人教版九年级上册数学期末复习试卷1(有答案)
人教版九年级上册数学期末考试试卷及答案
人教版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.如图,在⊙O 中,若点C 是 AB 的中点,∠A=50°,则∠BOC=()A .40°B .45°C .50°D .60°2.在正方形、矩形、菱形、平行四边形中,其中是中心对称图形的个数为()A .1B .2C .3D .43.若关于x 的一元二次方程2x 2x m 0-+=没有实数根,则实数m 的取值范围是()A .1m <B .1m >-C .1m >D .1m <-4.对于二次函数y =(x -1)2+2的图象,下列说法正确的是()A .开口向下B .对称轴是x =-1C .顶点坐标是(1,2)D .与x 轴有两个交点5.抛掷一枚均匀的骰子,所得的点数能被3整除的概率为()A .12B .13C .14D .156.将数字“6”旋转180°,得到数字“9”,将数字“9”旋转180°,得到数字“6”,现将数字“69”旋转180°,得到的数字是()A .96B .69C .66D .997.已知点P (1,-3)在反比例函数ky (k 0)x=≠的图象上,则k 的值是A .3B .-3C .D .8.张家口某小区要种植一个面积为3500m 2的矩形草坪,设草坪的长为y m ,宽为x m ,则y 关于x 的函数解析式为()A .y =3500xB .x =3500yC .y =3500xD .y =1750x9.三角形的内心是()A .三条中线的交点B .三条高的交点C .三边的垂直平分线的交点D .三条角平分线的交点10.如图2,在平面直角坐标系中,点A B C 、、的坐标为(1,4)、(5,4)、(1、2-),则ABC 外接圆的圆心坐标是A .(2,3)B .(3,2)C .(1,3)D .(3,1)二、填空题11.若方程x 2﹣2x ﹣1=0的两根分别为x 1,x 2,则x 1+x 2﹣x 1x 2的值为_____.12.若点(),2P m -与点()3,Q n 关于原点对称,则2018()m n +=______.13.二次函数y =kx 2-6x +3的图象与x 轴有交点,则k 的取值范围是___________________________.14.从甲、乙、丙、丁4名三好学生中随机抽取2名学生担任升旗手,则抽取的2名学生是甲和乙的概率为________.15.已知反比例函数y =12x(k ≠0)的图象经过点(-3,m ),则m =______。
人教版九年级上册数学期末考试试题带答案
人教版九年级上册数学期末考试试卷一、选择题。
(每小题只有一个正确答案)1.下列图形中,既是中心对称图形又是轴对称图形的是()A .B .C .D .2.如图,P 是等边△ABC 内的一点,若将△PAB 绕点A 逆时针旋转得到△P’AC ,则∠PAP’的度数为()A .120°B .90°C .60°D .30°3.下列方程中,属于一元二次方程的是()A .2450x y ++=B .2251x x x +=+C .2467x x -=D .3250x x --=4.关于x 的一元二次方程x 2﹣3x +m =0有两个不相等的实数根,则实数m 的取值范围为A .m ≥94B .m <94C .m =94D .m <﹣945.下列说法正确的是()A .“经过有交通信号的路口遇到红灯”是必然事件B .已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次C .投掷一枚硬币正面朝上是随机事件D .明天太阳从东方升起是随机事件6.抛物线()2312y x =-+的顶点坐标是()A .()1,2B .()1,2-C .()1,2--D .()1,2-7.如图,A 、B 、C 三点在O 上,且100BOC ∠=︒,则A ∠的度数为()A .45︒B .50︒C .80︒D .100︒8.在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中有红球5个,黄球4个,其余为白球,从袋子中随机摸出一个球,“摸出黄球”的概率为13,则袋中白球的个数为A .2B .3C .4D .129.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,则根据题意可列方程为()A .144(1﹣x )2=100B .100(1﹣x )2=144C .144(1+x )2=100D .100(1+x )2=14410.点P (﹣4,1)在曲线y =kx上,则下列点一定在该曲线上的是()A .(2,2)B .(﹣4,﹣1)C .(1,﹣4)D .(1,4)二、填空题11.点(2,3)M -关于原点对称的点的坐标是___________.12.已知:()11,y -,()23,y 是二次函数24y x x =-上的点,则1y ___________2y .13.已知1x =是关于x 的方程2230ax x -+=的一个根,则a =__________.14.已知⊙O 中,弦AB=8cm ,圆心到AB 的距离为3cm ,则此圆的半径为_______.15.如图为二次函数2y ax bx c =++图象的一部分,其对称轴为直线1x =.若其与x 轴一交点为A(3,0)则由图象可知,不等式20ax bx c ++<的解集是_______.16.如图,直径AB 为12的半圆,绕A 点逆时针旋转60°,此时点B 旋转到了点B ',则图中阴影部分的面积是______.(结果保留π)三、解答题17.解方程:2250x x --=18.已知二次函数的图象经过点(0,-3),且顶点坐标为(1,-4).求这个二次函数的解析式.19.如图,四边形AECF是正方形,△ABE旋转后能与△ADF重合,连接BD,请判断△ABD 的形状,并说明理由.20.如图,有四张背面相同的纸牌A、B、C、D,其正面分别画有四个不同的图形,小明将这四张纸牌背面朝上洗匀后随机摸出一张,放回后洗匀再随机摸出一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A、B、C、D表示);(2)求两次摸出的牌面图形既是中心对称图形又是轴对称图形的概率.21.如图,在一个长10cm,宽6cm的矩形铁皮的四角各截去一个同样的小正方形,然后折叠成一个无盖的长方形盒子.若长方形盒子的底面(图中阴影部分)面积是32cm2,求截去的小正方形的边长.22.如图,破残的圆形轮片上,弦AB 的垂直平分线交弧AB 于点C ,交弦AB 于点D .已知:AB 24cm =,CD 8cm =.按要求回答:(1)求作此残片所在的圆(不写作法,保留作图痕迹)(2)求(1)中所作圆的半径23.在平面直角坐标系中,如图所示,AOB ∆是边长为2的等边三角形,将AOB ∆绕着点B 按顺时针方向旋转得到DCB ∆,使得点D 落在x 轴的正半轴上,连接OC ,AD ,(1)求证:OC AD =;(2)求OC 的长;(3)求过A 、D 两点的直线的解析式.24.如图,AB 为O 的直径,C 是O 上一点,过点C 的直线交AB 的延长线于点D ,AE DC ⊥,垂足为E ,与O 的交于点F ,AC 平分BAE ∠.(1)求证:DE 是O 的切线;(2)若6AE =,30D ∠=︒,求线段DB 的长;(3)在(2)的条件下,求图中阴影部分的面积.25.如图,二次函数y =ax 2+bx +4的图象与x 轴交于A 、B 两点(点A 在点B 的右侧),与y 轴交于点C ,点A 的坐标为(2,0),它的对称轴是直线x =﹣1.(1)直接写出点B ,点C 的坐标.(2)求这个二次函数的解析式.(3)若点P 在x 轴上,且△PBC 为等腰三角形,请求出线段BC 的长并直接写出符合条件的所有点P 的坐标.参考答案1.D 【分析】如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,那么这个图形就叫做轴对称图形;把一个图形绕着某一点旋转180°后能与原来位置的图形重合,这个图形叫做中心对称图形.【详解】解:A 选项,两者都不是;B 选项,不是轴对称图形;C 选项,两者都不是;D 选项,两者均是.故选择D.【点睛】本题考查了中心对称图形和轴对称图形的概念.2.C 【详解】试题分析:根据旋转的性质,找出PAP BAC ∠=∠',根据等边三角形的性质,即可解答.如图,根据旋转的性质得,PAP BAC ∠=∠',∵ABC 是等边三角形,∴60BAC ∠=︒,∴60PAP ∠='︒;故选答案:C 考点:旋转的性质.3.C 【分析】利用一元二次方程定义进行解答即可.【详解】解:A 、含有两个未知数,不是一元二次方程,故此选项不合题意;B 、整理后,不含二次项,不是一元二次方程,故此选项不合题意;C 、它是一元二次方程,故此选项符合题意;D 、未知数次数为3,不是一元二次方程,故此选项不合题意;故选:C .【点睛】本题主要考查了一元二次方程定义,关键是掌握判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.4.B 【详解】试题解析:∵关于x 的一元二次方程230x x m -+=有两个不相等的实数根,()2243410b ac m ∴=-=--⨯⨯> ,9.4m ∴<故选B.5.C 【详解】试题解析:A.“经过有交通信号的路口遇到红灯”是随机事件,说法错误.B.已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次,说法错误.C.投掷一枚硬币正面朝上是随机事件,说法正确.D.明天太阳从东方升起是必然事件.说法错误.故选C.6.A 【分析】已知抛物线顶点式2()y a x k h =-+,顶点坐标是(k ,h ).【详解】解:∵抛物线()2312y x =-+是顶点式,∴顶点坐标是(1,2).故选:A .【点睛】本题主要考查了二次函数的性质,掌握二次函数的顶点式是解题的关键,即在2()y a x k h =-+中,对称轴为x k =,顶点坐标为(k ,h ).7.B【分析】在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,由此可得出答案.【详解】解:由题意得111005022A BOC∠=∠=⨯︒=︒,故选:B.【点睛】本题考查了圆周角定理,属于基础题,掌握圆周角定理的内容是解答本题的关键.8.B【详解】试题分析:首先设袋中白球的个数为x个,然后根据概率公式,可得15344x++=,解得:x=3.经检验:x=3是原分式方程的解.∴袋中白球的个数为3个.故选B.考点:概率公式.9.D【详解】试题分析:2013年的产量=2011年的产量×(1+年平均增长率)2,把相关数值代入即可.解:2012年的产量为100(1+x),2013年的产量为100(1+x)(1+x)=100(1+x)2,即所列的方程为100(1+x)2=144,故选D.点评:考查列一元二次方程;得到2013年产量的等量关系是解决本题的关键.10.C【分析】利用待定系数法求得k=xy=-4,然后只需把所给点的横纵坐标相乘,结果是-4的,就在此函数图象上.【详解】解: 点P (﹣4,1)在曲线y =kx上,∴k=xy=(-4)⨯1=-4,A,因为xy=2⨯2=4≠k,所以该点不在双曲线y =kx上,故本选项错误;B 、因为xy=(-4)⨯(-1)=4≠k,所以该点不在双曲线y =kx上,故本选项错误;C 、因为xy=1⨯(-4)=-4=k,所以该点在双曲线y =kx上,故本选项正确;D 、因为xy=1⨯4=4≠k,所以该点不在双曲线y =kx上,故本选项错误;所以C 选项是正确的.【点睛】本题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.11.()2,3-【分析】根据“关于原点对称的点的坐标的横坐标与纵坐标都变为相反数”解答.【详解】解:∵(2,3)M -,∴点(2,3)M -关于原点对称的点的坐标是()2,3-故答案为:()2,3-【点睛】本题考查了关于原点对称的点的坐标,关于x 轴、y 轴对称的点的坐标,规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.12.>【分析】根据点的横坐标结合二次函数图象上点的坐标特征,即可得出y 1、y 2的值,比较后即可得出结论.【详解】解:当1x =-时,()()211415y =--⨯-=;当3x =时,223433y =-⨯=-;∵53>-,∴12y y >.故答案为:>.【点睛】本题考查了二次函数图象上点的坐标特征,根据二次函数图象上点的坐标特征求出1y 、2y 的值是解题的关键.13.-1【详解】试题解析:把1x =代入2230ax x -+=,得,230.a -+=解得: 1.a =-故答案为 1.-14.5cm 【分析】过圆心作弦的垂线,根据勾股定理即可求得圆的半径.【详解】解:如图,∵OC ⊥AB 于C .∴BC=12AB=4cm .在直角△OBC 中,5cm OB ===,故答案为5cm.【点睛】本题主要考查了垂径定理的应用,利用垂径定理可以把求弦长或圆心角的问题转化为解直角三角形的问题.15.﹣1<x <3【详解】试题分析:由图象得:对称轴是x=1,其中一个点的坐标为(3,0)∴图象与x 轴的另一个交点坐标为(-1,0)利用图象可知:ax 2+bx+c <0的解集即是y <0的解集,∴-1<x <3.考点:二次函数与不等式(组).16.24π【分析】根据阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积−以AB 为直径的半圆的面积.即可求解.【详解】阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积−以AB 为直径的半圆的面积=扇形ABB′的面积.则阴影部分的面积是:2601224360ππ⨯=.故答案为:24π.【点睛】本题主要考查了扇形的面积的计算,正确理解阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积−以AB 为直径的半圆的面积=扇形ABB′的面积是解题的关键.17.121,1x x =+=【分析】利用完全平方公式配平方,再利用直接开方法求方程的解即可.【详解】2250x x --=x 2−2x +1=6,那么(x−1)2=6,即x−1=,则121,1x x =+=.【点睛】本题考查了解一元二次方程的方法,解题的关键是注意使用配方法是要保证不改变原方程.18.y =x 2-2x -3.【详解】试题分析:可设解析式为顶点式,根据图象经过点(0,-3)求待定系数,即可得解.根据题意,设函数解析式为y=a (x-1)2-4.∵图象经过点(0,-3),∴-3=a-4,a=1.∴解析式为y=(x-1)2-4=x 2-2x-3.考点:二次函数的解析式.19.等腰直角三角形,理由见解析.【分析】由旋转的性质可得△ABF ≌△ADE ,得出AF =AE ,∠FAB =∠DAE ,则∠FAE =∠DAB =90°.【详解】解:等腰直角三角形.理由:∵BEA ∆旋转后能与DFA ∆重合,∴△ABE ≌△ADF ,∴AB =AD ,∠BAE =∠DAF ,∴∠EAF =∠BAD =90°,∴△ABD 是等腰直角三角形.【点睛】本题考查了正方形的性质,等腰直角三角形的判定与性质等知识,熟练掌握旋转的性质是解题的关键.20.(1)见解析;(2)916【分析】(1)用列表法或画出树状图分析数据、列出可能的情况即可.(2)A 、B 、D 既是轴对称图形,也是中心对称图形,C 是轴对称图形,不是中心对称图形.列举出所有情况,让两次摸牌的牌面图形既是中心对称图形又是轴对称图形的情况数除以总情况数即为所求的概率.【详解】(1)列表如下:AB C D A(A ,A )(A ,B )(A ,C )(A ,D )B(B ,A )(B ,B )(B ,C )(B ,D )C(C ,A )(C ,B )(C ,C )(C ,D )D (D ,A )(D ,B )(D ,C )(D ,D )(2)从表中可以得到,两次摸牌所有可能出现的结果共有16种,其中既是中心对称图形又是轴对称图形的有9种.故所求概率是916.考点:1.列表法与树状图法;2.轴对称图形;3.中心对称图形.21.1cm .【分析】设截去的小正方形边长是xcm ,然后用x 表示出盒子的底面为长和宽,然后再根据方程形的面积公式结合盒子的底面积是32cm2,列出关于x 的一元二次方程,最后求解即可.【详解】解:设截去的小正方形边长是xcm ,则盒子的底面为长为(10-2x )cm 和宽为(6-2x )cm 由题意得:(10−2x )(6−2x )=32解得:121,7x x ==(舍去).答:截去的小正方形边长是1cm .【点睛】本题考查了一元二次方程的应用,明确等量关系、列出一元二次方程是解答本题的关键.22.(1)图见解析;(2)13.【分析】(1)由垂径定理知,垂直于弦的直径是弦的中垂线,故作AC ,BC 的中垂线交于点O ,则点O 是弧ACB 所在圆的圆心;(2)在Rt △OAD 中,由勾股定理可求得半径OA 的长.【详解】解:(1)作弦AC 的垂直平分线与弦AB 的垂直平分线交于O 点,以O 为圆心OA 长为半径作圆O 就是此残片所在的圆,如图.(2)连接OA ,设OA=x ,AD=12cm ,OD=(x-8)cm ,则根据勾股定理列方程:x 2=122+(x-8)2,解得:x=13.答:圆的半径为13cm .23.(1)见解析;(2)OC(3)33y x =-+.【分析】(1)利用△DCB 是由△AOB 绕着点B 按顺时针方向旋转得到的,得出△DCB 也是边长为2的等边三角形,进而求出△OBC ≌△ABD 即可得出答案;(2)作CF ⊥OD 交x 轴于点F .由勾股定理得:CF 2=BC 2-BF 2,求出CF ,进而得出CO ;(3)首先求出A ,D 两点的坐标,进而得出直线AD 的解析式即可.【详解】解:(1)∵△AOB 是边长为2的等边三角形,∴OA =OB =AB =2,∠AOB =∠BAO =∠OBA =60°,又△DCB 是由△AOB 绕着点B 按顺时针方向旋转得到的,∴△DCB 也是边长为2的等边三角形,∴∠OBA =∠CBD =60°,OB =AB =BC =BD ,又∠OBC =∠OBA +∠ABC =∠CBD +∠ABC =∠ABD ,∴△OBC ≌△ABD (SAS ),∴OC =AD (全等三角形的对应边相等);(2)如图1,作CF ⊥OD 交x 轴于点F ,则F 为BD的中点,∴BF =1,在Rt △BCF 中,BC =2,BF =1,由勾股定理得:CF 2=BC 2-BF 2=4-1=3,CF在Rt △OCF 中,OF =OB +BF =2+1=3,由勾股定理得:OC 2=OF 2+CF 2=9+3=12,∴OC(3)作AE ⊥OB 交x 轴于点E ,则E 为OB的中点,∴OE =1,同理求得AE∴A 点的坐标是(1OD =OB +BD =2+2=4,故D 点的坐标是(4,0).设过A 、D 两点的直线的解析式为y =kx +b ,将A ,D点的坐标代入得:40k b k b ⎧+=⎪⎨+=⎪⎩k b ⎧=⎪⎪⎨⎪=⎪⎩,∴过A 、D两点的直线的解析式为33y x =+.【点睛】本题主要考查了等边三角形的性质以及全等三角形的判定和旋转的性质、待定系数法求一次函数解析式,正确利用图形上点的坐标得出解析式是解题关键.24.(1)见解析;(2)线段DB的长为4;(3)阴影部分的面积为83π.【分析】(1)连接OC,先证明∠OAC=∠OCA,进而得到OC∥AE,于是得到OC⊥CD,进而证明DE是⊙O的切线;(2)利用含30度角的直角三角形的性质即可求解;(3)分别求出△OCD的面积和扇形OBC的面积,利用S阴影=S△COD-S扇形OBC即可得到答案.【详解】(1)证明:连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠BAE,∴∠OAC=∠CAE,∴∠OCA=∠CAE,∴OC∥AE,∴∠OCD=∠E,∵AE⊥DE,∴∠E=90°,∴∠OCD=90°,∴OC⊥CD,∵点C在圆O上,OC为圆O的半径,∴CD是圆O的切线;(2)∵在Rt△AED中,∠D=30°,AE=6,∴AD =2AE =12,在Rt △OCD 中,∵∠D =30°,∴DO =2OC =DB +OB =DB +OC ,∴DB =OB =OC =13AD =4,∴线段DB 的长为4;(3)由(2)得DO =8,∴CD ===,∴422OCD CD OC S ∆⋅===∵∠D =30°,∠OCD =90°,∴∠DOC =60°,∴S 扇形OBC =16×π×OC 2=83π,∵S 阴影=S △COD -S 扇形OBC ,∴S 阴影83π=,∴阴影部分的面积为83π.【点睛】本题主要考查了切线的判定以及扇形的面积计算,解(1)的关键是证明OC ⊥DE ,解(2)的关键是利用含30度角的直角三角形的性质求得DO =DB +OC ,解(3)的关键是求出扇形OBC 的面积,此题难度一般.25.(1)B (-4,0),C (0,4);(2)y =﹣12x 2﹣x+4;,P (0,0)或(﹣0)或(﹣4﹣,0)或(4,0).【分析】(1)易得B (-4,0),C (0,4);(2)将A 点坐标代入原方程,又已知对称轴,用待定系数法可得二次函数解析式;(3)易得,设P (m ,0),由△PBC 为等腰三角形,分BP =CP 时,BP =BC ,CP =BC 三种情况讨论可得m 的值,可得P 点坐标.【详解】(1)解:由对称轴是直线x=-1,点A 坐标为(2,0),以及二次函数2y ax bx 4=++,易得B (-4,0)C (0,4)(2)根据题意得,4a+2b+4=0b-=-12a ⎧⎪⎪⎨⎪⎪⎩,解得,1a=-2b=-1⎧⎪⎪⎨⎪⎪⎩,∴二次函数的解析式y =﹣12x 2﹣x+4;(2)由(1)得B (﹣4,0),C (0,4),∴BC=设P (m ,0),∵B (﹣4,0),C (0,4),∴BP 2=(m+4)2,CP 2=m 2+16,∵△PBC 是等腰三角形,∴①当BP =CP 时,∴(m+4)2=m 2+16,∴m =0,∴P (0,0)②当BP =BC 时,∴(m+4)2=32,∴m=﹣∴P(﹣,0)或(﹣4﹣0)③当CP=BC时,m2+16=32,∴m=4或m=﹣4(舍去),∴P(4,0),即:符合条件的所有点P的坐标为P(0,0)或(﹣,0)或(﹣4﹣0)或(4,0).【点睛】本题主要考查待定系数法求二次函数解析式,解一元二次方程,二次函数与等腰三角形的综合知识,需灵活运用所学知识求解.。
人教版九年级数学上册期末考试试卷(附带有答案)
人教版九年级数学上册期末考试试卷(附带有答案)一、单选题1. 下列二次函数中,其图象的顶点坐标是(2,-1)的是( )A .()221y x =-+ B .()221y x =++ C .()221y x =--D .()221y x =+-2.下列事件属于必然事件的是( )A .明天我市最高气温为56℃B .下雨后有彩虹C .在1个标准大气压下,水加热到100℃沸腾D .中秋节晚上能看到月亮3.下列图形中,是中心对称图形的是( )A .B .C .D .4.不透明袋子中装有5个红球,3个绿球,这些球除了颜色外无其他差别,从袋子中随机摸出一个球,“摸出红球”的概率是( ) A .13B .15C .35D .585.如图,在O 中,弦AC 、BD 相交于点E ,23A ∠=︒和52BEC ∠=︒,则C ∠=( )A .23︒B .26︒C .29︒D .30︒6.如图,把ABC 绕点C 顺时针旋转某个角度a 得到△A ′B ′C ,∠A =30°,∠1=50°,则旋转角a 等于( )A .110︒B .70︒C .40︒D .20︒7.已知抛物线y =x 2+bx 的对称轴为直线x =3,则关于x 的不等式x 2+bx <﹣8的取值范围是( )A .1<x <5B .2<x <4C .0<x <6D .﹣1<x <78.如图,AB 是℃O 的直径,弦CD℃AB 于点E ,℃CDB=30°,℃O 的半径为3cm ,则弦CD 的长为( )A .32cmB .3cmC .3cmD .9cm9.如图,用6个小正方形构造如图所示的网格图(每个小正方形的边长均为2),设经过图中M 、P 、H三点的圆弧与AH 交于R ,则图中阴影部分面积( )A .54π﹣52B .52π﹣5 C .2π﹣5 D .3π﹣210.如图,抛物线2y ax bx c =++(a ,b ,c 为常数,且0a ≠)关于直线1x =对称,与x 轴的其中一个交点坐标为(10)-,,下列结论中:①<0abc ;②关于x 的一元二次方程20ax bx c ++=的解是1213x x =-=,;③80a c +<;④2am bm a b +<+,其中正确的个数是( )A .1B .2C .3D .4二、填空题11.若点A (m ,5)与点B (-4,n )关于原点成中心对称,则m +n = . 12.已知方程 2510x x ++= 的两个实数根分别为 1x 和2x ,则1211x x += . 13.二次函数22y x =的图象经过点()11A y -,和()22B y ,,则1y 2y .(填“>”“<”或“=”)14.如图,正六边形ABCDEF 的边长是6+43,点O 1,O 2分别是℃ABF ,℃CDE 的内心,则O 1O 2= .15.如图,在平面直角坐标系中抛物线y=x 2-3x+2与x 轴交于A 、B 两点,与y 轴交于点C ,D 是对称轴右侧抛物线上一点,且tan℃DCB=3,则点D 的坐标为 。
人教版数学九年级上册期末考试数学试卷含答案解析
人教版数学九年级上册期末考试试卷一.选择题(每题3分,共24分)1.如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是()A.m<0B.m>0C.m<﹣1D.m>﹣12.圆、平行四边形、等腰三角形、菱形,矩形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是轴对称图形,就可以过关.那么一次过关的概率是()A.B.C.D.3.如图,圆的半径是6,空白部分的圆心角分别是60°与30°,则阴影部分的面积是()A.9πB.27πC.6πD.3π4.一个圆锥的母线长为10,侧面展开图是半圆,则圆锥的侧面积是()A.10πB.20πC.50πD.100π5.若mn>0,则一次函数y=mx+n与反比例函数y=在同一坐标系中的大致图象是()A.B.C.D.6.如图,反比例函数y1=和正比例函数y2=nx的图象交于A(﹣1,﹣3)、B两点,则﹣nx≥0的解集是()A.﹣1<x<0B.x<﹣1或0<x<1C.x≤1或0<x≤1D.﹣1<x<0或x≥17.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为()A.cm B.9cm C.cm D.cm8.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2015秒时,点P的坐标是()A.(2014,0)B.(2015,﹣1)C.(2015,1)D.(2016,0)二.填空题:(每小题3分,共21分)9.已知双曲线y=经过点(﹣1,2),那么k的值等于.10.一个圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积为cm2.11.一只口袋里有相同的红、绿、蓝三种颜色的小球,其中有6个红球,5个绿球.若任意摸出一个绿球的概率是,则任意摸出一个蓝球的概率是.12.如图,AB是直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为cm,则弦CD 的长为cm.13.已知点P(x1,﹣2)、Q(x2,3)、H(x3,1)在双曲线上,那么x1、x2、x3的大小关系是.14.在半径为6cm的圆中,长为6cm的弦所对的圆周角的度数为.15.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点O为圆心,OC的长为半径作交OB于点D.若OA=2,则阴影部分的面积为.三.解答题(共75分)16.一次函数y=2x+2与反比例函数y=(k≠0)的图象都过点A(1,m),y=2x+2的图象与x轴交于B点.(1)求点B的坐标及反比例函数的表达式;(2)C(0,﹣2)是y轴上一点,若四边形ABCD是平行四边形,直接写出点D的坐标,并判断D点是否在此反比例函数的图象上,并说明理由.17.有三张正面分别标有数字:﹣1,1,2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中抽出一张记下数字,放回洗匀后再从中随机抽出一张记下数字.(1)请用列表或画树形图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落在双曲线上y=上的概率.18.星期五晚上,小明和他的妈妈一起看《我是歌手》,歌手演唱完后要评选出名次,在已公布四到七名后,还有张杰、韩磊、邓紫棋三位选手没有公布名次.(1)求邓紫棋获第一名的概率;(2)如果小明和妈妈一起竞猜第一名,那么两人中一个人猜中另一个人却没猜中的概率是多少?(请用“树状图”或“列表”等方法写出分析过程)19.如图所示,AB是⊙O的直径,∠B=30°,弦BC=6,∠ACB的平分线交⊙O于D,连AD.(1)求直径AB的长;(2)求阴影部分的面积(结果保留π).20.如图,一次函数y=kx+2的图象与x轴交于点B,与反比例函数的图象的一个交点为A(2,3).(1)分别求出反比例函数和一次函数的解析式;(2)过点A作AC⊥x轴,垂足为C,若点P在反比例函数图象上,且△PBC的面积等于18,求P点的坐标.21.如图所示,AC与⊙O相切于点C,线段AO交⊙O于点B.过点B作BD∥AC交⊙O 于点D,连接CD、OC,且OC交DB于点E.若∠CDB=30°,DB=5cm.(1)求⊙O的半径长;(2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)22.已知:如图,AB是⊙O的直径,BC是弦,∠B=30°,延长BA到D,使∠BDC=30°.(1)求证:DC是⊙O的切线;(2)若AB=2,求DC的长.23.已知:如图,正比例函数y=ax的图象与反比例函数y=的图象交于点A(3,2).(1)试确定上述正比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值?(3)M(m,n)是反比例函数图象上的一动点,其中0<m<3,过M作直线MB‖x轴交y 轴于点B.过点A作直线AC∥y轴交于点C,交直线MB于点D,当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由;(4)探索:x轴上是否存在点P,使△OAP是等腰三角形?若存在,求出点P的坐标,若不存在,请说明理由.参考答案与试题解析一.选择题(每题3分,共24分)1.如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是()A.m<0B.m>0C.m<﹣1D.m>﹣1【考点】反比例函数的性质.【分析】如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是()【解答】解:∵反比例函数y=的图象在所在象限内,y的值随x值的增大而减小,∴m+1>0,解得m>﹣1.故选D.【点评】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.2.圆、平行四边形、等腰三角形、菱形,矩形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是轴对称图形,就可以过关.那么一次过关的概率是()A.B.C.D.【考点】概率公式;轴对称图形.【分析】由圆、平行四边形、等腰三角形、菱形,矩形中,轴对称图形的有圆、等腰三角形、菱形,矩形;直接利用概率公式求解即可求得答案.【解答】解:∵圆、平行四边形、等腰三角形、菱形,矩形中,轴对称图形的有圆、等腰三角形、菱形,矩形;∴一次过关的概率是:.故选D.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.3.如图,圆的半径是6,空白部分的圆心角分别是60°与30°,则阴影部分的面积是()A.9πB.27πC.6πD.3π【考点】扇形面积的计算.【分析】计算阴影部分圆心角的度数,运用扇形面积公式求解.【解答】解:根据扇形面积公式,阴影部分面积==27π.故选B.【点评】考查了扇形面积公式的运用,扇形的旋转.4.一个圆锥的母线长为10,侧面展开图是半圆,则圆锥的侧面积是()A.10πB.20πC.50πD.100π【考点】圆锥的计算.【专题】压轴题.【分析】圆锥的侧面积为半径为10的半圆的面积.【解答】解:圆锥的侧面积=半圆的面积=π×102÷2=50π,故选C.【点评】解决本题的关键是把圆锥的侧面积转换为规则图形的面积.5.若mn>0,则一次函数y=mx+n与反比例函数y=在同一坐标系中的大致图象是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】首先根据mn>0确定反比例函数的图象的位置,然后根据m、n异号确定答案即可.【解答】解:∵mn>0,∴m、n异号,且反比例函数y=的图象位于第一、三象限,∴排除C、D;∵当m>0时则n<0,∴排除A,∵m<0时则n>0,∴B正确,故选B.【点评】本题考查了反比例函数的性质及一次函数的性质,解题的关键是了解两种函数的性质.6.如图,反比例函数y1=和正比例函数y2=nx的图象交于A(﹣1,﹣3)、B两点,则﹣nx≥0的解集是()A.﹣1<x<0B.x<﹣1或0<x<1C.x≤1或0<x≤1D.﹣1<x<0或x≥1【考点】反比例函数与一次函数的交点问题.【分析】求出≥nx,求出B的坐标,根据A、B的坐标结合图象得出即可.【解答】解:∵﹣nx≥0,∴≥nx,∵反比例函数y1=和正比例函数y2=nx的图象交于A(﹣1,﹣3)、B两点,∴B点的坐标是(1,3),∴﹣nx≥0的解集是x<﹣1或0<x>1,故选B.【点评】本题考查了一次函数与反比例函数的交点问题,函数的图象的应用,主要考查学生的理解能力和观察图象的能力.7.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为()A.cm B.9cm C.cm D.cm【考点】正多边形和圆.【专题】压轴题.【分析】已知小正方形的面积即可求得边长,在直角△ACE中,利用勾股定理即可求解.【解答】解:如图,圆心为A,设大正方形的边长为2x,圆的半径为R,∵正方形有两个顶点在半圆上,另外两个顶点在圆心两侧,∴AE=BC=x,CE=2x;∵小正方形的面积为16cm2,∴小正方形的边长EF=DF=4,由勾股定理得,R2=AE2+CE2=AF2+DF2,即x2+4x2=(x+4)2+42,解得,x=4,∴R=cm.故选C.【点评】本题利用了勾股定理,正方形的性质求解.8.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2015秒时,点P的坐标是()A.(2014,0)B.(2015,﹣1)C.(2015,1)D.(2016,0)【考点】规律型:点的坐标.【专题】压轴题;规律型.【分析】根据图象可得移动4次图象完成一个循环,从而可得出点A2015的坐标.【解答】解:半径为1个单位长度的半圆的周长为:,∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,∴点P1秒走个半圆,当点P从原点O出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,﹣1),当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0),…,∵2015÷4=503 (3)∴A2015的坐标是(2015,﹣1),故选:B.【点评】此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题.二.填空题:(每小题3分,共21分)9.已知双曲线y=经过点(﹣1,2),那么k的值等于﹣3.【考点】反比例函数图象上点的坐标特征.【分析】直接把点(﹣1,2)代入双曲线y=,求出k的值即可.【解答】解:∵双曲线y=经过点(﹣1,2),∴2=,解得k=﹣3.故答案为:﹣3.【点评】本题考查的是反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定适合此函数的解析式.10.一个圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积为10πcm2.【考点】圆锥的计算.【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式求解.【解答】解:∵圆锥的底面半径为5cm,∴圆锥的底面圆的周长=2π•5=10π,∴圆锥的侧面积=•10π•2=10π(cm2).故答案为:10π.【点评】本题考查了圆锥的侧面积的计算:圆锥的侧面展开图为扇形,扇形的弧长为圆锥的底面周长,扇形的半径为圆锥的母线长.也考查了扇形的面积公式:S=•l•R,(l为弧长).11.一只口袋里有相同的红、绿、蓝三种颜色的小球,其中有6个红球,5个绿球.若任意摸出一个绿球的概率是,则任意摸出一个蓝球的概率是.【考点】概率公式.【分析】设袋中有蓝球m个,根据蓝球概率公式列出关于m的方程,求出m的值即可.【解答】解:设袋中有蓝球m个,则袋中共有球(6+5+m)个,若任意摸出一个绿球的概率是,有=,解得m=9,任意摸出一个蓝球的概率是=0.45.故答案为:0.45【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.12.如图,AB是直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为cm,则弦CD 的长为3cm.【考点】圆周角定理;垂径定理;解直角三角形.【分析】根据∠CDB=30°,求出∠COB的度数,再利用三角函数求出CE的长.根据垂径定理即可求出CD的长.【解答】解:∵∠CDB=30°,∴∠COB=30°×2=60°.又∵⊙O的半径为cm,∴CE=sin60°=×=,∴CD=×2=3(cm).【点评】此题考查了垂径定理和圆周角定理,利用特殊角的三角函数很容易解答.13.已知点P(x1,﹣2)、Q(x2,3)、H(x3,1)在双曲线上,那么x1、x2、x3的大小关系是x3<x2<x1.【考点】反比例函数图象上点的坐标特征.【专题】计算题.【分析】把三个点的坐标代入解析式,分别计算出x1、x2、x3的值,然后比较大小即可.【解答】解:把点P(x1,﹣2)、Q(x2,3)、H(x3,1)代入得x1=,x2=﹣,x3=﹣(a2+1),所以x3<x2<x1.故答案为x3<x2<x1.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.14.在半径为6cm的圆中,长为6cm的弦所对的圆周角的度数为30°或150°.【考点】圆周角定理;等边三角形的判定与性质.【专题】分类讨论.【分析】首先根据题意画出图形,然后在优弧上取点C,连接AC,BC,在劣弧上取点D,连接AD,BD,易得△AOB是等边三角形,再利用圆周角定理,即可求得答案.【解答】解:如图,首先在优弧上取点C,连接AC,BC,在劣弧上取点D,连接AD,BD,∵OA=OB=6cm,AB=6cm,∴OA=AB=OB,∴△OAB是等边三角形,∴∠AOB=60°,∴∠C=∠AOB=30°,∴∠D=180°﹣∠C=150°,∴所对的圆周角的度数为:30°或150°.【点评】此题考查了圆周角定理以及等边三角形的判定与性质.注意根据题意画出图形,结合图形求解是关键.15.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点O为圆心,OC的长为半径作交OB于点D.若OA=2,则阴影部分的面积为+.【考点】扇形面积的计算.【专题】压轴题.【分析】连接OE、AE,根据点C为OC的中点可得∠CEO=30°,继而可得△AEO为等边三角形,求出扇形AOE的面积,最后用扇形AOB的面积减去扇形COD的面积,再减去S空白AEC 即可求出阴影部分的面积.【解答】解:连接OE、AE,∵点C为OA的中点,∴∠CEO=30°,∠EOC=60°,∴△AEO为等边三角形,∴S扇形AOE==π,∴S阴影=S扇形AOB﹣S扇形COD﹣(S扇形AOE﹣S△COE)=﹣﹣(π﹣×1×)=π﹣π+=+.故答案为:+.【点评】本题考查了扇形的面积计算,解答本题的关键是掌握扇形的面积公式:S=.三.解答题(共75分)16.一次函数y=2x+2与反比例函数y=(k≠0)的图象都过点A(1,m),y=2x+2的图象与x轴交于B点.(1)求点B的坐标及反比例函数的表达式;(2)C(0,﹣2)是y轴上一点,若四边形ABCD是平行四边形,直接写出点D的坐标,并判断D点是否在此反比例函数的图象上,并说明理由.【考点】反比例函数与一次函数的交点问题.【分析】(1)在y=2x+2中令y=0,求得B的坐标,然后求得A的坐标,利用待定系数法求得反比例函数的解析式;(2)根据平行线的性质即可直接求得D的坐标,然后代入反比例函数的解析式判断即可.【解答】解:(1)在y=2x+2中令y=0,则x=﹣1,∴B的坐标是(﹣1,0),∵A在直线y=2x+2上,∴A的坐标是(1,4).∵A(1,4)在反比例函数y=图象上∴k=4.∴反比例函数的解析式为:y=;(2)∵四边形ABCD是平行四边形,∴D的坐标是(2,2),∴D(2,2)在反比例函数y=的图象上.【点评】本题主要考查了待定系数法求反比例函数与一次函数的解析式,用待定系数法确定函数的解析式,是常用的一种解题方法.同学们要熟练掌握这种方法.17.有三张正面分别标有数字:﹣1,1,2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中抽出一张记下数字,放回洗匀后再从中随机抽出一张记下数字.(1)请用列表或画树形图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落在双曲线上y=上的概率.【考点】列表法与树状图法;反比例函数图象上点的坐标特征.【专题】图表型.【分析】(1)画出树状图即可得解;(2)根据反比例函数图象上点的坐标特征判断出在双曲线上y=上的情况数,然后根据概率公式列式计算即可得解.【解答】解:(1)根据题意画出树状图如下:;(2)当x=﹣1时,y==﹣2,当x=1时,y==2,当x=2时,y==1,一共有9种等可能的情况,点(x,y)落在双曲线上y=上的有2种情况,所以,P=.【点评】本题考查了列表法与树状图法,反比例函数图象上点的坐标特征,用到的知识点为:概率=所求情况数与总情况数之比.18.星期五晚上,小明和他的妈妈一起看《我是歌手》,歌手演唱完后要评选出名次,在已公布四到七名后,还有张杰、韩磊、邓紫棋三位选手没有公布名次.(1)求邓紫棋获第一名的概率;(2)如果小明和妈妈一起竞猜第一名,那么两人中一个人猜中另一个人却没猜中的概率是多少?(请用“树状图”或“列表”等方法写出分析过程)【考点】列表法与树状图法.【专题】计算题.【分析】(1)三个选手机会均等,得到邓紫棋获第一名的概率;(2)假设张杰为第一名,列表得出所有等可能的情况数,找出两人中一个人猜中另一个人却没猜中的情况数,即可求出所求的概率.【解答】解:(1)根据题意得:邓紫棋获第一名的概率为;(2)假设张杰为第一名,列表如下:张韩邓张(张,张)(韩,张)(邓,张)韩(张,韩)(韩,韩)(邓,韩)邓(张,邓)(韩,邓)(邓,邓)所有等可能的情况有9种,两人中一个人猜中另一个人却没猜中的情况有4种,则P=.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.19.如图所示,AB是⊙O的直径,∠B=30°,弦BC=6,∠ACB的平分线交⊙O于D,连AD.(1)求直径AB的长;(2)求阴影部分的面积(结果保留π).【考点】圆周角定理;角平分线的定义;三角形的面积;含30度角的直角三角形;勾股定理;扇形面积的计算.【分析】(1)根据直径所对的圆周角是直角推知∠ACB=90°,然后在直角三角形ABC中利用边角关系、勾股定理来求直径AB的长度;(2)连接OD.利用(1)中求得AB=4可以推知OA=OD=2;然后由角平分线的性质求得∠AOD=90°;最后由扇形的面积公式、三角形的面积公式可以求得阴影部分的面积=S扇形△AOD ﹣S△AOD.【解答】解:(1)∵AB为⊙O的直径,∴∠ACB=90°,…(1分)∵∠B=30°,∴AB=2AC,…(3分)∵AB2=AC2+BC2,∴AB2=AB2+62,…(5分)∴AB=4.…(6分)(2)连接OD.∵AB=4,∴OA=OD=2,…(8分)∵CD平分∠ACB,∠ACB=90°,∴∠ACD=45°,∴∠AOD=2∠ACD=90°,…(9分)=OA•OD=•2•2=6,…(10分)∴S△AOD=•π•OD2=•π•(2)2=3π,…(11分)∴S扇形△AOD﹣S△AOD=3π﹣6.…(12分)∴阴影部分的面积=S扇形△AOD【点评】本题综合考查了圆周角定理、含30度角的直角三角形以及扇形面积公式.解答(2)题时,采用了“数形结合”的数学思想.20.如图,一次函数y=kx+2的图象与x轴交于点B,与反比例函数的图象的一个交点为A(2,3).(1)分别求出反比例函数和一次函数的解析式;(2)过点A作AC⊥x轴,垂足为C,若点P在反比例函数图象上,且△PBC的面积等于18,求P点的坐标.【考点】反比例函数与一次函数的交点问题;三角形的面积.【专题】计算题.【分析】(1)先将点A(2,3)代入反比例函数和一次函数y=kx+2,求得m、k的值,=18,即可求得x,y的值.(2)可求得点B的坐标,设P(x,y),由S△PBC【解答】解:(1)把A(2,3)代入,∴m=6.∴.(1分)把A(2,3)代入y=kx+2,∴2k+2=3.∴.∴.(2分)(2)令,解得x=﹣4,即B(﹣4,0).∵AC⊥x轴,∴C(2,0).∴BC=6.(3分)设P(x,y),==18,∵S△PBC∴y1=6或y2=﹣6.分别代入中,得x1=1或x2=﹣1.∴P1(1,6)或P2(﹣1,﹣6).(5分)【点评】本题考查了一次函数和反比例函数的交点问题,利用待定系数法求解析式是解此题的关键.21.如图所示,AC与⊙O相切于点C,线段AO交⊙O于点B.过点B作BD∥AC交⊙O 于点D,连接CD、OC,且OC交DB于点E.若∠CDB=30°,DB=5cm.(1)求⊙O的半径长;(2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)【考点】扇形面积的计算;全等三角形的判定与性质;圆周角定理;切线的性质;解直角三角形.【专题】几何综合题.【分析】(1)根据切线的性质定理和平行线的性质定理得到OC⊥BD,根据垂径定理得到BE的长,再根据圆周角定理发现∠BOE=60°,从而根据锐角三角函数求得圆的半径;(2)结合(1)中的有关结论证明△DCE≌△BOE,则它们的面积相等,故阴影部分的面积就是扇形OBC的面积.【解答】解:(1)∵AC与⊙O相切于点C,∴∠ACO=90°∵BD∥AC∴∠BEO=∠ACO=90°,∴DE=EB=BD=(cm)∵∠D=30°,∴∠O=2∠D=60°,在Rt△BEO中,sin60°=∴OB=5,即⊙O的半径长为5cm.(2)由(1)可知,∠O=60°,∠BEO=90°,∴∠EBO=∠D=30°又∵∠CED=∠BEO,BE=ED,∴△CDE≌△OBE∴,答:阴影部分的面积为.【点评】本题主要考查切线的性质定理、平行线的性质定理、垂径定理以及全等三角形的判定方法.能够熟练解直角三角形.22.已知:如图,AB是⊙O的直径,BC是弦,∠B=30°,延长BA到D,使∠BDC=30°.(1)求证:DC是⊙O的切线;(2)若AB=2,求DC的长.【考点】切线的判定.【专题】计算题;证明题.【分析】(1)根据切线的判定方法,只需证CD⊥OC.所以连接OC,证∠OCD=90°.(2)易求半径OC的长.在Rt△OCD中,运用三角函数求CD.【解答】(1)证明:连接OC.∵OB=OC,∠B=30°,∴∠OCB=∠B=30°.∴∠COD=∠B+∠OCB=60°.(1分)∵∠BDC=30°,∴∠BDC+∠COD=90°,DC⊥OC.(2分)∵BC是弦,∴点C在⊙O上,∴DC是⊙O的切线,点C是⊙O的切点.(3分)(2)解:∵AB=2,∴OC=OB==1.(4分)∵在Rt△COD中,∠OCD=90°,∠D=30°,∴DC=OC=.(5分)【点评】本题考查了切线的判定,证明经过圆上一点的直线是圆的切线,常作的辅助线是连接圆心和该点,证明直线和该半径垂直.23.已知:如图,正比例函数y=ax的图象与反比例函数y=的图象交于点A(3,2).(1)试确定上述正比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值?(3)M(m,n)是反比例函数图象上的一动点,其中0<m<3,过M作直线MB‖x轴交y 轴于点B.过点A作直线AC∥y轴交于点C,交直线MB于点D,当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由;(4)探索:x轴上是否存在点P,使△OAP是等腰三角形?若存在,求出点P的坐标,若不存在,请说明理由.【考点】反比例函数综合题.【分析】(1)将A(3,2)分别代入y=,y=ax中,得a、k的值,进而可得正比例函数和反比例函数的表达式;(2)观察图象,得在第一象限内,当0<x<3时,反比例函数的图象在正比例函数的上方;故反比例函数的值大于正比例函数的值;=S△OAC=×|k|=3,可得S矩形OBDC=12,即OC•OB=12,进而可得m、n的值,(3)由S△OMB故可得BM与DM的大小;比较可得其大小关系;(4)先求出A点坐标,再分OA=OP,OA=AP及OP=AP三种情况进行讨论.【解答】解:(1)∵将A(3,2)分别代入y=,y=ax中,得:2=,3a=2,∴k=6,a=,∴反比例函数的表达式为:y=,正比例函数的表达式为y=x.(2)∵,解得,∴C(3,2)观察图象,得在第一象限内,当0<x<3时,反比例函数的值大于正比例函数的值;(3)BM=DM理由:∵MN ∥x 轴,AC ∥y 轴,∴四边形OCDB 是平行四边形,∵x 轴⊥y 轴,∴▱OCDB 是矩形.∵M 和A 都在双曲线y=上,∴BM ×OB=6,OC ×AC=6,∴S △OMB =S △OAC =×|k|=3,又∵S 四边形OADM =6,∴S 矩形OBDC =S 四边形OADM +S △OMB +S △OAC =3+3+6=12,即OC •OB=12,∵OC=3,∴OB=4,即n=4∴m==,∴MB=,MD=3﹣=,∴MB=MD ;(4)如图,∵S △OAC =OC •AC=3,OC=3,∴AC=2,∴A (3,2),∴OA==,∴当OA=OP 时,P 1(,0);当OA=AP 时,∵AC ⊥x 轴,OC=3,∴OC=CP 2=3,∴P 2(6,0);当OP=AP 时,设P 3(x ,0),∵O (0,0),A (3,2),∴x=,解得x=,∴P 3(,0).综上所述,P 点坐标为P 1(,0),P 2(6,0),P 3(,0).【点评】此题考查的是反比例函数综合题及正比例函数等多个知识点,此题难度稍大,综合性比较强,在解答(3)时要注意进行分类讨论,不要漏解.第21页共21页。
人教版九年级上册数学期末考试试卷附答案
人教版九年级上册数学期末考试试题一、单选题1.用配方法解方程x 2+2x-1=0时,配方结果正确的是()A .()212x +=B .()222x +=C .()213x +=D .()223x +=2.下列二次函数中,其图象的对称轴为x =﹣2的是()A .y =2x 2﹣2B .y =﹣2x 2﹣2C .y =2(x ﹣2)2D .y =(x+2)23.下列标志图中,既是轴对称图形,又是中心对称图形的是()A .B .C .D .4.抛物线223y x x =--与x 轴的两个交点间的距离是()A .-1B .-2C .2D .45.将抛物线y =2(x ﹣4)2﹣1先向左平移4个单位长度,再向上平移2个单位长度,平移后所得抛物线的解析式为()A .y =2x 2+1B .y =2x 2﹣3C .y =2(x ﹣8)2+1D .y =2(x ﹣8)2﹣36.将矩形ABCD 绕点A 顺时针旋转到矩形AB′C′D′的位置,若旋转角为20°,则∠1为A .110°B .120°C .150°D .160°7.如图,⊙O 的半径为2,点C 是圆上的一个动点,CA ⊥x 轴,CB ⊥y 轴,垂足分别为A 、B ,D 是AB 的中点,如果点C 在圆上运动一周,那么点D 运动过的路程长为()A .4πB .2πC .πD .2π8.如图是二次函数y =ax 2+bx+c (a≠0)图象的一部分,对称轴是直线x =﹣2.关于下列结论:①ab <0;②b 2﹣4ac >0;③9a ﹣3b+c >0;④b ﹣4a =0;⑤方程ax 2+bx =0的两个根为x 1=0,x 2=﹣4,其中正确的结论有()A .2个B .3个C .4个D .5个9.如图,ABCD 为正方形,O 为对角线AC,BD 的交点,则△COD 绕点O 经过下列哪种旋转可以得到△DOA ()A .顺时针旋转90°B .顺时针旋转45°C .逆时针旋转90°D .逆时针旋转45°10.已知二次函数y =ax2+bx+c 的图象与x 轴交于A ,B 两点,对称轴是直线x =﹣1,若点A 的坐标为(1,0),则点B 的坐标是()A .(﹣2,0)B .(0,﹣2)C .(0,﹣3)D .(﹣3,0)二、填空题11.一元二次方程()()320x x --=的根是_____.12.抛物线y =(x+2)2+1的顶点坐标为_____.13.从实数﹣1、﹣2、1中随机选取两个数,积为负数的概率是________.14.如图,△DEC 与△ABC 关于点C 成中心对称,AB =3,AC =1,∠D =90°,则AE 的长是_____.15.已知扇形的圆心角为120°,它所对弧长为20πcm ,则扇形的半径为_____.16.若关于x 的函数2y kx 2x 1=+-与x 轴仅有一个公共点,则实数k 的值为___17.已知点P (x 0,m ),Q (1,n )在二次函数y =(x+a )(x ﹣a ﹣1)(a≠0)的图象上,且m <n 下列结论:①该二次函数与x 轴交于点(﹣a ,0)和(a+1,0);②该二次函数的对称轴是x =12;③该二次函数的最小值是(a+2)2;④0<x 0<1.其中正确的是_____.(填写序号)三、解答题18.解方程:2680x x -+=19.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,OC =10cm ,CD =16cm ,求AE 的长.20.已知二次函数2y ax bx =+的图象过点()2,0,()1,6-.(1)求二次函数的关系式;(2)写出它与x 轴的两个交点及顶点坐标.21.一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外完全相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为23.(1)请直接写出袋子中白球的个数.(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)22.已知关于x的一元二次方程x2﹣(2k+1)x+4k﹣3=0,(1)求证:无论k取什么实数值,该方程总有两个不相等的实数根?(2)当Rt△ABC的斜边a b和c恰好是这个方程的两个根时,求k的值.23.已知⊙O的直径AB、CD互相垂直,弦AE交CD于F,若⊙O的半径为R,求证:AE•AF =2R2.24.在平面直角坐标系中,已知抛物线y=x2﹣2ax+4a+2(a是常数),(Ⅰ)若该抛物线与x轴的一个交点为(﹣1,0),求a的值及该抛物线与x轴另一交点坐标;(Ⅱ)不论a取何实数,该抛物线都经过定点H.①求点H的坐标;②证明点H是所有抛物线顶点中纵坐标最大的点.25.ΔABC为等腰三角形,O为底边BC的中点,腰AB与 O相切于点D.求证:AC是 O的切线.26.某商场一种商品的进价为每件30元,售价为每件50元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件40.5元,求两次下降的百分率;(2)经调查,若该商品每降价2元,每天可多销售16件,那么每天要想获得最大利润,每件售价应多少元?最大利润是多少?参考答案1.A【分析】先把常数项移到方程右边,再把方程两边同时加上一次项系数一半的平方,然后把方程左边写成完全平方形式即可.【详解】解:∵x2+2x﹣1=0,∴x2+2x=1,∴x2+2x+1=2,∴(x+1)2=2.故选:A.【点睛】本题考查了解一元二次方程﹣配方法,熟练掌握用配方法解一元二次方程的步骤是解决问题的关键.2.D【分析】根据二次函数y=a(x-h)2+k(a,b,c为常数,a≠0)的性质逐项分析即可.【详解】A.y=2x2﹣2的对称轴是x=0,故该选项不正确,不符合题意;;B.y=﹣2x2﹣2的对称轴是x=0,故该选项不正确,不符合题意;;C.y=2(x﹣2)2的对称轴是x=2,故该选项不正确,不符合题意;;D.y=(x+2)2的对称轴是x=-2,故该选项正确,符合题意;;故选D【点睛】本题考查了二次函数y=a(x-h)2+k(a,b,c为常数,a≠0)的性质,y=a(x-h)2+k是抛物线的顶点式,其顶点是(h,k),对称轴是x=h.熟练掌握二次函数y=a(x-h)2+k的性质是解答本题的关键.3.B【分析】根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形;一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.【详解】解:A 、不是轴对称图形,是中心对称图形,不符合题意;B 、是轴对称图形,也是中心对称图形,符合题意;C 、是轴对称图形,不是中心对称图形,不符合题意;D 、不是轴对称图形,也不是中心对称图形,不符合题意.故选B .【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.4.D 【分析】求解得到方程的两个根,用较大根减去小根即可.【详解】令y=0,得2230x x --=,解得123,1x x ==-,∴两个交点间的距离是3-(-1)=4,故选D .【点睛】本题考查了抛物线与x 轴的交点,一元二次方程的解法,正确理解题意,找到合理的解题方法是解题的关键.5.A 【分析】根据二次函数平移的规律“上加下减,左加右减”的原则即可得到平移后函数解析式.【详解】解:抛物线y =2(x ﹣4)2﹣1先向左平移4个单位长度,得到的抛物线解析式为y =2(x ﹣4+4)2﹣1,即y =2x 2﹣1,再向上平移2个单位长度得到的抛物线解析式为y =2x 2﹣1+2,即y =2x 2+1;故选:A .【点睛】本题考查的是二次函数图象平移变换,熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式是解题的关键.6.A 【详解】设C′D′与BC 交于点E ,如图所示:∵旋转角为20°,∴∠DAD′=20°,∴∠BAD′=90°−∠DAD′=70°.∵∠BAD′+∠B+∠BED′+∠D′=360°,∴∠BED′=360°−70°−90°−90°=110°,∴∠1=∠BED′=110°.故选:A .7.D 【分析】根据题意可知,四边形OACB 是矩形,D 为AB 的中点,连接OC ,可知D 点是矩形的对角线的交点,那么当C 点绕圆O 旋转一周时,D 点也会以OD 长为半径旋转一周,D 点的轨迹是一个以O 为圆心,以OD 长为半径的圆,计算圆的周长即可.【详解】如图,连接OC ,∵CA ⊥x 轴,CB ⊥y 轴,∴四边形OACB 是矩形,∵D 为AB 中点,∴点D 在AC 上,且OD =12OC ,∵⊙O 的半径为2,∴如果点C 在圆上运动一周,那么点D 运动轨迹是一个半径为1圆,∴点D 运动过的路程长为2π•1=2π,故选:D .【点睛】本题考查了动点问题,解决本题的关键是能够判断出D 点的运动轨迹是一个半径为1的圆.8.C 【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】解:∵抛物线开口向下,∴a <0,∵22ba-=-,∴b =4a ,ab >0,∴b ﹣4a =0,∴①错误,④正确,∵抛物线与x 轴交于﹣4,0处两点,∴b 2﹣4ac >0,方程ax 2+bx =0的两个根为x 1=0,x 2=﹣4,∴②⑤正确,∵当x =﹣3时y >0,即9a ﹣3b+c >0,∴③正确,故正确的有②③④⑤.故选:C .【点睛】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式以及特殊值的熟练运用9.C 【详解】试题分析:因为四边形ABCD 为正方形,所以∠COD=∠DOA=90°,OC=OD=OA ,则△COD 绕点O 逆时针旋转得到△DOA ,旋转角为∠COD 或∠DOA .故选C .考点:旋转的性质10.D 【分析】利用点B 与点A 关于直线x=-1对称确定B 点坐标.【详解】解:∵二次函数y =ax 2+bx+c 的图象与x 轴交于A ,B 两点,∴点A 与点B 关于直线x =﹣1对称,而对称轴是直线x =﹣1,点A 的坐标为(1,0),∴点B 的坐标是(﹣3,0).故选D .【点睛】本题考查抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.11.123,2==x x 【分析】利用因式分解法把方程化为x-3=0或x-2=0,然后解两个一次方程即可.【详解】解:30x -=或20x -=,所以123,2==x x .故答案为123,2==x x .【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.12.(﹣2,1)【分析】根据题目中二次函数的顶点式可以直接写出它的顶点坐标.【详解】由抛物线的顶点坐标可知,抛物线y =(x+2)2+1的顶点坐标是(﹣2,1).故答案为:(﹣2,1).【点睛】本题考查二次函数的性质,解答本题的关键是由顶点式可以直接写出二次函数的顶点坐标.13.23【详解】从实数-1、-2、1中随机选取两个数共有以下三种等可能情况:①-1,-2;②-1,1;③-2,1;其中乘积为负数的是②、③两种,∴从实数-1,-2,1中随机选取两个数,积为负数的概率是:23.故答案为23.141,3CD AC DE AB ====,再利用勾股定理即可得.【详解】DEC ∆ 与ABC ∆关于点C 成中心对称ABC DEC∴∆≅∆1,3CD AC DE AB ∴====2AD CD AC ∴=+=90D ∠=︒AE ∴===【点睛】本题考查了中心对称图形的性质、勾股定理,熟记中心对称图形的性质是解题关键.15.30cm .【分析】根据扇形弧长公式代入计算即可解决.【详解】根据题意得12020180rππ⨯⨯=,r =30cm ,故答案为30cm .【点睛】本题考查了扇形弧长公式的应用,解决本题的关键是熟练掌握扇形弧长公式.16.0或-1##-1或0【详解】由于没有交待是二次函数,故应分两种情况:当k=0时,函数y 2x 1=-是一次函数,与x 轴仅有一个公共点.当k≠0时,函数2y kx 2x 1=+-是二次函数,若函数与x 轴仅有一个公共点,则2210kx x +-=有两个相等的实数根,即()224k 10∆=-⋅⋅-=,解得:k 1=-,故答案为:0或-1.17.①②④.【分析】(1)根据二次函数的解析式,求出与x 轴的交点坐标,即可判断①;(2)用与x 轴交点的横坐标相加除以2,即可求证结论②;(3)将二次函数交点式转化为顶点式,得到顶点坐标,即可求证③;(4)讨论P 点分别在对称轴的左侧和右侧两种情况,根据函数的增减性,计算x 0的范围即可.【详解】①∵二次函数y =(x+a )(x ﹣a ﹣1),∴当y =0时,x 1=﹣a ,x 2=a+1,即该二次函数与x 轴交于点(﹣a ,0)和(a+1,0).故①结论正确;②对称轴为:12122x x x +==.故②结论正确;③由y =(x+a )(x ﹣a ﹣1)得到:y =(x ﹣12)2﹣(a+12)2,则其最小值是﹣(a+12)2,故③结论错误;④当P 在对称轴的左侧(含顶点)时,y 随x 的增大而减小,由m <n ,得0<x 0≤12;当P 在对称轴的右侧时,y 随x 的增大而增大,由m <n ,得12<x 0<1,综上所述:m <n ,所求x 0的取值范围0<x 0<1.故④结论正确.故答案是:①②④.【点睛】本题考查了二次函数性质的应用,解决本题的关键是熟练掌握二次函数不同形式解析式之间的相互转化,正确理解掌握二次函数的性质.18.x 1=4,x 2=2【分析】原方程运用因式分解法求解即可【详解】解:2680x x -+=(x -4)(x -2)=0x -4=0或x -2=0∴x 1=4,x 2=2【点睛】本题主要考查了解一元二次方程,灵活选用方法是解答本题的关键19.AE =16cm .【分析】根据垂径定理,计算出CE 的长度,再根据勾股定理计算OE 的长度,两者相加即可解决问题.【详解】∵弦CD ⊥AB 于点E ,CD =16cm ,∴CE =12CD =8cm .在Rt △OCE 中,OC =10cm ,CE =8cm ,∴6OE ===(cm ),∴AE =AO+OE =10+6=16(cm ).【点睛】本题考查了圆中计算问题,解决本题的关键是:①熟练掌握垂径定理及其推论,②熟练掌握勾股定理.20.(1)224y x x=-(2)与x 轴的两个交点坐标分别是:()0,0,()2,0;顶点坐标是()1,2-【分析】(1)把点(2,0),(−1,6)代入二次函数y =ax 2+bx ,得出关于a 、b 的二元一次方程组,求得a 、b 即可;(2)将(1)中解析式转化为两点式或顶点式,即可求得抛物线与x 轴的交点坐标和顶点坐标.(1)解:把点()2,0,()1,6-代入二次函数2y ax bx =+,得4206a b a b +=⎧⎨-=⎩,解得24a b =⎧⎨=-⎩,因此二次函数的关系式224y x x =-;(2)解:∵224y x x =-=2x (x−2),∴该抛物线与x 轴的两个交点坐标分别是(0,0),(2,0).∵224y x x =-=2(x−1)2−2,∴二次函数224y x x =-的顶点坐标(1,−2).21.(1)袋子中白球有2个;(2)59.【分析】(1)设袋子中白球有x 个,根据概率公式列方程解方程即可求得答案;(2)根据题意画出树状图,求得所有等可能的结果与两次都摸到相同颜色的小球的情况,再利用概率公式即可求得答案.【详解】解:(1)设袋子中白球有x 个,根据题意得:213x x =+,解得:x=2,经检验,x=2是原分式方程的解,∴袋子中白球有2个;(2)画树状图得:∵共有9种等可能的结果,两次都摸到相同颜色的小球的有5种情况,∴两次都摸到相同颜色的小球的概率为:59.22.(1)见解析;(2)3【分析】(1)根据根的判别式的符号来证明;(2)根据韦达定理得到b+c=2k+1,bc=4k-3.又在直角△ABC 中,根据勾股定理,得(b+c )2﹣2bc 2,由此可以求得k 的值.【详解】(1)证明:∵△=[﹣(2k+1)]2﹣4×1×(4k ﹣3)=4k 2﹣12k+13=(2k ﹣3)2+4,∴无论k 取什么实数值,总有=(2k ﹣3)2+4>0,即△>0,∴无论k 取什么实数值,该方程总有两个不相等的实数根;(2)解:∵两条直角边的长b 和c 恰好是方程x 2﹣(2k+1)x+4k ﹣3=0的两个根,得∴b+c =2k+1,bc =4k ﹣3,又∵在直角△ABC 中,根据勾股定理,得b 2+c 2=a 2,∴(b+c)2﹣2bc2,即(2k+1)2﹣2(4k﹣3)=31,整理后,得k2﹣k﹣6=0,解这个方程,得k=﹣2或k=3,当k=﹣2时,b+c=﹣4+1=﹣3<0,不符合题意,舍去,当k=3时,b+c=2×3+1=7,符合题意,故k=3.23.见解析【详解】连接BE,根据圆周角定理可的∠AEB=90,再有AB⊥CD,公共角∠A,即可证得△AOF∽△AEB,根据相似三角形的对应边成比例即得结果.解:如图,连接BE,∵AB为⊙O的直径∴∠AEB=90°∵AB⊥CD∴∠AOF=90°∴∠AOF=∠AEB=90°又∠A=∠A∴△AOF∽△AEB∴AE•AF=AO•AB∵AO=R,AB=2R所以AE•AF=2R2.24.(Ⅰ)a=﹣1,抛物线与x轴另一交点坐标是(0,0);(Ⅱ)①点H的坐标为(2,6);2②证明见解析.【分析】(I)根据该抛物线与x轴的一个交点为(-1,0),可以求得的值及该抛物线与x轴另一交点坐标;(II)①根据题目中的函数解析式可以求得点H的坐标;②将题目中的函数解析式化为顶点式,然后根据二次函数的性质即可证明点H是所有抛物线顶点中纵坐标最大的点.【详解】(Ⅰ)∵抛物线y=x2﹣2ax+4a+2与x轴的一个交点为(﹣1,0),∴0=(﹣1)2﹣2a×(﹣1)+4a+2,解得,a=﹣12,∴y=x2+x=x(x+1),当y=0时,得x1=0,x2=﹣1,即抛物线与x轴另一交点坐标是(0,0);(Ⅱ)①∵抛物线y=x2﹣2ax+4a+2=x2+2﹣2a(x﹣2),∴不论a取何实数,该抛物线都经过定点(2,6),即点H的坐标为(2,6);②证明:∵抛物线y=x2﹣2ax+4a+2=(x﹣a)2﹣(a﹣2)2+6,∴该抛物线的顶点坐标为(a,﹣(a﹣2)2+6),则当a=2时,﹣(a﹣2)2+6取得最大值6,即点H是所有抛物线顶点中纵坐标最大的点.25.见解析.【分析】过点O作OE⊥AC于点E,连结OD,OA,根据切线的性质得出AB⊥OD,根据等腰三角形三线合一的性质得出AO是∠BAC的平分线,根据角平分线的性质得出OE=OD,从而证得结论.【详解】证明:过点O作OE⊥AC于点E,连结OD,OA,∵AB与O相切于点D,∴AB⊥OD,∵△ABC为等腰三角形,O是底边BC的中点,∴AO是∠BAC的平分线,∴OE=OD,即OE是O的半径,∵AC经过O的半径OE的外端点且垂直于OE,∴AC是O的切线。
人教版数学九年级上册期末考试卷含答案解析
人教版数学九年级上册期末考试试卷一、选择题(本大题共10小题,每小题3分,共30分)1.下列方程中,关于x的一元二次方程是()A.x2+x+y=0B.x2﹣3x+1=0C.(x+3)2=x2+2x D.2.如图,⊙O是△ABC的外接圆,若∠AOB=100°,则∠ACB的度数是()A.40°B.50°C.60°D.80°3.下列图形中,是中心对称但不是轴对称图形的为()A.B.C.D.4.某机械厂七月份的营业额为100万元,已知第三季度的总营业额共331万元.如果平均每月增长率为x,则由题意列方程应为()A.100(1+x)2=331B.100+100×2x=331C.100+100×3x=331D.100[1+(1+x)+(1+x)2]=3315.下列函数中,当x>0时,y随x的增大而减小的是()A.y=x+1B.y=x2﹣1C.D.y=﹣(x﹣1)2+16.若⊙P的半径为13,圆心P的坐标为(5,12),则平面直角坐标系的原点O与⊙P的位置关系是()A.在⊙P内B.在⊙P上C.在⊙P外D.无法确定7.若△ABC∽△DEF,△ABC与△DEF的相似比为1:2,则△ABC与△DEF的周长比为()A.1:4B.1:2C.2:1D.1:8.若函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,那么m的值为()A.0B.0或2C.2或﹣2D.0,2或﹣29.已知正六边形的边长为10cm,则它的边心距为()A.cm B.5cm C.5cm D.10cm10.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①b2>4ac;②2a+b=0;③a+b+c>0;④若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2,其中正确结论是()A.②④B.①④C.①③D.②③二、填空题(本大题共8小题,每小题4分,共32分)11.从长度分别为2,4,6,7的四条线段中随机取三条,能构成三角形的概率是.12.若|b﹣1|+=0,且一元二次方程kx2+ax+b=0有两个实数根,则k的取值范围是.13.⊙O的半径为13cm,AB,CD是⊙O的两条弦,AB∥CD,AB=24cm,CD=10cm.则AB和CD之间的距离.14.将抛物线:y=x2﹣2x向上平移3个单位,再向右平移4个单位得到的抛物线是.15.已知正比例函数y=﹣2x与反比例函数y=的图象的一个交点坐标为(﹣1,2),则另一个交点的坐标为.16.如图表示一圆柱形输水管的横截面,阴影部分为有水部分,如果输水管的半径为5m,水面宽AB为8m,则水的最大深度CD为m.17.如图:点A在双曲线上,AB丄x轴于B,且△AOB的面积S△AOB=2,则k=.18.如图,已知Rt△ABC是⊙O的内接三角形,其中直角边AC=6、BC=8,则⊙O的半径是.三、解答题(本大题共5小题,共38分)19.解方程:(1)x2+4x+1=0(用配方法);(2)x(x﹣2)+x﹣2=0.20.如图,△ABC是等边三角形,P为△ABC内部一点,将△ABP绕点A逆时针旋转后能与△ACP′重合,如果AP=3,求PP′的长.21.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是;(3)△A2B2C2的面积是平方单位.22.某水果批发商场经销一种水果,如果每千克盈利10元,每天可售出400千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)当每千克涨价为多少元时,每天的盈利最多?最多是多少?(2)若商场只要求保证每天的盈利为4420元,同时又可使顾客得到实惠,每千克应涨价为多少元?23.如图,已知AB是⊙O的直径,点C,D在⊙O上,点E在⊙O外,∠EAC=∠B.(1)求证:直线AE是⊙O的切线;(2)若∠D=60°,AB=6时,求劣弧的长(结果保留π).四、解答题(本大题共5小题,共50分)24.如图,有甲、乙两个转盘,每个转盘上各个扇形的圆心角都相等,让两个转盘分别自由转动一次,当转盘指针落在分界线上时,重新转动.(1)请你画树状图或列表表示所有等可能的结果.(2)求两个指针落在区域的颜色能配成绿色的概率.(黄、蓝两色混合配成绿色)25.如图,已知反比例函数y=与一次函数y=x+b的图象在第一象限相交于点A(1,﹣k+4)(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并根据图象写出使一次函数的值小于反比例函数值的x的取值范围.26.如图,▱ABCD中,E是CD的延长线上一点,BE与AD交于点F,DE=CD.(1)求证:△ABF∽△CEB;(2)若△DEF的面积为2,求▱ABCD的面积.27.如图,在△ABC中,AB=AC,∠BAC=54°,以AB为直径的⊙O分别交AC,BC于点D,E,过点B作⊙O的切线,交AC的延长线于点F.(1)求证:BE=CE;(2)求∠CBF的度数;(3)若AB=6,求的长.28.如图,抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣3,0)两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC 的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由;(3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.下列方程中,关于x的一元二次方程是()A.x2+x+y=0B.x2﹣3x+1=0C.(x+3)2=x2+2x D.【考点】一元二次方程的定义.【分析】一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:A、方程含有两个未知数,故错误;B、符合一元二次方程的定义,正确;C、整理后方程二次项系数为0,故错误;D、不是整式方程,故错误.故选B.【点评】此题主要考查了一元二次方程的定义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.2.如图,⊙O是△ABC的外接圆,若∠AOB=100°,则∠ACB的度数是()A.40°B.50°C.60°D.80°【考点】圆周角定理.【分析】已知⊙O是△ABC的外接圆,∠AOB=100°,根据圆周角定理可求得∠ACB的度数.【解答】解:∵⊙O是△ABC的外接圆,∠AOB=100°,∴∠ACB=∠AOB=×100°=50°.故选B.【点评】本题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角是所对的圆心角的一半.3.下列图形中,是中心对称但不是轴对称图形的为()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形及中心对称图形的定义,结合所给图形进行判断即可.【解答】解:A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误;故选C.【点评】本题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合,难度适中.4.某机械厂七月份的营业额为100万元,已知第三季度的总营业额共331万元.如果平均每月增长率为x,则由题意列方程应为()A.100(1+x)2=331B.100+100×2x=331C.100+100×3x=331D.100[1+(1+x)+(1+x)2]=331【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】根据增长率问题,一般增长后的量=增长前的量×(1+增长率),关系式为:七月份月营业额+八月份月营业额+九月份月营业额=331,把相关数值代入即可求解.【解答】解:设平均每月的增长率为x,根据题意:八月份的月营业额为100×(1+x),九月份的月销售额在八月份月销售额的基础上增加x,为100×(1+x)×(1+x),则列出的方程是:100+100(1+x)+100(1+x)2=331,100[1+(1+x)+(1+x)2]=331.故选D.【点评】此题主要考查了求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.5.下列函数中,当x>0时,y随x的增大而减小的是()A.y=x+1B.y=x2﹣1C.D.y=﹣(x﹣1)2+1【考点】二次函数的性质;一次函数的性质;反比例函数的性质.【分析】反比例函数、二次函数的增减性都有限制条件(即范围),一次函数当一次项系数为负数时,y随着x增大而减小.【解答】解:A、函数y=2x+1的图象是y随着x增大而增大,故本选项错误;B、函数y=x2﹣1,当x<0时,y随着x增大而减小,当x>0时,y随着x增大而增大,故本选项错误;C、函数y=,当x<0或x>0时,y随着x增大而减小,故本选项正确;D、函数y=﹣(x﹣1)2+1,当x<1时,y随着x增大而增大,当x>1时,y随着x增大而减小,故本选项错误;故选C.【点评】本题考查了二次函数、一次函数、反比例函数的增减性.关键是明确各函数的增减性的限制条件.6.若⊙P的半径为13,圆心P的坐标为(5,12),则平面直角坐标系的原点O与⊙P的位置关系是()A.在⊙P内B.在⊙P上C.在⊙P外D.无法确定【考点】点与圆的位置关系;坐标与图形性质.【专题】计算题.【分析】根据P点坐标和勾股定理可计算出OP的长,然后根据点与圆的位置关系的判定方法判断它们的关系.【解答】解:∵圆心P的坐标为(5,12),∴OP==13,∴OP=r,∴原点O在⊙P上.故选B.【点评】本题考查了点与圆的位置关系:.设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.7.若△ABC∽△DEF,△ABC与△DEF的相似比为1:2,则△ABC与△DEF的周长比为()A.1:4B.1:2C.2:1D.1:【考点】相似三角形的性质.【专题】压轴题.【分析】本题可根据相似三角形的性质求解:相似三角形的周长比等于相似比.【解答】解:∵△ABC∽△DEF,且相似比为1:2,∴△ABC与△DEF的周长比为1:2.故选B.【点评】本题主要考查了相似三角形的性质:相似三角形的周长比等于相似比.8.若函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,那么m的值为()A.0B.0或2C.2或﹣2D.0,2或﹣2【考点】抛物线与x轴的交点.【专题】分类讨论.【分析】分为两种情况:函数是二次函数,函数是一次函数,求出即可.【解答】解:分为两种情况:①当函数是二次函数时,∵函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,∴△=(m+2)2﹣4m(m+1)=0且m≠0,解得:m=±2,②当函数是一次函数时,m=0,此时函数解析式是y=2x+1,和x轴只有一个交点,故选:D.【点评】本题考查了抛物线与x轴的交点,根的判别式的应用,用了分类讨论思想,题目比较好,但是也比较容易出错.9.已知正六边形的边长为10cm,则它的边心距为()A.cm B.5cm C.5cm D.10cm【考点】正多边形和圆.【分析】已知正六边形的边长为10cm,欲求边心距,可通过边心距、边长的一半和内接圆半径构造直角三角形,通过解直角三角形得出.【解答】解:如图,∵在正六边形中,OA=OB=AB,∴在Rt△AOG中,OA=AB=10,∠AOG=30°,∴OG=OA•cos30°=10×=5.故选C.【点评】本题考查学生对正多边形的概念掌握和计算的能力.解答此题的关键是根据正六边形的性质,证出△OAB为正三角形,再利用正三角形的性质解答.10.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①b2>4ac;②2a+b=0;③a+b+c>0;④若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2,其中正确结论是()A.②④B.①④C.①③D.②③【考点】二次函数图象与系数的关系.【专题】压轴题.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:∵抛物线的开口方向向下,∴a<0;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,故①正确由图象可知:对称轴x=﹣=﹣1,∴2a﹣b=0,故②错误;∵抛物线与y轴的交点在y轴的正半轴上,∴c>0由图象可知:当x=1时y=0,∴a+b+c=0;故③错误;由图象可知:若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2,故④正确.故选B【点评】此题考查二次函数的性质,解答本题关键是掌握二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.二、填空题(本大题共8小题,每小题4分,共32分)11.从长度分别为2,4,6,7的四条线段中随机取三条,能构成三角形的概率是.【考点】列表法与树状图法;三角形三边关系.【专题】常规题型.【分析】由从长度分别为2,4,6,7的四条线段中随机取三条,可能的结果为:2,4,6;2,4,7;2,6,7;4,6,7共4种,能构成三角形的是2,6,7;4,6,7;直接利用概率公式求解即可求得答案.【解答】解:∵从长度分别为2,4,6,7的四条线段中随机取三条,可能的结果为:2,4,6;2,4,7;2,6,7;4,6,7共4种,能构成三角形的是2,6,7;4,6,7;∴能构成三角形的概率是:=.故答案为:.【点评】此题考查了列举法求概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.12.若|b﹣1|+=0,且一元二次方程kx2+ax+b=0有两个实数根,则k的取值范围是k≤4且k≠0.【考点】根的判别式;非负数的性质:绝对值;非负数的性质:算术平方根.【专题】计算题.【分析】首先根据非负数的性质求得a、b的值,再由二次函数的根的判别式来求k的取值范围.【解答】解:∵|b﹣1|+=0,∴b﹣1=0,=0,解得,b=1,a=4;又∵一元二次方程kx2+ax+b=0有两个实数根,∴△=a2﹣4kb≥0且k≠0,即16﹣4k≥0,且k≠0,解得,k≤4且k≠0;故答案为:k≤4且k≠0.【点评】本题主要考查了非负数的性质、根的判别式.在解答此题时,注意关于x的一元二次方程的二次项系数不为零.13.⊙O的半径为13cm,AB,CD是⊙O的两条弦,AB∥CD,AB=24cm,CD=10cm.则AB和CD之间的距离7cn或17cm.【考点】垂径定理;勾股定理.【专题】分类讨论.【分析】作OE⊥AB于E,交CD于F,连结OA、OC,如图,根据平行线的性质得OF⊥CD,再利用垂径定理得到AE=AB=12,CF=CD=5,接着根据勾股定理,在Rt△OAE中计算出OE=5,在Rt△OCF中计算出OF=12,然后分类讨论:当圆心O在AB与CD之间时,EF=OF+OE;当圆心O不在AB与CD之间时,EF=OF﹣OE.【解答】解:作OE⊥AB于E,交CD于F,连结OA、OC,如图,∵AB∥CD,∴OF⊥CD,∴AE=BE=AB=12,CF=DF=CD=5,在Rt△OAE中,∵OA=13,AE=12,∴OE==5,在Rt△OCF中,∵OC=13,CF=5,∴OF==12,当圆心O在AB与CD之间时,EF=OF+OE=12+5=17;当圆心O不在AB与CD之间时,EF=OF﹣OE=12﹣5=7;即AB和CD之间的距离为7cn或17cm.故答案为7cn或17cm.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.学会运用分类讨论的思想解决数学问题.14.将抛物线:y=x2﹣2x向上平移3个单位,再向右平移4个单位得到的抛物线是y=(x ﹣5)2+2或y=x2﹣10x+27.【考点】二次函数图象与几何变换.【专题】压轴题;几何变换.【分析】先将抛物线的解析式化为顶点式,然后根据平移规律平移即可得到解析式.【解答】解:y=x2﹣2x=(x﹣1)2﹣1,根据平移规律,向上平移3个单位,再向右平移4个单位得到的抛物线是:y=(x﹣5)2+2,将顶点式展开得,y=x2﹣10x+27.故答案为:y=(x﹣5)2+2或y=x2﹣10x+27.【点评】主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.15.已知正比例函数y=﹣2x与反比例函数y=的图象的一个交点坐标为(﹣1,2),则另一个交点的坐标为(1,﹣2).【考点】反比例函数图象的对称性.【分析】反比例函数的图象是中心对称图形,则与经过原点的直线的两个交点一定关于原点对称.【解答】解:根据中心对称的性质可知另一个交点的坐标是:(1,﹣2).故答案为:(1,﹣2).【点评】本题考查了反比例函数图象的中心对称性,较为简单,容易掌握.16.如图表示一圆柱形输水管的横截面,阴影部分为有水部分,如果输水管的半径为5m,水面宽AB为8m,则水的最大深度CD为2m.【考点】垂径定理的应用;勾股定理.【分析】根据题意可得出AO=5cm,AC=4cm,由勾股定理得出CO的长,则CD=OD﹣OC=AO ﹣OC.【解答】解:如图所示:∵输水管的半径为5m,水面宽AB为8m,水的最大深度为CD,∴DO⊥AB,∴AO=5m ,AC=4m ,∴CO==3(m ),∴水的最大深度CD 为:CD=OD ﹣OC=AO ﹣OC=2m .故答案是:2.【点评】本题考查的是垂径定理的应用及勾股定理,根据题意构造出直角三角形是解答此题的关键.17.如图:点A 在双曲线上,AB 丄x 轴于B ,且△AOB 的面积S △AOB =2,则k=﹣4.【考点】反比例函数系数k 的几何意义.【分析】先根据反比例函数图象所在的象限判断出k 的符号,再根据S △AOB =2求出k 的值即可.【解答】解:∵反比例函数的图象在二、四象限,∴k <0,∵S △AOB =2,∴|k|=4,∴k=﹣4.故答案为:﹣4.【点评】本题考查的是反比例系数k 的几何意义,即在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.18.如图,已知Rt △ABC 是⊙O 的内接三角形,其中直角边AC=6、BC=8,则⊙O 的半径是5.【考点】圆周角定理;勾股定理.【分析】由∠ACB=90°可判断出AB 为直径,利用勾股定理求出AB ,继而可得出⊙O 的半径.【解答】解:由题意得,∠ACB=90°,∵Rt△ABC是⊙O的内接三角形,∴AB是⊙O的直径,在Rt△ABC中,AB==10,则⊙O的半径为5.故答案为:5.【点评】本题考查了圆周角定理的知识,解答本题的关键是掌握:90°的圆周角所对的弦是直径.三、解答题(本大题共5小题,共38分)19.解方程:(1)x2+4x+1=0(用配方法);(2)x(x﹣2)+x﹣2=0.【考点】解一元二次方程-因式分解法;解一元二次方程-配方法.【分析】(1)移项,配方,开方,即可得出两个一元一次方程,求出方程的解即可;(2)先分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(1)x2+4x+1=0,x2+4x=﹣1,x2+4x+4=﹣1+4,(x+2)2=3,x+2=±,x1=﹣2+,x2=﹣2﹣;(2)x(x﹣2)+x﹣2=0,(x﹣2)(x+1)=0,x﹣2=0,x+1=0,x1=2,x2=﹣1.【点评】本题考查了解一元二次方程的应用,解(1)小题的关键是能正确配方,解(2)小题的关键是能把一元二次方程转化成一元一次方程,难度适中.20.如图,△ABC是等边三角形,P为△ABC内部一点,将△ABP绕点A逆时针旋转后能与△ACP′重合,如果AP=3,求PP′的长.【考点】等边三角形的判定与性质;旋转的性质.【分析】根据旋转的性质得出AP=AP′,再根据旋转的角度为60°和等边三角形的判定得出△APP′为等边三角形;即可根据等边三角形的性质得出结论.【解答】解:∵△ABC是等边三角形,∴∠BAC=60°∵△ABP绕A点逆时针旋转后与△ACP′重合,∴AP=AP′,∠BAP=∠CAP′,∴∠BAC=∠BAP+∠CAP=∠CAP+∠CAP′=∠PAP′=60°,∴△APP′为等边三角形,∴PP′=AP=3.【点评】本题考查旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.同时考查了等边三角形的判定和性质.21.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,﹣2);(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是(1,0);(3)△A2B2C2的面积是10平方单位.【考点】作图-位似变换;作图-平移变换.【专题】作图题.【分析】(1)利用平移的性质得出平移后图象进而得出答案;(2)利用位似图形的性质得出对应点位置即可;(3)利用等腰直角三角形的性质得出△A2B2C2的面积.【解答】解:(1)如图所示:C1(2,﹣2);故答案为:(2,﹣2);(2)如图所示:C2(1,0);故答案为:(1,0);(3)∵A2C22=20,B2C=20,A2B2=40,∴△A2B2C2是等腰直角三角形,∴△A2B2C2的面积是:×20=10平方单位.故答案为:10.【点评】此题主要考查了位似图形的性质以及平移的性质和三角形面积求法等知识,得出对应点坐标是解题关键.22.某水果批发商场经销一种水果,如果每千克盈利10元,每天可售出400千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)当每千克涨价为多少元时,每天的盈利最多?最多是多少?(2)若商场只要求保证每天的盈利为4420元,同时又可使顾客得到实惠,每千克应涨价为多少元?【考点】一元二次方程的应用;二次函数的应用.【分析】本题的关键是根据题意列出一元二次方程,再求其最值.【解答】解(1)设涨价x元时总利润为y,则y=(10+x)(400﹣20x)=﹣20x2+400x+4000=﹣20(x﹣5)2+4500当x=5时,y取得最大值,最大值为4500.(2)设每千克应涨价x元,则(10+x)(400﹣20x)=4420解得x=3或x=7,为了使顾客得到实惠,所以x=3.【点评】本题考查了二次函数的应用及一元二次方程的应用,求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a的绝对值是较小的整数时,用配方法较好,如y=﹣x2﹣2x+5,y=3x2﹣6x+1等用配方法求解比较简单.23.如图,已知AB是⊙O的直径,点C,D在⊙O上,点E在⊙O外,∠EAC=∠B.(1)求证:直线AE是⊙O的切线;(2)若∠D=60°,AB=6时,求劣弧的长(结果保留π).【考点】切线的判定;弧长的计算.【专题】证明题.【分析】(1)根据圆周角定理可得∠ACB=90°,进而可得∠CBA+∠CAB=90°,由∠EAC=∠B 可得∠CAE+∠BAC=90°,从而可得直线AE是⊙O的切线;(2)连接CO,计算出AO长,再利用圆周角定理可得∠AOC的度数,然后利用弧长公式可得答案.【解答】解:(1)∵AB是⊙O的直径,∴∠ACB=90°,∴∠CBA+∠CAB=90°,∵∠EAC=∠B,∴∠CAE+∠BAC=90°,即BA⊥AE.∴AE是⊙O的切线.(2)连接CO,∵AB=6,∴AO=3,∵∠D=60°,∴∠AOC=120°,∴==2π.【点评】此题主要考查了切线的判定和弧长计算,关键是掌握切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R).四、解答题(本大题共5小题,共50分)24.如图,有甲、乙两个转盘,每个转盘上各个扇形的圆心角都相等,让两个转盘分别自由转动一次,当转盘指针落在分界线上时,重新转动.(1)请你画树状图或列表表示所有等可能的结果.(2)求两个指针落在区域的颜色能配成绿色的概率.(黄、蓝两色混合配成绿色)【考点】列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)中的树状图可求得两个指针落在区域的颜色能配成绿色的情况,再利用概率公式即可求得答案.【解答】解:(1)画树状图得:则共有12种等可能的结果;(2)∵两个指针落在区域的颜色能配成绿色的有2种情况,∴两个指针落在区域的颜色能配成绿色的概率为:=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.25.如图,已知反比例函数y=与一次函数y=x+b的图象在第一象限相交于点A(1,﹣k+4)(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并根据图象写出使一次函数的值小于反比例函数值的x的取值范围.【考点】反比例函数与一次函数的交点问题.【分析】(1)把A(1,﹣k+4)代入解析式y=,即可求出k的值;把求出的A点坐标代入一次函数y=x+b的解析式,即可求出b的值;从而求出这两个函数的表达式;(2)将两个函数的解析式组成方程组,其解即为另一点的坐标.当一次函数的值小于反比例函数的值时,直线在双曲线的下方,直接根据图象写出一次函数的值小于反比例函数的值x的取值范围.【解答】解:(1)∵已知反比例函数y=经过点A(1,﹣k+4),∴﹣k+4=,即﹣k+4=k,∴k=2,∴A(1,2),∵一次函数y=x+b的图象经过点A(1,2),∴2=1+b,∴b=1,∴反比例函数的表达式为y=.一次函数的表达式为y=x+1.(2)由,消去y,得x2+x﹣2=0.即(x+2)(x﹣1)=0,∴x=﹣2或x=1.∴y=﹣1或y=2.∴或.∵点B在第三象限,∴点B的坐标为(﹣2,﹣1),由图象可知,当一次函数的值小于反比例函数值时,x的取值范围是x<﹣2或0<x<1.【点评】本题主要考查了待定系数法求反比例函数与一次函数的解析式和反比例函数y=中k的几何意义.这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.26.如图,▱ABCD中,E是CD的延长线上一点,BE与AD交于点F,DE=CD.(1)求证:△ABF∽△CEB;(2)若△DEF的面积为2,求▱ABCD的面积.【考点】相似三角形的判定与性质;三角形的面积;平行四边形的性质.【专题】几何综合题.【分析】(1)要证△ABF∽△CEB,需找出两组对应角相等;已知了平行四边形的对角相等,再利用AB∥CD,可得一对内错角相等,则可证.(2)由于△DEF∽△EBC,可根据两三角形的相似比,求出△EBC的面积,也就求出了四边形BCDF的面积.同理可根据△DEF∽△AFB,求出△AFB的面积.由此可求出▱ABCD 的面积.【解答】(1)证明:∵四边形ABCD是平行四边形∴∠A=∠C,AB∥CD∴∠ABF=∠CEB∴△ABF ∽△CEB(2)解:∵四边形ABCD 是平行四边形∴AD ∥BC ,AB 平行且等于CD∴△DEF ∽△CEB ,△DEF ∽△ABF∵DE=CD∴,∵S △DEF =2S △CEB =18,S △ABF =8,∴S 四边形BCDF =S △BCE ﹣S △DEF =16∴S 四边形ABCD =S 四边形BCDF +S △ABF =16+8=24.【点评】本题考查了平行四边形的性质、相似三角形的判定和性质等知识.27.如图,在△ABC 中,AB=AC ,∠BAC=54°,以AB 为直径的⊙O 分别交AC ,BC 于点D ,E ,过点B 作⊙O 的切线,交AC 的延长线于点F .(1)求证:BE=CE ;(2)求∠CBF 的度数;(3)若AB=6,求的长.【考点】切线的性质;圆周角定理;弧长的计算.【分析】(1)连接AE ,求出AE ⊥BC ,根据等腰三角形性质求出即可;(2)求出∠ABC ,求出∠ABF ,即可求出答案;(3)求出∠AOD 度数,求出半径,即可求出答案.【解答】(1)证明:连接AE ,∵AB 是⊙O 直径,∴∠AEB=90°,即AE ⊥BC ,∵AB=AC ,∴BE=CE .(2)解:∵∠BAC=54°,AB=AC ,∴∠ABC=63°,∵BF是⊙O切线,∴∠ABF=90°,∴∠CBF=∠ABF﹣∠ABC=27°.(3)解:连接OD,∵OA=OD,∠BAC=54°,∴∠AOD=72°,∵AB=6,∴OA=3,∴弧AD的长是=.【点评】本题考查了切线的性质,等腰三角形的性质,弧长公式,圆周角定理的应用,主要考查学生运用定理进行推理和计算的能力.28.如图,抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣3,0)两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC 的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由;(3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由.【考点】二次函数综合题.【专题】压轴题;开放型.【分析】(1)根据题意可知,将点A、B代入函数解析式,列得方程组即可求得b、c的值,求得函数解析式;(2)根据题意可知,边AC的长是定值,要想△QAC的周长最小,即是AQ+CQ最小,所以此题的关键是确定点Q的位置,找到点A的对称点B,求得直线BC的解析式,求得与对称轴的交点即是所求;。
人教版九年级上册数学期末考试试卷附答案
人教版九年级上册数学期末考试试题一、单选题1.下列图形中,既是中心对称图形,又是轴对称图形的是()A .B .C .D .2.已知关于x 的一元二次方程()23230a x x ---=有一根为3,则a 的值为()A .4B .0C .2D .-13.已知二次函数y =kx 2-7x -7的图象和x 轴有交点,则k 的取值范围是()A .k >-74且k≠0B .k >-74C .k≥-74且k≠0D .k≥-744.若点()()()1231,,2,,3,A y B y C y -在反比例函数6y x=-的图像上,则123,,y y y 的大小关系为()A .123y y y >>B .231y y y >>C .132y y y >>D .321y y y >>5.如图,ABC 是O 的内接三角形,,30AB BC BAC =∠=︒,AD 是直径,8AD =,则AC 的长为()A .4B .CD .6.若0ab <,则正比例函数y ax =与反比例函数by x=在同一平面直角坐标系中的大致图像可能是()A .B .C .D .7.袋中有5个白球,若干个红球,从中任意取一个球,恰为红球的概率是23,则红球的个数为()A .4B .5C .10D .158.△ABC 为⊙O 的内接三角形,若∠AOC=140°,则∠ABC 的度数是()A .80°B .160°C .100°D .70°或110°9.二次函数y=ax 2+bx+c (a≠0)的部分图象如图,图象过点(-1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c >3b;③8a+7b+2c >0;④当x >-1时,y 的值随x 值的增大而增大.其中正确的结论有()A .1个B .2个C .3个D .4个10.如图,将△ABC 绕点C 顺时针旋转α得到△DEC ,此时点D 落在边AB 上,且DE 垂直平分BC ,则ACDE的值是()A .13B .12C .35D .2二、填空题11.已知点A(2,a)和点B(b ,-1)关于原点对称,则a+b=_______.12.已知二次函数y=x 2-4x -m 的最小值是1,则m=_______.13.如图所示,AB ,AC 与⊙O 相切于点B ,C ,∠A=50°,点P 是圆上异于B ,C 的一动点,则∠BPC 的度数是_____.14.如果圆的内接正六边形的边长为6cm ,则其外接圆的半径为___________.15.如图,点A 在双曲线ky x=上,AB ⊥x 轴于B ,且△AOB 的面积S △AOB=2,则k=______.16.一个扇形的半径是12cm ,圆心角的度数是90°,把它做成一个圆锥的侧面,则圆锥的高是_______.17.如图,O 的半径为2,四边形ACBD 内接于O ,连接OB 、OA ,若ACB AOB ∠=∠,则劣弧 AB 的长为______.三、解答题18.解方程(1)x(x ﹣2)+x ﹣2=0;(2)3x 2+3(2x+1)=0.19.若关于x 的一元二次方程2410x x k ++-=有两个不相等的实数根.(1)求k 的取值范围;(2)若该方程的两个实数根的积为2,求k 的值.20.如图,△ABC 三个顶点的坐标分别为A (2,4),B (1,1),C (4,3).(1)请画出△ABC 关于x 轴对称的△A 1B 1C 1,并写出点A 1的坐标;(2)请画出△ABC 绕点B 逆时针旋转90°后的△A 2BC 2;(3)求出(2)中C 点旋转到C 2点所经过的路径长(记过保留根号和π).21.如图,在△ABC 中,AB =AC ,∠BAC =120°,点D 在BC 边上,⊙D 经过点A 和点B 且与BC 边相交于点E .(1)求证:AC 是⊙D 的切线;(2)若CE =3D 的半径.22.如图,已知A(n ,﹣2),B(1,4)是一次函数y kx b =+的图象和反比例函数my x=的图象的两个交点,直线AB 与y 轴交于点C .(1)求一次函数和反比例函数的解析式;(2)求△AOB 的面积.(3)求不等式kx+b-mx<0的解集.(直接写出答案)23.某水果批发商场经销一种水果,如果每千克盈利10元,每天可售出400千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)假设每千克涨价x元,商场每天销售这种水果的利润是y元,请写出y关于x的函数解析式;(2)若商场只要求保证每天的盈利为4420元,同时又可使顾客得到实惠,每千克应涨价为多少元?(3)当每千克涨价为多少元时,每天的盈利最多?最多是多少?24.如图,在平面直角坐标系中,抛物线2y x bx c=-++与x轴交于点,A B,与y轴交于点C,且直线6y x=-过点B,与y轴交于点D,点C与点D关于x轴对称.点P是线段OB上一动点,过点P作x轴的垂线交抛物线于点M,交直线BD于点N.(1)求抛物线的函数解析式;(2)当MDB△的面积最大时,求点P的坐标;(3)在(2)的条件下,在y轴上是否存在点Q,使得以,,Q M N三点为顶点的三角形是直角三角形,若存在,直接写出点Q的坐标;若不存在,说明理由.25.如图所示,⊙O的弦BD,CE所在直线相交于点A,若AB=AC,求证:BD=CE.26.如图,抛物线y=x2+bx+c与x轴交于A(﹣3,0)、B两点,与y轴交于点C(0,﹣3).(1)求抛物线的解析式;(2)结合图形,求y>0时自变量x的取值范围.参考答案1.B【分析】根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断即可.【详解】解:A、既不是轴对称图形形,也不是中心对称图形,故本选项不符合题意;B 、既是轴对称图形形,也是中心对称图形,故本选项符合题意;C 、不是中心对称图形,是轴对称图形形,故本选项不符合题意;D 、是中心对称图形,不是轴对称图形形,故本选项不符合题意.故选B .【点睛】本题考查中心对称形与轴对称图形的概念,注意掌握轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.A【分析】根据一元二次方程解的定义把x=3代入()23230a x x ---=中得到关于a 的方程,解方程即可.【详解】解:把x=3代入到()23230a x x ---=中得:()932330a --⨯-=,∴92790a --=,∴4a =,故选A .【点睛】本题主要考查了一元二次解的定义,解一元一次方程,熟知一元二次方程解的定义是解题的关键.3.C【分析】由于二次函数与x 轴有交点,故二次函数对应的一元二次方程kx 2-7x-7=0中,Δ≥0,解不等式即可求出k 的取值范围,由二次函数定义可知k≠0.【详解】解:∵二次函数277y kx x =--的图象和x 轴有交点,∴049280k k ≠⎧⎨+≥⎩,∴k≥-74且k≠0.故选:C .4.C【分析】根据点()()()1131,,2,,3,A y B y C y -在反比例函数6y x=-的图象上,可以求得123,,y y y 的值,从而可以比较出123,,y y y 的大小关系.【详解】解:∵点()()()1131,,2,,3,A y B y C y -在反比例函数6y x=-的图象上,∴1661y =-=-,2632y =-=-,3623y =-=-,∵326--<<,∴132y y y >>,故选:C .5.B【分析】连接BO ,根据圆周角定理可得60BOA ∠=︒,再由圆内接三角形的性质可得OB 垂直平分AC ,再根据正弦的定义求解即可.【详解】如图,连接OB ,∵ABC 是O 的内接三角形,∴OB 垂直平分AC ,∴1=2AM CM AC =,OM AM ⊥,又∵,30AB BC BAC =∠=︒,∴30BCA ∠=︒,∴60BOA ∠=︒,又∵AD=8,∴AO=4,∴sin 6042AM AM AO ︒===,解得:AM =∴2AC AM ==故答案选B .6.B【分析】由0ab <,得,a b 异号,若图象中得到的,a b 异号则成立,否则不成立.【详解】A.由图象可知:0,0a b >>,故A 错误;B.由图象可知:0,0a b <>,故B 正确;C.由图象可知:0,0a b ><,但正比例函数图象未过原点,故C 错误;D.由图象可知:0,0a b <<,故D 错误;故选:B .7.C【分析】设红球有n 个,利用概率公式列方程求解即可.【详解】解:设红球有n 个,根据题意,得253n n =+,解得:10n =,经检验,10n =是所列方程的解,所以,红球的个数为10,故选:C .8.D【分析】首先根据题意画出图形,由圆周角定理即可求得答案∠ABC 的度数,又由圆的内接四边形的性质,即可求得∠AB′C 的度数.【详解】解:如图,∵∠AOC=140°,∴∠ABC=12∠AOC=12×140°=70°,∵∠ABC+∠AB′C=180°,∴∠AB′C=180°-∠ABC=180°-70°=110°.∴∠ABC 的度数是70°或110°.故选:D .9.B【分析】根据抛物线的对称轴即可判定①;观察图象可得,当x=-3时,y <0,由此即可判定②;观察图象可得,当x=1时,y >0,由此即可判定③;观察图象可得,当x >2时,y 的值随x 值的增大而增大,即可判定④.【详解】由抛物线的对称轴为x=2可得2ba-=2,即4a+b=0,①正确;观察图象可得,当x=-3时,y <0,即9a-3b+c <0,所以93a c b +<,②错误;∵抛物线与x 轴的一个交点为(-1,0),∴x=-1时,a-b+c=0,∴a+4a+c=0,即5a+c=0,∴c=-5a ,∴8a+7b+2c=8a-28a-10a=-30a ,而a <0,∴8a+7b+2c >0,③正确;观察图象可得,当x <2时,y 的值随x 值的增大而增大,④错误.综上,正确的结论有2个.故选B.10.B【分析】根据旋转的性质和线段垂直平分线的性质证明DCF DEC ∆∆∽,对应边成比例即可解决问题.【详解】解:如图,设DE 与BC 交于点F ,由旋转可知:CA CD =,AB DE =,BC EC =,B E ∠=∠,DE 垂直平分BC ,DF BC ∴⊥,DC DB =,1122CF BF BC EC ===,DCB B E ∴∠=∠=∠,90DCB FDC ∠+∠=︒ ,90E FDC ∴∠+∠=︒,90DCE ∴∠=︒,DCF DEC ∴∆∆∽,∴12CD CF DE CE ==,∴12AC DE =.故选:B .【点睛】本题考查了相似三角形的判定与性质,线段垂直平分线的性质,旋转的性质,解题的关键是得到DCF DEC ∆∆∽.11.-1【分析】根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,即可求解.【详解】解:∵点A(2,a)和点B(b ,-1)关于原点对称,∴2,1b a =-=,211a b ∴+=-+=-,故答案为:1-.【点睛】本题考查了关于原点对称的点的坐标特征,掌握“关于原点对称的两个点,横坐标、纵坐标分别互为相反数”是解题的关键.12.-5【分析】将二次函数的解析式化为顶点式,利用二次函数求最值方法求解即可.【详解】解:由()22424y x x m x m =--=---知,当x=2时,y 有最小值为-4-m ,∵该函数的最小值为1,∴-4-m=1,解得:m=-5,故答案为:-5.【点睛】本题考查二次函数的性质,熟练掌握求二次函数的最值方法是解答的关键.13.65°或115°##115°或65°【详解】本题要分两种情况考虑,如下图,分别连接OC ;OB ;BP 1;BP 2;CP 1;CP 2(1)当∠BPC 为锐角,也就是∠BP 1C 时:∵AB ,AC 与⊙O 相切于点B ,C 两点∴OC⊥AC,OB⊥AB,∴∠ACO=∠ABO=90°,∵∠A=50°,∴在四边形ABOC中,∠COB=130°,∴∠BP1C=65°,(2)如果当∠BPC为钝角,也就是∠BP2C时∵四边形BP1CP2为⊙O的内接四边形,∵∠BP1C=65°,∴∠BP2C=115°.综合(1)、(2)可知,∠BPC的度数为65°或115°.14.6cm【详解】解:因为圆的内接正六边形的边长等于圆的半径,所以正六边形的外接圆的半径=边长=6cm.故答案为:6cm15.-4【详解】解:由反比例函数解析式可知:系数k x y=⋅,∵S△AOB=2,即122k x y=⋅=,∴224k=⨯=;∵双曲线在二、四象限,k<0,∴k=-416.【分析】设圆锥底面圆半径为r,根据底面圆的周长等于扇形的弧长求出r,再利用勾股定理求解即可.【详解】解:设圆锥底面圆半径为r,由题意得:90122180r ππ⨯⨯=,∴3cm r =,∴圆锥的高h ==,故答案为:.【点睛】本题主要考查了求圆锥的高,勾股定理,弧长公式,正确求出圆锥底面圆半径是解题的关键.17.4π3【分析】先利用ACB AOB ∠=∠及圆内接四边形的性质得到AOB ∠的值,再利用弧长公式计算即可.【详解】解:设ACB AOB x ∠=∠=,则1122ADB AOB ∠=∠=,∵180ACB ADB ∠+∠=︒,∴80121x x +=︒,∴120x =︒,∴劣弧 AB 的长为120241803ππ︒⨯⨯=︒.故答案为:4π3.【点睛】本题考查弧长公式、圆内接四边形的性质及圆周角定理,解题的关键是记住弧长公式180n r l =︒π.18.(1)x 1=2,x 2=﹣1(2)x 1=x 2=-1【分析】(1)利用因式分解法解方程;(2)先把原方程变形为x 2+2x+1=0,然后利用因式分解法解方程.(1)解:x(x ﹣2)+x ﹣2=0,(x-2)(x+1)=0,x-2=0或x+1=0,所以x 1=2,x 2=-1;(2)解:()233210x x ++=2210x x ++=,(x+1)2=0,x+1=0,所以x 1=x 2=-1.【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.19.(1)5k <;(2)=3k 【分析】(1)由方程有两个不相等的实数根,结合根的判别式即可得出△2040k =->,解之即可得出k 的取值范围;(2)由根与系数的关系结合该方程的两个实数根的积为2,即可得出12k -=,解之即可求出k 值.【详解】解:(1) 方程2410x x k ++-=有两个不相等的实数根,∴△244(1)2040k k =--=->,解得:5k <.(2)设方程的两个根分别为m 、n ,根据题意得:12mn k =-=,解得:3k =.【点睛】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)熟练掌握“当△0>时,方程有两个不相等的实数根”;(2)牢记两根之积等于c a.20.(1)作图见试题解析,A 1(2,﹣4);(2)作图见试题解析;(3)2.【分析】(1)找到点A 、B 、C 的对应点A 1、B 1、C 1的位置,然后描点即可得到△A 1B 1C 1;(2)利用网格特点和旋转的性质,画出点A 、C 的对应点A 2、C 2,则可得到△A 2BC 2;(3)C 点旋转到C 2点所经过的路径是以B 点为圆心,BC 为半径,圆心角为90°的弧,然后根据弧长公式计算即可.【详解】解:(1)如图,△A 1B 1C 1为所作,点A 1的坐标为(2,﹣4);(2)如图,△A 2BC 2为所作;(3)C 点旋转到C 2点所经过的路径长=901802π=.【点睛】本题考查了作图﹣旋转变换,轴对称变换,勾股定理及弧长公式,解题的关键是能够准确找出对应点.21.(1)见解析【分析】(1)连接AD ,根据等腰三角形的性质得到∠B =∠C =30°,∠BAD =∠B =30°,求得∠ADC =60°,根据三角形的内角和得到∠DAC =180°﹣60°﹣30°=90°,于是得到AC 是⊙D 的切线;(2)连接AE ,推出△ADE 是等边三角形,得到AE =DE ,∠AED =60°,求得∠EAC =∠AED ﹣∠C =30°,得到AE =CE =2(1)证明:连接AD ,∵AB =AC ,∠BAC =120°,∴∠B =∠C =30°,∵AD =BD ,∴∠BAD =∠B =30°,∴∠ADC =60°,∴∠DAC =180°﹣60°﹣30°=90°,∴AC 是⊙D 的切线;(2)解:连接AE ,∵AD =DE ,∠ADE =60°,∴△ADE 是等边三角形,∴AE =DE ,∠AED =60°,∴∠EAC =∠AED ﹣∠C =30°,∴∠EAC =∠C ,∴AE =CE =2∴⊙D 的半径AD =2【点睛】本题考查了切线的判定和性质,等腰三角形的性质,等边三角形的判定和性质,正确的作出辅助线是解题的关键.22.(1)反比例函数解析式为4y x=,一次函数解析式为y=2x+2(2)S △AOB=3(3)01x <<或2x <-【分析】(1)由B 点在反比例函数m y x =上,可求出m ,再由A 点在函数图象上,由待定系数法求出函数解析式.(2)求出C 点的坐标,再根据三角形面积公式求即可.(3)由图象观察函数m y x =的图象在一次函数y kx b =+图象的上方,对应的x 的范围.(1)解:∵A(n ,﹣2),B(1,4)是一次函数y kx b =+的图象和反比例函数m y x =的图象的两个交点,∴把点()1,4B 代入m y x=中,4,m ∴=∴反比例函数解析式为4,y x =42,n∴-=2,n ∴=-()2,2,A ∴--将A (﹣2,﹣2),B (1,4)代入y=kx+b 中,得224k b k b -+=-⎧⎨+=⎩,22k b =⎧∴⎨=⎩,∴一次函数解析式为2 2.y x =+(2)解:当0x =时,222,y x =+=()0,2,C ∴∴OC=2,11222,211,22AOC BOC S S ∴=⨯⨯==⨯⨯= 3.AOB AOC BOC S S S =+= (3)解:由图象知:当01x <<和2x <-时,函数4y x=的图象在一次函数22y x =+图象的上方,∴不等式0m kx b x+-<的解集为:01x <<或2x <-.【点睛】本题考查了应待定系数法求出一次函数和反比例函数的解析式、三角形的面积和利用函数的图象求不等式的解集等知识点,能求出两函数的解析式是解此题的关键,用了数形结合思想.23.(1)2202004000y x x =-++(2)每千克应涨价3元(3)当每千克涨价为5元时,每天的盈利最多,最多是4500元【分析】(1)根据利润=每千克利润×销售量求解函数解析式即可;(2)由y=4420,解一元二次方程即可求解;(3)利用二次函数的性质求解即可.(1)解:设每千克涨价x 元,由题意,得:()()1040020y x x =+-2202004000x x =-++,即y 与x 的函数解析式为2202004000y x x =-++;(2)解:设每千克应涨价x 元,由y=4420得:24420202004000x x =-++即210210x x -+=,解得:13x =,27x =,∵同时要使顾客得到实惠,∴3x =,答:每千克应涨价为3元;(3)解:设每千克涨价x 元,由于()222020040002054500y x x x =-++=--+,∵-20<0,∴当x=5时,y 有最大值,最大值为4500,答:当每千克涨价为5元时,每天的盈利最多,最多是4500元.【点睛】本题考查二次函数的应用、一元二次方程的应用,理解题意,正确求出二次函数解析式并会利二次函数的性质求最值是解答的关键.24.(1)256y x x =-++;(2)(2,0);(3)存在,(0,12)或(0,-4)或(0,4+或(0,4-.【分析】(1)根据直线6y x =-求出点B 和点D 坐标,再根据C 和D 之间的关系求出点C 坐标,最后运用待定系数法求出抛物线表达式;(2)设点P 坐标为(m ,0),表示出M 和N 的坐标,再利用三角形面积求法得出S △BMD =231236m m -++,再求最值即可;(3)分当∠QMN=90°时,当∠QNM=90°时,当∠MQN=90°时,三种情况,结合相似三角形的判定和性质,分别求解即可.【详解】解:(1)∵直线6y x =-过点B ,点B 在x 轴上,令y=0,解得x=6,令x=0,解得y=-6,∴B (6,0),D (0,-6),∵点C 和点D 关于x 轴对称,∴C (0,6),∵抛物线2y x bx c =-++经过点B 和点C ,代入,03666b c c =-++⎧⎨=⎩,解得:56b c =⎧⎨=-⎩,∴抛物线的表达式为:256y x x =-++;(2)设点P 坐标为(m ,0),则点M 坐标为(m ,256m m -++),点N 坐标为(m ,m-6),∴MN=256m m -++-m+6=2412m m -++,∴S △BMD =S △MNB +S △MND =()2141262m m ⨯-++⨯=231236m m -++=-3(m-2)2+48当m=2时,S △BMD 最大=48,此时点P 的坐标为(2,0);(3)存在,由(2)可得:M (2,12),N (2,-4),设点Q 的坐标为(0,n ),当∠QMN=90°时,即QM ⊥MN ,如图,可得,此时点Q 和点M 的纵坐标相等,即Q (0,12);当∠QNM=90°时,即QN ⊥MN ,如图,可得,此时点Q 和点N 的纵坐标相等,即Q (0,-4);当∠MQN=90°时,MQ ⊥NQ ,如图,分别过点M 和N 作y 轴的垂线,垂足为E 和F ,∵∠MQN=90°,∴∠MQE+∠NQF=90°,又∠MQE+∠QME=90°,∴∠NQF=∠QME ,∴△MEQ ∽△QFN ,∴MEEQ QF FN =,即21242n n -=+,解得:n=4+4-∴点Q(0,4+0,4-),综上:点Q的坐标为(0,12)或(0,-4)或(0,4+0,4-).【点睛】本题是二次函数综合题,考查了二次函数的表达式,相似三角形的判定和性质,直角三角形的性质,二次函数的最值,解一元二次方程,解题时要注意数形结合,分类讨论思想的运用.25.见详解【分析】如图,连接DE,BC.证明∠ADE=∠AED,推出AD=AE,可得结论.【详解】证明:如图,连接DE,BC.∵AB=AC,∴∠B=∠C,∵∠ADE+∠EDB=180°,∠C+∠EDB=180°,∴∠ADE=∠C,同法可证,∠AED=∠B,∴∠ADE=∠AED,∴AD=AE,∴BD=EC.【点睛】本题考查圆心角,弧,弦的关系,等腰三角形的判定和性质等知识,解题的关键是证明AD=AE .26.(1)223y x x =+-(2)3x <-或1x >【分析】(1)将点()()3,0,03A C --,代入解析式,待定系数法求解析式即可;(2)根据解析式令0y =,求得点B 的坐标,进而根据抛物线与x 轴的交点结合函数图象即可求得y >0时自变量x 的取值范围.(1)解:将点()()3,0,03A C --,代入抛物线y =x 2+bx+c ,得9303b c c -+=⎧⎨=-⎩解得23b c =⎧⎨=-⎩则抛物线的解析式为:223y x x =+-(2)由抛物线的解析式223y x x =+-,令0y =即2230x x +-=解得123,1x x =-=()1,0B ∴ ()30A -,,()10B ,,且抛物线开口向上,∴y >0时自变量x 的取值范围为3x <-或1x >。
2024年最新人教版初三数学(上册)期末考卷及答案(各版本)
2024年最新人教版初三数学(上册)期末考卷一、选择题(每题3分,共30分)1. 若一个数的立方根等于它的平方根,则这个数是()A. 0B. 1C. 1D. ±12. 若一个数是它自己的倒数,则这个数是()A. 0B. 1C. 1D. ±13. 若一个数的绝对值等于它本身,则这个数是()A. 正数B. 负数C. 0D. 正数或04. 若一个数的绝对值等于它的相反数,则这个数是()A. 正数B. 负数C. 0D. 正数或05. 若一个数的平方等于它本身,则这个数是()A. 0B. 1C. 1D. 0或16. 若一个数的立方等于它本身,则这个数是()A. 0B. 1C. 1D. 0或17. 若一个数的平方根是它自己的倒数,则这个数是()A. 0B. 1C. 1D. ±18. 若一个数的立方根是它自己的相反数,则这个数是()A. 0B. 1C. 1D. ±19. 若一个数的绝对值等于它的立方,则这个数是()A. 正数B. 负数C. 0D. 正数或010. 若一个数的绝对值等于它的平方,则这个数是()A. 正数B. 负数C. 0D. 正数或0二、填空题(每题3分,共30分)11. 若一个数的平方根是它自己的倒数,则这个数是______。
12. 若一个数的立方根是它自己的相反数,则这个数是______。
13. 若一个数的绝对值等于它的立方,则这个数是______。
14. 若一个数的绝对值等于它的平方,则这个数是______。
15. 若一个数的平方等于它本身,则这个数是______。
16. 若一个数的立方等于它本身,则这个数是______。
17. 若一个数的平方根是它自己的倒数,则这个数是______。
18. 若一个数的立方根是它自己的相反数,则这个数是______。
19. 若一个数的绝对值等于它的立方,则这个数是______。
20. 若一个数的绝对值等于它的平方,则这个数是______。
人教版九年级(上)期末数学试卷(含答案)
人教版九年级(上)期末数学试卷第I卷(选择题)一、选择题(本大题共16小题,共48.0分。
在每小题列出的选项中,选出符合题目的一项)1.一元二次方程x2+6x+5=0的常数项是( )A. 0B. 1C. 5D. 都不对2.如图所示图形中是中心对称图形的是( )A. 正三角形B. 等腰三角形C. 直角三角形D. 圆3.如图,∠1=∠2,则下列各式不能说明△ABC∽△ADE的是( )A. ∠D=∠BB. ∠E=∠CC. ADAB =AEACD. ADAB =DEBC4.将抛物线y=−3x2平移,得到抛物线y=−3(x−1)2−2,下列平移方式中,正确的是( )A. 先向左平移1个单位,再向上平移2个单位B. 先向左平移1个单位,再向下平移2个单位C. 先向右平移1个单位,再向上平移2个单位D. 先向右平移1个单位,再向下平移2个单位5.如图,在△ABC中,DE//BC,DE分别与AB,AC相交于点D,E,若AD=4,DB=2,则DE:BC的值为( )A. 23B. 12C. 34D. 356.下列事件中,是随机事件的是( )第2页,共18页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………A. 太阳从西边升起B. △ABC 中,AB 与AC 的和比BC 大C. 两个负数相乘,积为正D. 两个数相加,和大于其中的一个加数7. 如图,在一块宽为20m ,长为32m 的矩形空地上,修筑宽相等的两条小路,两条路分别与矩形的边平行,如图,若使剩余(阴影)部分的面积为560m 2,问小路的宽应是多少?设小路的宽为xcm ,根据题意得( )A. 32x +20x =20×32−560B. 32×20−20x ×32x =560C. (32−x)(20−x)=560D. 以上都不正确8. 一个不透明的盒子中装有2个红球,1个白球和1个黄球,它们除颜色外都相同,若从中任意摸出一个球,则下列叙述正确的是( )A. 摸到红球是必然事件B. 摸到黄球是不可能事件C. 摸到白球与摸到黄球的可能性相等D. 摸到红球比摸到黄球的可能性小9. 如图,已知⊙O 的半径为4,则它的内接正方形ABCD 的边长为( )A. 1B. 2C. 4√2D. 2√210. 如图,在平面直角坐标系xOy 中,点P 为函数y =4x(x <0)图象上任意一点,过点P 作PA ⊥x 轴于点A ,则△PAO 的面积是( )A. 8B. 4C. 2D. −211. 如图,PA ,PB 是⊙O 的切线,A ,B 是切点,若∠P =70°,则∠ABO =( )A. 30°B. 35°C. 45°D. 55°12.下列关于二次函数y=2x2的说法正确的是( )A. 它的图象经过点(−1,−2)B. 它的图象的对称轴是直线x=2C. 当x<0时,y随x的增大而减小D. 当x=0时,y有最大值为013.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC= 150cm,CD=800cm,则树高AB等于( )A. 300cmB. 400cmC. 550cmD. 都不对14.在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在0.25附近,则估计口袋中大约共有白球( )A. 10B. 15C. 20D. 都不对15.如图,若△ABC与△A1B1C1是位似图形,则位似中心的坐标为( )A. (1,0)B. (0,1)C. (−1,0)D. (0,−1)16.如图,△ABC和阴影三角形的顶点都在小正方形的顶点上,则与△ABC相似的阴影三角形为( )A. B. C. D.第II卷(非选择题)二、填空题(本大题共3小题,共12.0分)17.二次函数y=2(x−1)2−5的开口方向______,最小值是______.18.如图,△ABC∽△A′B′C′,AD和A′D′分别是△ABC和△A′B′C′的高,若AD=2,A′D′=3,则△ABD与△A′B′D′的周长之比为______.△ABC与△A′B′C′的面积之比为______.第4页,共18页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………19. 已知一次函数y 1=kx +m(k ≠0)和二次函数y 2=ax 2+bx +c(a ≠0)部分自变量与对应的函数值如下表x … −1 0 2 4 5 … y 1 … 0 1 3 5 6 … y 2…−159…当y 2=y 1时,自变量x 的取值是______,当y 2>y 1时,自变量x 的取值范围是______.三、解答题(本大题共7小题,共66.0分。
人教版九年级上册数学期末考试试卷带答案解析
人教版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.下列图形中,既是轴对称图形,又是中心对称图形的是()A .B .C .D .2.下列事件中,属于必然事件的是()A .明天的最高气温将达35℃B .任意购买一张动车票,座位刚好挨着窗口C .掷两次质地均匀的骰子,其中有一次正面朝上D .对顶角相等3.若关于x 的方程21204kx x -+=有实数根,则实数k 的取值范围是()A .4k <B .4k <且0k ≠C .4k ≤D .4k ≤且0k ≠4.为测量某地温度变化情况,记录了一段时间的温度.一段时间内,温度y 与时间t 的函数关系满足y =-t 2+12t+2,当4≤t ≤8时,该地区的最高温度是()A .38℃B .37℃C .36℃D .34℃5.如图,⊙O 是△ABC 的外接圆,连接OB ,若∠OBC =30°,则∠A 的度数为()A .55°B .60°C .65°D .70°6.为执行“均衡教育”政策,某区2018年投入教育经费7000万元,预计到2020年投入2.317亿元,若每年投入教育经费的年平均增长百分率为x ,则下列方程正确的是()A .7000(1+x 2)=23170B .7000+7000(1+x )+7000(1+x )2=23170C .7000(1+x )2=23170D .7000+7000(1+x )+7000(1+x )2=23177.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色,那么可配成紫色的概率是()A .14B .34C .13D .128.如图,直线l 是⊙O 的切线,A 为切点,B 为直线l 上一点,连接OB 交⊙O 于点C .若AB =8,OA =6,则BC 的长为()A .3B .4C .5D .69.如图所示是二次函数()20y ax bx c a =++≠图象的一部分,对称轴是直线12x =,且经过点()2,0,下列说法:①0abc >;②240b ac ->;③1x =-是关于x 的方程20ax bx c ++=的一个根;④0a b +=.其中正确的个数为()A .1B .2C .3D .410.如图,在平面直角坐标系中,()C 0,4,()A 3,0,A 半径为2,P 为A 上任意一点,E 是PC 的中点,则OE 的最小值是()A .1B .32C .2D 2二、填空题11.已知m 、n 是方程2220200x x +-=的两个实数根,则代数式23m mn m n +++=______.12.若函数265y x x =-+,当26x ≤≤时的最大值是M ,最小值是m ,则M m -=____.13.如图,将△OAB 绕点O 逆时针旋转80°,得到△OCD ,若∠A=2∠D=100°,则∠α的度数____.14.如图,在Rt △ABC 中,∠ABC =90°,⊙O 的圆心在AB 边上,且分别与AC 、BC 相切于点D 、B ,若AB =6cm ,AC =10cm ,则⊙O 的半径为________cm .15.二次函数2y =的图象如图,点O 为坐标原点,点A 在y 轴的正半轴上,点B 、C在二次函数2y =的图象上,四边形OBAC 为菱形,且∠OBA=120°,则菱形OBAC 的面积为______.16.若点P(2,3)与点Q 关于原点对称,则点Q 的坐标是__________.三、解答题17.解下列方程:(1)x 2+4x -2=0;(2)(x -2)2=3(x -2).18.已知关于x 的一元二次方程x 2-5x +m =0.(1)若方程有实数根,求实数m 的取值范围;(2)若方程两实数根为x 1,x 2,且满足3x 1-2x 2=5,求实数m 的值.19.已知函数()21145my m x x +=-+-是二次函数.(1)求m 的值;(2)写出这个二次函数图象的对称轴和顶点坐标.20.如图,在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (1,-4)、B (3,-3)、C (1,-1)(每个小方格都是边长为一个单位长度的正方形).(1)请画出△ABC 关于原点对称的△A 1B 1C 1;(2)请画出△ABC 绕点B 逆时针旋转90°后的△A 2B 2C 2,并求出A 点旋转到A 2点经过的路径长.21.某生物实验室需培育一群有益菌.现有60个活体样本,经过两轮培植后,总和达24000个,其中每个有益菌每一次可分裂出若干个相同数目的有益菌.(1)每轮分裂中平均每个有益菌可分裂出多少个有益菌?(2)按照这样的分裂速度,经过三轮培植后有多少个有益菌?22.现有甲、乙、丙三人组成的篮球训练小组,他们三人之间进行互相传球练习,篮球从一个人手中随机传到另外一个人手中计作传球一次,共连续传球三次.(1)若开始时篮球在甲手中,则经过第一次传球后,篮球落在丙的手中的概率是;(2)若开始时篮球在甲手中,求经过连续三次传球后,篮球传到乙的手中的概率.(请用画树状图或列表等方法求解)23.某商店销售一款进价为每件40元的护肤品,调查发现,销售单价不低于40元且不高于80元时,该商品的日销售量y(件)与销售单价x(元)之间存在一次函数关系,当销售单价为44元时,日销售量为72件;当销售单价为48元时,日销售量为64件.(1)求y与x之间的函数关系式;(2)设该护肤品的日销售利润为w(元),当销售单价x为多少时,日销售利润w最大,最大日销售利润是多少?24.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点M,MN⊥AC于点N.(1)求证:MN是⊙O的切线;(2)若∠BAC=120°,AB=2,求图中阴影部分的面积.25.某地摊上的一种玩具,已知其进价为50元个,试销阶段发现将售价定为80元/个时,每天可销售20个,后来为了扩大销售量,适当降低了售价,销售量y(个)与降价x(元)的关系如图所示.()1求销量y与降价x之间的关系式;()2该玩具每个降价多少元,可以恰好获得750元的利润?()3若要使得平均每天销售这种玩具的利润W最大,则每个玩具应该降价多少元?最大的利润W为多少元?参考答案1.D【解析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项不符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是轴对称图形,不是中心对称图形,故此选项不符合题意;D、是轴对称图形,是中心对称图形,故此选项符合题意;故选:D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.D【分析】A、明天最高气温是随机的,故A选项错误;B、任意买一张动车票,座位刚好挨着窗口是随机的,故B选项错误;C、掷骰子两面有一次正面朝上是随机的,故C选项错误;D 、对顶角一定相等,所以是真命题,故D 选项正确.【详解】解:“对顶角相等”是真命题,发生的可能性为100%,故选:D .【点睛】本题的考点是随机事件.解决本题需要正确理解必然事件的概念:必然事件指在一定条件下一定发生的事件.3.C【分析】根据题意可分两种情况,当0k ≠,一元二次方程0∆≥;当0k =时,一元一次方程也符合题意,即得出答案.【详解】解:当0k ≠时,144404k k ∆=-⨯=-≥,4k ∴≤,当0k =时,也符合题意,4k ∴≤.故选:C .【点睛】本题主要考查方程有实数根的条件,属于基础题,涉及一元二次方程根的判别式,分一元一次方程和一元二次方程两种情况考虑是解决本题的关键.4.A【分析】先确定二次函数的最大值,然后结合自变量的取值范围确定答案即可.【详解】∵22122(6)38y t t t =-++=--+,∴当t=6时,函数最大值为38℃,∴当4≤t ≤8时该地区的最高温度是当4≤t ≤8时,故选:A .【点睛】此题考查二次函数的实际应用,掌握二次函数最值的确定方法是解题的关键.【分析】连接OC ,根据OB=OC ,得到∠OCB=∠OBC ,求出∠BOC 的度数,根据圆周角定理求出答案.【详解】如图,连接OC ,∵OB=OC ,∴∠OCB=∠OBC =30°,∴1803030120BOC ∠=︒-︒-︒=︒,∴∠A=12BOC ∠=60︒,故选:B ..【点睛】此题考查同圆的半径相等的性质,圆周角定理,三角形的内角和定理,熟记同弧所对的圆周角等于圆心角的一半是解题的关键.6.C【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设每年投入教育经费的年平均增长百分率为x ,再根据“2018年投入7000万元”可得出方程.【详解】设每年投入教育经费的年平均增长百分率为x ,则2020年的投入为7000(1+x )2=23170由题意,得7000(1+x )2=23170.故选C .【点睛】此题考查了由实际问题抽象出一元二次方程的知识,平均增长率问题,一般形式为a (1+x )2=b ,a 为起始时间的有关数量,b 为终止时间的有关数量.【分析】由于第二个转盘不等分,所以首先将第二个转盘中的蓝色部分等分成两部分,然后画树状图,由树状图求得所有等可能的结果与可配成紫色的情况,再利用概率公式即可求得答案.【详解】解:如图,将第二个转盘中的蓝色部分等分成两部分,画树状图得:∵共有6种等可能的结果,可配成紫色的有3种情况,∴可配成紫色的概率是:31=62故选D .8.B【分析】根据勾股定理求出OB ,即可得到答案.【详解】∵直线l 是⊙O 的切线,A 为切点,∴OA ⊥AB ,在Rt △OAB 中,222OA AB OB +=,∴10=,∵OC=OA=6,∴BC=OB-OC=10-6=4,故选:B .【点睛】此题考查圆的切线的性质,勾股定理,正确理解并运用圆的切线的性质得到OA⊥AB是解题的关键.9.C【分析】①根据抛物线开口方向、对称轴位置、抛物线与y轴交点位置求得a、b、c的符号即可判断;②根据抛物线与x轴的交点即可判断;③根据二次函数的对称性即可判断;④由对称轴求出b=-a即可判断.【详解】解:①∵二次函数的图象开口向下,∴a<0,∵二次函数的图象交y轴的正半轴于一点,∴c>0,∵对称轴是直线x=12,∴1 22 ba-=,∴b=-a>0,∴abc<0.故①错误;②∵抛物线与x轴有两个交点,∴b2-4ac>0,故②正确;③∵对称轴为直线x=12,且经过点(2,0),∴抛物线与x轴的另一个交点为(-1,0),∴x=-1是关于x的方程ax2+bx+c=0的一个根,故③正确;④∵由①中知b=-a,∴a+b=0,故④正确;综上所述,正确的结论是②③④共3个.故选:C.本题考查了二次函数的图象和系数的关系的应用,注意:当a>0时,二次函数的图象开口向上,当a<0时,二次函数的图象开口向下.10.B【分析】如图,连接AC,取AC的中点H,连接EH,OH利用三角形的中位线定理可得EH=1,推出点E的运动轨迹是以H为圆心半径为1的圆.【详解】解:如图,连接AC,取AC的中点H,连接EH,OH.=,,CH AH=CE EP1EH PA1∴==,2∴点E的运动轨迹是以H为圆心半径为1的圆,()C0,4A3,0,,()()∴,H1.5,2∴=,OH 2.5∴的最小值OH EH 2.51 1.5OE=-=-=,故选B.【点睛】本题考查点与圆的位置关系,坐标与图形的性质,三角形的中位线定理等知识,解题的关键是学会添加常用辅助线,正确寻找点E的运动轨迹,属于中考选择题中的压轴题.11.-2【分析】根据一元二次方程根的定义与根与系数的关系即可求解.∵m 、n 是方程2220200x x +-=的两个实数根,∴222020m m +=,mn=-2020,m+n=-2∴23m mn m n +++=222020202022m m mn m n ++++=--=-故答案为:-2.【点睛】此题主要考查根与系数的关系,解题的关键是熟知一元二次方程的解的定义及根与系数的关系.12.9【分析】根据题意画出函数图象,即可由此找到m 和M 的值,从而求出M-m 的值.【详解】解:原式可化为y=(x-3)2-4,可知函数顶点坐标为(3,-4),当y=0时,x 2-6x+5=0,即(x-1)(x-5)=0,解得x 1=1,x 2=5.如图:m=-4,当x=6时,y=36-36+5=5,即M=5.则M-m=5-(-4)=9.故答案为9.【点睛】本题考查了二次函数的最值,找到x 的取值范围,画出函数图象,根据图象找到m 的值和M 的值.【分析】根据旋转的性质得知∠A=∠C ,∠AOC 为旋转角等于80°,则可以利用三角形内角和度数为180°列出式子进行求解.【详解】∵将△OAB 绕点O 逆时针旋转80°∴∠A=∠C ,∠AOC=80°∴∠DOC=80°-α∵∠A=2∠D=100°∴∠D=50°∵∠C+∠D+∠DOC=180°∴100°+50°+80°-α=180°解得α=50°.故答案为:50︒.【点睛】考查了旋转的性质及三角形的内角和定理,熟知图形旋转的性质:对应点与旋转中心所连线段的夹角等于旋转角是解决本题的关键.14.83【分析】连接OD ,由勾股定理求出BC=8cm ,设⊙O 的半径为rcm ,由切线长定理得CD=BC=2cm ,AD=2cm ,根据勾股定理求出答案.【详解】连接OD ,设⊙O 的半径为rcm ,在Rt △ABC 中,∠ABC =90°,222AB BC AC +=,∴8BC =(cm ),∵CD 、CB 分别且⊙O 于点D 、B ,∴CD=BC=2cm ,OD ⊥AC ,∴AD=AC-CD=2cm ,在Rt △AOD 中,222AD OD OA +=,∴2222(6)r r +=-,解得r=83,故答案为:83..【点睛】此题考查圆的切线的性质定理,切线长定理,勾股定理,熟记各定理并运用解决问题是解题的关键.15.【详解】试题分析:连接BC 与AO 交于点D ,根据菱形的性质可得AO ⊥BC ,根据∠OBA=120°可得:∠AOB=30°,根据二次函数图象上的点的性质可得点B 的坐标为(1,则BC=2BD=2,则菱形的面积=12×AO×BC=12考点:二次函数的性质16.(-2,-3).【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】解:点P (2,3)与点Q 关于原点对称,则点Q 的坐标(-2,-3),故答案是:(-2,-3).【点睛】本题考查了关于原点的对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.17.(1)1222x x =-=-(2)122,5x x ==【分析】(1)利用配方法解方程;(2)利用因式分解法解方程.【详解】(1)x 2+4x -2=0x 2+4x =22446x x ++=2(2)6x +=2x =-∴1222x x =-=-(2)(x -2)2=3(x -2)2(2)3(2)0x x ---=(2)(5)0x x --=∴x-2=0或x-5=0,∴122,5x x ==.【点睛】此题考查解一元二次方程,掌握一元二次方程的解法:直接开平方法、公式法、配方法、因式分解法,根据方程的特点选用适合的方法求解是解题的关键.18.(1)254m ≤;(2)6【分析】(1)根据一元二次方程根的判别式列出不等式计算即可;(2)根据根与系数的关系求出22x =,13x =,即可求出m 的值.【详解】(1)∵一元二次方程有实数根,∴0∆≥,∴2540m -≥,解得254m ≤;(2)∵方程两实数根为x 1,x 2,∴125x x +=,∴125=-x x ,∵3x 1-2x 2=5,∴223(5)25x x --=,解得22x =,∴13x =,∵12x x m =,∴m=6.【点睛】此题考查一元二次方程根的判别式,一元二次方程根与系数的关系,熟记根的判别式的三种情况及根与系数的两个关系式是解题的关键.19.(1)1m =-;(2)1x =,顶点坐标为()1,3-.【分析】(1)根据二次函数的定义:y=ax 2+bx+c (a≠0)是二次函数,可得答案;(2)根据y=ax 2+bx+c 的对称轴是x=-2b a ,顶点坐标是(-2b a ,244ac b a -),可得答案.【详解】解:(1)由()21145my m x x +=-+-是二次函数,得212m +=且10m -≠.解得1m =-;(2)当1m =-时,二次函数为2245y x x =-+-,2a =-,4b =,5c =-,对称轴为12b x a=-=,顶点坐标为()1,3-.【点睛】本题考查了二次函数的定义,利用二次函数的性质:y=ax 2+bx+c 的对称轴是x=-2b a ,顶点坐标是(-2b a ,244ac b a -),注意二次项的系数不能为零是解题关键.20.(1)见解析;(2)画图见解析,A 点旋转到A 2【分析】(1)先分别找到A (1,-4)、B (3,-3)、C (1,-1)关于原点对称的点A 1,B 1,C 1顺次连接即可;(2)先找到点A 、C 绕点B 逆时针旋转90°后的点A 2,C 2,画出△A 2B 2C 2,再根据弧长公式解题即可.【详解】(1)如图,△A 1B 1C 1即是所求作的图形;(2)如图,△A 2BC 2,即是所求作的图形;根据勾股定理得,AB ==,∴A 点旋转到A 2点经过的路径长为90180r l π︒==︒【点睛】本题考查图形的变换、网格作图、勾股定理、弧长公式等知识,是重要考点,难度较易,掌握相关知识是解题关键.21.(1)每轮分裂中平均每个有益菌可分裂出20个有益菌.(2)经过三轮培植后共有480000个有益菌.【分析】(1)设每轮分裂中,平均每个有益菌可分裂出x 个有益菌,则根据题意可得26024000x =,求解即可解答;(2)根据(1)可得经过三轮培植后有360x 个有益菌,结合x 的值即可解答.【详解】(1)根据题意,得26024000x =解得120x =,220x =-(不合题意,舍去)答:每轮分裂中平均每个有益菌可分裂出20个有益菌.(2)经过三轮培植后,得得36020480000⨯=(个)答:经过三轮培植后共有480000个有益菌.【点睛】本题考查的是一元二次方程的应用,熟练掌握一元二次方程的解法是解决本题的关键.22.(1)经过第一次传球后,篮球落在丙的手中的概率为12;(2)篮球传到乙的手中的概率为38.【分析】(1)根据概率公式即可得出答案;(2)根据题意先画出树状图得出所有等情况数,由树形图可知三次传球有8种等可能结果,三次传球后,篮球传到乙的手中的结果有3种,由概率公式即可得出答案.【详解】(1)经过第一次传球后,篮球落在丙的手中的概率为12;故答案为12;(2)画树状图如图所示:由树形图可知三次传球有8种等可能结果,三次传球后,篮球传到乙的手中的结果有3种,∴篮球传到乙的手中的概率为38.【点睛】本题考查用列表法或树状图法求概率以及概率公式.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.23.(1)y=﹣2x+160(40≤x≤80);(2)当销售单价x 为60元时,日销售利润w 最大,最大日销售利润是800元.【分析】(1)利用待定系数法求解即可;(2)根据(1)的函数关系式,利用求二次函数最值的方法求解即可.【详解】(1)设y 与x 的函数关系式为:y=kx+b (k≠0),由题意得:44724864k b k b +=⎧⎨+=⎩,解得:k=﹣2,b=160,所以y 与x 之间的函数关系式是y=﹣2x+160(40≤x≤80);(2)由题意得,w 与x 的函数关系式为:w=(x ﹣40)(﹣2x+160)=﹣2x 2+240x ﹣6400=﹣2(x ﹣60)2+800,当x=60元时,w 最大利润是800元,所以当销售单价x 为60元时,日销售利润w 最大,最大日销售利润是800元.【点睛】本题考查了一次函数与二次函数的应用,解题的关键是利用待定系数法求出一次函数与二次函数的解析式.24.(1)证明见解析;(2)3386S π=阴影【分析】(1)有切点,需连半径,证明垂直,即可;(2)求阴影部分的面积要把它转化成S 梯形ANMO -S 扇形OAM ,再分别求解的这两部分的面积即可.【详解】解:(1)连接OM ,AM ,如图,AB 是O 的直径,AM BM ∴⊥,又AB=AC ,∴M 是BC 中点,O 是AB 中点,∴MO ∥AC ,MN AC ⊥,OM MN ∴⊥,∴MN 是O 的切线;(2)120BAC ∠=o Q ,AB=AC ,3060,B BAM ∴∠=∴∠= ,∴△OAM 是等边三角形,∴AM=OA=1,1,2AN MN ∴==∴S 阴影=AMO AMN S S +- S 扇形OAB 603606ππ=-=-【点睛】本题考查了圆的切线的判定、三角形的中位线、等边三角形的判定和性质以及扇形面积的计算等知识,熟练掌握上述知识是解题的关键.25.()1220y x =+;()25或15元;()3当降价10元时,800W =最大元.【分析】21(1)根据函数图像得到图像中的两个点,利用待定系数法确定一次函数的解析式即可;(2)根据题意列出二次方程,解方程即可求解答案;(3)根据题意列出二次函数,求得函数的最值即可求解答案.【详解】解:(1)设y 与x 的函数关系式为y kx b =+,由函数图象可列方程组:224428k b k b +=⎧⎨+=⎩,解得:220k b =⎧⎨=⎩,y ∴与x 的函数关系式为220y x =+;()()()28050220750x x --+=解得:5x =或15元答:该玩具每个降价5或15元,可以恰好获得750元的利润.()()()38050220W x x =--+2240600x x =-++()2210800x =--+20,-< 且030x ≤≤∴当10x =时,800W =最大元.答:若要使得平均每天销售这种玩具的利润W 最大,则每个玩具应该降价10元?最大的利润W 为800元.【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数的顶点式求函数的最值.。
人教版数学九年级上册期末考试试题附答案
人教版数学九年级上册期末考试试卷一、选择题(本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列方程中是一元二次方程的有()①=;②y(y﹣1)=x(x+1);③=;④x2﹣2y+6=y2+x2.A.①②B.①③C.①④D.①③④2.观察下列图形,是中心对称图形的是()A.B.C.D.3.将抛物线y=x2﹣2x+3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为()A.y=(x﹣1)2+4B.y=(x﹣4)2+4C.y=(x+2)2+6D.y=(x﹣4)2+64.如图,△ABC内接于⊙O,∠OBC=40°,则∠A的度数为()A.80°B.100°C.110°D.130°5.若在“正三角形、平行四边形、菱形、正五边形、正六边形”这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率是()A. B. C. D.6.某型号的手机连续两次降价,每个售价由原来的1185元降到了580元,设平均每次降价的百分率为x ,列出方程正确的是()A .580(1+x )2=1185B .1185(1+x )2=580C .580(1﹣x )2=1185D .1185(1﹣x )2=5807.10名学生的身高如下(单位:cm )159、169、163、170、166、165、156、172、165、162,从中任选一名学生,其身高超过165cm 的概率是()A .B .C .D .8.二次函数y=a(x+k)2+k(a≠0),无论k 取何值,其图象的顶点都在()A.直线y=x 上B.直线y=-x 上C.x 轴上D.y 轴上9.如图,△ABC 是一张三角形纸片,⊙O 是它的内切圆,点D 、E 是其中的两个切点,已知CD=6cm ,小明准备用剪刀沿着与⊙O 相切的一条直线MN 剪下一块三角形(△CMN ),则剪下的△CMN 的周长是()A .9cmB .12cmC .15cmD .18cm10.如图,正方形ABCD 中,分别以B,D 为圆心,以正方形的边长a 为半径画弧,形成树叶形(阴影部分)图案,则树叶形图案的周长为()A.πaB.2πaC.21πaD.3a二、填空题(本大题共4小题,每小题5分,共20分)11.点A(a,3)与点B(﹣4,b)关于原点对称,则a+b=.12.一个侧面积为16πcm2的圆锥,其主视图为等腰直角三角形,则这个圆锥的高为cm.13.如图,将正六边形ABCDEF放在直角坐标系中,中心与坐标原点重合,若A点的坐标为(﹣1,0),则点C的坐标为.14.若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是三、解答题(本大题共7小题,共68分)15.用适当的方法解方程:x2=2x+35.16.求出抛物线的开口方向、对称轴、顶点坐标。
人教版九年级上册数学期末考试试卷附答案
人教版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.下列交通标志中,是中心对称图形的是()A .B .C .D .2.如图,点A 、B 、C 、D 在⊙O 上,120AOC ∠=︒,点B 是 AC 的中点,则D ∠的度数是A .30°B .40︒C .50︒D .60︒3.下列事件中是不可能事件.....的是()A .守株待兔B .瓮中捉鳖C .水中捞月D .百步穿杨4.一元二次方程2x ﹣16=0的解是()A .x =4B .1x =4,2x =0C .1x =4,2x =﹣4D .x =85.将抛物线y =12x 2向左平移一个单位,所得抛物线的解析式为()A .y =12x 2+1B .y =12x 2﹣1C .y =12(x+1)2D .y =12(x ﹣1)26.已知现有的10瓶饮料中有2瓶已过了保质期,从这10瓶饮料中任取1瓶,恰好取到已过了保质期的饮料的概率是()A .110B .910C .15D .457.某班同学毕业时,都将自己的照片向全班其他同学各送一张表示留念,全班共送1892张照片,如果全班有x 名同学,根据题意,列出方程为()A .x (x+1)=1892B .x (x−1)=1892×2C .x (x−1)=1892D .2x (x+1)=18928.圆的直径是13cm ,如果圆心与直线上某一点的距离是6.5cm ,那么该直线和圆的位置关系是()A.相离B.相切C.相交D.相交或相切9.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:①小球抛出3秒时达到最高点;②小球从抛出到落地经过的路程是80m;③小球的高度h=20时,t=1s或5s.④小球抛出2秒后的高度是35m.其中正确的有()A.①②B.②③C.①③④D.①②③10.反比例函数y=﹣3x(x<0)如图所示,则矩形OAPB的面积是()A.3B.﹣3C.32D.﹣32二、填空题11.已知点A(a,1)与点A′(5,b)是关于原点对称,则a+b=________.12.若某扇形花坛的面积为6m2,半径为3m,则该扇形花坛的弧长为_____m.13.己知正六边形的边长为2,则它的内切圆的半径为__________.14.如图, ABC的内切圆与三边分别相切于点D、E、F,若∠B=50°,则∠EDF=_____度.15.如图,正方形四个顶点的坐标依次为(1,1),(3,1),(3,3),(1,3),若抛物线y=ax2的图象与正方形的边有公共点,则实数a的取值范围是_____.16.如图,在△ABC 中,AB=10,AC=8,BC=6,以边AB 的中点O 为圆心,作半圆与AC 相切,点P ,Q 分别是边BC 和半圆上的动点,连接PQ ,则PQ 长的最小值是_______.17.如图,AB 与O 相切于点B ,AO 的延长线交O 于点C ,连接BC ,若120ABC ∠=︒,3OC =,则劣弧BC 的长为___(结果保留π).18.二次函数y =4(x ﹣3)2+7的图象的顶点坐标是_____.三、解答题19.解方程:3(x ﹣4)2=﹣2(x ﹣4)20.已知关于x 的一元二次方程(a+1)x 2+2x+1﹣a 2=0有一个根为﹣1,求a 的值.21.在下面的网格图中,每个小正方形的边长均为1, ABC 的三个顶点都是网格线的交点,已知A ,B ,C 的坐标分别为(0,2),(﹣1,﹣1),(1,﹣2),将 ABC 绕着点C 顺时针旋转90°得到A B C ''△.在图中画出A B C ''△并写出点A '、点B ′的坐标.22.甲、乙两人分别从A、B、C这3个景点随机选择2个景点游览.(1)求甲选择的2个景点是A、B的概率.(2)甲、乙两人选择的2个景点恰好相同的概率是.23.若a2+b2=c2,则我们把形如ax22=0(a≠0)的一元二次方程称为“勾系一元二次方程”.(1)当a=3,b=4时,写出相应的“勾系一元二次方程”;(2)求证:关于x的“勾系一元二次方程”ax22cx+b=0(a≠0)必有实数根.24.如图,利用一面长为34米的墙,用铁栅栏围成一个矩形自行车场地ABCD,在AB和BC边各有一个2米宽的小门(不用铁栅栏).若所用铁栅栏的长为40米,矩形ABCD的边AD长为x米,AB长为y米,矩形的面积为S平方米,且x<y.(1)求y与x的函数关系式,并直接写出自变量x的取值范围;(2)求S与x的函数关系式,并求出矩形场地的最大面积.25.如图,在平面直角坐标系xOy内,函数y=12x的图象与反比例函数y=kx(k≠0)图象有公共点A,点A的坐标为(8,a),AB⊥x轴,垂足为点B.(1)求反比例函数的解析式;(2)点P在线段OB上,若AP=BP+2,求线段OP的长;(3)点D为射线OA上一点,在(2)的条件下,若S△ODP=S△ABO,求点D的坐标.26.如图,在Rt△ABC中,∠BAC=90°,BD是角平分线,以点D为圆心,DA为半径的⊙D与AC相交于点E.(1)求证:BC是⊙D的切线;(2)若AB=5,BC=13,求CE的长.27.如图,在平面直角坐标系中,抛物线l1:y=x2+bx+c过点C(0,﹣3),且与抛物线l2:y=﹣12x2﹣32x+2的一个交点为A,已知点A的横坐标为2.点P、Q分别是抛物线l1、抛物线l2上的动点.(1)求抛物线l1对应的函数表达式;(2)若点P在点Q下方,且PQ∥y轴,求PQ长度的最大值;(3)若以点A、C、P、Q为顶点的四边形为平行四边形,直接写出点P的坐标.参考答案1.D【分析】根据中心对称图形的概念判断即可.【详解】A、不是中心对称图形;B、不是中心对称图形;C、不是中心对称图形;D、是中心对称图形.故选D.【点睛】本题考查的是中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.A【分析】根据圆心角、弧、弦的关系定理得到∠AOB=12∠AOC,再根据圆周角定理解答.【详解】连接OB,∵点B是 AC的中点,∴∠AOB=12∠AOC=60°,由圆周角定理得,∠D=12∠AOB=30°,故选:A.【点睛】本题考查的是圆心角、弧、弦的关系定理、圆周角定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.3.C【分析】不可能事件是一定不会发生的事件,依据定义即可判断.【详解】解:A、守株待兔,不一定就能达到,是随机事件,故选项不符合;B、瓮中捉鳖是必然事件,故选项不符合;C、水中捞月,一定不能达到,是不可能事件,选项不符合;D、百步穿杨,未必达到,是随机事件,故选项不符合;故选C.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.C【分析】先移项,写成2x=16的形式,从而把问题转化为求16的平方根.【详解】解:移项得2x=16,开方得,x=±4即1x=4,2x=﹣4.故选:C.【点睛】本题考查了直接开平方法求解一元二次方程,熟练掌握移项转化成2x=a(a≥0)是解题的关键.5.C【分析】按照“左加右减,上加下减”的规律.【详解】解:将抛物线y=12x2向左平移1个单位,得y=12(x+1)2;故选:C.【点睛】本题考查了抛物线的平移以及抛物线解析式的化规律:左加右减,上加下减.6.C【分析】直接利用概率公式求解.【详解】∵10瓶饮料中有2瓶已过了保质期,∴从这10瓶饮料中任取1瓶,恰好取到已过了保质期的饮料的概率是21 105 .故选C.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.7.C【解析】试题分析:∵全班有x名同学,∴每名同学要送出(x-1)张;又∵是互送照片,∴总共送的张数应该是x(x-1)=1892.故选C.点睛:本题考查由实际问题抽象出二元一次方程组.计算全班共送多少张,首先确定一个人送出多少张是解题关键.8.D【分析】比较圆心到直线距离与圆半径的大小关系,进行判断即可.【详解】圆的直径是13cm,故半径为6.5cm.圆心与直线上某一点的距离是6.5cm,那么圆心到直线的距离可能等于6.5cm也可能小于6.5cm,因此直线与圆相切或相交.故选D.【点睛】本题主要考查直线与圆的位置关系,需注意圆的半径为6.5cm,那么圆心与直线上某一点的距离是6.5cm是指圆心到直线的距离可能等于6.5cm也可能小于6.5cm.9.A【分析】由图象可知,点(0,0),(6,0),(3,40)在抛物线上,顶点为(3,40),设函数解析式为h=a(t﹣3)2+40,用待定系数法求得解析式,再逐个选项分析或计算即可.【详解】解:由图象可知,点(0,0),(6,0),(3,40)在抛物线上,顶点为(3,40),设函数解析式为h=a(t﹣3)2+40,将(0,0)代入得:0=a(0﹣3)2+40,解得:a=40 9 -,∴h=409-(t﹣3)2+40.①∵顶点为(3,40),∴小球抛出3秒时达到最高点,故①正确;②小球从抛出到落地经过的路程应为该小球从上升到落下的长度,故为40×2=80m,故②正确;③令h=20,则20=409-(t﹣3)2+40,解得t=3±2,故③错误;④令t=2,则h=409-(2﹣3)2+40=3209m,故④错误.综上,正确的有①②.故选:A.【点睛】本题考查了二次函数在实际问题中的应用,数形结合并熟练掌握待定系数法及二次函数的性质是解题的关键.10.A【解析】解:∵点P在反比例函数3yx=-(x<0)的图象上,∴可设P(x,3x-),∴OA=﹣x,PA=3x-,∴S矩形OAPB =OA•PA=﹣x•(3x-)=3,故选A.点睛:本题主要考查反比例函数上点的坐标特征,利用P点坐标表示出矩形OABPB的面积是解题的关键.11.-6【详解】试题分析:根据关于原点对称的两点的横纵坐标分别互为相反数可知a=-5,b=-1,所以a+b=(-5)+(-1)=-6,故答案为-6.12.4【分析】直接根据扇形的面积公式计算即可.【详解】解:设弧长为l,∵扇形的半径为3m,面积是6m2,∴136 2l⨯⋅=,∴l=4(m).故答案为4.【点睛】本题主要考查扇形面积,熟练掌握扇形面积计算公式是解题的关键.13【详解】如图,连接OA、OB,OG;∵六边形ABCDEF是边长为2的正六边形,∴△OAB是等边三角形,∴OA=AB=2,∴OG=OA•sin60°=2×2∴边长为214.65【分析】设△ABC的内切圆圆心为O,连接OE,OF,根据△ABC的内切圆与三边分别相切于点D、E、F,可得OE⊥AB,OF⊥BC,再根据四边形内角和可得∠EOF的度数,再根据圆周角定理即可得结论.【详解】解:如图,设△ABC的内切圆圆心为O,连接OE,OF,∵△ABC的内切圆与三边分别相切于点D、E、F,∴OE⊥AB,OF⊥BC,∴∠OEB=∠OFB=90°,∵∠B=50°,∴∠EOF=180°﹣50°=130°,∴∠EDF=12∠EOF=65°.故答案为:65.【点睛】本题考查切线的性质,圆周角与圆心角的关系,四边形内角和,掌握切线的性质,圆周角与圆心角的关系,四边形内角和是解题关键.15.19≤a≤3【分析】求出抛物线经过两个特殊点时的a的值即可解决问题.【详解】解:设抛物线的解析式为y=ax2,当抛物线经过(1,3)时,a=3,当抛物线经过(3,1)时,a=1 9,观察图象可知19≤a≤3,故答案为:19≤a≤3.【点睛】本题考查抛物线与正方形的交点问题,掌握抛物线与点的关系,利用待定系数方法求出抛物线张口最小时a的值与张口最大时a的值是解题关键.16.1【分析】当O、Q、P三点一线且OP⊥BC时,PQ有最小值,设AC与圆的切点为D,连接OD,分别利用三角形中位线定理可求得OD和OP的长,则可求得PQ的最小值.【详解】当O、Q、P三点一线且OP⊥BC时,PQ有最小值,设AC与圆的切点为D,连接OD,如图所示:∵AC为圆的切线,∴OD⊥AC,∵AC=8,BC=6,AB=10,∴AC2+BC2=AB2,∴∠ACB=90°,∴OD∥BC,且O为AB中点,∴OD为△ABC的中位线,∴OD=12BC=3,同理可得PO=12AC=4,∴PQ=OP-OQ=4-3=1,故答案是:1.【点睛】考查切线的性质及直角三角形的判定,先确定出当PQ最得最小值时点P的位置是解题的关键.17.2π;【分析】根据切线的性质得到∠OBA=90°,求出∠OBC,根据三角形内角和定理求出∠BOC=120°,根据弧长公式计算即可.【详解】解:连接OB,∵AB与⊙O相切于点B,∴∠OBA=90°,∴∠OBC=∠ABC-∠ABO=30°,∵OB=OC,∴∠C=∠OBC=30°,∴∠BOC=120°,∴弧BC的长=1203=2 180ππ⨯,故答案为:2π.【点睛】本题考查的是切线的性质、弧长的计算,掌握圆的切线垂直于经过切点的半径、弧长的计算公式是解题的关键.18.(3,7)【分析】由抛物线解析式可求得答案.【详解】∵y=4(x﹣3)2+7,∴顶点坐标为(3,7),故答案为(3,7).19.x1=4,x2=10 3.【解析】【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】3(x﹣4)2=﹣2(x﹣4),3(x﹣4)2+2(x﹣4)=0,(x﹣4)[3(x﹣4)+2]=0,x﹣4=0,3(x﹣4)+2=0,x1=4,x2=10 3.【点睛】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键,注意:解一元二次方程的方法有因式分解法、公式法、配方法、直接开平方法.20.a=0或a=1【分析】将x=﹣1代入原方程可求出a的值.【详解】解:将x=﹣1代入原方程,得(a+1)﹣2+1﹣a2=0,整理得:a2﹣a=0,即:a(a﹣1)=0解得:a=0或a=1.【点睛】本题考查了一元二次方程的解,将x=-1代入原方程求出a值是解题的关键.21.见解析,(5,﹣1),(2,0)【分析】将点A、B分别绕点C顺时针旋转90°得到对应点,再与点C首尾顺次连接即可,根据点A、B、C坐标建立平面直角坐标系,从而得出点A′、B′的坐标.【详解】解:如图所示,△A′B′C即为所求,由△ABC绕点C旋转90°得△A′B′C则△ABC≌△A′B′CBC=B′C,AC=A′C设A′(m,n),B′(,a b)a-1=-1-(-2),a=2;b-(-2)=1-(-1),b=0,B′(2,0)m-1=2-(-2),m=5,n-(-2)=1-0,n=-1,A′(5,-1).【点睛】本题考查画旋转图形,求旋转后坐标,利用全等构造等式是解题关键22.(1)29;(2)1 3【分析】(1)列举出所有可能出现的结果,利用概率公式求解即可;(2)根据树状图求得恰好只有两人选择相同的情况,再根据概率公式求解即可.【详解】(1)解:用列表法表示所有可能出现的结果如下:(1)共有9种可能出现的结果,其中选择A 、B 的有2种,∴P (A 、B )=29;(2)共有9种可能出现的结果,其中选择景点相同的有3种,∴P (景点相同)=31=93.故答案为:13.【点睛】本题考查了列表法或树状图法求随机事件发生的概率,列举出所有可能出现的结果情况是正确解答的关键.23.(1)3x 22x+4=0;(2)见解析【分析】(1)由a =3,b =4,由a 2+b 2=c 2求出c =±5,从而得出答案;(2)只要根据一元二次方程根的判别式证明△≥0即可解决问题.【详解】(1)解:由a 2+b 2=c 2可得:当a =3,b =4时,c =±5,相应的勾系一元二次方程为3x 22x+4=0;(2)证明:根据题意,得2)2﹣4ab=2(a 2+b 2)﹣4ab=2(a ﹣b )2≥0∵△≥0,∴勾系一元二次方程ax 22cx+b =0(a≠0)必有实数根.【点睛】本题主要考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键.24.(1)y=﹣2x+44(5≤x<443);(2)S=﹣2x2+44x,矩形场地的最大面积为242m2【分析】(1)根据三边铁栅栏的长度之和为40可得x+(y﹣2)+(x﹣2)=40,整理即可得出答案;(2)根据长方形面积公式列出解析式,配方成顶点即可得出答案.【详解】解:(1)根据题意,知x+(y﹣2)+(x﹣2)=40,∴y=﹣2x+44,∵墙面长为34米∴y=﹣2x+44≤34解得x≥5∵x<y∴x<﹣2x+44解得x<44 3∴自变量x的取值范围是5≤x<44 3;(2)S=xy=x(﹣2x+44)=﹣2x2+44x=﹣2(x﹣11)2+242,∴当x=11时,S取得最大值,最大值为242,即矩形场地的最大面积为242m2.【点睛】本题主要考查二次函数的应用,找到关键描述语,找到等量关系准确的列出关系式是解决问题的关键.25.(1)32yx;(2)5;(3)6432(,55【分析】(1)根据在平面直角坐标系xOy内,函数y=12x的图象与反比例函数y=kx(k≠0)图象有公共点A,点A的坐标为(8,a),可以求得点A的坐标,进而求得反比例函数的解析式;(2)根据题意和勾股定理可以求得OP的长;(3)根据题意可以求得点P的坐标,本题得以解决.【详解】解:(1)∵函数y =12x 的图象过点A (8,a ),∴a =12×8=4,∴点A 的坐标为(8,4),∵反比例函数y =k x (k≠0)图象过点A (8,4),∴4=8k ,得k =32,∴反比例函数的解析式为y =32x ;(2)设BP =b ,则AP =b+2,∵点A (8,4),AB ⊥x 轴于点B ,∴AB =4,∠ABP =90°,∴b 2+42=(b+2)2,解得,b =3,∴OP =8﹣3=5,即线段OP 的长是5;(3)设点D 的坐标为(d ,12d ),∵点A (8,4),点B (8,0),点P (5,0),S △ODP =S △ABO ,∴1258422d ⨯⨯=,解得,d =645,∴12d =325,∴点D 的坐标为(645,325).【点睛】本题考查反比例函数和一次函数的交点问题,解答本题的关键是明确题意,利用一次函数和反比例函数的性质解答.26.(1)证明详见解析;(2)163.【解析】试题分析:(1)过点D 作DF ⊥BC 于点F ,根据角平分线的性质得到AD=DF .根据切线的判定定理即可得到结论;(2)根据切线的性质得到AB=FB .根据和勾股定理列方程即可得到结论.试题解析:(1)证明:过点D 作DF ⊥BC 于点F ,∵∠BAD=90°,BD 平分∠ABC ,∴AD=DF .∵AD 是⊙D 的半径,DF ⊥BC ,∴BC 是⊙D 的切线;(2)解:∵∠BAC=90°.∴AB 与⊙D 相切,∵BC 是⊙D 的切线,∴AB=FB .∵AB=5,BC=13,∴CF=8,AC=12.在Rt △DFC 中,设DF=DE=r ,则()226412r r +=-,解得:r=103.∴CE=163.考点:切线的判定;圆周角定理.27.(1)y =x 2﹣2x ﹣3;(2)12124;(3)(﹣1,0)或(3,0)或(43-,139)或(﹣3,12)【分析】(1)将x =2代入y =﹣12x 2﹣32x+2,从而得出点A 的坐标,再将A (2,﹣3),C (0,﹣3)代入y =x 2+bx+c ,解得b 与c 的值,即可求得抛物线l 1对应的函数表达式;(2)设点P 的坐标为(m ,m 2﹣2m ﹣3),则可得点Q 的坐标为(m ,﹣12m 2﹣32m+2),从而PQ 等于点Q 的纵坐标减去点P 的纵坐标,利用二次函数的性质求解即可;(3)设点P的坐标为(n,n2﹣2n﹣3),分两类情况:第一种情况:AC为平行四边形的一条边;第二种情况:AC为平行四边形的一条对角线.分别根据平行四边形的性质及点在抛物线上,得出关于n的方程,解得n的值,则点P的坐标可得.【详解】解:(1)将x=2代入y=﹣12x2﹣32x+2,得y=﹣3,∴点A的坐标为(2,﹣3).将A(2,﹣3),C(0,﹣3)代入y=x2+bx+c,得23=2+23b cc⎧-+⎨-=⎩,解得23 bc=-⎧⎨=-⎩,∴抛物线l1对应的函数表达式为y=x2﹣2x﹣3;(2)∵点P、Q分别是抛物线l1、抛物线l2上的动点.∴设点P的坐标为(m,m2﹣2m﹣3),∵点P在点Q下方,PQ∥y轴,∴点Q的坐标为(m,﹣12m2﹣32m+2),∴PQ=﹣12m2﹣32m+2﹣(m2﹣2m﹣3),=﹣32m2+12m+5,∴当m=﹣112=3622⎛⎫⨯- ⎪⎝⎭时,PQ长度有最大值,最大值为:﹣23126⎛⎫⨯ ⎪⎝⎭+1126⨯+5=12124;∴PQ长度的最大值为121 24;(3)设点P的坐标为(n,n2﹣2n﹣3),第一种情况:AC为平行四边形的一条边.AC=2①当点Q在点P右侧时,点Q的坐标为(n+2,﹣12(n+2)2﹣32(n+2)+2),将Q的坐标代入y=﹣12x2﹣32x+2,,得n2﹣2n﹣3=﹣12(n+2)2﹣32(n+2)+2,解得,n=0或n=﹣1.∵n=0时,点P与点C重合,不符合题意,舍去,∴n =﹣1,∴点P 的坐标为(﹣1,0);②当点Q 在点P 左侧时,点Q 的坐标为(n ﹣2,﹣12(n ﹣2)2﹣32(n ﹣2)+2),将Q 的坐标代入y =﹣12x 2﹣32x+2,得n 2﹣2n ﹣3=﹣12(n ﹣2)2﹣32(n ﹣2)+2,解得n =3或n =﹣43.∴此时点P 的坐标为(3,0)或(﹣43,139);第二种情况:AC 为平行四边形的一条对角线.Q 点的纵坐标y Q ,n 2-2n-3-(-3)=-3-y Q ,y Q =-n 2+2n-3,点Q 的坐标为(2﹣n ,﹣n 2+2n ﹣3),将Q 的坐标代入y =﹣12x 2﹣32x+2,得﹣n 2+2n ﹣3=﹣12(2﹣n )2﹣32(2﹣n )+2,解得,n =0或n =﹣3.∵n =0时,点P 与点C 重合,不符合题意,舍去,∴n =﹣3,∴点P 的坐标为(﹣3,12).综上所述,点P的坐标为(﹣1,0)或(3,0)或(43 ,139)或(﹣3,12).【点睛】本题考查抛物线解析式,平行y轴线段的最值,平行四边形的性质,掌握抛物线解析式,平行y轴线段的最值,平行四边形的性质,利用平形四边形的性质构造方程是解题关键.。
人教版九年级上册《数学》期末考试卷及答案【可打印】
人教版九年级上册《数学》期末考试卷及答案【可打印】一、选择题(每题1分,共5分)1. 若x^2 3x + 2 = 0,则x的值为多少?A. 1B. 2C. 1D. 22. 若sin(θ) = 1/2,则θ的值为多少?A. 30°B. 45°C. 60°D. 90°3. 若一个正方形的边长为4cm,则其面积为多少?A. 16cm^2B. 8cm^2C. 12cm^2D. 6cm^24. 若一个长方体的长、宽、高分别为2cm、3cm、4cm,则其体积为多少?A. 24cm^3B. 12cm^3C. 6cm^3D. 8cm^35. 若一个等腰三角形的底边长为6cm,腰长为5cm,则其面积为多少?A. 15cm^2B. 10cm^2C. 12cm^2D. 8cm^2二、判断题(每题1分,共5分)1. 一个等边三角形的三个内角都是60°。
()2. 一个正方形的对角线互相垂直且平分。
()3. 一个圆的半径是直径的一半。
()4. 一个长方体的对角线互相垂直。
()5. 一个等腰三角形的底角等于顶角。
()三、填空题(每题1分,共5分)1. 一个等边三角形的每个内角是______度。
2. 一个正方形的对角线长是边长的______倍。
3. 一个圆的周长是直径的______倍。
4. 一个长方体的体积是长、宽、高的______。
5. 一个等腰三角形的底边长是腰长的______倍。
四、简答题(每题2分,共10分)1. 简述等边三角形的性质。
2. 简述正方形的性质。
3. 简述圆的性质。
4. 简述长方体的性质。
5. 简述等腰三角形的性质。
五、应用题(每题2分,共10分)1. 一个等边三角形的边长为10cm,求其周长。
2. 一个正方形的边长为8cm,求其对角线长。
3. 一个圆的直径为14cm,求其周长。
4. 一个长方体的长、宽、高分别为6cm、4cm、3cm,求其体积。
5. 一个等腰三角形的底边长为10cm,腰长为8cm,求其周长。
人教版九年级数学上册期末考试试题及答案精选6套
人教版九年上期末测试题01一、细心填一填(每小题3分,共36分) 1、已知式子31+-x x有意义,则x 的取值范围是 2、计算20102009)23()23(+-=3、若关于x 的一元二次方程(a +1)x 2+4x +a 2—1=0的一根是0,则a = 。
4、成语“水中捞月”用概率的观点理解属于不可能事件,请你仿照它写出一个必然事件 。
5、点P 关于原点对称的点Q 的坐标是(—1,3),则P 的坐标是6、已知圆锥的底面半径为9cm,母线长为10cm ,则圆锥的全面积是 cm 27、已知:关于x 的一元二次方程041)(22=++-d x r R x 有两个相等的实数根,其中R 、r 分别是⊙O 1 ⊙O 2的半径,d 为两圆的圆心距,则⊙O 1 与⊙O 2的位置关系是 8、中国象棋中一方16个棋子,按兵种不同分布如下:1个帅,5个兵、士、象、马、车、炮各2个.若将这16个棋子反面朝上放在棋盘中,任取1个是兵的概率是 。
9、如图,过圆心O 和图上一点A 连一条曲线,将OA 绕O 点按同一 方向连续旋转90°, 把圆分成四部分,这四部分面积 .(填“相等”或“不相等”) 二、选择题(每小题3分,共15分)10、下列二次根式中,与35-是同类二次根式的是( )(A ) 18 (B)3.0 (C ) 30 (D )30011、已知关于x 的一元二次方程(m —2)2x 2+(2m +1)x +1=0有两个实数根,则m 的取值范围是( )(A )43>m (B )43≥m (C )43>m 且2≠m (D )43≥m 且2≠m 12、如图:下列四个图案中既是轴对称图形,又是中心对称图形的是( )A B C13、如图,⊿ABC 内接于⊙O,若∠OAB=28°则∠C 的大小为( )(A)62° (B )56° (C)60° (D )28°D19、(7分)在一个不透明的袋子中装有三个完全相同的小球,分别标有数字2,3,4。
人教版数学九年级上册期末测试卷3套含答案
A. ﻩB.2 C. D.3
3.(3分)在一个四边形 ABCD 中,依次连接各边的中点得到的四边形是菱 形,则对角线AC 与 BD需要满足条件是( ) A.垂直 B.相等ﻩC.垂直且相等ﻩD.不再需要条件 4.(3 分)已知点 A(﹣2,y1)、B(﹣1,y2)、C(3,y3)都在反比例函数 y= 的图象
A、3(x+1)2=2(x+1)化简得 3x2+4x﹣4=0,是一元二次方程,故正确; B、方程不是整式方程,故错误; C、若 a=0,则就不是一元二次方程,故错误; D、是一元一次方程,故错误. 故选:A. 【点评】判断一个方程是不是一元二次方程: 首先要看是不是整式方程; 然后看化简后是不是只含有一个未知数且未知数的最高次数是 2. 这是一个需要识记的内容.
参考答案与试题解析
一、精心选一选(本大题共 10小题,每小题 3 分,共 30 分.每小题给出四个
答案,其中只有一个是正确的)
1.(3分)下列方程中,关于x的一元二次方程是( )
A.3(x+1)2=2(x+1) B.
ﻩC.ax2+bx+c=0 D.x2+2x=x2﹣1
【考点】一元二次方程的定义. 【分析】一元二次方程有四个特点: (1)只含有一个未知数; (2)未知数的最高次数是 2; (3)是整式方程. (4)二次项系数不为 0. 【解答】解:
AM,MR的中点,则 EF 的长随着 M 点的运动( )
A.变短ﻩB.变长 C.不变 D.无法确定 10.(3 分)如图,点 A 在双曲线 y= 上,且 OA=4,过 A 作AC⊥x轴,垂足为 C,OA 的垂直平分线交 OC 于B,则△ABC 的周长为( )
A. ﻩB.5 C. ﻩD.
人教版九年级上册数学期末考试试卷含答案
人教版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.下列图形中既是中心对称图形又是轴对称图形的是()A .B .C .D .2.若(m +2)24m x -+3x ﹣1=0是关于x 的一元二次方程,则m 的值为()A .﹣2B .C .±2D .03.将抛物线y=x 2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为()A .y=(x+2)2﹣5B .y=(x+2)2+5C .y=(x ﹣2)2﹣5D .y=(x ﹣2)2+54.如图,四边形ABCD 为O 的内接四边形,若125ABC ∠=︒,则AOC ∠等于()A .55︒B .110︒C .105︒D .125︒5.用配方法解方程x 2﹣23x ﹣1=0时,应将其变形为()A .(x ﹣13)2=89B .(x+13)2=109C .(x ﹣23)2=0D .(x ﹣13)2=1096.已知扇形半径为3,弧长为π,则它所对的圆心角的度数为()A .120°B .60°C .40°D .20°7.有x 支球队参加篮球比赛,每两队之间都比赛一场,共比赛了21场,则下列方程中符合题意的是()A .x(x ﹣1)=21B .x(x ﹣1)=42C .x(x+1)=21D .x(x+1)=428.如图,在Rt △ABC 中,∠BAC=90°,将△ABC 绕点A 顺时针旋转90°后得到△AB'C'(点B 的对应点是点B',点C 的对应点是点C'),连接CC',若∠B =78°,则∠CC'B'的大小是()A .23°B .30°C .33°D .39°9.如图,两同心圆的圆心为O ,大圆的弦AB 切小圆于P ,两圆的半径分别为6,3,则图中阴影部分的面积是()A .3πB .3πC .933π-D .632π10.如图,二次函数()20y ax bx c a =++≠的图象与x 轴正半轴相交于A 、B 两点,与y 轴相交于点C,对称轴为直线2x =,且OA=OC,则下列结论:①0abc >;②930a b c ++<;③1c ->;④关于x 的方程()200++=≠ax bx c a 有一个根为4c +,其中正确的结论个数有()A .1个B .2个C .3个D .4个二、填空题11.关于x 的一元二次方程()22390m x x m -++-=有一根为0,则m 的值为______12.一个圆锥的母线长为3,底面圆的半径为4,它的侧面积是_____.13.李明有红、黄、白3件运动上衣和白、黑2条运动短裤,则穿着“衣裤同色”的概率是_____.14.如图,等边三角形ABC 内接于⊙O ,点D 是弧ACB 上的一个动点(不与点A 、B 重合).连接BD .过点A 作AE ⊥BD ,垂足为E ,连接CE .若⊙O 的半径为2cm ,则CE 长的最小值为_____cm .15.二次函数y=x2﹣2x﹣1的图象的顶点坐标是_____.16.如图,将边长为2的正方形ABCD绕顶点A旋转,使点B落在AC上的点E处,得正方形AEFG,则两正方形重合部分(阴影部分)的面积是_____.17.已知二次函数的顶点坐标为(1,4),且其图象经过点(-2,-5),求此二次函数的解析式________.三、解答题18.已知x=2是方程x2+mx+2=0的一个根,求m的值.19.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣5,1),B(﹣2,2),C(﹣1,4),请按下列要求画图:(1)将△ABC先向右平移4个单位长度、再向下平移1个单位长度,得到△A1B1C1,画出△A1B1C1;(2)画出与△ABC关于原点O成中心对称的△A2B2C2,并直接写出点A2的坐标.20.不透明的袋中装有3个大小相同的小球,其中两个为白色,一个为红色,随机地从袋中摸取一个小球后放回,再随机地摸取一个小球,(用列表或树形图求下列事件的概率)(1)两次取的小球都是红球的概率;(2)两次取的小球是一红一白的概率.21.如图1、图2,△AOB,△COD均是等腰直角三角形,∠AOB=∠COD=90°,(1)在图1中,AC与BD相等吗?请说明理由;(2)若△COD绕点O顺时针旋转一定角度后,到达图2的位置,请问AC与BD还相等吗?为什么?22.已知关于x的方程2x2+kx-1=0.(1)求证:方程有两个不相等的实数根.(2)若方程的一个根是-1,求方程的另一个根.23.某商品的进价为每件30元,售价为每件40元,每周可卖出180件;如果每件商品的售价每上涨1元,则每周就会少卖出5件,但每件售价不能高于50元,设每件商品的售价上涨x元(x为整数),每周的销售利润为y元.(1)求y与x的函数关系式,并直接写出自变量x的取值范围;(2)每件商品的售价为多少元时,每周可获得最大利润?最大利润是多少?(3)每件商品的售价定为多少元时,每周的利润恰好是2145元?24.如图,AB是⊙O的直径,AC是⊙O的切线,切点为A,BC交⊙O于点D,点E是AC的中点.(1)试判断直线DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,∠B=50°,AC=4.8,求图中阴影部分的面积.25.如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣14<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.参考答案1.C【分析】根据轴对称图形和中心对称图形的概念,对各个选项进行判断,即可得到答案.【详解】解:A、是轴对称图形,不是中心对称图形,故A错误;B、是轴对称图形,不是中心对称图形,故B错误;C、既是轴对称图形,也是中心对称图形,故C正确;D、既不是轴对称图形,也不是中心对称图形,故D错误;故选:C.【点睛】本题考查了轴对称图形和中心对称图形的概念,解题的关键是熟练掌握概念进行分析判断. 2.B【解析】【分析】根据一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数,进行分析即可.【详解】由题意得:24220 mm⎧-=⎨+≠⎩,解得:m故选B.【点睛】本题考查一元二次方程的定义,熟练掌握定义是解题的关键.3.A【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】抛物线y=x2的顶点坐标为(0,0),先向左平移2个单位再向下平移5个单位后的抛物线的顶点坐标为(﹣2,﹣5),所以,平移后的抛物线的解析式为y=(x+2)2﹣5.故选A.【点睛】本题考查了二次函数的图象与几何变换,熟知函数图象平移的法则是解答本题的关键.4.B【分析】先根据圆内接四边形的性质求出∠D,再利用圆周角定理解答.【详解】∵∠ABC=125°∴∠D=180°-∠B=55°∴∠AOC=2∠D=110°.故选B.【点睛】本题利用了圆周角定理,圆内接四边形的性质求解.5.D【详解】分析:本题要求用配方法解一元二次方程,首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式.详解:∵x2﹣23x﹣1=0,∴x2﹣23x=1,∴x2﹣23x+19=1+19,∴(x﹣13)2=109.故选D.点睛:配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.6.B【解析】【详解】解:根据l=3 180180n r nππ⨯==π,解得:n=60°,故选B.【点睛】本题考查弧长公式,在半径为r的圆中,n°的圆心角所对的弧长为l=180n rπ.7.B【分析】设这次有x队参加比赛,由于赛制为单循环形式(每两队之间都赛一场),则此次比赛的总场数为:12x(x-1)场.根据题意可知:此次比赛的总场数=21场,依此等量关系列出方程即可.【详解】设这次有x 队参加比赛,则此次比赛的总场数为12x (x −1)场,根据题意列出方程得:12x (x −1)=21,整理,得:x (x −1)=42,故答案为x (x −1)=42.故选B.【点睛】本题考查由实际问题抽象出一元二次方程,准确找到等量关系是解题的关键.8.C 【解析】【分析】根据旋转的性质可得ABC ≌''AB C ,根据全等三角形的性质可得'AC AC =,则'ACC 是等腰直角三角形,根据''B AB C ∠=∠,根据外角的性质可得''CC B ∠的度数.【详解】由旋转的性质可得:ABC ≌''AB C ,点'B 在AC 上,∴'AC AC =,''78B AB C ∠=∠=︒,又∵'90BAC CAC ∠=∠=︒,∴''45ACC AC C ∠=∠=︒,∴78AB C ACC CC B ''''∠∠'∠=+=︒,∴784533CC B ∠=︒-︒=''︒,故答案为:C.【点睛】本题考查了旋转的性质以及全等三角形的性质和三角形的外角的性质,注意到'ACC 是等腰直角三角形是关键.9.C 【分析】根据图形可明显地看出阴影部分的面积为△OAB 和扇形OCD 的面积差.连接OP ,可根据两圆的半径长求出AP 的长和扇形OCD 的圆心角.然后分别计算出△OAB 和扇形OCD 的面积,即可求出阴影部分的面积.【详解】解:连接OP ,则OP ⊥AB ;在Rt △OBP 中,BOP=60°,∴AOB=120°;∴S △OAB ,S 扇形OCD =1209360π´=3π,所以S 阴影.故选C .【点睛】本题的关键是理解阴影部分的面积=三角形的面积-扇形的面积,然后分别计算求值即可.10.C 【解析】【分析】由二次函数图象的开口方向、对称轴及与y 轴的交点可分别判断出a 、b 、c 的符号,从而可判断①;由图象可知当x =3时,y >0,可判断②;由OA =OC ,且OA <1,可判断③;由OA =OC ,得到方程有一个根为-c ,设另一根为x ,则2x c-=2,解方程可得x =4+c 即可判断④;从而可得出答案.【详解】由图象开口向下,可知a <0,与y 轴的交点在x 轴的下方,可知c <0,又对称轴方程为x =2,所以2ba->0,所以b >0,∴abc >0,故①正确;由图象可知当x =3时,y >0,∴9a +3b +c >0,故②错误;由图象可知OA <1.∵OA =OC ,∴OC <1,即﹣c <1,∴c >﹣1,故③正确;∵OA =OC ,∴方程有一个根为-c ,设另一根为x .∵对称轴为直线x =2,∴2x c-=2,解得:x =4+c .故④正确;综上可知正确的结论有三个.故选C .【点睛】本题考查了二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程、不等式的关系是解题的关键.特别是利用好题目中的OA =OC ,是解题的关键.11.m=-3【解析】【分析】把x=0代入方程(m-3)x 2+x+m 2-9=0得m 2-9=0,解得m 1=3,m 2=-3,然后根据一元二次方程的定义确定m 的值.【详解】把x=0代入方程(m-3)x 2+x+m 2-9=0得m 2-9=0,解得m 1=3,m 2=-3,而m-3≠0,所以m 的值为-3.故答案是:-3.【点睛】考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.也考查了一元二次方程的定义.12.12π【解析】【分析】根据圆锥的侧面积公式:圆锥的侧面积=12底面周长⨯母线长,计算即可.【详解】圆锥的侧面积=12⨯2π⨯4⨯3=12π.故答案为12π.【点睛】本题考查圆锥的计算,熟练掌握公式是解题的关键.13.1 6【分析】列举出所有情况,看穿着“衣裤同色”的情况数占总情况数的多少即可.【详解】如图,共6种情况,“衣裤同色”的情况数有1种,所以所求的概率为1 6.故答案为1 6.【点睛】考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比.得到所求的情况数是解决本题的关键.14.3【解析】【分析】由AE⊥BD,推出∠AEB=90°,推出点E在以AB为直径的圆上运动,可得CE的最小值为CO′-O′E.【详解】∵AE⊥BD,∴∠AEB=90°,∴点E 在以AB 为直径的圆上运动,∴CE 的最小值为CO ′−O ′E ,∵⊙O 的半径为2,△ABC 是等边三角形,∴O ′E =O ′A=O ′,AB CO 2,∴CE 的最小值)(cm ).故答案为.【点睛】本题考查三角形的外接圆与外心,等边三角形的性质,找准线段最小值是解题的关键.15.(1,-2)【解析】此题考查二次函数的顶点坐标顶点坐标的横坐标为对称轴的值,2122b x a -=-=-=,将1x =带入二次函数1212y =--=-,所以顶点坐标为(1,-2).答案(1,-2)16.﹣4.【解析】【分析】阴影部分的面积=S △ACD -S △MEC ,△ACD 和△MEC 都是等腰直角三角形,利用面积公式即可求解.【详解】∵△ADC 是直角三角形,AD =CD =2,∴S △ACD =12AD ⋅CD =12×2×2=2;AC则EC −2,∵△MEC 是等腰直角三角形,∴S △MEC =12ME ⋅EC =()2122,∴阴影部分的面积=S △ACD −S △MEC故答案是:−4.【点睛】本题考查旋转的性质,正方形的质,将不规则图形转化为规则图形的和(差)是解题的关键17.y=-(x-1)2+4【分析】已知二次函数的顶点坐标为()14,,可设抛物线的顶点式为()()2y a 140x a =-+≠,将图像上的点()2,5--代入求出a 即可.【详解】解:设二次函数的解析式为:()()2140y a x a =-+≠,因为图象经过点()2,5--,代入可得:()25214a -=--+,解得:1a =-,所以二次函数的解析式为:()214y x =--+【点睛】本题考查了使用顶点式求抛物线解析式的方法.18.-3【解析】【分析】根据一元二次方程的解的定义即可求出答案.【详解】解:将x =2代入x 2+mx +2=0,∴4+2m +2=0,∴m =﹣3故答案为﹣3【点睛】本题考查一元二次方程的解,代入求值是解题的关键.19.(1)画图形如图所示见解析,(2)画图形如图所示见解析,点A2(5,-1)【分析】(1)将三个顶点分别向右平移4个单位长度、再向下平移1个单位长度,得到对应点,再顺次连接即可得;(2)将△ABC的三个顶点关于原点O成中心对称的对称点,再顺次连接可得.【详解】(1)画图形如图所示,(2)画图形如图所示,点A2(5,-1)【点睛】本题主要考查作图-旋转变换和平移变换,解题的关键是掌握旋转变换和平移变换的定义及其性质,并据此得出变换后的对应点.20.(1)19;(2)49.【分析】(1)用列表法列举出所有情况,看所求的情况与总情况的比值即可得答案,(2)由(1)的图表,可得要求的情况,与总情况作比即可得答案.【详解】解:(1)根据题意,有共有9种等可能结果,其中符合题意的有1种∴两次取的小球都是红球的概率为19;(2)由(1)可得,两次取的小球是一红一白的有4种;故其概率为49.【点睛】本题考查列表法与树状图法.21.(1)相等;(2)相等【解析】【分析】(1)根据等腰三角形的两腰相等进行解答.(2)证明△DOB ≌△COA ,根据全等三角形的对应边相等进行说明.【详解】解:(1)相等.在图1中,∵△AOB ,△COD 均是等腰直角三角形,∠AOB =∠COD =90°,∴OA =OB ,OC =OD ,∴0A ﹣0C =0B ﹣OD ,∴AC =BD ;(2)相等.在图2中,∠AOB =∠COD =90°,∵∠DOB =∠COD ﹣∠COB ,∠COA =∠AOB ﹣∠COB ,∴∠DOB =∠COA在△DOB 和△COA 中,OD OCDOB COA OB OA==⎧⎪∠∠⎨⎪=⎩,∴△DOB ≌△COA (SAS ),【点睛】本题考查旋转的性质,全等三角形的判定与性质,等腰直角三角形,熟练掌握性质是解题的关键.22.(1)证明见解析;(2)12.【分析】(1)计算得到根的判别式大于0,即可证明方程有两个不相等的实数根;(2)利用根与系数的关系可直接求出方程的另一个根.【详解】解:(1)∵△=k 2+8>0,∴不论k 取何值,该方程都有两个不相等的实数根;(2)设方程的另一个根为x 1,则1112x -⋅=-,解得:112x =,∴方程的另一个根为12.【点睛】本题是对根的判别式和根与系数关系的综合考查,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.23.(1)y =﹣5x 2+130x+1800(0≤x≤15)(2)53元,2645元(3)43元【分析】(1)根据销售利润=每件的利润·销售数量,构建函数关系即可.(2)利用二次函数的性质即可解决问题.(3)列出方程,解方程即可解决问题.【详解】解:(1)由题意得:y =(40+x ﹣30)(180﹣5x )=﹣5x 2+130x+1800(0≤x≤15)∵180﹣5x >0,且40+x≤55,x >0,(2)对称轴:x=﹣=﹣=13,∵13<15,a=﹣5<0,∴在对称轴左侧,y随x增大而增大,=﹣5×132+130×13+1800=2645,∴当x=13时,y最大值∴售价=40+13=53元答:当售价为53元时,可获得最大利润2645元.(3)由题意得:﹣5x2+130x+1800=2145解之得:x=3或23(不符合题意,舍去)∴售价=40+3=43元.答:售价为43元时,每周利润为2145元.【点睛】本题考查了二次函数的应用、最值问题、一元二次方程等知识,解题的关键是搞清楚利润、售价、销售量之间的关系,学会构建二次函数解决最值问题,属于中考常考题型.π.24.(1)直线DE与⊙O相切.理由见解析;(2)图中阴影部分的面积为4.8﹣109【详解】分析:(1)连接OE、OD,如图,根据切线的性质得∠OAC=90°,再证明△AOE≌△DOE 得到∠ODE=∠OAE=90°,然后根据切线的判定定理得到DE为⊙O的切线;(2)先计算出∠AOD=2∠B=100°,利用四边形的面积减去扇形的面积计算图中阴影部分的面积.详解:(1)直线DE与⊙O相切.理由如下:连接OE、OD,如图,∵AC是⊙O的切线,∴AB⊥AC,∴∠OAC=90°,∵点E 是AC 的中点,O 点为AB 的中点,∴OE ∥BC ,∴∠1=∠B ,∠2=∠3,∵OB=OD ,∴∠B=∠3,∴∠1=∠2,在△AOE 和△DOE 中12OA OD OE OE =⎧⎪∠=∠⎨⎪=⎩,∴△AOE ≌△DOE ,∴∠ODE=∠OAE=90°,∴OA ⊥AE ,∴DE 为⊙O 的切线;(2)∵点E 是AC 的中点,∴AE=12AC=2.4,∵∠AOD=2∠B=2×50°=100°,∴图中阴影部分的面积=2×12×2×2.4﹣21002104.83609ππ⨯=-.点睛:本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,得出垂直关系.也考查了圆周角定理和扇形的面积公式.25.(1)(m ,2m ﹣5);(2)S △ABC =﹣82a a+;(3)m 的值为72或【详解】分析:(1)利用配方法将二次函数解析式由一般式变形为顶点式,此题得解;(2)过点C 作直线AB 的垂线,交线段AB 的延长线于点D ,由AB ∥x 轴且AB =4,可得出点B 的坐标为(m +2,4a +2m−5),设BD =t ,则点C 的坐标为(m +2+t ,4a +2m−5−t ),利用二次函数图象上点的坐标特征可得出关于t 的一元二次方程,解之取其正值即可得出t 值,再利用三角形的面积公式即可得出S △ABC 的值;(3)由(2)的结论结合S △ABC =2可求出a 值,分三种情况考虑:①当m >2m−2,即m <2时,x =2m−2时y 取最大值,利用二次函数图象上点的坐标特征可得出关于m 的一元二次方程,解之可求出m的值;②当2m−5≤m≤2m−2,即2≤m≤5时,x=m时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元一次方程,解之可求出m的值;③当m<2m−5,即m>5时,x=2m−5时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元一次方程,解之可求出m的值.综上即可得出结论.详解:(1)∵y=ax2﹣2amx+am2+2m﹣5=a(x﹣m)2+2m﹣5,∴抛物线的顶点坐标为(m,2m﹣5),故答案为(m,2m﹣5);(2)过点C作直线AB的垂线,交线段AB的延长线于点D,如图所示,∵AB∥x轴,且AB=4,∴点B的坐标为(m+2,4a+2m﹣5),∵∠ABC=135°,∴设BD=t,则CD=t,∴点C的坐标为(m+2+t,4a+2m﹣5﹣t),∵点C在抛物线y=a(x﹣m)2+2m﹣5上,∴4a+2m﹣5﹣t=a(2+t)2+2m﹣5,整理,得:at2+(4a+1)t=0,解得:t1=0(舍去),t2=﹣41 aa+,∴S△ABC =12AB•CD=﹣82aa+;(3)∵△ABC的面积为2,∴﹣82aa+=2,解得:a=﹣1 5,∴抛物线的解析式为y=﹣15(x ﹣m )2+2m ﹣5.分三种情况考虑:①当m >2m ﹣2,即m <2时,有﹣15(2m ﹣2﹣m )2+2m ﹣5=2,整理,得:m 2﹣14m+39=0,解得:m 1=7(舍去),m 2;②当2m ﹣5≤m≤2m ﹣2,即2≤m≤5时,有2m ﹣5=2,解得:m=72;③当m <2m ﹣5,即m >5时,有﹣15(2m ﹣5﹣m )2+2m ﹣5=2,整理,得:m 2﹣20m+60=0,解得:m 3=10﹣(舍去),m 4.综上所述:m 的值为72或.点睛:本题考查了二次函数解析式的三种形式、二次函数图象上点的坐标特征、等腰直角三角形、解一元二次方程以及二次函数的最值,解题的关键是:(1)利用配方法将二次函数解析式变形为顶点式;(2)利用等腰直角三角形的性质找出点C 的坐标;(3)分m <2、2≤m≤5及m >5三种情况考虑.。
人教版初三上册《数学》期末考试卷及答案【可打印】
一、选择题(每题1分,共5分)1. 在直角坐标系中,点P(2,3)关于x轴的对称点坐标是()。
A.(2,3)B.(2,3)C.(2,3)D.(2,3)2. 已知一组数据:1,2,3,4,5,那么这组数据的众数、中位数、平均数分别是()。
A. 3,3,3B. 3,3,3.5C. 3,3,4D. 3,3,4.53. 下列函数中,属于一次函数的是()。
A. y=2x+1B. y=x^2C. y=2/xD. y=3sinx4. 已知正比例函数y=kx(k≠0),当x=2时,y=4,那么k的值为()。
A. 2B. 4C. 2D. 45. 在等腰三角形ABC中,AB=AC,∠A=40°,则∠B的度数是()。
A. 40°B. 70°C. 80°D. 90°二、判断题(每题1分,共5分)1. 任意两个等腰三角形的底边长度相等。
()2. 两条平行线上的任意两个点之间的距离相等。
()3. 当两个数的和为0时,它们互为相反数。
()4. 函数y=2x+1的图像是一条直线。
()5. 正比例函数的图像经过原点。
()三、填空题(每题1分,共5分)1. 若x2y=3,则2x4y=______。
2. 若函数y=kx(k≠0)的图像经过点(1,2),则k=______。
3. 已知等腰三角形ABC中,AB=AC=5,BC=8,则∠B的度数是______。
4. 若一组数据的平均数为5,则这组数据的总和是______。
5. 若两个等腰三角形的底边长度相等,则它们一定全等。
()四、简答题(每题2分,共10分)1. 简述正比例函数的定义。
2. 简述等腰三角形的性质。
3. 简述函数图像平移的规律。
4. 简述求解二元一次方程组的方法。
5. 简述众数、中位数、平均数的定义及区别。
五、应用题(每题2分,共10分)1. 某商店销售一批商品,售价为每件20元,成本为每件15元。
若要使利润率达到50%,则售价应定为多少元?2. 已知函数y=kx(k≠0),若该函数的图像经过点(2,4),求k的值。
人教版九年级上册《数学》期末考试卷及答案【可打印】
人教版九年级上册《数学》期末考试卷及答案一、选择题(每题1分,共5分)1. 下列数中,最大的数是()。
A. 3B. 0C. 2D. 12. 已知函数f(x) = 2x + 1,那么f(1)的值是()。
A. 1B. 0C. 1D. 23. 下列哪个图形是正方形()。
A. 边长相等的四边形B. 四个角都是直角的四边形C. 对角线相等的四边形D. 对角线互相垂直的四边形4. 下列哪个数是无理数()。
A. √9B. √16C.√3D. √15. 下列哪个图形是等边三角形()。
A. 三条边都相等的三角形B. 两个角都相等的三角形C. 三条边都不相等的三角形D. 两个角都不相等的三角形二、判断题(每题1分,共5分)1. 0是自然数。
()2. 两个负数相乘的结果是正数。
()3. 两条平行线的斜率相等。
()4. 任何数乘以0都等于0。
()5. 任何数除以1都等于它本身。
()三、填空题(每题1分,共5分)1. 两个质数相乘的结果是______。
2. 三角形的内角和等于______度。
3. 两条平行线的斜率相等,这两条直线被称为______。
4. 一次函数的图像是一条______。
5. 两个无理数相乘的结果可能是______。
四、简答题(每题2分,共10分)1. 请简要说明一次函数的性质。
2. 请简要说明二次函数的性质。
3. 请简要说明勾股定理的内容。
4. 请简要说明等差数列的定义。
5. 请简要说明等比数列的定义。
五、应用题(每题2分,共10分)1. 已知函数f(x) = 3x 2,求f(3)的值。
2. 已知等差数列的前三项分别是2,5,8,求这个等差数列的公差。
3. 已知等比数列的前三项分别是2,4,8,求这个等比数列的公比。
4. 已知直角三角形的两条直角边分别是3和4,求这个直角三角形的斜边长度。
5. 已知一个矩形的长是10,宽是5,求这个矩形的面积。
六、分析题(每题5分,共10分)1. 已知一次函数f(x) = 2x + 3,求证:当x > 0时,f(x) > 3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021学年人教新版九年级上册数学期末复习试卷1 一.选择题(共6小题,满分12分,每小题2分)1.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.受益于电子商务发展和法治环境改善等多重因素,“快递业”成为我国经济的一匹“黑马”,2016年我国快递业务量为300亿件,2018年快递量将达到450亿件,若设快递量平均每年增长率为x,则下列方程中,正确的是()A.300(1+x)=450B.300(1+2x)=450C.300(1+x)2=450D.450(1﹣x)2=3003.已知圆锥的底面半径为5cm,母线长为13cm,则这个圆锥的侧面积是()A.60πcm2 B.65πcm2 C.120πcm2 D.130πcm24.如图,⊙O的直径AB=8,∠CBD=30°,则CD等于()A.1B.2C.3D.45.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC的中点恰好与D点重合,AB′交CD于点E.若AB=6,则△AEC的面积为()A.12B.4C.8D.66.学校组织学生去南京进行研学实践活动,小王同学发现在宾馆房间的洗手盘台面上有一瓶洗手液(如图①).于是好奇的小王同学进行了实地测量研究.当小王用一定的力按住顶部A下压如图②位置时,洗手液从喷口B流出,路线近似呈抛物线状,且a=﹣.洗手液瓶子的截面图下部分是矩形CGHD.小王同学测得:洗手液瓶子的底面直径GH=12cm,喷嘴位置点B距台面的距离为16cm,且B、D、H三点共线.小王在距离台面15.5cm 处接洗手液时,手心Q到直线DH的水平距离为3cm,若小王不去接,则洗手液落在台面的位置距DH的水平距离是()cm.A.12B.12C.6D.6二.填空题(共8小题,满分24分,每小题3分)7.一元二次方程4x(x﹣2)=x﹣2的解为.8.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+a上的三点,则y1,y2,y3的大小关系为.9.如图,已知AB是⊙O的直径,弦CD交AB于点E,∠CEA=30°,OF⊥CD,垂足为点F,DE=5,OF=1,那么CD=.10.已知⊙O的半径OA=r,弦AB,AC的长分别是r,r,则∠BAC的度数为.11.半径为3cm的圆内接正方形的对角线长为cm,面积为cm2.12.如图,在△ABC中,∠A=68°,若点O是△ABC的外心,则∠BOC=;若点O是△ABC的内心,则∠BOC=.13.如图,边长为2的正方形ABCD放在平面直角坐标系中,将正方形绕点B顺时针旋转45°,得到正方形A′BC′D′,此时C′的坐标为.14.如图,将函数y=(x﹣2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是.三.解答题(共4小题,满分20分,每小题5分)15.解方程:2x2﹣5x﹣3=0.16.在甲、乙两个不透明的布袋,甲袋中装有3个完全相同的小球,分别标有数字0,1,2;乙袋中装有3个完全相同的小球,分别标有数字﹣1,﹣2,0;现从甲袋中随机抽取一个小球,记录标有的数字为x,再从乙袋中随机抽取一个小球,记录标有的数字为y,确定点M坐标为(x,y).(1)用树状图或列表法列举点M所有可能的坐标;(2)求点M(x,y)在函数y=﹣x+1的图象上的概率.17.关于x的一元二次方程x2+(m+4)x﹣2m﹣12=0,求证:(1)方程总有两个实数根;(2)如果方程的两根相等,求此时方程的根.18.已知:如图,BE是△ABC的外接圆O的直径,CD是△ABC的高.(1)求证:AC•BC=BE•CD;(2)已知CD=6,AD=3,BD=8,求⊙O的直径BE的长.四.解答题(共4小题,满分28分,每小题7分)19.如图,过圆锥的顶点S和底面圆的圆心O的平面截圆锥得截面△SAB,其中SA=SB,AB是圆锥底面圆O的直径,已知SA=7cm,AB=4cm,求截面△SAB的面积.20.如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2).(1)将△ABC以点O为旋转中心旋转180°,画出旋转后对应的△A1B1C1;(2)平移△ABC,使对应点A2的坐标为(0,﹣4),写出平移后对应△A2B2C2的中B2,C2点坐标.21.商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调査发现,每件商品每降价1元,商场平均每天可多售出2件.(1)若某天该商品每件降价3元,当天可获利多少元?(2)设每件商品降价x元,则商场日销售量增加件,每件商品,盈利元(用含x的代数式表示);(3)在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?22.如图,在半径为1的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.(1)当时,求线段OD的长;(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出是哪条边,并求其长度;如果不存在,请说明理由.五.解答题(共2小题,满分16分,每小题8分)23.如图,在△ABC中,∠ACB=90°,O是边AC上一点,以O为圆心,以OA为半径的圆分别交AB、AC于点E、D,在BC的延长线上取点F,使得BF=EF.(1)判断直线EF与⊙O的位置关系,并说明理由;(2)若∠A=30°,求证:DG=DA;(3)若∠A=30°,且图中阴影部分的面积等于2,求⊙O的半径的长.24.如图,△ABC中,AB=AC,延长BC至D,使CD=BC,点E在边AC上,以CE,CD 为邻边做▱CDFE,过点C作CG∥AB交EF于点G,连接BG,DE.(1)∠ACB与∠GCD有怎样的数量关系?请说明理由;(2)求证:△BCG≌△DCE.六.解答题(共2小题,满分20分,每小题10分)25.小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.(1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?(3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元?(成本=进价×销售量)26.如图所示,抛物线y=x2+bx+c经过A、B两点,A、B两点的坐标分别为(﹣1,0)、(0,﹣3).(1)求抛物线的函数解析式;(2)点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DC=DE,求出点D的坐标;(3)在第二问的条件下,在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,请你直接写出所有满足条件的点P的坐标.参考答案与试题解析一.选择题(共6小题,满分12分,每小题2分)1.解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、既是轴对称图形,又是中心对称图形,故本选项正确;C、是轴对称图形,不是中心对称图形,故本选项错误;D、是轴对称图形,不是中心对称图形,故本选项错误.故选:B.2.解:设快递量平均每年增长率为x,依题意,得:300(1+x)2=450.故选:C.3.解:这个圆锥的侧面积=×2π×5×13=65π(cm2).故选:B.4.解:连接OC、OD,如图,∵∠DBC=∠DOC,∠CBD=30°,∴∠DOC=60°,∵OC=OD,∴△COD是等边三角形,∴DC=OD,又∵直径AB=8,∴OD=4,∴CD=4.故选:D.5.解:∵旋转后AC的中点恰好与D点重合,即AD=AC′=AC,∴在Rt△ACD中,∠ACD=30°,即∠DAC=60°,∴∠DAD′=60°,∴∠DAE=30°,∴∠EAC=∠ACD=30°,∴AE=CE,在Rt△ADE中,设AE=EC=x,则有DE=DC﹣EC=AB﹣EC=6﹣x,AD=×6=2,根据勾股定理得:x2=(6﹣x)2+(2)2,解得:x=4,∴EC=4,=EC•AD=4.则S△AEC故选:B.6.解:根据题意:GH所在直线为x轴,GH的垂直平分线所在直线为y轴建立如图所示的平面直角坐标系,喷口B为抛物线顶点,共线的三点B、D、H所在直线为抛物线的对称轴,根据题意,Q(9,15.5),B(6,16),OH=6,设抛物线解析式为y=﹣a(x﹣6)2+16,将点Q代入解得a=﹣,符号题意:洗手液从喷口B流出,路线近似呈抛物线状,且a=﹣.所以抛物线解析式为:y=﹣(x﹣6)2+16=﹣x2+x+14.当y=0时,即0=﹣x2+x+14,解得:x=6+12(负值舍去),所以洗手液落在台面的位置距DH的水平距离是12cm.故选:B.二.填空题(共8小题,满分24分,每小题3分)7.解:4x(x﹣2)=x﹣24x(x﹣2)﹣(x﹣2)=0(x﹣2)(4x﹣1)=0x﹣2=0或4x﹣1=0解得x1=2,x2=.故答案为:x1=2,x2=.8.解:如图:y1>y2>y3.故答案为y1>y2>y3.9.解:∵AB是⊙O的直径,OF⊥CD,根据垂径定理可知:CF=DF,∵∠CEA=30°,∴∠OEF=30°,∴OE=2,EF=,∴DF=DE﹣EF=5﹣,∴CD=2DF=10﹣2.故答案为:10﹣2.10.解:过点O作OM⊥AC于M,在直角△AOM中,OA=r.根据OM⊥AC,则AM=AC=r,所以cos∠OAM=,则∠OAM=30°,同理可以求出∠OAB=45°,当AB,AC位于圆心的同侧时,∠BAC的度数为45°﹣30°=15°;当AB,AC位于圆心的异侧时,∠BAC的度数为45°+30°=75°.故答案为15°或75°.11.解:如图所示,∵四边形ABCD是⊙O的内接正方形,∴∠BAD=∠ABC=90°,BD=AC,∴BD、AC是直径,∴BD=AC=3×2=6(cm),∴正方形ABCD的面积=AC•BD=×6×6=18(cm2),故答案为6,18.12.解:若点O是△ABC的外心,则∠BOC=2∠BAC=2×68°=136°;若点O是△ABC的内心,则∠BOC=90°+∠BAC=90°+×68°=124°;故答案为:136°;124°.13.解:作C′E⊥x轴于E点,如图,∵将边长为2的正方形绕点B顺时针旋转45°,得到正方形A′BC′D′,∴AB=BC′=BC=2,∠CBC′=45°,∴∠EBC′=45°,∴△BEC′为等腰直角三角形,∴BE=C′E=BC′=,∴AE=AB+BE=2+,∴C′点坐标为(2+,).故答案为(2+,).14.解:∵函数y=(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=(1﹣2)2+1=,n=(4﹣2)2+1=3,∴A(1,),B(4,3),过A作AC∥x轴,交B′B的延长线于点C,则C(4,),∴AC=4﹣1=3,∵曲线段AB扫过的面积为9(图中的阴影部分),∴AC•AA′=3AA′=9,∴AA′=3,即将函数y=(x﹣2)2+1的图象沿y轴向上平移3个单位长度得到一条新函数的图象,∴新图象的函数表达式是y=(x﹣2)2 +4.故答案是:y=(x﹣2)2 +4.三.解答题(共4小题,满分20分,每小题5分)15.解:方程2x2﹣5x﹣3=0,因式分解得:(2x+1)(x﹣3)=0,可得:2x+1=0或x﹣3=0,解得:x1=﹣,x2=3.16.解:(1)列表如下:012xy﹣1(0,﹣1)(1,﹣1)(2,﹣1)﹣2(0,﹣2)(1,﹣2)(2,﹣2)0(0,0)(1,0)(2,0)共有9种等可能的结果数;(2)满足点(x,y)落在函数y=﹣x+1的图象上的结果有2个,即(2,﹣1),(1,0 ),所以点M(x,y)在函数y=﹣x+1的图象上的概率=.17.解:(1)∵△=(m+4)2﹣4(﹣2m﹣12)=m2+16m+64=(m+8)2≥0,∴方程总有两个实数根;(2)如果方程的两根相等,则△=(m+8)2=0,解得m=﹣8,此时方程为x2﹣4x+4=0,即(x﹣2)2=0,解得x1=x2=2.18.(1)证明:连接CE(1分)∵BE是⊙O的直径∴∠ECB=90°∵CD⊥AB∴∠ADC=90°∴∠ECB=∠ADC又∵∠A=∠E(同弧所对的圆周角相等),∴△ADC∽△ECB∴∴AC•BC=BE•CD;(1分)(2)解:∵CD=6,AD=3,BD=8∴BC==10(1分)∴AC=(1分)∵AC•BC=BE•CD∴×10=BE•6∴BE=5∴⊙O的直径BE的长是.四.解答题(共4小题,满分28分,每小题7分)19.解:在Rt△AOS中,∵OA=AB=2,SA=7,∴SO==3,∴截面△SAB的面积=×4×3=6(cm2).20.解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C2即为所求,其中B2点坐标为(3,﹣2),C2点坐标为(3,﹣4).21.解:(1)当天盈利:(50﹣3)×(30+2×3)=1692(元).答:若某天该商品每件降价3元,当天可获利1692元.(2)∵每件商品每降价1元,商场平均每天可多售出2件,∴设每件商品降价x元,则商场日销售量增加2x件,每件商品,盈利(50﹣x)元.故答案为:2x;50﹣x.(3)根据题意,得:(50﹣x)×(30+2x)=2000,整理,得:x2﹣35x+250=0,解得:x1=10,x2=25,∵商城要尽快减少库存,∴x=25.答:每件商品降价25元时,商场日盈利可达到2000元.22.解:(1)∵OD⊥BC,∴BD=BC=,∴OD==;(2)DE的长保持不变,理由如下:连接AB,由勾股定理得,AB==,∵OD⊥BC,OE⊥AC,∴BD=CD,AE=EC,∴DE=AB=.五.解答题(共2小题,满分16分,每小题8分)23.解:(1)连接OE,∵OA=OE,∴∠A=∠AEO,∵BF=EF,∴∠B=∠BEF,∵∠ACB=90°,∴∠A+∠B=90°,∴∠AEO+∠BEF=90°,∴∠OEG=90°,∴EF是⊙O的切线;(2)∵∠AED=90°,∠A=30°,∴ED=AD,∵∠A+∠B=90°,∴∠B=∠BEF=60°,∵∠BEF+∠DEG=90°,∴∠DEG=30°,∵∠ADE+∠A=90°,∴∠ADE=60°,∵∠ADE=∠EGD+∠DEG,∴∠DGE=30°,∴∠DEG=∠DGE,∴DG=DE,∴DG=DA;(3)∵AD是⊙O的直径,∴∠AED=90°,∵∠A=30°,∴∠EOD=60°,∴∠EGO=30°,∵阴影部分的面积=×r×r﹣=2﹣π.解得:r2=4,即r=2,即⊙O的半径的长为2.24.(1)解:∠ACB=∠GCD.理由如下:∵AB=AC,∴∠ABC=∠ACB∵CG∥AB,∴∠ABC=∠GCD,∴∠ACB=∠GCD.(2)证明:∵四边形CDFE是平行四边形,∴EF∥CD.∴∠ACB=∠GEC,∠EGC=∠GCD.∵∠ACB=∠GCD,∴∠GEC=∠EGC,∴EC=GC,∵∠GCD=∠ACB,∴∠GCB=∠ECD.在△BCG和△DCE中∴△BCG≌△DCE.六.解答题(共2小题,满分20分,每小题10分)25.解:(1)由题意,得:w=(x﹣20)•y=(x﹣20)•(﹣10x+500)=﹣10x2+700x﹣10000,即w=﹣10x2+700x﹣10000(20≤x≤32)(2)对于函数w=﹣10x2+700x﹣10000的图象的对称轴是直线.又∵a=﹣10<0,抛物线开口向下.∴当20≤x≤32时,W随着x的增大而增大,∴当x=32时,W=2160答:当销售单价定为32元时,每月可获得最大利润,最大利润是2160元.(3)取W=2000得,﹣10x2+700x﹣10000=2000解这个方程得:x1=30,x2=40.∵a=﹣10<0,抛物线开口向下.∴当30≤x≤40时,w≥2000.∵20≤x≤32∴当30≤x≤32时,w≥2000.设每月的成本为P(元),由题意,得:P=20(﹣10x+500)=﹣200x+10000∵k=﹣200<0,∴P随x的增大而减小.∴当x=32时,P的值最小,P=3600.最小值答:想要每月获得的利润不低于2000元,小明每月的成本最少为3600元.26.解:(1)∵抛物线y=x2+bx+c经过A(﹣1,0)、B(0,﹣3),∴,解得,故抛物线的函数解析式为y=x2﹣2x﹣3;(2)令x2﹣2x﹣3=0,解得x1=﹣1,x2=3,则点C的坐标为(3,0),∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴点E坐标为(1,﹣4),设点D的坐标为(0,m),作EF⊥y轴于点F,∵DC2=OD2+OC2=m2+32,DE2=DF2+EF2=(m+4)2+12,∵DC=DE,∴m2+9=m2+8m+16+1,解得m=﹣1,∴点D的坐标为(0,﹣1);(3)∵点C(3,0),D(0,﹣1),E(1,﹣4),∴CO=DF=3,DO=EF=1,根据勾股定理,CD===,在△COD和△DFE中,∵,∴△COD≌△DFE(SAS),∴∠EDF=∠DCO,又∵∠DCO+∠CDO=90°,∴∠EDF+∠CDO=90°,∴∠CDE=180°﹣90°=90°,∴CD⊥DE,①分OC与CD是对应边时,∵△DOC∽△PDC,∴=,即=,解得DP=,过点P作PG⊥y轴于点G,则==,即==,解得DG=1,PG=,当点P在点D的左边时,OG=DG﹣DO=1﹣1=0,所以点P(﹣,0),当点P在点D的右边时,OG=DO+DG=1+1=2,所以,点P(,﹣2);②OC与DP是对应边时,∵△DOC∽△CDP,∴=,即=,解得DP=3,过点P作PG⊥y轴于点G,则==,即==,解得DG=9,PG=3,当点P在点D的左边时,OG=DG﹣OD=9﹣1=8,所以,点P的坐标是(﹣3,8),当点P在点D的右边时,OG=OD+DG=1+9=10,所以,点P的坐标是(3,﹣10),综上所述,满足条件的点P共有4个,其坐标分别为(﹣,0)、(,﹣2)、(﹣3,8)、(3,﹣10).。