电缆故障的探测方法与仪器

合集下载

QTQ02型电缆故障综合测试仪及其应用

QTQ02型电缆故障综合测试仪及其应用
地下塑料电缆绝缘不良(地气)点的准确位置。
1 电缆探测器用途及基本原理
由振荡器产生一个音频信号电流,流经被测 电缆,此电流在被测系统周围产生磁场,磁力线 透过大地传到地面,在地面上用一探测线圈拾取 磁场,经接收器选频放大以后用耳机加以监听, 通过检验这一磁场的变化就可以判断地下金属管 线的位置。利用同样原理可以在电缆护层外检验 内部芯线的障碍部位。
QTQ02型电缆故障综合测试仪及其应用
1、电缆探测器用途及基本原理 2、QTQ02型电缆探测器介绍 3、QT测地下电缆的走向及埋深。 (2)探测地下金属管线(油管、汽管、水管)的走
向及埋深。 (3)探测架空电缆芯线障碍的部位。 (4)如配置一具测量探针(接地规),便可以测量
2 电缆探测器介绍
1. 振荡器 2. 接收器 3. 一号探头 4. 二号探头
3 电缆探测器使用方法 1.芯线放音法探测地下电缆的路由及埋深
1.芯线放音法探测地下电缆的路由及埋深 (1)将振荡器放在电缆的一端,一个输出端子接到另一根
地气棒上;选一根良好芯线为放音线,接到另一个输出 端子上,这根放音线的远端接到一根地气棒上,使放音 电流构成回路(如下图)。 (2)顺时针旋转“输出控制”接通电源,同时调节“电表 灵敏度控制”,使表针有明显数值,并防止电表撞针。
T-C300市话电缆故障综合测试仪概述
1.特点 2.技术指标
2 电桥测试法
1. 工作原理 2. 兆欧表和欧姆表功能 3. 电桥测距接线方法 4. 电桥测试 5. 计算故障距离 6. 测试技巧与注意事项
1.工作原理 2.兆欧表和欧姆表功能
1. 工作原理
仪表采用的是比例计算法,测出芯线从测量点到故障点 电阻和全长电阻的比值,再乘以电缆全长,即得到故障距离。

电缆故障定点仪(电缆路径探测接收机)说明书

电缆故障定点仪(电缆路径探测接收机)说明书

电缆故障定点仪电缆路径探测接收机使用说明书第一章技术说明电缆故障定点仪/电缆路径探测接收机,主要用于电缆故障精确定点,以及用于地埋电缆的路径走向查找。

一、电缆故障定点仪/电缆路径探测接收机技术指标1、灵敏度:在输入信号频率为300Hz、幅度为10μV,信噪比为20:1>2.5V。

条件下,不失真输出V2、输出阻抗:4-40(Ω)低阻输出。

3、功耗:V=9V,静态电流:声测档不大于12mA,声磁同步档不大于18mA。

4、工作电压:9V干电池供电。

5、工作环境温度:-10℃~+40℃。

6、外形尺寸:机箱体积:210×145×70mm。

第二章电缆故障定点仪/电缆路径探测接收机功能介绍一、电缆故障定点仪/电缆路径探测接收机面板及操作功能介绍定点仪正面及定点仪背面示意图如图2.1所示:图2.1 电缆故障定点仪/电缆路径探测接收机面板示意图电源开关、音量电位器旋钮:向上拉(或者顺时针旋转),电源接通,顺时针旋转、耳机音量增大。

表头增益:用于调节V表头摆动灵敏度,顺时针旋转,摆幅增大。

同时也用于调节φ表头摆动灵敏度,顺时针旋转,摆幅增大。

耳机输出插座:与定点仪配套耳机连接。

声测/声磁同步:按键抬起为声信号接收,耳机和V表头均反映声测探头接收声波信号。

按键按下,为声磁同步接收状态,此时V表头反映探头接收放电声波信号,φ表头和耳机则接收路径仪信号或者放电电磁波信号。

φ表头:声磁同步接收时反映接收磁信号大小幅度。

V表头:指示声波信号幅度。

电源指示灯:电池电压正常值为9V,电源开关打开,该指示灯发亮,若电池电压过低时,该指示灯已亮度变暗,定点仪灵敏度也大大降低,应及时更换同型号6F22型方块电池。

声输入插座:定点仪配套的,声测探头插入该插座。

电池盖板:更换电池时,拧下M3螺钉,打开电池盖板,更换同型号6F22型9V电池。

磁输入插座:当寻测电缆路径时,此插座插入同步接收天线。

二、电缆故障定点仪/电缆路径探测接收机配套附件介绍1、定点仪探头探头是定点仪配套附件。

电缆故障查找方法

电缆故障查找方法

电缆故障查找方法电缆故障是电力系统中常见的问题,一旦出现故障,不仅会影响正常的用电,还可能造成安全隐患。

因此,及时准确地查找电缆故障并进行修复至关重要。

下面将介绍几种常用的电缆故障查找方法。

首先,最常用的方法是使用绝缘电阻测试仪进行测试。

在使用测试仪之前,需要先将电缆的两端分别接地,然后将测试仪的两个探头分别接触电缆的两端,记录下测试仪显示的绝缘电阻数值。

如果绝缘电阻数值低于正常范围,就说明电缆存在绝缘故障。

通过这种方法可以快速定位故障位置,有针对性地进行修复。

其次,可以利用局放检测仪进行故障查找。

局放检测仪能够检测电缆局部放电现象,通过分析局放信号的特点,可以判断出电缆是否存在故障。

在使用局放检测仪时,需要注意选择合适的检测频率和增益,以确保能够准确地捕捉到局放信号。

通过这种方法,可以有效地排除电缆的局部故障,提高查找故障的效率。

另外,还可以借助红外热像仪进行故障查找。

红外热像仪能够将电缆表面的热量分布显示出来,通过观察热像图可以发现电缆存在的热点,从而判断出故障位置。

在使用红外热像仪时,需要注意选择合适的拍摄距离和角度,以确保能够准确地捕捉到热像图像。

通过这种方法,可以快速定位电缆的热故障,有针对性地进行修复。

最后,还可以利用无损检测技术进行故障查找。

无损检测技术能够在不破坏电缆表面的情况下,通过电磁、超声波等方法检测电缆内部的故障。

这种方法不仅能够准确地查找出电缆的故障位置,还能够保护电缆表面的完整性,减少对电缆的损坏。

通过这种方法,可以全面地了解电缆的故障情况,有针对性地进行修复。

综上所述,电缆故障的查找方法有多种,每种方法都有其适用的场景和特点。

在实际操作中,可以根据具体情况选择合适的方法进行故障查找,以确保能够及时准确地排除电缆故障,保障电力系统的正常运行。

10kV配电线路电缆故障查找方法

10kV配电线路电缆故障查找方法

10kV配电线路电缆故障查找方法10kV配电线路电缆故障是电力系统中常见的问题,一旦出现故障可能会造成停电、损坏设备等严重后果。

及时准确地查找和修复电缆故障对于维护电力系统的稳定运行至关重要。

本文将介绍一些关于10kV配电线路电缆故障查找的方法,希望可以帮助相关工作人员提高工作效率,提高故障查找的准确性。

一、外观检查在进行故障查找之前,需要对10kV配电线路的电缆进行外观检查。

外观检查是最基本的一步,可以通过目测发现一些电缆外部的损坏情况,比如绝缘层的破损、接头处的漏油等。

如果发现了这些问题,需要及时进行修复或更换,以免引起更大的故障。

二、断路器查找接下来,可以通过断路器查找的方法来定位电缆故障的位置。

断开配电线路上游的断路器,然后使用线路测试仪器查找到断路器后的电压值。

如果发现后方的电压为零,即可初步判断故障点位于断路器后。

然后逐步移动测试仪器,直至找到断路器前的电压为零的位置,即为故障点所在。

在使用该方法时需要小心谨慎,以免对线路造成进一步损坏。

三、局部放电检测另外一种方法是利用局部放电检测技术来查找电缆故障。

局部放电是电介质中的局部放电现象,主要是由于电压应力或绝缘层缺陷引起的。

局部放电检测可以通过检测电缆的局部放电信号来定位故障点,比如利用放大器和高频探头来捕捉放电信号,再通过分析放电信号的波形和幅值来确定故障点。

这种方法适用于查找绝缘层损坏或接头处的故障。

四、超声波检测超声波检测是一种非接触的故障检测方法,可以用来查找电缆中导体之间或导体与绝缘层之间的故障。

通过使用超声波探头来扫描电缆,当波束遇到故障点时,会发生反射和散射,从而被探测仪器捕获。

通过分析捕获的信号可以准确地确定故障点的位置。

这种方法对于查找电缆内部的故障非常有效,但需要专业的人员和设备来操作。

五、热红外检测热红外检测是利用红外热像仪来检测电缆故障的一种方法。

当电缆出现故障时,会产生热量,而红外热像仪可以将这些热量转化为图像显示出来,从而可以清晰地看到故障点的位置。

说说使用电缆故障测试仪的测试方法

说说使用电缆故障测试仪的测试方法

说说使用电缆故障测试仪的测试方法仪器在测定电缆故障之间,测试人员除掌握本机性能与操作方法之外,必须首先确定电缆故障的性质,以便采用适当的工作方法与测试方法。

首先用兆欧或万用表在电缆一端测量各相对地及相之间的绝缘电阻,根据阻值高低确定是低阻短路或断线开路,或者是高阻闪络性故障。

操作方法1、当阻值低于200〜300欧姆为低阻故障,。

〜几十欧为短路故障,阻值极高到无限大为开路或断线故障。

是否断线,还可以将电缆终端相连用表在始端测量被短路接两相的阻值加以确认。

此类故障可用低脉冲法直接测定。

2、当阻值很高(数百兆和千兆)且在作高压实验时有瞬间放电现象,此类故障一般称为闪络性故障,可采用直流高压闪测法确定。

3、高阻故障:阻值高于低阻故障,且在作高压试验时直流高压闪测法确定。

4、按一定方式粗略测试之后再进行确定点,必要时需找电缆路径,丈量电缆长度或距离。

主要特点1、功能齐全,测试故障安全、迅速、准确。

仪器采用低压脉冲法和高压闪络法进行探测,可测试电缆的各种故障,对电力电缆的闪络及高阻故障无需烧穿而直接测试。

如配备声点仪,可准确测定故障点的位置2、测试精度高。

仪器采用高速数据采样技术,读取分辨率标。

智能化程度高。

测试结果以小型及数据自动显示在大屏幕液晶显示屏上,判断故障直观。

并配有菜单显示操作功能,无需对操作人员作专门的训练。

3、具有波开及参数存储、调出功能。

采用非易失性器件,关机后波形、数据不易失。

4、具有双踪显示功能。

可将故障电缆的测试波形与正常波形进行对比,有利于对故障的进一步判断。

5、具有波形扩展比例功能。

改变波形比例,可扩展波形进行精确测试。

6、控制测量光标,可自动沿线搜索,并在故障波形的拐点处自动停下。

7、可任意改变双光标的位置,直接显示故障点与测试点的直接距离或相对距离。

8、具有打印功能。

将测试的结果打印存档。

技术参数1.测试距离不小于10公里。

2.故障点定位误差小于0.5米。

3.电缆路径探测不小于10公里。

10kv电力电缆故障测寻的详细步骤

10kv电力电缆故障测寻的详细步骤

10kv电力电缆故障测寻详细步骤
一、确定故障类型
在进行故障测寻之前,首先要确定故障的类型,如开路、短路、断路等。

可以通过测量电缆的绝缘电阻和导体电阻等参数,初步判断故障的性质和程度。

二、预定位
预定位是初步确定故障的大致位置,常用的方法有:
1. 电桥法:通过测量电缆线路的电阻和电容,计算出故障点到测试点的距离。

该方法简单可靠,但精度较低。

2. 脉冲法:通过向电缆发送高压脉冲信号,根据反射回来的脉冲信号时间差,计算出故障点的距离。

该方法精度较高,但需要较高的测试设备和经验。

三、精确定位
精确定位是在预定位的基础上,进一步精确确定故障点的位置。

常用的方法有:
1. 音频法:通过听取电缆中声音的差异,判断故障点的位置。

该方法简单易行,但需要经验丰富的操作人员。

2. 声磁同步法:通过测量电缆中的声音和磁场信号,利用时间差原理确定故障点的位置。

该方法精度较高,但需要特殊的测试设备。

四、修复故障
根据故障的性质和程度,可以采用不同的修复方法。

常用的方法有:1. 直通接法:对于短路、断路等简单故障,可以直接将电缆两头连
接在一起,恢复正常的电气性能。

2. 绕接法:对于损坏较轻的故障点,可以采用绕接的方式进行修复。

3. 替换法:对于损坏严重的电缆段,需要整段替换电缆。

五、测试验收
修复完成后,需要对电缆进行测试验收,确保故障已经完全排除,电缆电气性能恢复正常。

测试内容包括绝缘电阻、导体电阻、耐压试验等。

验收合格后,方可投入使用。

电力电缆故障探测

电力电缆故障探测

电力电缆故障查找方法与应用电力电缆具有供电安全可靠,受自然气象条件影响少,运行和维护成本相对较少等优点,但在实际的运行中由于城市的施工,电缆附件安装工艺不良,长期过负荷运行等因素致使电缆发生故障,影响供电安全。

如何快速查找故障点,恢复电缆正常供电,是运行维护人员面临的一个挑战。

笔者总结多年的工作经验,给出以下分享。

电力电缆故障点查找一般分四步骤进行:1.故障类型判断2.故障点预定位3.路径确认4.精确定点一、故障类型判断故障判断:用万用表、兆欧表测量电缆的故障电阻,并根据故障电阻大小,判断电缆的故障性质;进一步了解该故障的原因、电缆敷设环境及运行情况等。

电缆故障类型可分为以下5种:1、开路(断线)故障:电缆有一芯或多芯导体断裂或者金属护层断裂。

断线故障一般都伴有经电阻接地的现象。

2、短路故障:电缆的一芯或多芯对地绝缘电阻或者线芯之间绝缘电阻低于10Ω,其中电缆的一芯或多芯对地绝缘电阻低于10Ω的故障也叫死接地故障。

3、低阻故障:电缆的一芯或多芯对地绝缘电阻或者线芯之间绝缘电阻大于10Ω,不高于200Ω(非标准值)。

4、高阻泄露性故障:电缆的一芯或多芯对地绝缘电阻或者线芯之间绝缘电阻大于200Ω。

5、高阻闪络性故障:电缆的一芯或多芯对地绝缘电阻或者线芯之间绝缘电阻非常高,但对电缆进行耐压试验时,当电压加到某一数值,突然出现绝缘击穿的现象。

二、故障点预定位上述故障类型分类的目的是为了选择合适的测试方法,目前电缆故障测距的常用方法主要有电桥法和波反射法(脉冲法)两种。

1、电桥法:测距方法是基于电缆沿线均匀,电缆长度与缆芯电阻成正比的特点。

并根据惠斯通电桥的原理,将电缆短路接地故障点两侧的环线电阻引入电桥回路,测量其比值。

由测得的比值和已知的电缆全长,计算出测量端到故障点的距离。

此方法需要一个截面相同长度相等的完好的相线作为测试辅助相。

适用于短路、低阻与高阻泄露性故障。

2、波反射法(脉冲法):又分为低压脉冲法、二次(多次)脉冲法、脉冲电流法。

电力电缆高阻故障的探测技术

电力电缆高阻故障的探测技术

电力电缆高阻故障的探测技术
电力电缆的高阻故障是指电缆某一部分出现了电阻大于正常值的情况,导致电流通过
受阻,电压下降,甚至造成线路短路。

如果高阻故障得不到及时发现和处理,可能会导致
电缆发生过热、烧毁甚至引发火灾的严重后果。

电力电缆高阻故障的探测技术显得十分重要。

电缆高阻故障的探测技术主要可以分为五大类:继电保护、无损检测、红外热像仪、
电缆局部放电监测和超声波检测。

继电保护是一种常用的高阻故障探测技术,通过监测电缆的电流和电压变化情况,判
断是否存在高阻故障。

当电流和电压发生异常时,继电保护会及时发出警报,并切断电源,避免进一步的事故发生。

无损检测是一种不需要破坏电缆绝缘层的方法来检测故障的技术。

常用的无损检测方
法有超声波、红外热像仪和电缆局部放电监测。

超声波通过发送超声波并观察返回的信号
来判断电缆是否存在高阻故障;红外热像仪则通过测量电缆表面的温度分布来发现电缆是
否存在过热故障;电缆局部放电监测是通过对电缆进行局部放电检测,当出现高阻故障时,会伴随着局部放电的发生。

红外热像仪是利用红外线热成像技术来检测电缆高阻故障的一种无损检测方法。

红外
热像仪可以通过检测电缆表面的热辐射来发现电缆是否存在异常的温度升高,从而判断是
否存在高阻故障。

红外热像仪的优势是可以在不接触电缆的情况下进行检测,无需切断电源。

超声波检测是通过发送超声波并观察返回的信号来判断电缆是否存在高阻故障。

超声
波检测可以检测电缆内部的物理状态,当电缆出现高阻故障时,会产生反射超声波信号。

通过对超声波信号的分析,可以判断电缆是否存在高阻故障。

电缆故障的检测方法

电缆故障的检测方法

电缆故障的探测方法本文综述了电缆故障的探测方法与仪器。

首先列举了电缆故障探测的传统方法并分析了传统方法的不足,然后介绍了电缆故障探测的新方法及其特点。

随着电缆用量在整个电力传输线路和因特网中所占的比例日益提高,电缆故障出现的几率越来越大。

电缆故障对生产造成的危害较大,轻者会造成单台电气设备不能运行,重者会导致整个变电所停电,所以电缆故障点的快速测定和精确定位问题变得非常重要。

一、电缆故障探测的传统方法(一)电缆故障测距的传统方法电缆故障测距的传统方法主要有以下四种:电桥法:这是电力电缆的测距的经典方法。

该方法比较简单,但需要事先知道电缆线长度等数据,且只适用于低阻及短路故障。

但是,在实际运行中,故障常常为高阻及闪络性故障,因故障电阻很高造成电桥电流很小,因此一般的灵敏度仪表很难探测。

脉冲回波法:针对低阻与断路类型的故障,利用低压脉冲反射方法来测电缆故障比起上面的电桥法简单直接,只需通过观察故障点反射与发射脉冲的时间差来测距。

测试时将一低压脉冲注入电缆,当脉冲传播到故障点时会发生反射,脉冲被反射送回到测量点。

利用仪器记录发射和反射脉冲的时间差,只需知道脉冲传播速度就可计算出故障发生点的距离。

该方法简单直观,不需知道电缆长度等原始数据,还可根据反射波形识别电缆接头与分支点的位置。

脉冲电压法。

该方法可用于测量高阻与闪络故障。

首先将电缆故障在直流或脉冲高压信号下击穿,然后通过记录放电脉冲在测量点与故障点往返一次所需的时间来测距。

脉冲电压法的一个重要优点是不必将高阻与闪络性故障烧穿,直接利用故障击穿产生的瞬时脉冲信号,测试速度快,测量过程也得到简化。

但缺点是:①仪器通过一个电容电阻分压器分压测量电压脉冲信号,仪器与高压回路有电耦合,很容易发生高压信号串人,造成仪器损坏,故安全性较差;②在利用闪测法测距时,高压电容对脉冲信号呈短路状态,需要串一个电阻或电感以产生电压信号,增加了接线复杂性,使故障点不容易击穿;③在故障放电时,特别在冲闪时,分压器耦合的电压波形变化不尖锐,难以分辨。

电缆故障查找方法

电缆故障查找方法

电缆故障查找方法
电缆故障的查找方法主要有以下几种:
1. 直观检查法:通过目视观察电缆外观、连接头、连接处等是否有损坏、老化、松动等情况,以及是否有明显的烧焦、破损的痕迹,从而初步排除可能存在的故障点。

2. 电阻测量法:使用电阻表或万用表对电缆的各个导线、连接头进行测量,判断其是否符合正常范围。

如果发现某个导线的电阻值异常高或异常低,就可以怀疑该导线存在断路、短路等故障。

3. 绝缘测量法:使用绝缘电阻表对电缆绝缘层进行测试,判断其是否符合正常的绝缘阻值。

如果测试结果较低,表示绝缘性能可能存在问题,需要进一步检查和修复。

4. 高频探测法:使用高频电流注入仪、高频电压法等设备对故障电缆进行高频信号注入,通过测量回路的电流和电压波形的变化,可以定位到故障的具体位置。

5. 热红外扫描法:使用热像仪对电缆进行扫描,通过检测电缆的热量分布情况,可以找到可能存在的局部过热故障点。

6. 变电站设备检测法:通过对变电站设备如断路器、隔离开关等的检测,判断
是否存在与电缆有关的故障。

例如,通过断路器的热重载测试、测量隔离开关的接触电阻等,可以判断电缆接线是否正确、电缆夹是否过紧等。

以上方法可以根据具体情况和设备的可用性选择适合的方式进行故障查找。

在使用上述方法时,应注意安全问题,避免触电或其他意外事故发生。

此外,如果遇到复杂或难以排查的故障,建议请专业的电气工程师或电缆维护人员进行故障排查和维修。

电缆探伤知识

电缆探伤知识
注意与真正故障点声音相区别,防止误判断。
5、听测时不仅要注意放电响声,还应注意电缆表面是否有振动,
便于精确确定故障点位置。
2.音频电流感应法
用1千赫的音频信号发生器向待测电缆通音频电流,发出电磁波;
然后,在地面上用探测线圈沿被测电缆路径接收电磁场信号,并将
之送入放大器进行放大;而后,再将放大后的信号送入耳机或指示
点被仪器记录下来。波形上发射脉冲与反射脉冲的时间差△t,对应
脉冲在测量点与阻抗不匹配点往返一次的时间,已知脉冲在电缆中
的波速度V,则阻抗不匹配点距离,可由下式计算。
L=V·△t2
低压脉冲反射原理图
波速V与电缆的介电常数和磁导率有关,一般对于交联聚乙烯电力电缆
V≈172m/μs,对聚乙烯(全塑电缆), V≈184m/μs
短路
故障
低阻
故障
1MΩ
以下
100Ω
以下
低压
脉冲法
接地或短路
接地故障

穿
100Ω
以上
低压
电桥法
短路
故障
一、二相短路
或接地故障
高压
电桥法
短路
故障




感应法
闪络性
故障
高阻
故障
声测法
三相短路或
接地故障
冲击
闪络法
接地或短路
接地故障
等电位点,然后找出2组等电位点的垂直平分线的交点,即为故障点。此法
在故障较为严重时使用效果较好
27
跨步电压法的优点是原理简单、易操作、抗干扰好、破坏性少、定
点直观准确,适于敷设于泥土地面内的电缆,对直埋电缆的死接地
十分有用 。其不足之处有:

电缆故障探测作业指导书

电缆故障探测作业指导书

电缆故障探测作业指导书【作业指导书】电缆故障探测一、引言电缆故障探测是指对电力、通信、石油、化工等行业中使用的电缆进行故障检测和定位的技术活动。

本作业指导书旨在为电缆故障探测作业提供详细的操作指导和注意事项,确保作业的安全性和准确性。

二、作业前准备1. 工具准备- 电缆故障定位仪:确保仪器正常工作,电池电量充足。

- 探测钳:检查钳口是否完好,无损伤或变形。

- 探测杆:检查杆体是否完好,无断裂或变形。

- 接地线:检查接地线是否完好,无断裂或损伤。

- 其他辅助工具:如绝缘胶带、螺丝刀等。

2. 环境准备- 作业区域:确保作业区域没有明显的危险物品或障碍物。

- 人员安排:指定专人负责操作,其他人员保持距离。

三、作业步骤1. 检查电缆- 外观检查:检查电缆外皮是否有明显的划痕、破损或磨损。

- 连接检查:检查电缆连接处是否松动或脱落。

- 绝缘检查:使用绝缘测试仪检测电缆的绝缘电阻是否符合要求。

2. 探测故障点- 接地:将接地线连接到电缆故障定位仪和接地点,确保良好接地。

- 探测钳连接:将探测钳连接到电缆故障定位仪,确保连接牢固。

- 开始探测:根据仪器使用说明,选择合适的探测模式和参数,开始探测故障点。

3. 故障定位- 信号分析:根据仪器显示的信号波形和数值,分析故障点的位置。

- 定位标记:使用绝缘胶带或其他标记物在故障点处进行标记。

4. 故障修复- 故障切除:根据故障点的具体情况,采取相应的修复措施,如切除故障段落。

- 连接修复:使用绝缘连接器或绝缘胶带进行连接修复。

- 绝缘恢复:对修复部位进行绝缘处理,确保绝缘性能符合要求。

四、注意事项1. 安全第一:在进行电缆故障探测作业时,必须严格遵守相关的安全操作规程,佩戴个人防护装备,确保人身安全。

2. 仪器操作:在使用电缆故障定位仪时,必须熟悉仪器的使用说明,正确设置参数和模式,避免误操作。

3. 环境保护:作业过程中应注意环境保护,避免对周围环境造成污染或损害。

电缆故障测试仪的使用步骤

电缆故障测试仪的使用步骤

电缆故障测试仪的使⽤步骤
电缆故障测试仪的使⽤步骤
电缆故障测试仪的探测⼀般要经过诊断、测距、定点三个步骤。

1. 电缆故障性质诊断
电缆故障性质的诊断,即确定故障的类型与严重程度,以便于测试⼈员对症下药,选择适当的电缆故障测距与定点⽅法。

2. 电缆故障测距
电缆故障测距,⼜叫粗测,在电缆的⼀端使⽤仪器确定故障距离,现场上常⽤的故障测距⽅法有古典电桥法与现代⾏波法。

主要⽤到中试控股电缆故障测距仪。

3. 电缆故障定点
电缆故障定点,⼜叫精测,中试控股即按照故障测距结果,根据电缆的路径⾛向,找出故障点的⼤体⽅位来,在⼀个很⼩的范围内,使⽤⾼压信号发⽣器利⽤放电声测法或其它⽅法确定故障点的准确位置。

主要⽤到数字式电⼒电缆故障定点仪⼀般来说,成功的电缆故障探测都要经过以上三个步骤,否则欲速则不达。

例如不进⾏故障测距⽽利⽤放电声测法直接定点,沿着很长的电缆路径(可能有数公⾥长),探测故障点放电声是相当困难的。

如果已知电缆故障距离,确定出⼀个⼤体⽅位来,在很⼩的⼀个范围内(10⽶左右)来回移动定点仪器探测电缆故障点放电声,就容易多了。

电缆故障测试检测查找仪器使用方法简版修正

电缆故障测试检测查找仪器使用方法简版修正

电缆故障测试检测查找仪器使用方法简版修正1.仪器准备-将仪器放置在平稳的工作台上,插上电源线并接通电源。

-确认仪器屏幕显示正常,没有任何故障提示。

2.连接电缆-将待测电缆断开,分割成两段。

-将仪器的发射端与一个电缆段的一端相连,并确保连接牢固。

-将仪器的接收端与另一个电缆段的一端相连,并确保连接牢固。

3.开始测试-按下仪器上的开机按钮,待仪器启动完成。

-在操作界面上选择故障定位模式,如电压法、电流法或时间域反射法等。

-设置适当的测试参数,如电流大小、测试时间等。

-点击“开始测试”按钮,仪器将开始检测故障。

4.故障定位-仪器会实时显示测试结果,包括故障位置、类型及距离等信息。

-根据仪器显示的故障位置,可采取相应的维修措施,如挖掘地面找到电缆,修理或更换电缆等。

5.完成测试-完成一次故障定位后,点击“停止测试”按钮,仪器将停止测量。

-断开电缆连接,将仪器关机,并拔掉电源线。

-将仪器放回存放位置,保证仪器的安全。

注意事项:-在操作仪器之前,请仔细阅读使用说明书,熟悉仪器的功能和操作流程。

-在测试过程中,需要确保测试操作区域没有其他人员,以免发生安全事故。

-操作过程中要注意操作规范,防止仪器受到外界干扰,影响测试结果的准确性。

总结:电缆故障测试检测查找仪器的使用方法较为简单,主要包括仪器准备、连接电缆、开始测试、故障定位和完成测试等步骤。

仪器操作人员只需熟悉仪器的功能和操作流程,按照说明书进行操作即可。

在测试过程中,要注意操作规范和安全性,以保证测试结果的准确性。

电缆故障检测仪说明

电缆故障检测仪说明

一、电缆测试仪基本组成电缆故障测试仪由闪测、寻径、定点及配备笔记本电脑组成。

电缆闪测仪可在故障电缆的一端测试出故障点的大概位置,用于故障点距离的粗测。

也可用来测电缆的长度和电波在电缆中传播速度。

定点仪用于故障点的精测,在故障点距离的粗测范围内沿着电缆走向可精确地探测出故障点的具体位置。

路径信号源产生15KH Z 信号供寻测电缆路径时用。

本系统将电缆故障测试仪的测试控制与显示及日常档案管理与微机结合在一起,利用计算机的强大功能,把电缆测试及管理工作提高到一个新的水平,大大提高了工作效率,也方便管理,对其它管网也可进行管理。

二、测仪技术性能1、可测试各种型号35KV 以下电压等级的铜、铝芯高、低压电力电缆的各类故障。

常见的油浸纸电缆、交联聚乙烯电缆、不滴流电缆和聚氯乙烯电缆等四种电缆的电波传播速度已经在仪器中预置。

电缆长度及故障距离的测量均是屏幕直接显示不需要人工换算。

2、可测试各种型号电缆的开路、短路及电力电缆的高阻闪络性故障、高阻泄漏性故障。

3、测试距离:双端测试距离16km 以内。

4、单端盲区距离:v 15米。

5、四种波形采样频率:30MH Z、15MH Z、10 MH Z、5MH Z。

6、误差:相对误差小于± 2%,绝对误差千米以下电缆不超过15 米,千米以上电缆不超过20 米。

7、辩率:V/2f (米)V :电波在电缆中的传播速度。

f :实际采样频率。

例如:油浸纸介质电缆的电波传播速度为160 米/微秒,如用30MHz 采样频率,此时屏幕上数字读数为每移动一个单元亮点,数字应变化V/2f=160/ (2X 30) =2.66 米。

8、液晶显示器使图像更清晰。

9、采用双游标,在游标定位后移动游标,可从屏幕上直接显示故障点距测试端距离。

10、备有“专家系统” 。

在获得测试波形及有关参数后,如需保存波形及有关参数,也可利用仪器将测试波形及参数进行贮存。

三、路径信号源性能指标1、功能:该仪器可输出15KH Z 的正弦波信号,根据电缆及现场实际情况与定点仪配合使用,可对地埋电缆的走向及地埋深度进行探测。

线路电缆探测工作总结

线路电缆探测工作总结

线路电缆探测工作总结引言线路电缆探测是在工程施工、维护和故障排除等场合中,为了确定电缆故障点、定位电缆路线以及避免损坏已埋电缆所进行的一项重要工作。

本文旨在总结线路电缆探测工作的方法、流程和经验,并提供一些注意事项和问题解决措施,以供参考。

方法与流程1.规划工作范围:在开始线路电缆探测工作之前,首先要明确探测的区域范围。

可以通过查阅电缆布线图、询问施工方或使用探测工具初步确定工作范围。

2.选择合适的探测工具:根据探测目标和工作环境的不同,选择适合的探测工具。

常用的线路电缆探测工具包括电缆定位仪、地下电缆探测仪、电缆测试仪等。

3.准备工作:在开始探测之前,需要对探测仪器进行充电或更换电池,检查仪器的工作状态和连接线路是否正常。

另外,还需了解探测区域的地下情况,如地下管道、人孔位置等。

4.探测操作:根据电缆布线图或工作范围确定的目标区域,将探测仪的传感器或探测头放置在地面上,进行电缆信号的探测。

根据仪器的反馈信号,逐步确定电缆的位置和方向,并记录相关数据。

5.数据处理和分析:将探测所得的数据进行整理和分析,用于进一步确定电缆的具体位置和路线。

可以使用地图软件或绘制草图的方式,将探测结果进行可视化展示。

6.报告撰写:根据实际情况,撰写线路电缆探测工作报告。

报告内容应包括探测范围、探测结果、可能存在的问题及解决方案等,以便后续工作和进一步分析。

注意事项•在探测过程中,需格外注意地下水管、燃气管道等其他地下设施,避免损坏或干扰。

•在多线电缆布线的情况下,要能够区分不同电缆之间的干扰信号,准确地确定目标电缆。

•若探测结果不明确,可以适当增加探测仪器的灵敏度,或寻求专业人士的帮助。

•定期对探测仪器进行检查、维护和校准,确保其正常工作。

问题解决措施1.探测信号弱或无法探测到电缆信号:可能是由于地下环境复杂导致的。

可以尝试调整探测仪器的灵敏度、检查连接线路是否松动、挂钩或更换更高性能的探测仪器。

2.探测到多个电缆信号,无法确定具体目标:可以先尝试关闭其他设备或降低其工作强度,避免干扰。

电力电缆故障的快速查找

电力电缆故障的快速查找
9
10
在进行路径探测时,使磁棒线圈轴线水平于地面,慢慢移动, 在线圈位于电线正上方且平行于电缆时,磁力线与线圈平面 垂直,磁力线最大耦合的穿过线圈,线圈内感应电动势生最 大,耳机中听到声音最大。然后将磁棒天线先后向两侧移动, 在两侧就会只有部分磁力线穿过线圈,产生感响逐步变 小。在电缆附近,声响与其位置关系形成一单峰曲线,曲线 峰点所对应的测试位置即电缆埋设的具体位置。在地面上将 所有的峰点(声音最大点)连接起来就是电缆所埋设的路径。
30
7.1 对于高阻故障 7.1.1 故障现象 配影剧院2#变电缆,三相对地绝缘电阻分别为A相0MΩ、B 相0 MΩ、C相0MΩ,用万用表测得三相对地绝缘电阻分别为 A相68KΩ、B相35KΩ、C相103KΩ。 7.1.2 处理步骤 (1) 由此判断电缆为三相短路接地故障,且为高阻性故障,应 采用多次脉冲法进行故障测距,接线如下:
12
13
利用定点仪寻测故障点,一般是在闪测仪粗测后,已确定大 概的距离,并且电缆路径已探测完毕的基础上进行的。一方 面在电缆上加冲击高压使其闪络放电,另一方面用定点仪的 探头在概略估计的故障位置上沿电缆路径测听。 采用冲击放电法时,除在故障点产生放电声外,还会产生高 频电磁波向地面辐射。这一个电磁波在地面可用磁性天线接 收到。可将其转换成电压信号加以放大,再用一显示元件表 示出来。定点仪采用用同步接收法定点,在听到地震波的同 时,又显示出故障点放电电磁波的存在,证明放电设备正在 工作。
过故障点,两个波形就产生明显离散,不再重合。两条曲线
的离散点就是故障点距测试端的距离。即:两叠加波的下降
沿处为电缆的起点,两个波形明显的分歧点处为终点,两线之间
的距离即为故障点距离:226.2m,即故障点在距离二级泵站

电缆路径探测原理及方法

电缆路径探测原理及方法

电缆路径探测原理及方法电缆故障探测仪寻测电缆路径原理为:给被测试电缆加一电磁波信号,通过定点仪磁信号接收通道接收路径信号寻测电缆路径。

根据电缆正上方地面接收电磁信号最小的特点,可以准确地找到电缆埋设位置。

二、用路径仪探测路径方法用路径仪探测路径时,操作方法如下:①用连接电缆将被测电缆芯线和地线与路径仪相应的输出接线柱相连。

②接好电源,调整阻抗匹配开关、功率调整旋钮至适当位置,输出转换按钮按到断续档,然后开机。

③将定点仪按键按到路径挡,即定点/路径按键按下,插入路径探棒,探棒垂直于地面,沿电缆线监听,寻找路径信号两个最大点中间的最小点,同时观看磁通道Φ表头指示值来判断电缆埋设位置,即表头指示最大为电缆附近,指示最小或指示为零时为电缆正上方(接收天线垂于地面),两者最小时连成的线即为电缆埋设路径。

三、用路径仪探测电缆埋深方法:当测试到电缆的路径时,将探棒头垂直紧贴地面上的声音最小点使探棒沿电缆路径倾斜45度(此时声音变大),然后再沿电缆路径垂直方向平行移动探棒,同时用耳机监听声音,当再次听到最小的声音时,探棒在地面上移动的距离即为电缆的埋设深度。

重要提示:本套设备测试电缆高阻故障时,采用冲闪法故障点须放电且有明火现象,测试时请注意严禁在高瓦斯,高浓度易燃气体环境中测试。

如遇此状况,请与厂家联系,采取其它办法测试。

如遇因此发生的安全事故与设备生产商无关!由于我们对仪器的不断升级改进,您看到的仪器实物外形可能与说明书稍有不同,但其操作原理,操作方法基本相同。

特别需要给您说明的是,本测试仪是集成化设计,程序固化,可靠性高。

因此,在不与高压设备相连情况下,您可以放心大胆地对照说明书反复学习操作,掌握其功能,而不必担心对仪器造成损害。

当您在操作中有任何问题或死机时,可复位或关机重来。

相信只要您用心学习,一定会很快地掌握仪器操作及故障测试方法。

HT-TC 多次脉冲电缆测试仪,相信给你的工作会带来极大的方便,并可以解决你工作中遇到的98%以上的故障。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电缆故障的探测方法与仪器
本文综述了电缆故障的探测方法与仪器。

首先列举了电缆故障探测的传统方法并分析了传统方法的不足,然后介绍了电缆故障探测的新方法及其特点。

随着电缆用量在整个电力传输线路和因特网中所占的比例日益提高,电缆故障出现的几率越来越大。

电缆故障对生产造成的危害较大,轻者会造成单台电气设备不能运行,重者会导致整个变电所停电,所以电缆故障点的快速测定和精确定位问题变得非常重要。

一、电缆故障探测的传统方法
(一)电缆故障测距的传统方法
电缆故障测距的传统方法主要有以下四种:
电桥法:这是电力电缆的测距的经典方法。

该方法比较简单,但需要事先知道电缆线长度等数据,且只适用于低阻及短路故障。

但是,在实际运行中,故障常常为高阻及闪络性故障,因故障电阻很高造成电桥电流很小,因此一般的灵敏度仪表很难探测。

脉冲回波法:针对低阻与断路类型的故障,利用低压脉冲反射方法来测电缆故障比起上面的电桥法简单直接,只需通过观察故障点反射与发射脉冲的时间差来测距。

测试时将一低压脉冲注入电缆,当脉冲传播到故障点时会发生反射,脉冲被反射送回到测量点。

利用仪器记录发射和反射脉冲的时间差,只需知道脉冲传播速度就可计算出故障发生点的距离。

该方法简单直观,不需知道电缆长度等原始数据,还可根据反射波形识别电缆接头与分支点的位置。

脉冲电压法。

该方法可用于测量高阻与闪络故障。

首先将电缆故障在直流或脉冲高压信号下击穿,然后通过记录放电脉冲在测量点与故障点往返一次所需的时间来测距。

脉冲电压法的一个重要优点是不必将高阻与闪络性故障烧穿,直接利用故障击穿产生的瞬时脉冲信号,测试速度快,测量过程也得到简化。

但缺点是:①仪器通过一个电容电阻分压器分压测量电压脉冲信号,仪器与高压回路有电耦合,很容易发生高压信号串人,造成仪器损坏,故安全性较差;
②在利用闪测法测距时,高压电容对脉冲信号呈短路状态,需要串一个电阻或电感以产生电压信号,增加了接线复杂性,使故障点不容易击穿;③在故障放电时,特别在冲闪时,分压器耦合的电压波形变化不尖锐,难以分辨。

脉冲电流法:该方法安全、可靠、接线简单。

其方法是将电缆故障点用高压击穿,使用仪器采集并记录下故障点击穿产生的电流行波信号,根据电流行波信号在测量端与故障点往返一趟的时间来计算故障距离。

该方法用互感器将脉冲电流耦合出来,波形较简单,较安全。

这种方法也包括直闪法及冲闪法两种。

与脉冲电压法使用电阻、电容分压器进行电压取样不同,脉冲电流法使用线性电流耦合器平行地放置在低压测地线旁,与高压回路无直接电器连接,对记
录仪器与操作人员来说,特别安全、方便。

所以人们一般使用此方法。

"
(二)电缆故障定点的传统方法
这里简要介绍一下声磁同步法。

该方法使用高压设备使电缆故障点击穿放电,利用接收器记录放电声音,并用磁场信号对其进行同步,通过分析声音波形及测试人员通过耳机听声进行故障定点。

此方法是目前常用的电力电缆定点的方法,但该方法只能获得距离故障点附近2~3m左右距离的声音信号,且对现场操作人员的技术素质要求较高。

二、电缆故障探测的新方法
(一)电缆故障测距的新方法
因果网:因果网描述故障元件、继电器、开关之间内在的动作关系。

它利用比传统专家系统更深入的知识及面向对象技术,对电力系统故障进行定位。

它具有简单、明确、通用性强等优点。

利用小波变换进行故障选相:在脉冲法电缆故障定位检测中不可避免地存在各种电磁干扰。

脉冲信号输出引线引起的高频振荡,采集系统本身固有的高频干扰,以及使用现场的空间电磁干扰都会通过暴露在定位仪外的信号引线进入测试系统,严重时可淹没反射脉冲的起始点,给故障定位带来误差。

为此,必须采用有效的数字信号处理方法消除这些干扰的影响,提高故障定位精度。

小波变换是20世纪80年代后期发展起来的应用数学分支,被誉为信号分析的数学显微镜,是信号处理的前沿课题。

小波变换在数字信号处理领域,如滤波、奇异信号检测、边缘检测等方面应用广泛。

小波的多尺度分析方法能将各种交织在一起的不同频率组成的混合信号分解成不相同频率的信号,并直接在时域上反映出来,信号的位置、幅值和波形都十分直观,能有效地实现信噪分离。

小波变换具有很好的时频局部特性,对分析信号上奇异点的位置非常有效,这一特性适用于电缆故障定位中寻找反射脉冲的起始点。

基于整个输电网GPS行波故障定位:全球定位系统GPS是近年发展起来的用于通信系统的最新技术。

输电线路行波故障定位具有很高的精度,但需要高速A/D采集、大量数据存储、复杂的行波波头辨识,且对发展性故障、近距离故障的测量处理比较困难。

如用专用行波波头检测传感器、高精度的GPS时钟及存储行波波头时刻的高效存取方法,在每个变电站安装一台专门设计的行波波头记录仪,与调度通信构成输电网GPS行波测量网络,则可直接测量故障行波波头到达各个变电站的准确时刻,由调度进行故障定位。

跨步电压法:利用脉冲跨步方式对低压电缆故障进行定向与定位,该方法接线简单、操作方便,可对直埋电力电缆故障快速定向、精确定点。

它是利用电缆沿线的土壤中或地面产生沿电缆走向依次递减或递增的"跨步"电压脉冲,确定故障点的方向和具体位置。

因为根据以往的经验,低压电力电缆故障,90%以上故障点的电缆护层都是破损的,这样即可利用在电缆一端
施加一个周期的脉冲信号,沿电缆敷设走向快速确定故障点的方向和精确确定故障点的位置。

一般土壤情况下,在距离故障点20-30m,就可以指示故障点方向,在水泥或硬化路面条件下,在距离故障点l0m,就可以指示故障点方向。

与现有技术比较,利用脉冲跨步方式对低压电缆故障进行定向与定位的方法的优点是:①可以大范围确定故障点的方向,节省测试故障的时间;
②施加在故障电缆上的中压脉冲并不要求被试电缆在故障点产生续弧,并且脉冲宽度仅有几ms 到几十ms,因此不会对电缆造成损伤;③所使用的测量设备使用方便、操作简单,并且直观;
④定位精度高。

利用发光二极管束或指针式表头指示故障点的方向和该电压脉冲的大小,根据仪器上的指示方向,沿电缆探测,即可迅速、精确地找到故障点。

(二)电缆故障定点的新方法
高频感应法:利用高频信号发生器向电缆输入高频电流,这样会产生高频电磁波,然后在地面上用探头沿电缆路径接收电缆周围高频电磁场,电磁场的变化经接收处理后直接在液晶屏幕上显示出来,根据显示出数值的大小直接判断故障点位置。

高频感应法与传统音频感应法相比有如下很多优点。

高频信号源本身就比音频信号源容易实现,制造容易,可以减少定点探测装置的体积和重量,为设备的小型化和便携创造有利条件。

高频信号的频谱抗干扰性能较强。

该方法可以直接将结果显示出来,比靠人耳辨别更可靠,更方便。

用高频感应法比音频感应法要优越得多,而且它可在不停电情况下用耦合式接线来实施在线故障探测。

红外热象技术:基于电缆一旦过载,线芯的温度将会急剧上升这一现象,人们可对电缆的线芯温度进行监测来判断故障位置。

步骤如下:首先采用红外热象仪扫描电缆表面,拍摄出电缆的表面温度场分布图象,进一步处理可得出温度场的具体数值分布,然后根据已建立的传热数学模型,根据电缆结构参数,物性参数,环境温度及表面温度对电缆线芯温度进行反演计算,从而实现电缆线芯温度的非接触的故障探测。

正是红外技术不需接触设备,不要求设备停运,且具有操作简便,检测速度快,工作效率高等优点,在未来的电缆故障检测中,红外热象技术必将发挥更大的作用。

相关文档
最新文档