学习过程的评价
1、全体学生是否在动口、动脑、动手中参与教学全过程
非常好()很好()一般()
2、学生是否能提出学习和研究的问题,并且通过合作探究努力解决问题
非常好()很好()一般()
3、学生思维是否活跃,积极主动发言
非常好()很好()一般()
4、学生间交往是否是多向的,学生是否积极参与小组讨论,发表自己的见解,评论别人发言
非常好()很好()一般()
5、学生在学习中是否有愉悦的体验,每一名学生是否都有不同程度的收获
非常好()很好()一般()
6、后进学生对本节课知识技能的掌握程度
非常好()很好()一般()
7、学生学习本节课还存在的问题:
8、学生存在问题的解决方法:
教师的教学反思
1、内容的安排与目标的制定是否恰当?
2、教法的安排是否恰当?
3、目标完成情况如何?
4、成功的地方
5、不足与问题:
6、想法:
八、帮助和总结
总体来说,本课从学生的生活出发,趣味性、学生主体性体现得比较好,注重方法的指导。
具体体现在下面一些环节中:
方程问题一直是初中数学教学中的重点和难点,由于涉及“未知数”这一个比较抽象的概念,学生容易感到困难和乏味。
本课从日历上的数出发,立意新颖,利用日常生活中最常见的日历,从“神奇”的“猜数”游戏引入,激发了兴趣,调动起强烈的关注欲望。
然后展开讨论,让学生自己想办法来解释其中的奥妙。
在此过程中,引导学生通过观察具体的日历上的数字,寻找规律,到学着用数学语言描述规律,再到抽象到数学方法(列方程),不仅使学生很容易地接受了方程这一概念,方程的思维方法也在逐渐地渗透。
最后再通过一定的总结,强
化方法。
在例题和练习中,通过两两出题做题、学生编题等,非常注重学生的参与性和主动性。
在编题的过程中,学生思维的灵活性得到锻炼。