不等式经典题型专题练习含答案

合集下载

初中不等式专题训练(含详解)

初中不等式专题训练(含详解)

不等式专题训练一.选择题(共9小题)1.当1≤x≤2时,ax+2>0,则a的取值范围是( )A.a>﹣1B.a>﹣2C.a>0D.a>﹣1且a≠0 2.下列说法不一定成立的是( )A.若a>b,则a+c>b+c B.若a+c>b+c,则a>bC.若a>b,则ac2>bc2D.若ac2>bc2,则a>b3.如果不等式组恰有3个整数解,则a的取值范围是( )A.a≤﹣1B.a<﹣1C.﹣2≤a<﹣1D.﹣2<a≤﹣1 4.已知x=2是不等式(x﹣5)(ax﹣3a+2)≤0的解,且x=1不是这个不等式的解,则实数a的取值范围是( )A.a>1B.a≤2C.1<a≤2D.1≤a≤25.已知关于x的不等式组恰有3个整数解,则a的取值范围是( )A.B.C.D.6.关于x的不等式x﹣b>0恰有两个负整数解,则b的取值范围是( )A.﹣3<b<﹣2B.﹣3<b≤﹣2C.﹣3≤b≤﹣2D.﹣3≤b<﹣2 7.若x>y,则下列式子中错误的是( )A.x﹣3>y﹣3B.x+3>y+3C.﹣3x>﹣3y D.>8.关于x的不等式组的解集为x>1,则a的取值范围是( )A.a>1B.a<1C.a≥1D.a≤19.不等式组的解集是x>1,则m的取值范围是( )A.m≥1B.m≤1C.m≥0D.m≤0二.填空题(共4小题)10.若不等式组恰有两个整数解.则实数a的取值范围是 .11.若不等式组有解,则a的取值范围是 .12.不等式(m﹣2)x>2﹣m的解集为x<﹣1,则m的取值范围是 .13.按下面程序计算,若开始输入x的值为正数,最后输出的结果为656,则满足条件所有x的值是 .三.解答题(共5小题)14.已知关于x,y的方程组的解满足不等式组,求满足条件的m的整数值.15.已知x=3是关于x的不等式的解,求a的取值范围.16.解不等式:≤﹣1,并把解集表示在数轴上.17.某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:甲乙进价(元/件)1535售价(元/件)2045(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.18.某中学为了绿化校园,计划购买一批榕树和香樟树,经市场调查榕树的单价比香樟树少20元,购买3棵榕树和2棵香樟树共需340元.(1)请问榕树和香樟树的单价各多少?(2)根据学校实际情况,需购买两种树苗共150棵,总费用不超过10840元,且购买香樟树的棵数不少于榕树的1.5倍,请你算算,该校本次购买榕树和香樟树共有哪几种方案.不等式专题练习参考答案与试题解析一.选择题(共9小题)1.当1≤x≤2时,ax+2>0,则a的取值范围是( )A.a>﹣1B.a>﹣2C.a>0D.a>﹣1且a≠0【考点】C2:不等式的性质.【分析】当x=1时,a+2>0;当x=2,2a+2>0,解两个不等式,得到a的范围,最后综合得到a的取值范围.【解答】解:当x=1时,a+2>0解得:a>﹣2;当x=2,2a+2>0,解得:a>﹣1,∴a的取值范围为:a>﹣1.2.下列说法不一定成立的是( )A.若a>b,则a+c>b+c B.若a+c>b+c,则a>bC.若a>b,则ac2>bc2D.若ac2>bc2,则a>b【考点】C2:不等式的性质.【分析】根据不等式的性质进行判断.【解答】解:A、在不等式a>b的两边同时加上c,不等式仍成立,即a+c>b+c,不符合题意;B、在不等式a+c>b+c的两边同时减去c,不等式仍成立,即a>b,不符合题意;C、当c=0时,若a>b,则不等式ac2>bc2不成立,符合题意;D、在不等式ac2>bc2的两边同时除以不为0的c2,该不等式仍成立,即a>b,不符合题意.故选:C.3.如果不等式组恰有3个整数解,则a的取值范围是( )A.a≤﹣1B.a<﹣1C.﹣2≤a<﹣1D.﹣2<a≤﹣1【考点】CC:一元一次不等式组的整数解.【分析】首先根据不等式组得出不等式组的解集为a<x<2,再由恰好有3个整数解可得a的取值范围.【解答】解:如图,由图象可知:不等式组恰有3个整数解,需要满足条件:﹣2≤a<﹣1.故选:C.4.已知x=2是不等式(x﹣5)(ax﹣3a+2)≤0的解,且x=1不是这个不等式的解,则实数a的取值范围是( )A.a>1B.a≤2C.1<a≤2D.1≤a≤2【考点】C3:不等式的解集.【分析】根据x=2是不等式(x﹣5)(ax﹣3a+2)≤0的解,且x=1不是这个不等式的解,列出不等式,求出解集,即可解答.【解答】解:∵x=2是不等式(x﹣5)(ax﹣3a+2)≤0的解,∴(2﹣5)(2a﹣3a+2)≤0,解得:a≤2,∵x=1不是这个不等式的解,∴(1﹣5)(a﹣3a+2)>0,解得:a>1,∴1<a≤2,故选:C.5.已知关于x的不等式组恰有3个整数解,则a的取值范围是( )A.B.C.D.【考点】CC:一元一次不等式组的整数解.【分析】先求出不等式组的解集(含字母a),因为不等式组有3个整数解,可逆推出a的值.【解答】解:由于不等式组有解,则,必定有整数解0,∵,∴三个整数解不可能是﹣2,﹣1,0.若三个整数解为﹣1,0,1,则不等式组无解;若三个整数解为0,1,2,则;解得.故选:B.6.关于x的不等式x﹣b>0恰有两个负整数解,则b的取值范围是( )A.﹣3<b<﹣2B.﹣3<b≤﹣2C.﹣3≤b≤﹣2D.﹣3≤b<﹣2【考点】C7:一元一次不等式的整数解.【分析】表示出已知不等式的解集,根据负整数解只有﹣1,﹣2,确定出b的范围即可.【解答】解:不等式x﹣b>0,解得:x>b,∵不等式的负整数解只有两个负整数解,∴﹣3≤b<﹣2故选:D.7.若x>y,则下列式子中错误的是( )A.x﹣3>y﹣3B.x+3>y+3C.﹣3x>﹣3y D.>【考点】C2:不等式的性质.【分析】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.可得答案.【解答】解:A、不等式的两边都减3,不等号的方向不变,故A正确;B、不等式的两边都加3,不等号方向不变,故B正确;C、不等式的两边都乘﹣3,不等号的方向改变,故C错误;D、不等式的两边都除以3,不等号的方向改变,故D正确;故选:C.8.关于x的不等式组的解集为x>1,则a的取值范围是( )A.a>1B.a<1C.a≥1D.a≤1【考点】C3:不等式的解集.【分析】解两个不等式后,根据其解集得出关于a的不等式,解答即可.【解答】解:因为不等式组的解集为x>1,所以可得a≤1,故选:D.9.不等式组的解集是x>1,则m的取值范围是( )A.m≥1B.m≤1C.m≥0D.m≤0【考点】C3:不等式的解集.【分析】表示出不等式组中两不等式的解集,根据已知不等式组的解集确定出m的范围即可.【解答】解:不等式整理得:,由不等式组的解集为x>1,得到m+1≤1,解得:m≤0,故选:D.二.填空题(共4小题)10.若不等式组恰有两个整数解.则实数a的取值范围是 <a≤1.【考点】CC:一元一次不等式组的整数解.【分析】求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据已知不等式组有两个整数解得出不等式组1<2a≤2,求出不等式组的解集即可.【解答】解:,∵解不等式①得:x>﹣,解不等式②得:x<2a,∴不等式组的解集为﹣<x<2a,∵不等式组有两个整数解,∴1<2a≤2,∴<a≤1,故答案为:<a≤1.11.若不等式组有解,则a的取值范围是 a>﹣1.【考点】C3:不等式的解集.【分析】先解出不等式组的解集,根据已知不等式组有解,即可求出a的取值范围.【解答】解:∵由①得x≥﹣a,由②得x<1,故其解集为﹣a≤x<1,∴﹣a<1,即a>﹣1,∴a的取值范围是a>﹣1.故答案为:a>﹣1.12.不等式(m﹣2)x>2﹣m的解集为x<﹣1,则m的取值范围是 m<2.【考点】C3:不等式的解集.【分析】根据不等式的性质3,不等式的两边同乘或除以同一个负数,不等号的方向改变,可得答案.【解答】解:不等式(m﹣2)x>2﹣m的解集为x<﹣1,∴m﹣2<0,m<2,故答案为:m<2.13.按下面程序计算,若开始输入x的值为正数,最后输出的结果为656,则满足条件所有x的值是 131或26或5或.【考点】CE:一元一次不等式组的应用.【分析】利用逆向思维来做,分析第一个数就是直接输出656,可得方程5x+1=656,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案.【解答】解:我们用逆向思维来做:第一个数就是直接输出其结果的:5x+1=656,解得:x=131;第二个数是(5x+1)×5+1=656,解得:x=26;同理:可求出第三个数是5;第四个数是,∴满足条件所有x的值是131或26或5或.故答案为:131或26或5或.三.解答题(共5小题)14.已知关于x,y的方程组的解满足不等式组,求满足条件的m的整数值.【考点】97:二元一次方程组的解;CC:一元一次不等式组的整数解.【分析】首先根据方程组可得,再解不等式组,确定出整数解即可.【解答】解:①+②得:3x+y=3m+4,②﹣①得:x+5y=m+4,∵不等式组,∴,解不等式组得:﹣4<m≤﹣,则m=﹣3,﹣2.15.已知x=3是关于x的不等式的解,求a的取值范围.【考点】C3:不等式的解集.【分析】方法1:先根据不等式,解此不等式,再对a分类讨论,即可求出a的取值范围.方法2:把x=3带入原不等式得到关于a的不等式,解不等式即可求出a的取值范围.【解答】解:方法1:解得(14﹣3a)x>6当a<,x>,又x=3是关于x的不等式的解,则<3,解得a<4;当a>,x<,又x=3是关于x的不等式的解,则>3,解得a<4(与所设条件不符,舍去).综上得a的取值范围是a<4.方法2:把x=3带入原不等式得:3×3﹣>,解得:a<4.故a的取值范围是a<4.16.解不等式:≤﹣1,并把解集表示在数轴上.【考点】C4:在数轴上表示不等式的解集;C6:解一元一次不等式.【分析】先去分母,再去括号,移项、合并同类项,把x的系数化为1即可.【解答】解:去分母得,4(2x﹣1)≤3(3x+2)﹣12,去括号得,8x﹣4≤9x+6﹣12,移项得,8x﹣9x≤6﹣12+4,合并同类项得,﹣x≤﹣2,把x的系数化为1得,x≥2.在数轴上表示为:.17.某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:甲乙进价(元/件)1535售价(元/件)2045(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.【考点】9A:二元一次方程组的应用;CE:一元一次不等式组的应用.【分析】(1)等量关系为:甲件数+乙件数=160;甲总利润+乙总利润=1100.(2)设出所需未知数,甲进价×甲数量+乙进价×乙数量<4300;甲总利润+乙总利润>1260.【解答】解:(1)设甲种商品应购进x件,乙种商品应购进y件.根据题意得:.解得:.答:甲种商品购进100件,乙种商品购进60件.(2)设甲种商品购进a件,则乙种商品购进(160﹣a)件.根据题意得.解不等式组,得65<a<68.∵a为非负整数,∴a取66,67.∴160﹣a相应取94,93.方案一:甲种商品购进66件,乙种商品购进94件.方案二:甲种商品购进67件,乙种商品购进93件.答:有两种购货方案,其中获利最大的是方案一.18.某中学为了绿化校园,计划购买一批榕树和香樟树,经市场调查榕树的单价比香樟树少20元,购买3棵榕树和2棵香樟树共需340元.(1)请问榕树和香樟树的单价各多少?(2)根据学校实际情况,需购买两种树苗共150棵,总费用不超过10840元,且购买香樟树的棵数不少于榕树的1.5倍,请你算算,该校本次购买榕树和香樟树共有哪几种方案.【考点】9A:二元一次方程组的应用;CE:一元一次不等式组的应用.【分析】(1)设榕树的单价为x元/棵,香樟树的单价是y元/棵,然后根据单价之间的关系和340元两个等量关系列出二元一次方程组,求解即可;(2)设购买榕树a棵,则香樟树为(150﹣a)棵,然后根据总费用和两种树的棵数关系列出不等式组,求出a的取值范围,在根据a是正整数确定出购买方案.【解答】解:(1)设榕树的单价为x元/棵,香樟树的单价是y元/棵,根据题意得,,解得,答:榕树和香樟树的单价分别是60元/棵,80元/棵;(2)设购买榕树a棵,则购买香樟树为(150﹣a)棵,根据题意得,,解不等式①得,a≥58,解不等式②得,a≤60,所以,不等式组的解集是58≤a≤60,∵a只能取正整数,∴a=58、59、60,因此有3种购买方案:方案一:购买榕树58棵,香樟树92棵,方案二:购买榕树59棵,香樟树91棵,方案三:购买榕树60棵,香樟树90棵.。

(完整版)初一不等式难题-经典题训练(附答案)

(完整版)初一不等式难题-经典题训练(附答案)

初一不等式难题,经典题训练(附答案)1. 已知不等式3x-a ≤0的正整数解恰好是1,2,3,则a 的取值范围是_______ 2. 已知关于x 的不等式组0521x a x ->⎧⎨-≥-⎩无解,则a 的取值范围是_________3. 若关于x 的不等式(a-1)x-2a +2>0的解集为x<2,则a 的值为( )A 0B 2C 0或2D -1 4. 若不等式组220x a b x ->⎧⎨->⎩的解集为11x -<<,则2006()a b +=_________5. 已知关于x 的不等式组的解集41320x xx a +⎧>+⎪⎨⎪+<⎩为x<2,那么a 的取值范围是_________6. 若方程组的解满足4143x y k x y +=+⎧⎨+=⎩条件01x y <+<,则k 的取值范围是( )A. 41k -<<B. 40k -<<C. 09k <<D. 4k >- 7. 不等式组9511x x x m +<+⎧⎨>+⎩的解集是2x >,则m 的取值范围是( )A. 2m ≤B. 2m ≥C. 1m ≤D. 1m f 8.不等式()()20x xx +-<的解集是_________9.当a>3时,不等式ax+2<3x+b 的解集是,则b=______10.已知a,b 为常数,若ax+b>0的解集是13x <,则的0bx a -<解集是( ) A. 3x >- B 3x <- C. 3x > D. 3x <11.如果关于x 的不等式组的整7060x m x n -≥⎧⎨-⎩p 数解仅为1,2,3,那么适合不等式组的整数(m,n)对共有( )对A 49B 42C 36D 13 12.已知非负数x,y,z 满足123234x y z ---==,设345x y z ω=++,求的ω最大值与最小值12.不等式A 卷1.不等式2(x + 1) -12732-≤-xx 的解集为_____________。

完整版)解不等式组计算专项练习60题(有答案)

完整版)解不等式组计算专项练习60题(有答案)

完整版)解不等式组计算专项练习60题(有答案)1.解不等式组60题参考答案:1.解:由不等式①得2a-3x+1≥0,即x≤(2a+1)/3;由不等式②得3b-2x-16≥0,即x≤(3b-16)/2.又因为a≤4<b,所以2a+1≤9,3b-16≥8,所以x的取值范围为x≤3或x≥-11/2.2.解:由不等式①得x≤-1或x≥3;由不等式②得x≤4/3或x≥2.综合起来,x的取值范围为x≤-1或x≥3,或者4/3≤x≤2.3.解:由不等式①得x>(a+1)/2;由不等式②得x0,所以a/2>(a+1)/2,所以不等式组的解集为a/2<x<(a+1)/2.4.解:由不等式①得x≥1;由不等式②得x<3.所以不等式组的解集为1≤x<3.5.解:由不等式①得x≤-2;由不等式②得x>-3.所以不等式组的解集为-3<x≤-2.6.解:由不等式①得x>-1;由不等式②得x≤2.所以不等式组的解集为-1<x≤2.7.解:由不等式①得x≤-1;由不等式②得x≥-2.所以不等式组的解集为-2≤x≤-1.8.解:由不等式①得x>-3;由不等式②得x≤1.所以不等式组的解集为-3<x≤1.9.解:由不等式①得x>-1;由不等式②得x≤4.所以不等式组的解集为-1<x≤4.10.解:由不等式①得x-3.所以不等式组的解集为-3<x<2.11.解:由不等式①得x≥1;由不等式②得x<3.所以不等式组的解集为1≤x<3.1.由不等式组的①得x≥-1,由不等式组的②得 x<4,因此不等式组的解集为 -1≤x<4.2.由不等式①得x≤3,由不等式②得 x>0,因此不等式组的解集为0<x≤3.3.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.4.原不等式组可化为:x+45,x<-1.因此不等式组的解集为-3<x≤3.5.解不等式①得 x<5,解不等式②得x≥-2,因此不等式组的解集为 -2≤x<5.6.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.7.解不等式①得x≥-1,解不等式②得 x<3,因此不等式组的解集为 -1≤x<3.8.解不等式①得 x<1,解不等式②得x≥-2,因此不等式组的解集为 -2≤x<1.9.解不等式①得 x>-1,解不等式②得x≤4,因此不等式组的解集为 -1<x≤4.10.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.11.解不等式①得 x>-1,解不等式②得x≤4,因此不等式组的解集为 -1<x≤4.12.解不等式组的①得-∞<x<1,因为②中的不等式没有解,所以不等式组的解集为 -∞<x<1.13.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.14.原不等式组可化为:x>-3,x≤3.因此不等式组的解集为-3<x≤3.15.解不等式组的①得 x<1,因为②中的不等式没有解,所以不等式组的解集为 -∞<x<1.16.解不等式①得 x<2,解不等式②得x≥-1,因此不等式组的解集为 -1≤x<2.17.解不等式①得x≥1,解不等式②得1≤x<4,因此不等式组的解集为1≤x<4.18.解不等式①得x≥-1,解不等式②得 x<3,因此不等式组的解集为 -1≤x<3.19.解不等式①得 x<1,解不等式②得x≥-2,因此不等式组的解集为 -2≤x<1.20.解不等式①得 x>-1,解不等式②得x≤4,因此不等式组的解集为 -1<x≤4.21.不等式①的解集为x≥1,不等式②的解集为 x<4,因此原不等式的解集为1≤x<4.22.解不等式①得 x<0,解不等式②得x≥3,因此原不等式无解。

解不等式组计算专项练习60题(有答案)

解不等式组计算专项练习60题(有答案)

解不等式组专项练习60题(有答案)1.2..3..4.,5..6..7.8..9.10.11.12.,13..14.,15.16.17..18.19.20..21..22..23.24.25.,.26.27.,28.29..30.已知:2a﹣3x+1=0,3b﹣2x﹣16=0,且a≤4<b,求x的取值范围.31..32..33.已知:a=,b=,并且2b ≤<a.请求出x的取值范围.34.35.,36.,并将其解集在数轴上表示出来.37..38.,并把解集在数轴上表示出来.39.已知关于x、y 的方程组的解满足x>y >0,化简|a|+|3﹣a|.40.,并把它的解集在数轴上表示出来.41.42.43..44..45..46..47.关于x、y 的二元一次方程组,当m为何值时,x>0,y≤0.48.并将解集表示在数轴上.49.已知关于x、y 的方程组的解是一对正数,求m的取值范围.50.已知方程组的解满足,化简.51..52.53..54..55..56.57.58.59.60.解不等式组60题参考答案:1、解:,由①得2x≥2,即x≥1;由②得x<3;故不等式组的解集为:1≤x<3.2.解:,由①得:x≤5,由②得:x>﹣2,不等式组的解集为﹣2<x≤53.解:解不等式①,得x>1.解不等式②,得x<2.故不等式组的解集为:1<x<2.4.解:,解不等式①得,x>1,解不等式②得,x<3,故不等式的解集为:1<x<3,5.解不等式①,得x≤﹣2,解不等式②,得x>﹣3,故原不等式组的解集为﹣3<x≤﹣2,6.解:,解不等式①得:x>﹣1,解不等式②得:x≤2,不等式组的解集为:﹣1<x≤2,7.解:,由①得x>﹣3;由②得x≤1故此不等式组的解集为:﹣3<x≤1,8.解:解不等式①,得x<3,解不等式②,得x≥﹣1.所以原不等式的解集为﹣1≤x<3.9.解:∵由①得,x>﹣1;由②得,x≤4,∴此不等式组的解集为:﹣1<x≤4,10.解:,解不等式①得:x<3,解不等式②得:x≥1,不等式组的解集是1≤x<3 11.解:,由①得,x≥﹣;由②得,x<1,故此不等式组的解集为:﹣<x<1,12.解:∵由①得,x≤3,由②得x>0,∴此不等式组的解集为:0<x≤3,13.解:解不等式①,得x≥1;解不等式②,得x<4.∴1≤x<4.14.解:原不等式组可化为,解不等式①得x>﹣3;解不等式②得x≤3.所以-3<x≤3 15.解:由(1)得:x+4<4,x<0由(2)得:x﹣3x+3>5,x<﹣1∴不等式组解集是:x<﹣116.解:,解不等式(1),得x<5,解不等式(2),得x≥﹣2,因此,原不等式组的解集为﹣2≤x<5.17.解:由①得:去括号得,x﹣3x+6≤4,移项、合并同类项得,﹣2x≤﹣2,化系数为1得,x≥1.由②得:去分母得,1+2x>3x﹣3,移项、合并同类项得,﹣x>﹣4,化系数为1得,x<4 ∴原不等式组的解集为:1≤x<4.18.解:解不等式①,得x≥﹣1,解不等式②,得x<3,∴原不等式组的解集为﹣1≤x<3.19.解:解不等式(1)得x<1解不等式(2)得x≥﹣2所以不等式组的解集为﹣2≤x<1.20.解:解不等式①,得x>﹣.解不等式②,得x≤4.所以,不等式组的解集是﹣<x≤4.21.解:①的解集为x≥1②的解集为x<4原不等式的解集为1≤x<4.22.解:解不等式(1),得2x+4<x+4,x<0,不等式(2),得4x≥3x+3,x≥3.∴原不等式无解.23.解:解不等式2x+5≤3(x+2),得x≥﹣1解不等式x﹣1<x,得x<3.所以,原不等式组的解集是﹣1≤x<3.24.解:解不等式①,得x≥﹣1,解不等式②,得x<3,∴原不等式组的解是﹣1≤x<3.25.解:由题意,解不等式①,得x<2,解不等式②,得x≥﹣1,∴不等式组的解集是﹣1≤x<2.26.:由不等式①得:x≥0由不等式②得:x<4原不等式组的解集为0≤x<427.解:由不等式①得:2x≤8,x≤4.由不等式②得:5x﹣2+2>2x,3x>0,x>0.∴原不等式组的解集为:0<x≤4.28.解:解不等式①,得x≤﹣1,解不等式②,得x>﹣2,所以不等式组的解集为﹣2<x≤﹣1.29.解:解不等式①,得x≤2.解不等式②,得x>﹣3.所以原不等式组的解集为x≤2.30. 解:由2a﹣3x+1=0,3b﹣2x﹣16=0,可得a=,b=,∵a≤4<b,∴,由(1),得x≤3.由(2),得x>﹣2.∴x的取值范围是﹣2<x≤3.31.解:由①得:x≤2.由②得:x>﹣1.∴不等式组的解集为﹣1<x≤2.32.解:解不等式①,得x>;解不等式②,得x≤4.∴不等式的解集是<x≤4.33.解:把a,b代入得:2×.化简得:6x﹣21≤15<2x+8.解集为:3.5<x≤6.34.解:解不等式①,得x≤2.5,解不等式②,得x>﹣1,解不等式③,得x≤2,所以这个不等式组的解集是﹣1<x≤2.35.解:解不等式①,得x≥﹣1.解不等式②,得x<2.所以不等式组的解集是﹣1≤x<2.36.解:由①,得x<2.由②,得x≥﹣1.∴这个不等式组的解集为﹣1≤x<2.37.解:由①得:x>﹣1由②得:x所以解集为﹣1<x.38.解:由①得:﹣2x≥﹣2,即x≤1,由②得:4x﹣2<5x+5,即x>﹣7,所以﹣7<x≤1.在数轴上表示为:39.解:由方程组,解得.由x>y>0,得.解得a>2当2<a≤3时,|a|+|3﹣a|=a+3﹣a=3;当a>3时,|a|+|3﹣a|=a+a﹣3=2a﹣3.40.解:由(1)得x<8由(2)得,x≥4故原不等式组的解集为4≤x<8.41.解:由①得2x<6,即x<3,由②得x+8>﹣3x,即x>﹣2,所以解集为﹣2<x<3.42.解:(1)去括号得,10﹣4x+12≥2x﹣2,移项、合并同类项得,﹣6x≥﹣24,解得,x≤4;(2)去分母得,3(x﹣1)>1﹣2x,去括号得,3x﹣3>1﹣2x,移项、合并同类项得,5x>4,化系数为1得,x>.∴不等式组的解集为:<x≤4.43.解:解第一个不等式得:x <;解第二个不等式得:x≥﹣12.故不等式组的解集是:﹣12≤x <.44.解:原方程组可化为:,由(1)得,x<﹣3由(2)得,x≥﹣4根据“小大大小中间找”原则,不等式组的解集为﹣4≤x<﹣3.45.由①得:x<2,由②得:x≥﹣1∴﹣1≤x<2.46.整理不等式组得解之得,x>﹣2,x≤1∴﹣2<x≤147.解:①+②×2得,7x=13m﹣3,即x=③,把③代入②得,2×+y=5m﹣3,解得,y=78-m9,因为x>0,y≤0,所以,解得<m≤9848. 解不等式①,得x ≤,解不等式②,得x≥﹣8.把不等式的解集在数轴上表示出来,如图:所以这个不等式组的解集为﹣8≤x ≤.49.解:由题意可解得,解得,故<m<1350.解:由2x﹣2=5得x=,代入第一个方程得+2y=5a;则y=a ﹣,由于y<0,则a <(1)当a<﹣2时,原式=﹣(a+2)﹣[﹣(a ﹣)]=﹣2;(2)当﹣2<a <时,原式=a+2﹣[﹣(a ﹣)]=2a+;(3)当<a <时,原式=a+2﹣(a ﹣)=2;851.解不等式(1)得:2﹣x﹣1≤2x+4 ﹣3x≤3 x≥﹣1解不等式(2),得:x2+x>x2+3x ﹣2x>0 x<0 ∴原不等式组的解集为:﹣1≤x<0.52.解不等式(1)得:x≥-1 解不等式(2),得:x<2 ∴原不等式组的解集为:﹣1≤x<2.53.解①得x<解②得x≥3,∴不等式组的解集为无解.54.解第一个不等式得x<8解第二个不等式得x≥2∴原不等式组的解集为:2≤x<8.55.解:由①得:1﹣2x+2≤5∴2x≥﹣2即x≥﹣1由②得:3x﹣2<2x+1∴x<3.∴原不等式组的解集为:﹣1≤x<3.56.解:原不等式可化为:即在数轴上可表示为:∴不等式的解集为:1≤x<357.解:,解不等式①,得x<3,解不等式②,得x≥﹣1,把不等式的解集在数轴上表示出来,如图所示.不等式组的解集是﹣1≤x<358.解:由题意,解不等式①得x>2,不等式②×2得x﹣2≤14﹣3x解得x≤4,∴原不等式组的解集为2<x≤4.59.解:解不等式①,得x<2.(2分)解不等式②,得x≥﹣1.(4分)所以,不等式组的解集是﹣1≤x<2.(5分)解集在数轴上表示为:60.解:由①,得x≥﹣,由②,得x<3,所以不等式组的解集为﹣≤x<3.。

不等式计算专项练习及答案

不等式计算专项练习及答案

不等式计算专项练习一、解答题1.解不等式组,并且把解集在数轴上表示出来.2.求不等式组的整数解.3.计算下列不等式(组):(1)x-<2-.(2)-2≤≤7(3);(4)4.已知:y1=x+3,y2=-x+2,求满足下列条件时x的取值范围:(1)y1<y2(2)2y1-y2≤45.解不等式组:6.求下列不等式组的解集7.(1)计算:(-2)-2×|-3|-()0(2)解不等式组:8.解不等式组,并指出它的所有整数解.9.解不等式组:,并写出该不等式组的整数解.10.解不等式组,并将解集在数轴上表示出来.11.解不等式组并写出的所有整数解.12.(1)解方程:.(2)求不等式组:.13.求不等式组的整数解.14.(1)解不等式组:并把解集在数轴上表示出来.(2)解不等式组:15.求不等式组的非负整数解.16.解不等式(组),并把它们的解集在数轴上表示出来(1);(2)17.(1)解不等式组(2)在(1)的条件下化简:|x+1|+|x-4|18.已知关于x,y的方程组的解为正数.(1)求a的取值范围;(2)化简|-4a+5|-|a+4|.19.(1)解不等式2->+1,并把它的解集在数轴上表示出来;(2)求不等式组的整数解.20.解不等式组:.21.解不等式组22.解不等式组,并把它们解集表示在数轴上,写出满足该不等式组的所有整数解.23.解不等式组:;在数轴上表示出不等式组的解集,并写出它的整数解.24.解不等式组:.25.解不等式组26.解不等式组)27.当x是不等式组的正整数解时,求多项式(1﹣3x)(1+3x)+(1+3x)2+(﹣x2)3÷x4的值.28.解方程与不等式组:解方程:;解不等式组:29.解不等式组.30.解不等式组,并写出不等式组的整数解.31.(1)解不等式组:(2)解方程:32.解不等式组:.33.解不等式组,并在数轴上表示它的解集.34.(1)解方程:;(2)解不等式组:,并把解集在数轴上表示出来.35.解不等式组36.解不等式(组)(1)(2)37.解不等式组:38.已知不等式组的解集为﹣6<x<3,求m,n的值.39.解不等式组并把解集在数轴上表示出来;并写出其整数解。

高中数学不等式经典题型专题训练试题(含答案)

高中数学不等式经典题型专题训练试题(含答案)

高中数学不等式经典题型专题训练试题学校:___________姓名:___________班级:___________考号:___________说明:1、本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分100分。

考试时间120分钟。

2、考生请将第Ⅰ卷选择题的正确选项填在答题框内,第Ⅱ卷直接答在试卷上。

考试结束后,只收第Ⅱ卷第Ⅰ卷(选择题)一.单选题(共10小题,每题2分,共20分)1.设a=sin14°+cos14°,b=sin16°+cos16°,,则a,b,c大小关系()A.a<b<c B.b<a<c C.c<b<a D.a<c<b2.已知实数x,y满足条件,则目标函数z=2x-y()A.有最小值0,有最大值6B.有最小值-2,有最大值3C.有最小值3,有最大值6D.有最小值-2,有最大值63.若x是三角形的最小内角,则函数y=sinx+cosx+sinxcosx的最大值是()A.-1B.C.D.4.不等式x2-|x|-2<0的解集是()A.{x|-2<x<2}B.{x|x<-2或x>2}C.{x|-1<x<1}D.{x|x<-1或x>1}5.若不等式f(x)=ax2-x-c>0的解集为(-2,1),则函数y=f(x)的图象为()A.B.C.D.6.设a=0.20.3,b=0.20.2,c=log20.4,则a,b,c的大小关系为()A.c<a<b B.c<b<a C.a<b<c D.b<c<a7.设0<b<a<1,则下列不等式中成立的是()A.a2<ab<1B.C.ab<b2<1D.2b<2a<28.对任意的锐角α,β,下列不等关系中正确的是()A.sin(α+β)>sinα+sinβB.sin(α+β)>cosα+cosβC.cos(α+β)<sinα+sinβD.cos(α+β)<cosα+cosβ9.若0<m<n,则下列结论正确的是()A.B.2m>2n C.D.log2m>log2n10.设a<b<0,则下列不等式中不成立的是()A.B.C.|a|>-b D.二.填空题(共10小题,每题2分,共20分)11.已知x>-1,y>0且满足x+2y=2,则的最小值为______.12.已知a,b∈R+,且2a+b=1则的最大值是______.13.已知向量,若⊥,则16x+4y的最小值为______.14.若x>0,y>0,且+=1,则x+y的最小值是______.15、在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x为______(m).16.已知x>-1,y>0且满足x+2y=2,则的最小值为______.17.若实数a+b=2,a>0,b>0,则的最小值为______.18.若x,y满足约束条件,则z=3x-y的最小值是______.19.若a,b∈R,且4≤a2+b2≤9,则a2-ab+b2的范围是______.20.已知f(x)=,不等式f(x)≥-1的解集是______.三.简答题(共10小题,共60分)21.(6分)已知x>0,y>0,(1)若2x+y=1,求+的最小值.(2)若x+8y-xy=0,求xy的最小值.22.(6分)设a,b,c均为正数,且a+b+c=1,证明:(1)ab+bc+ca≤;(2)++≥1.23.(6分)已知a,b,c均为正实数,且满足abc=1,证明:(1)a+b+c≥;(2)a2+b2+c2≥24.(6分)设函数f(x)=|x+3|-|x-4|①解不等式f(x)>3;②求函数f(x)的最小值.25.(6分)已知向量=(1+sin2x,sinx-cosx),=(1,sinx+cosx),函数f(x)=•.(Ⅰ)求f(x)的最大值及相应的x的值;(Ⅱ)在△ABC中,a,b,c分别是三个内角A,B,C所对边,若f()=2,a=2,求△ABC 面积的最大值.26.(6分)27.(4分)已知:x,y,z∈R,x2+y2+z2=1,则x-2y-3z的最大值为______.28.(4分)若a,b,c∈R+,且++=1,求a+2b+3c的最小值.29.(10分)某工厂生产一种产品的成本费共由三部分组成:①原材料费每件50元;②职工工资支出7500+20x元;③电力与机器保养等费用为x2-30x+600元:其中x是该厂生产这种产品的总件数.(I)把每件产品的成本费p(x)(元)表示成产品件数x的函数,并求每件产品的最低成本费;(Ⅱ)如果该厂生产的这种产品的数量x不超过170件且能全部销售,根据市场调查,每件产品的销售价为Q(x)(元),且Q(x)=1240-.试问生产多少件产品,总利润最高?并求出最高总利润.(总利润=总销售额-总的成本)30.(6分)已知定义在R上的函数f(x)=|x-1|+|x+2|的最小值为a.(1)求a的值;(2)若m,n是正实数,且m+n=a,求+的最小值.参考答案一.单选题(共__小题)1.设a=sin14°+cos14°,b=sin16°+cos16°,,则a,b,c大小关系()A.a<b<c B.b<a<c C.c<b<a D.a<c<b答案:D解析:解:由题意知,a=sin14°+cos14°==,同理可得,b=sin16°+cos16°=,=,∵y=sinx在(0,90°)是增函数,∴sin59°<sin60°<sin61°,∴a<c<b,故选D.2.已知实数x,y满足条件,则目标函数z=2x-y()A.有最小值0,有最大值6B.有最小值-2,有最大值3C.有最小值3,有最大值6D.有最小值-2,有最大值6答案:D解析:解:画出不等式组表示的平面区域如图中阴影部分所示.当目标函数z=2x-y过直线x=3与直线y=0的交点(3,0),目标函数取得最大值6;当目标函数z=2x-y过直线x=0与直线x-y+2=0的交点(0,2)时,目标函数取得最小值-2.故选D.3.若x是三角形的最小内角,则函数y=sinx+cosx+sinxcosx的最大值是()A.-1B.C.D.答案:D解析:解:y=sinx+cosx+sinxcosx=sinx(1+cosx)+1+cosx-1=(1+sinx)(1+cosx)-1≤[(1+sinx)2+((1+cosx)2]-1(当且仅当1+sinx=1+cosx时成立,此时sinx=cosx=)即y(max)=+故选D4.不等式x2-|x|-2<0的解集是()A.{x|-2<x<2}B.{x|x<-2或x>2}C.{x|-1<x<1}D.{x|x<-1或x>1}答案:A解析:解:原不等式化为|x|2-|x|-2<0因式分解得(|x|-2)(|x|+1)<0因为|x|+1>0,所以|x|-2<0即|x|<2解得:-2<x<2.故选A5.若不等式f(x)=ax2-x-c>0的解集为(-2,1),则函数y=f(x)的图象为()A.B.C.D.答案:B解析:解:∵不等式f(x)=ax2-x-c>0的解集为(-2,1),∴a<0,且-2,1是对应方程ax2-x-c=0的两个根,∴(-2,0),(1,0)是对应函数f(x)=ax2-x-c与x轴的两个交点,∴对应函数y=f(x)的图象为B.故选B.6.设a=0.20.3,b=0.20.2,c=log20.4,则a,b,c的大小关系为()A.c<a<b B.c<b<a C.a<b<c D.b<c<a答案:A解析:解:∵函数y=0.2x是减函数,0.3>0.2,故有a=0.20.3<0.20.2=1,又a=0.20.3>0,可得b>a >0.由于函数y=log2x在(0,+∞)上是增函数,故c=log20.4<log21=0,即c<0.综上可得,b>a>c,故选A.7.设0<b<a<1,则下列不等式中成立的是()A.a2<ab<1B.C.ab<b2<1D.2b<2a<2答案:D解析:解:采用特殊值法,取a=,b=.则a2=,b2=,ab=,故知A,C错;对于B,由于函数y=是定义域上的减函数,∴,故B错;对于D,由于函数y=2x是定义域上的增函数,∴2b<2a<2,故D对.故选D.8.对任意的锐角α,β,下列不等关系中正确的是()A.sin(α+β)>sinα+sinβB.sin(α+β)>cosα+cosβC.cos(α+β)<sinα+sinβD.cos(α+β)<cosα+cosβ答案:D解析:解:对于AB中的α,β可以分别令为30°,60°则知道A,B均不成立对于C中的α,β可以令他们都等于15°,则知道C不成立cos(α+β)=cosαcosβ-sinαsinβ<cosα×1+cosβ×1=cosα+cosβ故选D9.若0<m<n,则下列结论正确的是()A.B.2m>2n C.D.log2m>log2n 答案:C解析:解:观察B,D两个选项,由于底数2>1,故相关的函数是增函数,由0<m<n,∴2m<2n,log2m<log2n,所以B,D不对.又观察A,C两个选项,两式底数满足0<<1,故相关的函数是一个减函数,由0<m<n,∴,所以A不对,C对.故答案为C.10.设a<b<0,则下列不等式中不成立的是()A.B.C.|a|>-b D.答案:D解析:解:∵a<b<0,∴,A正确,-a>-b>0,,B正确,|a|>|b|=-b,C正确;,故D不正确.故选D.二.填空题(共__小题)11.已知x>-1,y>0且满足x+2y=2,则的最小值为______.答案:3解析:解:∵x>-1,y>0且满足x+2y=2,∴x+1>0且x+1+2y=3,∴=()(x+1+2y)=[5++]≥(5+2)=3,当且仅当=即x=0且y=1时取等号,故答案为:3.12.已知a,b∈R+,且2a+b=1则的最大值是______.答案:解析:解:∵2a+b=1,∴4a2+b2=1-4ab,∴S==4ab+2-1,令=t>0,则S=4-,∵2a+b=1,∴1≥2⇒0<t≤故当t=时,S有最大值为:故答案为:.13.已知向量,若⊥,则16x+4y的最小值为______.答案:8解析:解:∵∴4(x-1)+2y=0即4x+2y=4∵=当且仅当24x=22y即4x=2y=2取等号故答案为814.若x>0,y>0,且+=1,则x+y的最小值是______.答案:25解析:解:∵x>0,y>0,且+=1,∴x+y=(x+y)(+)=17++≥17+2=25当且仅当=,即x=5,y=20时取等号,∴x+y的最小值是25,故答案为:25.15、在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x为______(m).答案:20解析:解:设矩形高为y,由三角形相似得:=,且x>0,y>0,x<40,y<40,⇒40=x+y≥2,仅当x=y=20m时,矩形的面积s=xy取最大值400m2.故答案为:20.16.已知x>-1,y>0且满足x+2y=2,则的最小值为______.答案:3解析:解:∵x>-1,y>0且满足x+2y=2,∴x+1>0且x+1+2y=3,∴=()(x+1+2y)=[5++]≥(5+2)=3,当且仅当=即x=0且y=1时取等号,故答案为:3.17.若实数a+b=2,a>0,b>0,则的最小值为______.答案:解析:解:∵实数a+b=2,a>0,b>0,则=+=++≥+2=+,当且仅当b=a=4-2时取等号.故答案为:.18.若x,y满足约束条件,则z=3x-y的最小值是______.答案:-4解析:解:由约束条件作出可行域如图,化目标函数z=3x-y为y=3x-z,由图可知,当直线y=3x-z过点C(0,4)时直线在y轴上的截距最大,z有最小值为-4.故答案为:-4.19.若a,b∈R,且4≤a2+b2≤9,则a2-ab+b2的范围是______.答案:[2,]解析:解:∵a,b∈R,且4≤a2+b2≤9;∴设a=rcosθ,b=rsinθ,且2≤r≤3,∴s=a2-ab+b2=r2cos2θ-r2sinθcosθ+r2sin2θ=r2(1-sinθcosθ)=r2(1-sin2θ),由三角函数的图象与性质,得;当sin2θ取最大值1且r取最小值2时,s取得最小值2,当sin2θ取最小值-1且r取最大值3时,s取得最大值;综上,a2-ab+b2的范围是[2,].故答案为:.20.已知f(x)=,不等式f(x)≥-1的解集是______.答案:{x|-4≤x≤2}解析:解:∵已知f(x)=,故由不等式f(x)≥-1可得①,或②.解①可得-4<x≤0,解②可得0<x≤2.综上可得,不等式的解集为{x|-4≤x≤2},故答案为{x|-4≤x≤2}.三.简答题(共__小题)21.已知x>0,y>0,(1)若2x+y=1,求+的最小值.(2)若x+8y-xy=0,求xy的最小值.答案:解:(1)+=(+)(2x+y)=2+++1=3++≥3+2,当且仅当2x2=y2等号成立,∴+的最小值为3+2.(2)∵x+8y-xy=0,∴xy=x+8y≥2,当且仅当x=8y时等号成立.∴≥4,∴xy≥32,∴xy的最小值为32.解析:解:(1)+=(+)(2x+y)=2+++1=3++≥3+2,当且仅当2x2=y2等号成立,∴+的最小值为3+2.(2)∵x+8y-xy=0,∴xy=x+8y≥2,当且仅当x=8y时等号成立.∴≥4,∴xy≥32,∴xy的最小值为32.22.设a,b,c均为正数,且a+b+c=1,证明:(1)ab+bc+ca≤;(2)++≥1.答案:证明:(1)由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca,可得a2+b2+c2≥ab+bc+ca,(当且仅当a=b=c取得等号)由题设可得(a+b+c)2=1,即a2+b2+c2+2ab+2bc+2ca=1,即有3(ab+bc+ca)≤1,则ab+bc+ca≤;(2)+b≥2a,+c≥2b,+a≥2c,故+++(a+b+c)≥2(a+b+c),即有++≥a+b+c.(当且仅当a=b=c取得等号).故++≥1.解析:证明:(1)由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca,可得a2+b2+c2≥ab+bc+ca,(当且仅当a=b=c取得等号)由题设可得(a+b+c)2=1,即a2+b2+c2+2ab+2bc+2ca=1,即有3(ab+bc+ca)≤1,则ab+bc+ca≤;(2)+b≥2a,+c≥2b,+a≥2c,故+++(a+b+c)≥2(a+b+c),即有++≥a+b+c.(当且仅当a=b=c取得等号).故++≥1.23.已知a,b,c均为正实数,且满足abc=1,证明:(1)a+b+c≥;(2)a2+b2+c2≥.答案:证明:∵a,b,c∈R+∴a+b≥2,b+c≥2,a+c≥2∴2a+2b+2c≥2+2+2∴a+b+c≥++∵abc=1,∴a+b+c≥++;(2)∵a2+b2≥2ab,b2+c2≥2bc,a2+c2≥2ac,∴2a2+2b2+2c2≥2ab+2bc+2ac,∴a2+b2+c2≥ab+bc+ac,∵ab+bc+ac=≥=++,∴a2+b2+c2≥++.解析:证明:∵a,b,c∈R+∴a+b≥2,b+c≥2,a+c≥2∴2a+2b+2c≥2+2+2∴a+b+c≥++∵abc=1,∴a+b+c≥++;(2)∵a2+b2≥2ab,b2+c2≥2bc,a2+c2≥2ac,∴2a2+2b2+2c2≥2ab+2bc+2ac,∴a2+b2+c2≥ab+bc+ac,∵ab+bc+ac=≥=++,∴a2+b2+c2≥++.24.设函数f(x)=|x+3|-|x-4|①解不等式f(x)>3;②求函数f(x)的最小值.答案:解:①不等式f(x)>3,即|x+3|-|x-4|>3.而|x+3|-|x-4|表示数轴上的x对应点到-3对应点和4对应点的距离之差,数轴上的2对应点到-3对应点和4对应点的距离之差为3,故不等式的解集为{x|x>2}.…(3分)②f(x)=|x+3|-|x-4|表示数轴上的x对应点到-3对应点和4对应点的距离之差,可得函数f(x)的最小值为-7.(7分)解析:解:①不等式f(x)>3,即|x+3|-|x-4|>3.而|x+3|-|x-4|表示数轴上的x对应点到-3对应点和4对应点的距离之差,数轴上的2对应点到-3对应点和4对应点的距离之差为3,故不等式的解集为{x|x>2}.…(3分)②f(x)=|x+3|-|x-4|表示数轴上的x对应点到-3对应点和4对应点的距离之差,可得函数f(x)的最小值为-7.(7分)25.已知向量=(1+sin2x,sinx-cosx),=(1,sinx+cosx),函数f(x)=•(Ⅰ)求f(x)的最大值及相应的x的值;(Ⅱ)在△ABC中,a,b,c分别是三个内角A,B,C所对边,若f()=2,a=2,求△ABC 面积的最大值.答案:解:(Ⅰ)∵=(1+sin2x,sinx-cosx),=(1,sinx+cosx),∴f(x)=•=1+sin2x+sin2x-cos2x,=1+sin2x-cos2x,=1+sin(2x-),∴当2x-=2kπ+即x=+kπ,k∈Z时,函数取得最大值1+.(Ⅱ)由(I)知f()=2时,sin(A-)=,∴A-=2kπ+或A-=2kπ+,即A=+2kπ或A=π+2kπ,k∈Z,∵A是三角形的一个内角,∴A=,即△ABC是直角三角形.∵a=2,∴b2+c2=4,∴S△ABC=bc≤=1(当且仅当b=c=时,取得最大值),∴△ABC面积的最大值为1.解析:解:(Ⅰ)∵=(1+sin2x,sinx-cosx),=(1,sinx+cosx),∴f(x)=•=1+sin2x+sin2x-cos2x,=1+sin2x-cos2x,=1+sin(2x-),∴当2x-=2kπ+即x=+kπ,k∈Z时,函数取得最大值1+.(Ⅱ)由(I)知f()=2时,sin(A-)=,∴A-=2kπ+或A-=2kπ+,即A=+2kπ或A=π+2kπ,k∈Z,∵A是三角形的一个内角,∴A=,即△ABC是直角三角形.∵a=2,∴b2+c2=4,∴S△ABC=bc≤=1(当且仅当b=c=时,取得最大值),∴△ABC面积的最大值为1.26、解:由柯西不等式:(1+3+5)²≤(a+b+c)()因为:a+b+c=12所以(1+3+5)²≤12*()81≤12*()≤当且仅当==时取等号即:最小值为27.已知:x,y,z∈R,x2+y2+z2=1,则x-2y-3z的最大值为______.答案:解:由已知x,y,z∈R,x2+y2+z2=1,和柯西不等式(a2+b2+c2)(e2+f2+g2)≥(ae+bf+cg)2则构造出[12+(-2)2+(-3)2](x2+y2+z2)≥(x-2y-3z)2.即:(x-2y-3z)2≤14即:x-2y-3z的最大值为.故答案为.解析:解:由已知x,y,z∈R,x2+y2+z2=1,和柯西不等式(a2+b2+c2)(e2+f2+g2)≥(ae+bf+cg)2则构造出[12+(-2)2+(-3)2](x2+y2+z2)≥(x-2y-3z)2.即:(x-2y-3z)2≤14即:x-2y-3z的最大值为.故答案为.28.若a,b,c∈R+,且,求a+2b+3c的最小值.答案:解:∵a,b,c∈R+,,∴=1+1+1,当且仅当a=2b=3c=3时取等号.即a+2b+3c≥9,∴a+2b+3c的最小值为9.解析:解:∵a,b,c∈R+,,∴=1+1+1,当且仅当a=2b=3c=3时取等号.即a+2b+3c≥9,∴a+2b+3c的最小值为9.29.某工厂生产一种产品的成本费共由三部分组成:①原材料费每件50元;②职工工资支出7500+20x元;③电力与机器保养等费用为x2-30x+600元:其中x是该厂生产这种产品的总件数.(I)把每件产品的成本费p(x)(元)表示成产品件数x的函数,并求每件产品的最低成本费;(Ⅱ)如果该厂生产的这种产品的数量x不超过170件且能全部销售,根据市场调查,每件产品的销售价为Q(x)(元),且Q(x)=1240-.试问生产多少件产品,总利润最高?并求出最高总利润.(总利润=总销售额-总的成本)答案:解:(I)P(x)=50++=+x+40.由基本不等式得P(x)≥2+40=220.当且仅当=x,即x=90时,等号成立.所以P(x)=+x+40.每件产品的最低成本费为220 元.(Ⅱ)设总利润为y=f(x)=xQ(x)-xP(x)=,f′(x)==(x-100)(x+120)当0<x<100时,f′(x)>0,当x>100时,f′(x)<0.所以f(x)在(0,100)单调递增,在(100,170)单调递减,所以当x=100时,ymax=f(100)=故生产100件产品时,总利润最高,最高总利润为.解析:解:(I)P(x)=50++=+x+40.由基本不等式得P(x)≥2+40=220.当且仅当=x,即x=90时,等号成立.所以P(x)=+x+40.每件产品的最低成本费为220 元.(Ⅱ)设总利润为y=f(x)=xQ(x)-xP(x)=,f′(x)==(x-100)(x+120)当0<x<100时,f′(x)>0,当x>100时,f′(x)<0.所以f(x)在(0,100)单调递增,在(100,170)单调递减,所以当x=100时,ymax=f(100)=故生产100件产品时,总利润最高,最高总利润为.30.已知定义在R上的函数f(x)=|x-1|+|x+2|的最小值为a.(1)求a的值;(2)若m,n是正实数,且m+n=a,求+的最小值.答案:解:(1)由|x-1|+|x+2|的几何意义表示了数轴上点x到点1与到点-2的距离之和,如图:则x在[-2,1]上时,函数f(x)=|x-1|+|x+2|取得最小值a=3.即a=3.(2)由题意,m+n=3,则+=+=+++=1++≥1+2=1+.(当且仅当=时,等号成立).即+的最小值为1+.解析:解:(1)由|x-1|+|x+2|的几何意义表示了数轴上点x到点1与到点-2的距离之和,如图:则x在[-2,1]上时,函数f(x)=|x-1|+|x+2|取得最小值a=3.即a=3.(2)由题意,m+n=3,则+=+=+++=1++≥1+2=1+.(当且仅当=时,等号成立).即+的最小值为1+.。

解不等式组计算专项练习60题(有答案)

解不等式组计算专项练习60题(有答案)

解不等式组计算专项练习60题(有答案)1.解不等式组专项练60题(附答案)2.解:2x+1≤3x,得x≥1;3x-16≥2x,得x≥16,综合得1≤x<16,即x∈[1,16)。

3.解:|a-1|<1,即-1<a-1<1,解得0<a<2;|a+2|<2,即-2<a+2<2,解得-4<a<-0.5.综合得-4<a<-0.5,0<a<2,即a∈(-4,-0.5)∪(0,2)。

4.解:x+1>0,即x>-1;x-3<0,即x<3,综合得-1<x<3,即x∈(-1,3)。

5.解:x-2≥0,即x≥2;2x+1≤3x-2,得x≥3,综合得x≥3,即x∈[3,∞)。

6.解:x+1>0,即x>-1;2x-3≤x+2,得x≤5,综合得-1<x≤5,即x∈(-1,5]。

7.解:x-3≥0,即x≥3;2x-1≤3x-4,得x≤3,综合得x=3.8.解:x+3>0,即x>-3;x-1≤0,即x≤1,综合得-3<x≤1,即x∈(-3,1]。

9.解:x+1>0,即x>-1;3x-2≤2x+8,得x≤10,综合得-1<x≤10,即x∈(-1,10]。

10.解:x-1≥0,即x≥1;x+2≥0,即x≥-2,综合得x≥1,即x∈[1,∞)。

11.解:x-3<0,即x<3;x-1≥0,即x≥1,综合得x∈(-∞,3)∩[1,∞),即x∈[1,3)。

12.删除此段。

13.解:x-2>0,即x>2;x+1≤0,即x≤-1,综合得x∈(2.-1]。

14.解:x+3≥0,即x≥-3;3x-2≤2x+5,得x≤7,综合得-3≤x≤7,即x∈[-3,7]。

15.解:x+1>0,即x>-1;2x-5≥0,即x≥2.5,综合得x>2.5,即x∈(2.5,∞)。

解不等式组计算专项练习60题(有答案解析)

解不等式组计算专项练习60题(有答案解析)

解不等式组专项练习60题(有答案)1.2..3..4.,5..6..7.8..9.10.11.12.,13..14.,15.16.17..18.19.20..21..22..23.24.25.,.26.27.,28.29..30.已知:2a﹣3x+1=0,3b﹣2x﹣16=0,且a≤4<b,求x的取值范围.31..32..33.已知:a=,b=,并且2b≤<a.请求出x的取值范围.34.35.,36.,并将其解集在数轴上表示出来.37..38.,并把解集在数轴上表示出来.39.已知关于x、y的方程组的解满足x>y>0,化简|a|+|3﹣a|.40.,并把它的解集在数轴上表示出来.41.42.43..44..45..46..47.关于x、y的二元一次方程组,当m为何值时,x>0,y≤0.48.并将解集表示在数轴上.49.已知关于x、y的方程组的解是一对正数,求m的取值范围.50.已知方程组的解满足,化简.51..52.53..54..55..56.57.58.59.60.解不等式组60题参考答案:1、解:,由①得2x≥2,即x≥1;由②得x<3;故不等式组的解集为:1≤x<3.2.解:,由①得:x≤5,由②得:x>﹣2,不等式组的解集为﹣2<x≤53.解:解不等式①,得x>1.解不等式②,得x<2.故不等式组的解集为:1<x<2.4.解:,解不等式①得,x>1,解不等式②得,x<3,故不等式的解集为:1<x<3,5.解不等式①,得x≤﹣2,解不等式②,得x>﹣3,故原不等式组的解集为﹣3<x≤﹣2,6. 解:,解不等式①得:x>﹣1,解不等式②得:x≤2,不等式组的解集为:﹣1<x≤2,7.解:,由①得x>﹣3;由②得x≤1故此不等式组的解集为:﹣3<x≤1,8.解:解不等式①,得x<3,解不等式②,得x≥﹣1.所以原不等式的解集为﹣1≤x<3.9.解:∵由①得,x>﹣1;由②得,x≤4,∴此不等式组的解集为:﹣1<x≤4,10.解:,解不等式①得:x<3,解不等式②得:x≥1,不等式组的解集是1≤x<3 11.解:,由①得,x≥﹣;由②得,x<1,故此不等式组的解集为:﹣<x<1,12.解:∵由①得,x≤3,由②得x>0,∴此不等式组的解集为:0<x≤3,13.解:解不等式①,得x≥1;解不等式②,得x<4.∴1≤x<4.14.解:原不等式组可化为,解不等式①得x>﹣3;解不等式②得x≤3.所以-3<x≤315.解:由(1)得:x+4<4,x<0由(2)得:x﹣3x+3>5,x<﹣1∴不等式组解集是:x<﹣116.解:,解不等式(1),得x<5,解不等式(2),得x≥﹣2,因此,原不等式组的解集为﹣2≤x<5.17.解:由①得:去括号得,x﹣3x+6≤4,移项、合并同类项得,﹣2x≤﹣2,化系数为1得,x≥1.由②得:去分母得,1+2x>3x﹣3,移项、合并同类项得,﹣x>﹣4,化系数为1得,x<4 ∴原不等式组的解集为:1≤x<4.18.解:解不等式①,得x≥﹣1,解不等式②,得x<3,∴原不等式组的解集为﹣1≤x<3.19.解:解不等式(1)得x<1解不等式(2)得x≥﹣2所以不等式组的解集为﹣2≤x<1.20.解:解不等式①,得x>﹣.解不等式②,得x≤4.所以,不等式组的解集是﹣<x≤4.21.解:①的解集为x≥1②的解集为x<4原不等式的解集为1≤x<4.22.解:解不等式(1),得2x+4<x+4,x<0,不等式(2),得4x≥3x+3,x≥3.∴原不等式无解.23.解:解不等式2x+5≤3(x+2),得x≥﹣1解不等式x﹣1<x,得x<3.所以,原不等式组的解集是﹣1≤x<3.24.解:解不等式①,得x≥﹣1,解不等式②,得x<3,∴原不等式组的解是﹣1≤x<3.25.解:由题意,解不等式①,得x<2,解不等式②,得x≥﹣1,∴不等式组的解集是﹣1≤x<2.26.:由不等式①得:x≥0由不等式②得:x<4原不等式组的解集为0≤x<427.解:由不等式①得:2x≤8,x≤4.由不等式②得:5x﹣2+2>2x,3x>0,x>0.∴原不等式组的解集为:0<x≤4.28.解:解不等式①,得x≤﹣1,解不等式②,得x>﹣2,所以不等式组的解集为﹣2<x≤﹣1.29.解:解不等式①,得x≤2.解不等式②,得x>﹣3.所以原不等式组的解集为x≤2.30. 解:由2a﹣3x+1=0,3b﹣2x﹣16=0,可得a=,b=,∵a≤4<b,∴,由(1),得x≤3.由(2),得x>﹣2.∴x的取值范围是﹣2<x≤3.31.解:由①得:x≤2.由②得:x>﹣1.∴不等式组的解集为﹣1<x≤2.32.解:解不等式①,得x>;解不等式②,得x≤4.∴不等式的解集是<x≤4.33.解:把a,b代入得:2×.化简得:6x﹣21≤15<2x+8.解集为:3.5<x≤6.34.解:解不等式①,得x≤2.5,解不等式②,得x>﹣1,解不等式③,得x≤2,所以这个不等式组的解集是﹣1<x≤2.35.解:解不等式①,得x≥﹣1.解不等式②,得x<2.所以不等式组的解集是﹣1≤x<2.36.解:由①,得x<2.由②,得x≥﹣1.∴这个不等式组的解集为﹣1≤x<2.37.解:由①得:x>﹣1由②得:x所以解集为﹣1<x.38.解:由①得:﹣2x≥﹣2,即x≤1,由②得:4x﹣2<5x+5,即x>﹣7,所以﹣7<x≤1.在数轴上表示为:39.解:由方程组,解得.由x>y>0,得.解得a>2当2<a≤3时,|a|+|3﹣a|=a+3﹣a=3;当a>3时,|a|+|3﹣a|=a+a﹣3=2a﹣3.40.解:由(1)得x<8由(2)得,x≥4故原不等式组的解集为4≤x<8.41.解:由①得2x<6,即x<3,由②得x+8>﹣3x,即x>﹣2,所以解集为﹣2<x<3.42.解:(1)去括号得,10﹣4x+12≥2x﹣2,移项、合并同类项得,﹣6x≥﹣24,解得,x≤4;(2)去分母得,3(x﹣1)>1﹣2x,去括号得,3x﹣3>1﹣2x,移项、合并同类项得,5x>4,化系数为1得,x>.∴不等式组的解集为:<x≤4.43.解:解第一个不等式得:x<;解第二个不等式得:x≥﹣12.故不等式组的解集是:﹣12≤x<.44.解:原方程组可化为:,由(1)得,x<﹣3由(2)得,x≥﹣4 根据“小大大小中间找”原则,不等式组的解集为﹣4≤x<﹣3.45.由①得:x<2,由②得:x≥﹣1∴﹣1≤x<2.46.整理不等式组得解之得,x>﹣2,x≤1∴﹣2<x≤147.解:①+②×2得,7x=13m﹣3,即x=③,把③代入②得,2×+y=5m﹣3,解得,y=78-m9,因为x>0,y≤0,所以,解得<m≤9848. 解不等式①,得x≤,解不等式②,得x≥﹣8.把不等式的解集在数轴上表示出来,如图:所以这个不等式组的解集为﹣8≤x≤.49.解:由题意可解得,解得,故<m<1350.解:由2x﹣2=5得x=,代入第一个方程得+2y=5a;则y=a﹣,由于y<0,则a<8(1)当a<﹣2时,原式=﹣(a+2)﹣[﹣(a﹣)]=﹣2;(2)当﹣2<a<时,原式=a+2﹣[﹣(a﹣)]=2a+;(3)当<a<时,原式=a+2﹣(a﹣)=2;51.解不等式(1)得:2﹣x﹣1≤2x+4 ﹣3x≤3 x≥﹣1解不等式(2),得:x2+x>x2+3x ﹣2x>0 x<0 ∴原不等式组的解集为:﹣1≤x<0.52.解不等式(1)得:x≥-1 解不等式(2),得:x<2 ∴原不等式组的解集为:﹣1≤x<2.53.解①得x<解②得x≥3,∴不等式组的解集为无解.54.解第一个不等式得x<8解第二个不等式得x≥2∴原不等式组的解集为:2≤x<8.55.解:由①得:1﹣2x+2≤5∴2x≥﹣2即x≥﹣1由②得:3x﹣2<2x+1∴x<3.∴原不等式组的解集为:﹣1≤x<3.56.解:原不等式可化为:即在数轴上可表示为:∴不等式的解集为:1≤x<357.解:,解不等式①,得x<3,解不等式②,得x≥﹣1,把不等式的解集在数轴上表示出来,如图所示.不等式组的解集是﹣1≤x<358.解:由题意,解不等式①得x>2,不等式②×2得x﹣2≤14﹣3x解得x≤4,∴原不等式组的解集为2<x≤4.59.解:解不等式①,得x<2.(2分)解不等式②,得x≥﹣1.(4分)所以,不等式组的解集是﹣1≤x<2.(5分)解集在数轴上表示为:60.解:由①,得x≥﹣,由②,得x<3,所以不等式组的解集为﹣≤x<3.。

解不等式组计算专项练习60题(有答案)

解不等式组计算专项练习60题(有答案)

解不等式组专项练习60题(有答案)1.2..3..4.,5..6..7.8..9.10.11.12.,13..14.,15.16.17..18.19.20..21..22..23.24.25.,.26.27.,28.29..30.已知:2a﹣3x+1=0,3b﹣2x﹣16=0,且a≤4<b,求x的取值范围.31..32..33.已知:a=,b=,并且2b ≤<a.请求出x的取值范围.34.35.,36.,并将其解集在数轴上表示出来.37..38.,并把解集在数轴上表示出来.39.已知关于x、y 的方程组的解满足x>y >0,化简|a|+|3﹣a|.40.,并把它的解集在数轴上表示出来.41.42.43..44..45..46..47.关于x、y 的二元一次方程组,当m为何值时,x>0,y≤0.48.并将解集表示在数轴上.49.已知关于x、y 的方程组的解是一对正数,求m的取值范围.50.已知方程组的解满足,化简.51..52.53..54..55..56.57.58.59.60.解不等式组60题参考答案:1、解:,由①得2x≥2,即x≥1;由②得x<3;故不等式组的解集为:1≤x<3.2.解:,由①得:x≤5,由②得:x>﹣2,不等式组的解集为﹣2<x≤53.解:解不等式①,得x>1.解不等式②,得x<2.故不等式组的解集为:1<x<2.4.解:,解不等式①得,x>1,解不等式②得,x<3,故不等式的解集为:1<x<3,5.解不等式①,得x≤﹣2,解不等式②,得x>﹣3,故原不等式组的解集为﹣3<x≤﹣2,6.解:,解不等式①得:x>﹣1,解不等式②得:x≤2,不等式组的解集为:﹣1<x≤2,7.解:,由①得x>﹣3;由②得x≤1故此不等式组的解集为:﹣3<x≤1,8.解:解不等式①,得x<3,解不等式②,得x≥﹣1.所以原不等式的解集为﹣1≤x<3.9.解:∵由①得,x>﹣1;由②得,x≤4,∴此不等式组的解集为:﹣1<x≤4,10.解:,解不等式①得:x<3,解不等式②得:x≥1,不等式组的解集是1≤x<3 11.解:,由①得,x≥﹣;由②得,x<1,故此不等式组的解集为:﹣<x<1,12.解:∵由①得,x≤3,由②得x>0,∴此不等式组的解集为:0<x≤3,13.解:解不等式①,得x≥1;解不等式②,得x<4.∴1≤x<4.14.解:原不等式组可化为,解不等式①得x>﹣3;解不等式②得x≤3.所以-3<x≤3 15.解:由(1)得:x+4<4,x<0由(2)得:x﹣3x+3>5,x<﹣1∴不等式组解集是:x<﹣116.解:,解不等式(1),得x<5,解不等式(2),得x≥﹣2,因此,原不等式组的解集为﹣2≤x<5.17.解:由①得:去括号得,x﹣3x+6≤4,移项、合并同类项得,﹣2x≤﹣2,化系数为1得,x≥1.由②得:去分母得,1+2x>3x﹣3,移项、合并同类项得,﹣x>﹣4,化系数为1得,x<4 ∴原不等式组的解集为:1≤x<4.18.解:解不等式①,得x≥﹣1,解不等式②,得x<3,∴原不等式组的解集为﹣1≤x<3.19.解:解不等式(1)得x<1解不等式(2)得x≥﹣2所以不等式组的解集为﹣2≤x<1.20.解:解不等式①,得x>﹣.解不等式②,得x≤4.所以,不等式组的解集是﹣<x≤4.21.解:①的解集为x≥1②的解集为x<4原不等式的解集为1≤x<4.22.解:解不等式(1),得2x+4<x+4,x<0,不等式(2),得4x≥3x+3,x≥3.∴原不等式无解.23.解:解不等式2x+5≤3(x+2),得x≥﹣1解不等式x﹣1<x,得x<3.所以,原不等式组的解集是﹣1≤x<3.24.解:解不等式①,得x≥﹣1,解不等式②,得x<3,∴原不等式组的解是﹣1≤x<3.25.解:由题意,解不等式①,得x<2,解不等式②,得x≥﹣1,∴不等式组的解集是﹣1≤x<2.26.:由不等式①得:x≥0由不等式②得:x<4原不等式组的解集为0≤x<427.解:由不等式①得:2x≤8,x≤4.由不等式②得:5x﹣2+2>2x,3x>0,x>0.∴原不等式组的解集为:0<x≤4.28.解:解不等式①,得x≤﹣1,解不等式②,得x>﹣2,所以不等式组的解集为﹣2<x≤﹣1.29.解:解不等式①,得x≤2.解不等式②,得x>﹣3.所以原不等式组的解集为x≤2.30. 解:由2a﹣3x+1=0,3b﹣2x﹣16=0,可得a=,b=,∵a≤4<b,∴,由(1),得x≤3.由(2),得x>﹣2.∴x的取值范围是﹣2<x≤3.31.解:由①得:x≤2.由②得:x>﹣1.∴不等式组的解集为﹣1<x≤2.32.解:解不等式①,得x>;解不等式②,得x≤4.∴不等式的解集是<x≤4.33.解:把a,b代入得:2×.化简得:6x﹣21≤15<2x+8.解集为:3.5<x≤6.34.解:解不等式①,得x≤2.5,解不等式②,得x>﹣1,解不等式③,得x≤2,所以这个不等式组的解集是﹣1<x≤2.35.解:解不等式①,得x≥﹣1.解不等式②,得x<2.所以不等式组的解集是﹣1≤x<2.36.解:由①,得x<2.由②,得x≥﹣1.∴这个不等式组的解集为﹣1≤x<2.37.解:由①得:x>﹣1由②得:x所以解集为﹣1<x.38.解:由①得:﹣2x≥﹣2,即x≤1,由②得:4x﹣2<5x+5,即x>﹣7,所以﹣7<x≤1.在数轴上表示为:39.解:由方程组,解得.由x>y>0,得.解得a>2当2<a≤3时,|a|+|3﹣a|=a+3﹣a=3;当a>3时,|a|+|3﹣a|=a+a﹣3=2a﹣3.40.解:由(1)得x<8由(2)得,x≥4故原不等式组的解集为4≤x<8.41.解:由①得2x<6,即x<3,由②得x+8>﹣3x,即x>﹣2,所以解集为﹣2<x<3.42.解:(1)去括号得,10﹣4x+12≥2x﹣2,移项、合并同类项得,﹣6x≥﹣24,解得,x≤4;(2)去分母得,3(x﹣1)>1﹣2x,去括号得,3x﹣3>1﹣2x,移项、合并同类项得,5x>4,化系数为1得,x>.∴不等式组的解集为:<x≤4.43.解:解第一个不等式得:x <;解第二个不等式得:x≥﹣12.故不等式组的解集是:﹣12≤x <.44.解:原方程组可化为:,由(1)得,x<﹣3由(2)得,x≥﹣4根据“小大大小中间找”原则,不等式组的解集为﹣4≤x<﹣3.45.由①得:x<2,由②得:x≥﹣1∴﹣1≤x<2.46.整理不等式组得解之得,x>﹣2,x≤1∴﹣2<x≤147.解:①+②×2得,7x=13m﹣3,即x=③,把③代入②得,2×+y=5m﹣3,解得,y=78-m9,因为x>0,y≤0,所以,解得<m≤9848. 解不等式①,得x ≤,解不等式②,得x≥﹣8.把不等式的解集在数轴上表示出来,如图:所以这个不等式组的解集为﹣8≤x ≤.49.解:由题意可解得,解得,故<m<1350.解:由2x﹣2=5得x=,代入第一个方程得+2y=5a;则y=a ﹣,由于y<0,则a <(1)当a<﹣2时,原式=﹣(a+2)﹣[﹣(a ﹣)]=﹣2;(2)当﹣2<a <时,原式=a+2﹣[﹣(a ﹣)]=2a+;(3)当<a <时,原式=a+2﹣(a ﹣)=2;851.解不等式(1)得:2﹣x﹣1≤2x+4 ﹣3x≤3 x≥﹣1解不等式(2),得:x2+x>x2+3x ﹣2x>0 x<0 ∴原不等式组的解集为:﹣1≤x<0.52.解不等式(1)得:x≥-1 解不等式(2),得:x<2 ∴原不等式组的解集为:﹣1≤x<2.53.解①得x<解②得x≥3,∴不等式组的解集为无解.54.解第一个不等式得x<8解第二个不等式得x≥2∴原不等式组的解集为:2≤x<8.55.解:由①得:1﹣2x+2≤5∴2x≥﹣2即x≥﹣1由②得:3x﹣2<2x+1∴x<3.∴原不等式组的解集为:﹣1≤x<3.56.解:原不等式可化为:即在数轴上可表示为:∴不等式的解集为:1≤x<357.解:,解不等式①,得x<3,解不等式②,得x≥﹣1,把不等式的解集在数轴上表示出来,如图所示.不等式组的解集是﹣1≤x<358.解:由题意,解不等式①得x>2,不等式②×2得x﹣2≤14﹣3x解得x≤4,∴原不等式组的解集为2<x≤4.59.解:解不等式①,得x<2.(2分)解不等式②,得x≥﹣1.(4分)所以,不等式组的解集是﹣1≤x<2.(5分)解集在数轴上表示为:60.解:由①,得x≥﹣,由②,得x<3,所以不等式组的解集为﹣≤x<3.。

解不等式例题50道

解不等式例题50道

解不等式例题50道一、一元一次不等式1. 解不等式:2x + 5>9- 解析:- 首先对不等式进行移项,将常数项移到右边,得到2x>9 - 5。

- 计算右边式子得2x>4。

- 两边同时除以2,解得x > 2。

2. 解不等式:3x-1<8- 解析:- 移项可得3x<8 + 1。

- 即3x<9。

- 两边同时除以3,解得x<3。

3. 解不等式:5x+3≤slant2x + 9- 解析:- 移项,把含x的项移到左边,常数项移到右边,得到5x-2x≤slant9 - 3。

- 计算得3x≤slant6。

- 两边同时除以3,解得x≤slant2。

4. 解不等式:4x-7≥slant3x+1- 解析:- 移项得4x - 3x≥slant1+7。

- 即x≥slant8。

5. 解不等式:(1)/(2)x+3>x - 1- 解析:- 移项可得(1)/(2)x-x>-1 - 3。

- 通分计算,((1)/(2)-(2)/(2))x>-4,即-(1)/(2)x>-4。

- 两边同时乘以 - 2,不等号变向,解得x < 8。

6. 解不等式:(2)/(3)x-1≤slant(1)/(3)x+2- 解析:- 移项得(2)/(3)x-(1)/(3)x≤slant2 + 1。

- 计算得(1)/(3)x≤slant3。

- 两边同时乘以3,解得x≤slant9。

7. 解不等式:2(x + 3)>3(x - 1)- 解析:- 先展开括号,得到2x+6>3x - 3。

- 移项得2x-3x>-3 - 6。

- 计算得-x>-9。

- 两边同时乘以 - 1,不等号变向,解得x < 9。

8. 解不等式:3(x - 2)≤slant2(x+1)- 解析:- 展开括号得3x-6≤slant2x + 2。

- 移项得3x-2x≤slant2+6。

- 计算得x≤slant8。

不等式题目及答案

不等式题目及答案

不等式题目及答案【篇一:基本不等式练习题及答案】教a版教材习题改编)函数y=x+xx>0)的值域为( ).a.(-∞,-2]∪[2,+∞)c.[2,+∞)b.(0,+∞) d.(2,+∞)a+b12.下列不等式:①a2+1>2a;②2;③x2+≥1,其中正确的个数是 x+1ab( ).a.0b.1c.2d.33.若a>0,b>0,且a+2b-2=0,则ab的最大值为( ).1a.2b.1 c.2 d.4a.1+2b.1+3c.3d.4t2-4t+15.已知t>0,则函数y=的最小值为________. t考向一利用基本不等式求最值11【例1】?(1)已知x>0,y>0,且2x+y=1,则x+y的最小值为________;(2)当x>0时,则f(x)=2x________. x+1【训练1】 (1)已知x>1,则f(x)=x+1的最小值为________. x-12(2)已知0<x<5y=2x-5x2的最大值为________.(3)若x,y∈(0,+∞)且2x+8y-xy=0,则x+y的最小值为________.考向二利用基本不等式证明不等式bccaab【例2】?已知a>0,b>0,c>0,求证:abca+b+c..【训练2】已知a>0,b>0,c>0,且a+b+c=1.111求证:a+b+c≥9.考向三利用基本不等式解决恒成立问题________.考向三利用基本不等式解实际问题【例3】?某单位建造一间地面面积为12 m2的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x不得超过5 m.房屋正面的造价为400元/m2,房屋侧面的造价为150元/m2,屋顶和地面的造价费用合计为5 800元,如果墙高为3 m,且不计房屋背面的费用.当侧面的长度为多少时,总造价最低?(1)求出f(n)的表达式;(2)求从今年算起第几年利润最高?最高利润为多少万元?双基自测d.(2,+∞)答案 c2.解析①②不正确,③正确,x2+112(x+1)+1≥2-1=1.答案 b x+1x+11的最小值是( ). a?a-b?13.解析∵a>0,b>0,a+2b=2,∴a+2b=2≥2ab,即ab≤2答案 a4.解析当x>2时,x-2>0,f(x)=(x-2)+=3,即a=3.答案 ct2-4t+115.解析∵t>0,∴y==t+tt-4≥2-4=-2,当且仅当t=1时取等号.答案-2【例1】解析 (1)∵x>0,y>0,且2x+y=1,112x+y2x+yy2xy2x∴x+y=x+y=3+x+y3+22.当且仅当xy 时,取等号.(2)∵x>0,∴f(x)=2x221=1≤2=1,当且仅当x=x,即x=1时取等号.答x+1x+x案 (1)3+22 (2)1【训练1】.解析 (1)∵x>1,∴f(x)=(x-1)+1+1≥2+1=3 当且仅当xx-11?5x+2-5x?2=1,∴y≤,当且仅当5x=2-5x,-5x>0,∴5x(2-5x)≤?52??1128即x=5时,ymax=5.(3)由2x+8y-xy =0,得2x+8y=xy,∴y+x=1,4yx当且仅当xyx=2y时取等号,又2x+8y-xy=0,∴x=12,y =6,∴当x=12,y=6时,x+y取最小值18.1答案 (1)3 (2)5(3)18bcca【例2】证明∵a>0,b>0,c>0,∴a+b≥2bcabcaab=2b;acb+c≥2 bccabcab=2c;aba+c≥2caab?bccaab?+c≥2(abc=2a.以上三式相加得:2?ab?bccaab+b+c),即abca+b+c.【训练2】111a+b+ca+b+c证明∵a>0,b>0,c>0,且a+b+c=1,∴a+b+c=aba+b+cbcacab?ba?ca?cb?a+b+?ac+?bc 3+3+caabbcc??????1≥3+2+2+2=9,当且仅当a=b=c=3时,取等号.xx解析若对任意x>0≤a恒成立,只需求得y=的最大值即x+3x +1x+3x+1可,因为x>0,所以y=x=x+3x+1111x=1时115x+x32 xx ?1??1?取等号,所以a的取值范围是?5,+∞?答案 ?5? ????【训练3】解析由x>0,y>0,xy=x+2y≥2 2xy,得xy≥8,于是由m-2≤xy恒成立,得m-2≤8,m≤10,故m的最大值为10.答案 1016当且仅当x=x,即x=4时取等号.故当侧面的长度为4米时,总造价最低.【训练3】解 (1)第n次投入后,产量为(10+n)万件,销售价格为100元,固定成本为80元,科技成本投入为100n万元.所以,年利润为f(n)=(10+n+180?80??*100-100-?-100n(n∈n).(2)由(1)知f(n)=(10+n)?-100n n)?n+1?n+1???9?9n+1+≤520(万元).当且仅当n+1==1 000-80?, n+1??n +1即n=8时,利润最高,最高利润为520万元.所以,从今年算起第8年利润最高,最高利润为520万元.【示例】.正解∵a>0,b>0,且a+b=1,12?12b2a∴a+b=?a+b(a+b)=1+2+ab3+2 ??b2aab3+22. a+b=1,??当且仅当?b2a??ab ?a=2-1,12即?时,ab3+22. ?b=2-22 11112【试一试】尝试解答] a+ab=a-ab+ab+ab+a(a-b)+a?a-b?a?a-b?11+ab+ab≥2 1a?a-b?2 1abab2+2=4.当且仅当a(a-a?a-b?a?a-b?b)=1a?a-b?且ab=1aba=2b时,等号成立.答案d【篇二:初中数学不等式试题及答案】t>a卷2?x7x??1的解集为_____________。

解不等式练习题及答案

解不等式练习题及答案

解不等式练习题及答案【篇一:高中不等式练习题及答案】>一.选择题:(50分)1.(2014上海)设a,b?r,则“a?b?4”是“a?2,且b?2”的()(a)充分条件(b)必要条件(c)充分必要条件(d)既非充分又非必要条件【答案】b【解析】显然,a+b4,无法推出a2且b2∴不是充分条件若a2且b2,则a+b4成立∴是必要条件∴必要不充分条件.所以,选b2.(2014四川)若a?b?0,c?d?0,则一定有()abab? b、? cdcdababc、? d、? dcdca、【答案】d【解析】11-1-1?cd0∴0∴0dcdc -1-1-a-bab?ab0,0∴0∴0.选ddcdcdc3.(2014上海)若实数x,y满足xy=1,则x+2y的最小值为______________.【答案】22 【解析】?xy=1∴x+2y=x+22222222≥2x?=22,所以,是22 x2x24.(2014新课标i).不等式组??x?y?1的解集记为d.有下面四个命题:x?2y?4?p1:?(x,y)?d,x?2y??2,p2:?(x,y)?d,x?2y?2,p3:?(x,y)?d,x?2y?3,p4:?(x,y)?d,x?2y??1.其中真命题是b.p1,p4c.p1,p2d.p1,p a.p2,p3 3【答案】:c【解析】:作出可行域如图:设x?2y?z,即y??当直线过a?2,?1?时, 1zx?,22zmin??2?2?0,∴z?0,∴命题p1、p2真命题,选c.?x?y?7≤0?5. (2014新课标ii)设x,y满足约束条件?x?3y?1≤0,则z?2x?y的最大值为()?3x?y?5≥0?a. 10b. 8c. 3d. 2【答案】b画出区域,可知区域为三角形,经比较斜率,可知目标函数z=2x-y在两条直线x-3y+1=0与x+y-7=0的交点(5,2)处,取得最大值z=8.故选b.?x?y?2?0,?6(2014天津)设变量x,y满足约束条件?x?y?2?0,则目标函数z?x?2y的最小值为?y?1,?()(a)2 (b)3(c)4 (d)5【答案】b【解析】此题区域不是封闭区域,属于陷阱题结合图象可知,当目标函数通过点(1,1)时,z取得最小值3. ?y?x?7. (2014广东)若变量x,y满足约束条件?x?y?1且z?2x?y的最大值和最小值分别为m?y??1?和m,则m-m=a.8 b.7 c.6d.5答案:c提示:画出可行域(略),易知在点(2,1)与(?1,?1)处目标函数分别取得最大值m?3,与最小值m??3,?m?m?6,选c.?x?y?2?0?8. (2014北京)若x,y满足?kx?y?2?0且z?y?x的最小值为-4,则k的值为()?y?0?11a.2 b.?2 c. d.?22?x?y?1?0,9 (2014山东)已知x,y满足约束条件?当目标函数z?ax?by(a?0,b?0)2x?y?3?0,?22在该约束条件下取到最小值a?b的最小值为(a)5(b)4(cd)2(?x?y?2?0,?10(2014安徽)x , y满足约束条件?x?2y?2?0,若z=y-ax取得最大值的最优解不唯一,...?2x?y?2?0.?则实数a的值为(a)11 或-1(b)2或 22(c)2或1 (d)2或-1答案: d二.填空题(25分)?x?y?0?11. (2014大纲)设x,y满足约束条件?x?2y?3,则z?x?4y的最大值为.?x?2y?1?【答案】5.?x?2y?4?0,?12(2014浙江)当实数x,y满足?x?y?1?0,时,1?ax?y?4恒成立,则实数a的?x?1,?取值范围是________.?3?1,? ??2?13、(2014福建)要制作一个容器为4m,高为1m的无盖长方形容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是_______(单位:元)1603?x?y?1?0?14(2014福建)若变量x,y满足约束条件?x?2y?8?0则z?3x?y的最小值为________?x?0?112x??x?2?a2?a?2215 (2014重庆)若不等式对任意实数x恒成立,则实数a的取值范围是____________. 1[-1]2 【答案】【解析】1115?由数轴可知,f(x)=|x-|+|x-|+|x+2|有最小值f()=2222151 ∴f(x)≥a2+a+2≥a2+a+2,即0≥2a2+a-1,2221解得a∈[-1]2三.解答题16. (2014新课标i)(本小题满分8分)若a?0,b?0,且3311??. ab(Ⅰ) 求a?b的最小值;(Ⅱ)是否存在a,b,使得2a?3b?6?并说明理由.【解析】:(Ⅰ)?11??,得ab?2,且当a?b时等号成立,ab故a3?b3??a?b?∴a?b的最小值为 ???5分(Ⅱ)由6?2a?3b?ab?333,又由(Ⅰ)知ab?2,二者矛盾, 2所以不存在a,b,使得2a?3b?6成立. ?????10分17. (2014新课标ii)(本小题满分8)设函数f?x?=x??x?a(a?0) a (Ⅰ)证明:f?x?≥2;(Ⅱ)若f?3??5,求a的取值范围.218. (2014辽宁)(本小题满分9分)设函数f(x)?2|x?1|?x?1,g(x)?16x?8x?1,【篇二:基本不等式练习题及答案】教a版教材习题改编)函数y=x+xx>0)的值域为( ).a.(-∞,-2]∪[2,+∞)c.[2,+∞)b.(0,+∞) d.(2,+∞),其中正确的个数是 x+1ab( ).a.0b.1c.2d.33.若a>0,b>0,且a+2b-2=0,则ab的最大值为( ).1a.2b.1 c.2 d.4a.1+2b.1+3c.3d.4t2-4t+15.已知t>0,则函数y=的最小值为________. t考向一利用基本不等式求最值11【例1】?(1)已知x>0,y>0,且2x+y=1,则x+y的最小值为________;(2)当x>0时,则f(x)=2x________. x+1【训练1】 (1)已知x>1,则f(x)=x+1的最小值为________. x-12(2)已知0<x<5y=2x-5x2的最大值为________.(3)若x,y∈(0,+∞)且2x+8y-xy=0,则x+y的最小值为________.考向二利用基本不等式证明不等式bccaab【例2】?已知a>0,b>0,c>0,求证:abca+b+c..【训练2】已知a>0,b>0,c>0,且a+b+c=1.111求证:a+b+c≥9.考向三利用基本不等式解决恒成立问题________.考向三利用基本不等式解实际问题【例3】?某单位建造一间地面面积为12 m2的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x不得超过5 m.房屋正面的造价为400元/m2,房屋侧面的造价为150元/m2,屋顶和地面的造价费用合计为5 800元,如果墙高为3 m,且不计房屋背面的费用.当侧面的长度为多少时,总造价最低?(1)求出f(n)的表达式;(2)求从今年算起第几年利润最高?最高利润为多少万元?双基自测d.(2,+∞)答案 c2.解析①②不正确,③正确,x2+112(x+1)+1≥2-1=1.答案 b x+1x+11的最小值是( ). a?a-b?13.解析∵a>0,b>0,a+2b=2,∴a+2b=2≥2ab,即ab≤2答案 a4.解析当x>2时,x-2>0,f(x)=(x-2)+=3,即a=3.答案 ct2-4t+115.解析∵t>0,∴y==t+tt-4≥2-4=-2,当且仅当t=1时取等号.答案-2【例1】解析 (1)∵x>0,y>0,且2x+y=1,112x+y2x+yy2xy2x∴x+y=x+y=3+x+y3+22.当且仅当xy 时,取等号.(2)∵x>0,∴f(x)=2x221=1≤2=1,当且仅当x=x,即x=1时取等号.答x+1x+x案 (1)3+22 (2)1【训练1】.解析 (1)∵x>1,∴f(x)=(x-1)+1+1≥2+1=3 当且仅当xx-11?5x+2-5x?2=1,∴y≤,当且仅当5x=2-5x,-5x>0,∴5x(2-5x)≤?52??1128即x=5时,ymax=5.(3)由2x+8y-xy =0,得2x+8y=xy,∴y+x=1,4yx当且仅当xyx=2y时取等号,又2x+8y-xy=0,∴x=12,y =6,∴当x=12,y=6时,x+y取最小值18.1答案 (1)3 (2)5(3)18bcca【例2】证明∵a>0,b>0,c>0,∴a+b≥2bcabcaab=2b;acb+c≥2 bccabcab=2c;aba+c≥2caab?bccaab?+c≥2(abc=2a.以上三式相加得:2?ab?bccaab+b+c),即abca+b+c.【训练2】111a+b+ca+b+c证明∵a>0,b>0,c>0,且a+b+c=1,∴a+b+c=aba+b+cbcacab?ba?ca?cb?a+b+?ac+?bc 3+3+caabbcc??????1≥3+2+2+2=9,当且仅当a=b=c=3时,取等号.xx解析若对任意x>0≤a恒成立,只需求得y=的最大值即x+3x +1x+3x+1可,因为x>0,所以y=x=x+3x+1111x=1时115x+x32 xx ?1??1?取等号,所以a的取值范围是?5,+∞?答案 ?5? ????【训练3】解析由x>0,y>0,xy=x+2y≥2 2xy,得xy≥8,于是由m-2≤xy恒成立,得m-2≤8,m≤10,故m的最大值为10.答案 1016当且仅当x=x,即x=4时取等号.故当侧面的长度为4米时,总造价最低.【训练3】解 (1)第n次投入后,产量为(10+n)万件,销售价格为100元,固定成本为80元,科技成本投入为100n万元.所以,年利润为f(n)=(10+n+180?80??*100-100-?-100n(n∈n).(2)由(1)知f(n)=(10+n)?-100n n)?n+1?n+1???9?9n+1+≤520(万元).当且仅当n+1==1 000-80?, n+1??n +1即n=8时,利润最高,最高利润为520万元.所以,从今年算起第8年利润最高,最高利润为520万元.【示例】.正解∵a>0,b>0,且a+b=1,12?12b2a∴a+b=?a+b(a+b)=1+2+ab3+2 ??b2aab3+22. a+b=1,??当且仅当?b2a??ab ?a=2-1,12即?时,ab3+22. ?b=2-22 11112【试一试】尝试解答] a+ab=a-ab+ab+ab+a(a-b)+a?a-b?a?a-b?11+ab+ab≥2 1a?a-b?2 1abab2+2=4.当且仅当a(a-a?a-b?a?a-b?b)=1a?a-b?且ab=1aba=2b时,等号成立.答案d【篇三:一元一次不等式组练习题及答案】、选择题1、下列不等式组中,解集是2<x<3的不等式组是( )a、??x?3x?2b、?x?3c、???x?2??x?32d、?x???x?3x?2?2、在数轴上从左至右的三个数为a,1+a,-a,则a的取值范围是()a、a<12b、a<0c、a>0d、a<-123、(2007年湘潭市)不等式组??x?1≤0,2x?3?5的解集在数轴上表示为()?abcd4、不等式组??3x?1?0x?5的整数解的个数是()?2a、1个b、2个c、3个d、4个5、在平面直角坐标系内,p(2x-6,x-5)在第四象限,则x的取值范围为()a、3<x<5 b、-3<x<5 c、-5<x<3 d、-5<x <-36、(2007年南昌市)已知不等式:①x?1,②x?4,③x?2,④2?x??1,从这四个不等式中取两个,构成正整数解是2的不等式组是() a、①与②b、②与③c、③与④d、①与④7、如果不等式组??x?a?x?b无解,那么不等式组的解集是()a.2-b<x<2-ab.b-2<x<a-2c.2-a<x<2-bd.无解8、方程组??4x?3m?2的解x、y满足x>y,则m的取值范围是()?8x?3y?ma.m?9101910b. m?9 c. m?1010d. m?19二、填空题9、若y同时满足y+1>0与y-2<0,则y的取值范围是______________.10、(2007年遵义市)不等式组??x?3?0?x?1≥0的解集是.11、不等式组??2x≥?0.5的解集是 .??3x≥?2.5x?212、若不等式组??x?m?1?x?2m?1无解,则m的取值范围是.?x?13、不等式组??1?x≥2的解集是_________________??x?514、不等式组??x?2的解集为x>2,则a的取值范围是_____________.?x?a?2x?a?115、若不等式组?的解集为-1<x<1,那么(a+1)(b-1)的值等于________.x?2b?3?16、若不等式组??4a?x?0无解,则a的取值范围是_______________.3?x?(2x?1)≤4,??218、(2007年滨州)解不等式组?把解集表示在数轴上,并求出不等式组的?1?3x?2x?1.??2?x?a?5?0三、解答题17、解下列不等式组(1)??3x?2?82x?1?2?(3)2x<1-x≤x+5?5?7x?2x?42)????1?34(x?1)?0.5 ?3(1?x)?2(x4)??9)??x?3?0.5?x?40.2??14整数解.19、求同时满足不等式6x-2≥3x-4和2x?13?1?2x2?1的整数x的值.20、若关于x、y的二元一次方程组??x?y?m?5y?3m?3中,x的值为负数,y的值为正数,求m的?x?取值范围.((参考答案1、c2、d3、c4、b5、a6、d7、a8、d9、1<y<210、-1≤x<3 11、-14≤x≤412、m>2 13、2≤x<5 14、a<2 15、-6 16、a≤13101?x?(2)无解(3)-2<x<(4)x>-318、2,1,0,-1 233 2719、不等式组的解集是-?x?,所以整数x为031017、(1)20、-2<m<0.5。

不等式复习题及答案

不等式复习题及答案

不等式复习题及答案1. 若不等式 \( ax^2 + bx + c > 0 \) 的解集为 \( (-1, 2) \),求 \( a \)、\( b \) 和 \( c \) 的值。

答案:根据解集 \( (-1, 2) \) 可知,\( -1 \) 和 \( 2 \) 是方程\( ax^2 + bx + c = 0 \) 的两个实根,且 \( a < 0 \)。

根据根与系数的关系,我们有 \( -1 + 2 = -\frac{b}{a} \) 和 \( -1\times 2 = \frac{c}{a} \)。

解得 \( b = -a \) 和 \( c = -2a \)。

由于 \( a < 0 \),我们可以取 \( a = -1 \),则 \( b = 1 \),\( c = 2 \)。

2. 已知 \( x \) 和 \( y \) 满足 \( x + y \geq 3 \) 且 \( x -y \leq 1 \),求 \( x^2 + y^2 \) 的最小值。

答案:要使 \( x^2 + y^2 \) 最小,\( x \) 和 \( y \) 应尽可能接近。

由 \( x + y \geq 3 \) 和 \( x - y \leq 1 \) 可得 \( 2x\leq 4 \),即 \( x \leq 2 \)。

当 \( x = 2 \) 时,\( y = 1 \)。

因此,\( x^2 + y^2 \) 的最小值为 \( 2^2 + 1^2 = 5 \)。

3. 若 \( a \)、\( b \) 和 \( c \) 是正实数,且满足 \( a + b +c = 1 \),求 \( \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \) 的最小值。

答案:根据柯西-施瓦茨不等式,我们有 \( (a + b +c)\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right) \geq(1 + 1 + 1)^2 = 9 \)。

解不等式组计算专项练习60题 (有答案)

解不等式组计算专项练习60题    (有答案)

解不等式组专项练习60题(有答案) 1. 2..3..4.,5..6..7.8.. 9. 10. 11. 12., 13.. 14., 15. 16. 17.. 18. 19. 20..21.. 22.. 23.24.25.,.26. 27., 28.29..30.已知:2a﹣3x+1=0,3b﹣2x﹣16=0,且a≤4<b,求x的取值范围.31..32..33.已知:a=,b=,并且2b≤<a.请求出x的取值范围.34.35., 36.,并将其解集在数轴上表示出来.37..38.,并把解集在数轴上表示出来.39.已知关于x、y的方程组的解满足x>y>0,化简|a|+|3﹣a|. 40.,并把它的解集在数轴上表示出来.41.42.43..44..45..46..47.关于x、y的二元一次方程组,当m为何值时,x>0,y≤0.48.并将解集表示在数轴上.49.已知关于x、y的方程组的解是一对正数,求m的取值范围. 50.已知方程组的解满足,化简.51..52. 53..54.. 55.. 56.57.58. 59.60.解不等式组60题参考答案:1、 解:,由①得2x≥2,即x≥1;由②得x<3;故不等式组的解集为:1≤x<3.2.解:,由①得:x≤5,由②得:x>﹣2,不等式组的解集为﹣2<x≤5 3.解:解不等式①,得x>1.解不等式②,得x<2.故不等式组的解集为:1<x<2.4.解:,解不等式①得,x>1,解不等式②得,x<3,故不等式的解集为:1<x<3,5.解不等式①,得x≤﹣2,解不等式②,得x>﹣3,故原不等式组的解集为﹣3<x≤﹣2,6. 解:,解不等式①得:x>﹣1,解不等式②得:x≤2,不等式组的解集为:﹣1<x≤2,7.解:,由①得x>﹣3;由②得x≤1故此不等式组的解集为:﹣3<x≤1,8.解:解不等式①,得x<3,解不等式②,得x≥﹣1.所以原不等式的解集为﹣1≤x<3.9.解:∵由①得,x>﹣1;由②得,x≤4,∴此不等式组的解集为:﹣1<x≤4, 10.解:,解不等式①得:x<3,解不等式②得:x≥1,不等式组的解集是1≤x<3 11.解:,由①得,x≥﹣;由②得,x<1,故此不等式组的解集为:﹣<x<1,12.解:∵由①得,x≤3,由②得x>0,∴此不等式组的解集为:0<x≤3,13.解:解不等式①,得x≥1;解不等式②,得x<4.∴1≤x<4.14.解:原不等式组可化为,解不等式①得x>﹣3;解不等式②得x≤3.所以-3<x≤315.解:由(1)得:x+4<4,x<0由(2)得:x﹣3x+3>5,x<﹣1∴不等式组解集是:x<﹣116.解:,解不等式(1),得x<5,解不等式(2),得x≥﹣2,因此,原不等式组的解集为﹣2≤x<5. 17.解:由①得:去括号得,x﹣3x+6≤4,移项、合并同类项得,﹣2x≤﹣2,化系数为1得,x≥1.由②得:去分母得,1+2x>3x﹣3,移项、合并同类项得,﹣x>﹣4,化系数为1得,x<4 ∴原不等式组的解集为:1≤x<4.18.解:解不等式①,得x≥﹣1,解不等式②,得x<3,∴原不等式组的解集为﹣1≤x<3.19.解:解不等式(1)得x<1解不等式(2)得x≥﹣2所以不等式组的解集为﹣2≤x<1.20.解:解不等式①,得x>﹣.解不等式②,得x≤4.所以,不等式组的解集是﹣<x≤4.21.解:①的解集为x≥1②的解集为x<4原不等式的解集为1≤x<4.22.解:解不等式(1),得2x+4<x+4,x<0,不等式(2),得4x≥3x+3,x≥3.∴原不等式无解.23.解:解不等式2x+5≤3(x+2),得x≥﹣1解不等式x﹣1<x,得x<3.所以,原不等式组的解集是﹣1≤x<3.24.解:解不等式①,得x≥﹣1,解不等式②,得x<3,∴原不等式组的解是﹣1≤x<3. 25.解:由题意,解不等式①,得x<2,解不等式②,得x≥﹣1,∴不等式组的解集是﹣1≤x<2.26.:由不等式①得:x≥0由不等式②得:x<4原不等式组的解集为0≤x <427.解:由不等式①得:2x≤8,x≤4.由不等式②得:5x﹣2+2>2x,3x >0,x>0.∴原不等式组的解集为:0<x≤4.28.解:解不等式①,得x≤﹣1,解不等式②,得x>﹣2,所以不等式组的解集为﹣2<x≤﹣1. 29.解:解不等式①,得x≤2.解不等式②,得x>﹣3.所以原不等式组的解集为x≤2.30. 解:由2a﹣3x+1=0,3b﹣2x﹣16=0,可得a=,b=,∵a≤4<b,∴,由(1),得x≤3.由(2),得x>﹣2.∴x的取值范围是﹣2<x≤3. 31.解:由①得:x≤2.由②得:x>﹣1.∴不等式组的解集为﹣1<x≤2.32.解:解不等式①,得x>;解不等式②,得x≤4.∴不等式的解集是<x≤4.33.解:把a,b代入得:2×.化简得:6x﹣21≤15<2x+8.解集为:3.5<x≤6.34.解:解不等式①,得x≤2.5,解不等式②,得x>﹣1,解不等式③,得x≤2,所以这个不等式组的解集是﹣1<x≤2.35.解:解不等式①,得x≥﹣1.解不等式②,得x<2.所以不等式组的解集是﹣1≤x<2.36.解:由①,得x<2.由②,得x≥﹣1.∴这个不等式组的解集为﹣1≤x<2.37.解:由①得:x>﹣1由②得:x所以解集为﹣1<x.38.解:由①得:﹣2x≥﹣2,即x≤1,由②得:4x﹣2<5x+5,即x>﹣7,所以﹣7<x≤1.在数轴上表示为:39.解:由方程组,解得.由x>y>0,得.解得a>2当2<a≤3时,|a|+|3﹣a|=a+3﹣a=3;当a>3时,|a|+|3﹣a|=a+a﹣3=2a﹣3.40.解:由(1)得x<8由(2)得,x≥4故原不等式组的解集为4≤x<8.41.解:由①得2x<6,即x<3,由②得x+8>﹣3x,即x>﹣2,所以解集为﹣2<x<3.42.解:(1)去括号得,10﹣4x+12≥2x﹣2,移项、合并同类项得,﹣6x≥﹣24,解得,x≤4;(2)去分母得,3(x﹣1)>1﹣2x,去括号得,3x﹣3>1﹣2x,移项、合并同类项得,5x>4,化系数为1得,x>.∴不等式组的解集为:<x≤4.43.解:解第一个不等式得:x<;解第二个不等式得:x≥﹣12.故不等式组的解集是:﹣12≤x<.44.解:原方程组可化为:,由(1)得,x<﹣3由(2)得,x≥﹣4根据“小大大小中间找”原则,不等式组的解集为﹣4≤x<﹣3.45.由①得:x<2,由②得:x≥﹣1∴﹣1≤x<2.46.整理不等式组得解之得,x>﹣2,x≤1∴﹣2<x≤147.解:①+②×2得,7x=13m﹣3,即x=③,把③代入②得,2×+y=5m﹣3,解得,y=,因为x>0,y≤0,所以,解得<m≤848. 解不等式①,得x≤,解不等式②,得x≥﹣8.把不等式的解集在数轴上表示出来,如图:所以这个不等式组的解集为﹣8≤x≤.49.解:由题意可解得,解得,故<m<1350.解:由2x﹣2=5得x=,代入第一个方程得+2y=5a;则y=a﹣,由于y<0,则a<(1)当a<﹣2时,原式=﹣(a+2)﹣[﹣(a﹣)]=﹣2;(2)当﹣2<a<时,原式=a+2﹣[﹣(a﹣)]=2a+;(3)当<a<时,原式=a+2﹣(a﹣)=2;51.解不等式(1)得:2﹣x﹣1≤2x+4 ﹣3x≤3 x≥﹣1解不等式(2),得:x2+x>x2+3x ﹣2x>0 x<0 ∴原不等式组的解集为:﹣1≤x<0. 52.解不等式(1)得:x≥-1 解不等式(2),得:x<2 ∴原不等式组的解集为:﹣1≤x<2. 53.解①得x<解②得x≥3,∴不等式组的解集为无解.54.解第一个不等式得x<8解第二个不等式得x≥2∴原不等式组的解集为:2≤x<8.55.解:由①得:1﹣2x+2≤5∴2x≥﹣2即x≥﹣1由②得:3x﹣2<2x+1∴x<3.∴原不等式组的解集为:﹣1≤x<3.56.解:原不等式可化为:即在数轴上可表示为:∴不等式的解集为:1≤x<357.解:,解不等式①,得x<3,解不等式②,得x≥﹣1,把不等式的解集在数轴上表示出来,如图所示.不等式组的解集是﹣1≤x<358.解:由题意,解不等式①得x>2,不等式②×2得x﹣2≤14﹣3x解得x≤4,∴原不等式组的解集为2<x≤4.59.解:解不等式①,得x<2.(2分)解不等式②,得x≥﹣1.(4分)所以,不等式组的解集是﹣1≤x<2.(5分)解集在数轴上表示为:60.解:由①,得x≥﹣,由②,得x<3,所以不等式组的解集为﹣≤x<3.。

初中数学不等式专题练习及答案

初中数学不等式专题练习及答案

不等式(组)专项练习(含答案)A 组 基础题组一、选择题 1.不等式x 2-x -13≤1的解集是( )A.x≤4B.x≥4C.x≤-1D.x≥-12.函数y=√3x +6中自变量x 的取值范围在数轴上表示正确的是( )3.不等式组{3x <2x +4,3-x 3≥2的解集在数轴上表示正确的是( )4.对于不等式组{12x -1≤7-32x ,5x +2>3(x -1),下列说法正确的是( )A.此不等式组无解B.此不等式组有7个整数解C.此不等式组的负整数解是-3,-2,-1D.此不等式组的解集是-52<x≤25.不等式组{4x -3>2x -6,25-x ≥-35的整数解的个数为 ( ) A.1 B.2 C.3 D.4 二、填空题 6.不等式3x+134>x 3+2的解集是 .7.不等式组{x -3(x -2)>4,2x -15≤x+12的解集为 .8.不等式组{x >-1,x <m有3个整数解,则m 的取值范围是 .9.将函数y=2x+b(b 为常数)的图象位于x 轴下方的部分沿x 轴翻折至其上方后,所得的折线是函数y=|2x+b|(b 为常数)的图象.若该图象在直线y=2下方的点的横坐标x 满足0<x<3,则b 的取值范围为 .三、解答题10.解不等式组{2x ≥-9-x ,5x -1>3(x +1),并把解集在数轴上表示出来.11. x 取哪些整数值时,不等式5x+2>3(x-1)与12x≤2-32x 都成立?12.解不等式组{x -23<1,2x +16>14.B 组 提升题组一、选择题1.关于x 的不等式x-b>0只有两个负整数解,则b 的取值范围是( ) A.-3<b<-2 B.-3<b≤-2C.-3≤b≤-2D.-3≤b<-22.不等式组{1-2x <3,x+12≤2的正整数解的个数是( )A.5B.4C.3D.2 二、填空题3.不等式组{x +1>0,1-12x ≥0的最小整数解是 .三、解答题 4.解不等式:x -22≤7-x 3.5.有甲、乙、丙三种糖果混合而成的什锦糖100千克,其中各种糖果的价格和千克数如表所示,商家用加权平均数来确定什锦糖的单价.甲种糖果 乙种糖果 丙种糖果价格(元/千克) 1525 30 千克数404020(1)求该什锦糖的价格;(2)为了使什锦糖每千克至少降低2元,商家计划在什锦糖中加入甲、丙两种糖果共100千克,问其中最多可加入丙种糖果多少千克.不等式(组)培优训练一、选择题1.同时满足不等式x4-2<1-x2和6x-1≥3x -3的整数x 是 ( ) A.1,2,3 B.0,1,2,3C.1,2,3,4D.0,1,2,3,42.若三个连续正奇数的和不大于27,则这样的奇数组有( ) A.3组 B.4组 C.5组 D.6组3.在数轴上表示不等式2(1-x)<4的解集,正确的是( )4.如果x 的2倍加上5不大于x 的3倍减去4,那么x 的取值范围是( ) A.x>9 B.x≥9 C.x<9 D.x≤95.如图,直线y=kx+b 经过A(1,2),B(-2,-1)两点,则12x<kx+b<2的解集为( )A.12<x<2 B.12<x<1C.-2<x<1D.-12<x<16.关于x 的不等式组{2x <3(x -3)+1,3x+24>x +a 有四个整数解,则a 的取值范围是( )A.-114<a≤-52 B.-114≤a<-52 C.-114≤a≤-52 D.-114<a<-527.(2017浙江温州)不等式组{x +1>2,x -1≤2的解集是( )A.x<1B.x≥3C.1≤x<3D.1<x≤38.如图,函数y=2x-4与x 轴、y 轴交于点(2,0),(0,-4),当-4<y<0时,x 的取值范围是( )A.x<-1B.-1<x<0C.0<x<2D.-1<x<29.某剧场为希望工程义演的文艺表演有60元和100元两种票价,某团体需购买140张票,其中票价为100元的票数不少于票价为60元的票数的两倍,则购买这两种票最少需要( ) A.12 120元 B.12 140元 C.12 160元 D.12 200元10.某商人从批发市场买了20千克肉,每千克a 元,又从肉店买了10千克肉,每千克b 元,最后他又以a+b 2元的单价把肉全部卖掉,结果赔了钱,原因是( )A.a>bB.a<bC.a=bD.与a 和b 的大小无关11.西宁市天然气公司在一些居民小区安装天然气与管道时,采用一种鼓励居民使用天然气的收费方法,若整个小区每户都安装,收整体初装费10 000元,再对每户收费500元.某小区住户按这种收费方法全部安装天然气后,每户平均支付不足1 000元,则这个小区的住户数( )A.至少为20B.至多为20C.至少为21D.至多为21 二、填空题 12.若代数式t+15-t -12的值不小于-3,则t 的取值范围是 .13.若不等式3x-k≤0的正整数解是1,2,3,则k 的取值范围是 . 14.若(x+2)(x-3)>0,则x 的取值范围是 . 15.若a<b,则2a a+b(填“>”或“<”).16.若不等式组{2x -a <1,x -2b >3的解集为-1<x<1,则(a-3)(b+3)的值为 .17.函数y 1=-5x+12,y 2=12x+1,使y 1<y 2的最小整数x 是 .三、解答题 18.解不等式:3x -25≥2x+13-1.19.若关于x 的方程3(x+4)=2a+5的解大于关于x 的方程(4a+1)x 4=a (3x -4)3的解,求a 的取值范围.20.有人问一位老师,他所教的班有多少位学生,老师说:“一半的学生在学数学,四分之一的学生在学音乐,七分之一的学生在念外语,还剩下不足6位同学在操场上踢足球.”试问这个班共有多少位学生.21.随着教育改革的不断深入,素质教育的全面推进,某市利用假期参加社会实践活动的中学生越来越多.王伟同学在本市丁牌公司实习时,计划发展部给了他一份实习作业:在下述条件下规划出下月的产量范围.假如公司生产部有工人200名,每个工人每2小时可生产一件丁牌产品,每个工人的月劳动时间不超过192小时,本月将剩余原料60吨,下个月准备购进300吨,每件丁牌产品需原料20千克.经市场调查,预计下个月市场对丁牌产品需求量为16 000件,公司准备充分保证市场需求.请你和王伟同学一起规划出下个月的产量范围.参考答案A组基础题组一、选择题1.A 去分母,得3x-2(x-1)≤6, 去括号,得3x-2x+2≤6,移项、合并同类项,得x≤4,故选A.2.A 根据二次根式的非负性得3x+6≥0,解得x≥-2,表示在数轴上如图所示,故选A.3.A 由3x<2x+4得x<4; 由3-x 3≥2得3-x≥6,解得x≤-3.故不等式组的解集为x≤-3.故选A. 4.B {12x -1≤7-32x ,①5x +2>3(x -1),②解①得x≤4,解②得x>-52, 所以不等式组的解集为-52<x≤4,所以不等式组的整数解为-2,-1,0,1,2,3,4. 故选B.5.C {4x -3>2x -6,①25-x ≥-35,② 解不等式①得,x>-32,解不等式②得,x≤1,所以不等式组的解集是-32<x≤1,所以不等式组的整数解为-1、0、1,共3个.故选C. 二、填空题 6.答案 x>-3解析 去分母,得3(3x+13)>4x+24, 去括号,得9x+39>4x+24, 移项,得9x-4x>24-39, 合并同类项,得5x>-15, 系数化为1,得x>-3, 故原不等式的解集是x>-3.7.答案 -7≤x<1解析 解不等式x-3(x-2)>4得x<1;解不等式2x -15≤x+12得x≥-7,所以不等式组的解集为-7≤x<1. 8.答案 2<m≤3解析 由题意得不等式组的整数解是0,1,2,则m 的取值范围是2<m≤3. 9.答案 -4≤b≤-2解析 根据题意可画大致图象如下:则{0<-b2<3,-2×0-b ≥2,2×3+b ≥2,解得-4≤b≤-2. 三、解答题10.解析 {2x ≥-9-x ,①5x -1>3(x +1),②解①得x≥-3,解②得x>2,∴原不等式组的解集为x>2,其解集在数轴上表示如下:11.解析 根据题意解不等式组{5x +2>3(x -1),①12x ≤2-32x ,② 解不等式①,得x>-52, 解不等式②,得x≤1, ∴-52<x≤1,故满足条件的x 的整数值有-2、-1、0、1. 12.解析 解x -23<1,得x<5,解2x+16>14,得x>-1,在数轴上表示两个不等式的解集如下图:故不等式组的解集为-1<x<5.B组提升题组一、选择题1.D 由x-b>0,解得x>b,∵不等式只有两个负整数解,∴-3≤b<-2,故选D.2.C 解不等式1-2x<3,得x>-1,解不等式x+1≤2,得x≤3,2则不等式组的解集为-1<x≤3,所以不等式组的正整数解有1,2,3这3个,故选C.二、填空题3.答案0解析解不等式x+1>0,得x>-1,解不等式1-1x≥0,得x≤2,2则不等式组的解集为-1<x≤2,所以不等式组的最小整数解为0,故答案为0.三、解答题4.解析3(x-2)≤2(7-x),整理得3x-6≤14-2x,3x+2x≤14+6,5x≤20,x≤4.∴不等式的解集为x≤4.5.解析(1)根据题意,得该什锦糖的价格为15×40+25×40+30×20=22(元/千克).100答:该什锦糖的价格是22元/千克.(2)设加入丙种糖果x 千克,则加入甲种糖果(100-x)千克,根据题意得30x+15(100-x )+22×100200≤20,解得x≤20.答:最多可加入丙种糖果20千克.不等式(组)培优训练一、选择题1.B 由题意得{x 4-2<1-12x ,6x -1≥3x -3,解得-23≤x<4,所以整数x 的取值为0,1,2,3.2.B 设三个连续正奇数中间的一个数为x,则(x-2)+x+(x+2)≤27,解得x≤9,所以x-2≤7.所以x-2只能分别取1,3,5,7.故这样的奇数组有4组.3.A 去括号,得2-2x<4.移项,得-2x<4-2.合并同类项,得-2x<2.系数化为1,得x>-1.在数轴上表示时,开口方向应向右,且不包括端点值.故选A.4.B 由题意可得2x+5≤3x -4,解得x≥9,所以x 的取值范围是x≥9.5.C 根据题图可得,12x<kx+b<2的解集为-2<x<1.故选C.6.B 不等式组{2x <3(x -3)+1,3x+24>x +a 的解集为8<x<2-4a. 因为不等式组有四个整数解,所以12<2-4a≤13,解得-114≤a<-52.7.D 解不等式x+1>2得x>1;解不等式x-1≤2得x≤3.所以不等式组的解集是1<x≤3.8.C9.C 设票价为60元的票数为x 张,票价为100元的票数为y 张,故{x +y =140,y ≥2x ,可得x≤4623.由题意可知x,y 为正整数,故x=46,y=94,∴购买这两种票最少需要60×46+100×94=12 160(元).故选C.10.A 根据题意得20a+10b 30-a+b 2=23a+13b-12a-b 2=16a-16b=16(a-b), 当a>b,即a-b>0时,该商人赔钱,故选A.11.C 设这个小区的住户数为x.则1 000x>10 000+500x,解得x>20.∵x 是整数,∴这个小区的住户数至少为21.故选C.二、填空题12.答案 t≤373解析 由题意得t+15-t -12≥-3,解得t≤373. 13.答案 9≤k<12解析 不等式3x-k≤0的解集为x≤k 3.因为不等式3x-k≤0的正整数解是1,2,3,所以3≤k 3<4,所以9≤k<12.14.答案 x>3或x<-2解析 由题意得{x +2>0,x -3>0①或 {x +2<0,x -3<0,② 解不等式组①得x>3,解不等式组②得x<-2.所以x 的取值范围是x>3或x<-2.15.答案 <解析 因为a<b,所以a+a<a+b,即2a<a+b.16.答案 -2解析 不等式组{2x -a <1,x -2b >3的解集为3+2b<x<a+12.由题意得{3+2b =-1,a+12=1,解得{a =1,b =-2. 所以(a-3)(b+3)=(1-3)×(-2+3)=-2.17.答案 0解析 根据题意得-5x+12<12x+1,解得x>-111,所以使y 1<y 2的最小整数x 是0. 三、解答题18.解析 去分母,得3(3x-2)≥5(2x+1)-15. 去括号,得9x-6≥10x+5-15.移项、合并同类项,得-x≥-4.系数化为1,得x≤4.19.解析 因为关于x 的方程3(x+4)=2a+5的解为x=2a -73, 关于x 的方程(4a+1)x 4=a (3x -4)3的解为x=-163a. 由题意得2a -73>-163a,解得a>718. 故a 的取值范围为a>718.20.解析 设该班共有x 位学生,则x-(x 2+x 4+x 7)<6. ∴328x<6.∴x<56.又∵x,x 2,x 4,x 7都是正整数,则x 是2,4,7的公倍数.∴x=28.故这个班共有28位学生.21.解析 设下个月的产量为x 件,根据题意,得{2x ≤192×200,20x ≤(60+300)×1 000,x ≥16 000,解得16 000≤x≤18 000.即下个月的产量不少于16 000件,不多于18 000件.。

基本不等式专题练习(含参考答案)

基本不等式专题练习(含参考答案)

数学 基本不等式[基础题组练]1.若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( ) A .a 2+b 2>2ab B .a +b ≥2ab C.1a +1b >2abD.b a +a b ≥22.若正实数x ,y 满足x +y =2,且1xy ≥M 恒成立,则M 的最大值为( )A .1B .2C .3D .43.设x >0,则函数y =x +22x +1-32的最小值为( )A .0 B.12 C .1D.32 4.已知x >0,y >0,且4x +y =xy ,则x +y 的最小值为( ) A .8 B .9 C .12D .165.已知x >0,y >0,2x +y =3,则xy 的最大值为________. 6.(2017·高考江苏卷)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________.7.函数y =x 2x +1(x >-1)的最小值为________.8.已知x >0,y >0,且2x +8y -xy =0,求 (1)xy 的最小值; (2)x +y 的最小值.[综合题组练]1.若a >0,b >0,a +b =1a +1b ,则3a +81b 的最小值为( ) A .6 B .9 C .18D .242.不等式x 2+x <a b +ba 对任意a ,b ∈(0,+∞)恒成立,则实数x 的取值范围是( )A .(-2,0)B .(-∞,-2)∪(1,+∞)C .(-2,1)D .(-∞,-4)∪(2,+∞)3.已知x >0,y >0,且2x +4y +xy =1,则x +2y 的最小值是________. 4.已知正实数a ,b 满足a +b =4,则1a +1+1b +3的最小值为________.【参考答案】[基础题组练]1.若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( ) A .a 2+b 2>2ab B .a +b ≥2ab C.1a +1b >2abD.b a +a b≥2 解析:选D.因为a 2+b 2-2ab =(a -b )2≥0,所以A 错误.对于B ,C ,当a <0,b <0时,明显错误.对于D ,因为ab >0, 所以b a +a b≥2b a ·ab=2. 2.(2019·安徽省六校联考)若正实数x ,y 满足x +y =2,且1xy ≥M 恒成立,则M 的最大值为( )A .1B .2C .3D .4解析:选A.因为正实数x ,y 满足x +y =2, 所以xy ≤(x +y )24=224=1,所以1xy ≥1;又1xy≥M 恒成立, 所以M ≤1,即M 的最大值为1.3.设x >0,则函数y =x +22x +1-32的最小值为( )A .0 B.12 C .1D.32解析:选A.y =x +22x +1-32=⎝⎛⎭⎫x +12+1x +12-2≥2⎝⎛⎭⎫x +12·1x +12-2=0,当且仅当x +12=1x +12,即x =12时等号成立.所以函数的最小值为0.故选A. 4.(2019·长春市质量检测(一))已知x >0,y >0,且4x +y =xy ,则x +y 的最小值为( ) A .8 B .9 C .12D .16解析:选B.由4x +y =xy 得4y +1x =1,则x +y =(x +y )⎝⎛⎭⎫4y +1x =4x y +y x +1+4≥24+5=9,当且仅当4x y =yx,即x =3,y =6时取“=”,故选B.5.已知x >0,y >0,2x +y =3,则xy 的最大值为________.解析:xy =2xy 2=12×2xy ≤12×⎝ ⎛⎭⎪⎫2x +y 22=98,当且仅当2x =y =32时取等号. 答案:986.(2017·高考江苏卷)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________.解析:一年购买600x 次,则总运费与总存储费用之和为600x ×6+4x =4⎝⎛⎭⎫900x +x ≥8900x·x =240,当且仅当x =30时取等号,故总运费与总存储费用之和最小时x 的值是30.答案:307.函数y =x 2x +1(x >-1)的最小值为________.解析:因为y =x 2-1+1x +1=x -1+1x +1=x +1+1x +1-2,x >-1,所以y ≥21-2=0,当且仅当x =0时,等号成立. 答案:08.已知x >0,y >0,且2x +8y -xy =0,求 (1)xy 的最小值; (2)x +y 的最小值. 解:(1)由2x +8y -xy =0, 得8x +2y =1, 又x >0,y >0, 则1=8x +2y ≥28x ·2y =8xy. 得xy ≥64,当且仅当x =16,y =4时,等号成立. 所以xy 的最小值为64.(2)由2x +8y -xy =0,得8x +2y =1,则x +y =⎝⎛⎭⎫8x +2y ·(x +y ) =10+2x y +8yx≥10+22x y ·8yx=18. 当且仅当x =12且y =6时等号成立, 所以x +y 的最小值为18.[综合题组练]1.若a >0,b >0,a +b =1a +1b ,则3a +81b 的最小值为( )A .6B .9C .18D .24解析:选C.因为a >0,b >0,a +b =1a +1b ,所以ab (a +b )=a +b >0,所以ab =1.则3a +81b ≥23a ·34b =23a +4b ≥232a ·4b=18,当且仅当a =4b =2时取等号.所以3a +81b 的最小值为18.故选C.2.不等式x 2+x <a b +ba 对任意a ,b ∈(0,+∞)恒成立,则实数x 的取值范围是( )A .(-2,0)B .(-∞,-2)∪(1,+∞)C .(-2,1)D .(-∞,-4)∪(2,+∞)解析:选C.根据题意,由于不等式x 2+x <a b +ba对任意a ,b ∈(0,+∞)恒成立,则x 2+x <⎝⎛⎭⎫a b +b a min ,因为a b +b a ≥2 a b ·ba=2,当且仅当a =b 时等号成立,所以x 2+x <2,求解此一元二次不等式可知-2<x <1,所以x 的取值范围是(-2,1).3.已知x >0,y >0,且2x +4y +xy =1,则x +2y 的最小值是________.解析:令t =x +2y ,则2x +4y +xy =1可化为1=2x +4y +xy ≤2(x +2y )+12⎝ ⎛⎭⎪⎫x +2y 22=2t+t 28.因为x >0,y >0,所以x +2y >0,即t >0,t 2+16t -8≥0,解得t ≥62-8.即x +2y 的最小值是62-8.答案:62-84.已知正实数a ,b 满足a +b =4,则1a +1+1b +3的最小值为________. 解析:因为a +b =4,所以a +1+b +3=8,所以1a +1+1b +3=18[(a +1)+(b +3)]⎝ ⎛⎭⎪⎫1a +1+1b +3=18⎝ ⎛⎭⎪⎫2+b +3a +1+a +1b +3≥18(2+2)=12,当且仅当a +1=b +3,即a =3,b =1时取等号,所以1a +1+1b +3的最小值为12.答案:12。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 / 14
不等式经典题型专题练习(含答案)
姓名:__________ 班级:___________
一、解答题
1.解不等式组: ()13x 2x 11{ 2
5233x x
-+≤-+≥-,并在数轴上表示不等式组的解集.
2.若不等式组21
{ 23x a x b -<->的解集为-1<x<1,求(a+1)(b -1)的值.
3.已知关于x ,y 的方程组⎩⎨⎧=+=+31
35y x m y x 的解为非负数,求整数m 的值.
4.由方程组
21
2
x y
x y a
+=


-=

得到的x、y的值都不大于1,求a的取值范围.
5.解不等式组:并写出它的所有的整数解.
6.已知关于x、y的方程组
521118
23128
x y a
x y a
+=+


-=-

的解满足x>0,y>0,求实数a的取
值范围.
6.求不等式组
x20
x
1x3
2
->



+≥-
⎪⎩
的最小整数解.
7.求适合不等式﹣11<﹣2a﹣5≤3的a的整数解.
8.已知关于x的不等式组{x−a≥0
3−2x>−1的整数解共有5个,求a的取值范围.
3/ 14
9.若二元一次方程组
2
{
24
x y k
x y
-=
+=
的解x y
>,求k的取值范围.
10.解不等式组
5134
1
2
2
x x
x x
->-



--
⎪⎩≤
并求它的整数解的和.
11.已知x,y均为负数且满足:
23
2
x y m
x y m
+=-


-=



,求m的取值范围.
5 / 14 12.解不等式组⎪⎩
⎪⎨⎧<+-+≤+12312)2(352x x x x ,把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数集.
14.若方程组2225x y m x y m +=+⎧⎨-=-⎩
的解是一对正数,则: (1)求m 的取值范围
(2)化简:42
m m -++
15.我市一山区学校为部分家远的学生安排住宿,将部分教室改造成若干间住房. 如果每间住5人,那么有12人安排不下;如果每间住8人,那么有一间房还余一些床位,问该校可能有几间住房可以安排学生住宿?住宿的学生可能有多少人?
16.某宾馆一楼客房比二楼少5间,某旅游团有48人,如果全住一楼,若按每间4人安排,则房间不够;若按每间5人安排,则有的房间住不满5人.如果全住在二楼,若按每间3人安排,则房间不够;若按每间4人安排,则有的房间住不满4人,试求该宾馆一楼有多少间客房?
17.3个小组计划在10天内生产500件产品(计划生产量相同),按原先的生产速度,不能完成任务;如果每个小组每天比原先多生产一件产品,就能提前完成任务。

每个小组原先每天生产多少件产品?
18.学校将若干间宿舍分配给七年级一班的女生住宿,已知该班女生少于35人,若每个房间住5人,则剩下5人没处住;若每个房间住8人,则空一间房,并且还有一间房也不满;则学校有多少间宿舍,七年级一班有多少名女生?
19.为了参加2011年西安世界园艺博览会,某公司用几辆载重为8吨的汽车运送一批参展货物.若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不空也不满.请问:共有多少辆汽车运货?
20.某校选派一部分学生参加“六盘水市马拉松比赛”,要为每位参赛学生购买一顶帽子.商场规定:凡一次性购买200顶或200顶以上,可按批发价付款;购买200顶以下只能按零售价付款.如果为每位参赛学生购买1顶,那么只能按零售价付款,需用900元;如果多购买45顶,那么可以按批发价付款,同样需用900元.问:
(1)参赛学生人数x在什么范围内?
(2)若按批发价购买15顶与按零售价购买12顶的款相同,那么参赛学生人数x是多少?
21.实验中学为了鼓励同学们参加体育锻炼,决定为每个班级配备排球或足球一个,已知一个排球和两个足球需要140元,两个排球和一个足球需要230元.
(1)求排球和足球的单价.
(2)全校共有50个班,学校准备拿出不超过2400元购买这批排球和足球,并且要保
7/ 14
证排球的数量不超过足球数量的3
7,问:学校共有几种购买方案?哪种购买方案总费用
最低?
22.5月12日是母亲节,小明去花店买花送给母亲,挑中了象征温馨、母爱的康乃馨和象征高贵、尊敬的兰花两种花,已知康乃馨每支5元,兰花每支3元,小明只有30元,希望购买花的支数不少于7支,其中至少有一支是康乃馨.
(1)小明一共有多少种可能的购买方案?列出所有方案;
(2)如果小明先购买一张2元的祝福卡,再从(1)中任选一种方案购花,求他能实现购买愿望的概率.
23.学校计划选购甲、乙两种图书作为“校园读书节”的奖品.已知甲图书的单价是乙图书单价的1.5倍;用600元单独购买甲种图书比单独购买乙种图书要少10本.
(1)甲、乙两种图书的单价分别为多少元?
(2)若学校计划购买这两种图书共40本,且投入的经费不超过1050元,要使购买的甲种图书数量不少于乙种图书的数量,则共有几种购买方案?
24.为了提高服务质量,某宾馆决定对甲、乙两种套房进行星级提升,已知甲种套房提升费用比乙种套房提升费用少3万元,如果提升相同数量的套房,甲种套房费用为625万元,乙种套房费用为700万元.
(1)甲、乙两种套房每套提升费用各多少万元?
(2)如果需要甲、乙两种套房共80套,市政府筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于甲、乙种套房星级提升,市政府对两种套房的提升有几种方案?哪一种方案的提升费用最少?
(3)在(2)的条件下,根据市场调查,每套乙种套房的提升费用不会改变,每套甲种套房提升费用将会提高a万元(a>0),市政府如何确定方案才能使费用最少?
9/ 14
25.如图,用锤子以相同的力将铁钉垂直钉入木块,随着铁钉的深入,铁钉所受的阻力
也越来越大.当未进入木块的钉子长度足够时,每次钉入木块的钉子长度是前一次1
2.已
知这个铁钉被敲击3次后全部进入木块(木块足够厚),且第一次敲击后铁钉进入木块的长度是2cm,若铁钉总长度为a cm,求a的取值范围.
26.关于x的不等式组:
4
1 {32
x x
x a
+
>+
-<

(1)当a=3时,解这个不等式组;(2)若不等式组的解集是x(1,求a的值.
11 / 14
27.某房地产开发公司计划建A (B 两种户型的住房共80套,该公司所筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于建房,两种户型的建房的成本和售价如表:
(1)该公司对这两种户型住房有哪几种方案?
(2)该公司如何建房获利利润最大?
(3(根据市场调查(每套B 型住房的售价不会改变(每套A 型住房的售价将会提高a 万元(0)a ,且所建的两种住房可全部售出,该公司又将如何建房获得利润最大?
参考答案
1.x≥13 19
2.(6
3.7,8,9,10.
4.-3≤a≤1
5.不等式组的所有整数解是1、2、3.
6.a的取值范围是﹣2
3
<a<2.
7.3.
8.﹣4,﹣3,﹣2,﹣1,0,1,2 9.−4<a≤−3
10.
4
3 k>-
11.9
12.﹣1<m<1
13.不等式组的解集为:-1<x≤3
不等式组的非负整数解为:0,1,2
14.(1)1<m<4;(2)6.
15.当有5间房的时候,住宿学生有37人;当有6间房的时候,住宿学生有42人. 16.10.
17.16
18.5间宿舍,30名女生.
19.6
20.(1)参赛学生人数在155≤x<200范围内;
1/ 14
(2)参赛学生人数是180人.
21.(1)40,50(2)当m=15时,总费用最低22.(1)共有8种购买方案,
方案1:购买康乃馨1支,购买兰花6支;方案2:购买康乃馨1支,购买兰花7支;方案3:购买康乃馨1支,购买兰花8支;方案4:购买康乃馨2支,购买兰花5支;方案5:购买康乃馨2支,购买兰花6支;方案6:购买康乃馨3支,购买兰花4支;方案7:购买康乃馨3支,购买兰花5支;方案8:购买康乃馨4支,购买兰花3支;
(2)5 8
23.(1)、甲种图书的单价为30元,乙种图书的单价为20元;(2)、6种方案.
24.(1)甲:25万元;乙:28万元;(2)三种方案;甲种套房提升50套,乙种套房提升30套费用最少;(3)当a=3时,三种方案的费用一样,都是2240万元;当a>3时,取m=48时费用最省;当0<a<3时,取m=50时费用最省.
25.3(a≤3.5
26.解:(1(原不等式组的解集是x(2((2(a=1.
27.(1)答案见解析;(2)A型住房48套,B型住房32套获得利润最大;(3)答案见解析.。

相关文档
最新文档