2020-2021江阴市江阴市英桥国际学校初一数学下期末试卷附答案
2020-2021初一数学下期末试卷(带答案)(6)
2020-2021初一数学下期末试卷(带答案)(6)一、选择题1.如图,已知∠1=∠2,∠3=30°,则∠B 的度数是( )A .20oB .30oC .40oD .60o2.已知关于x 的不等式组的解中有3个整数解,则m 的取值范围是( ) A .3<m≤4B .4≤m<5C .4<m≤5D .4≤m≤53.116的平方根是( ) A .±12 B .±14 C .14 D .124.如图已知直线//AB CD ,134∠=︒,272∠=︒,则3∠的度数为( )A .103︒B .106︒C .74︒D .100︒ 5.一副直角三角板如图放置,点C 在FD 的延长线上,AB//CF ,∠F=∠ACB=90°,则∠DBC 的度数为( )A .10°B .15°C .18°D .30°6.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A .15°B .22.5°C .30°D .45° 7.16的平方根为( )A .±4 B .±2 C .+4D .2 8.已知4<m <5,则关于x 的不等式组0420x m x -<⎧⎨-<⎩的整数解共有( ) A .1个 B .2个 C .3个 D .4个9.不等式组1212x x +>⎧⎨-≤⎩的解集是( ) A .1x < B .x ≥3 C .1≤x ﹤3 D .1﹤x ≤310.如图,已知两直线1l 与2l 被第三条直线3l 所截,下列等式一定成立的是( )A .12∠∠=B .23∠∠=C .24∠∠+=180°D .14∠∠+=180° 11.在平面直角坐标系中,点B 在第四象限,它到x 轴和y 轴的距离分别是2、5,则点B 的坐标为( )A .()5,2-B .()2,5-C .()5,2-D .()2,5--12.关于x ,y 的方程组2,226x y a x y a +=⎧⎨+=-⎩的解满足0x y +=,则a 的值为( ) A .8 B .6 C .4 D .2二、填空题139________.14.如果一个数的平方根为a+1和2a-7, 这个数为 ________1564__________.16.一个三角形的三边长分别为15cm 、20cm 、25cm ,则这个三角形最长边上的高是_____ cm .17.关于x 的不等式(3a-2)x<2的解为x > ,则a 的取值范围是________18.如果方程组23759x y x y +=⎧⎨-=⎩,的解是方程716x my +=的一个解,则m 的值为____________.19.已知方程x m ﹣3+y 2﹣n =6是二元一次方程,则m ﹣n =_____.20.若2(2)9x m x +-+是一个完全平方式,则m 的值是_______. 三、解答题21.(1)计算:2020011(1)(2019)3sin 60()2π---+--+o (2)解不等式组:34223154x x x x +≥⎧⎪⎨+--≥⎪⎩①②,并求整数解。
优质江阴市七年级下册末数学试卷及答案
一、填空题1.已知有理数1a ≠,我们把11a -称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--,如果13a =-,2a 是1a 的差倒数,4a 是3a 的差倒数,4a 是5a 的差倒数…依此类推,那么的12342017201820192020a a a a a a a a -+-⋅⋅⋅+-+-值是______.答案:.【分析】根据题意,可以写出这列数的前几项,从而可以发现数字的变化规律,从而可以求得所求式子的值.【详解】∵,∴,,,,……∴,每三个数一个循环,∵,∴,则+--3 -3-++ 解析:1312. 【分析】根据题意,可以写出这列数的前几项,从而可以发现数字的变化规律,从而可以求得所求式子的值.【详解】∵13a =-,∴()211134a ==--,3441131a ,443131a ,()511134a ==--, ……∴1a ,2n a a ⋅⋅⋅每三个数一个循环,∵202036731÷=⋅⋅⋅,∴202013a a ==-,则12342017201820192020a a a a a a a a -+-⋅⋅⋅+-+-143343=--+++14-43-3 -3-14+43+3=-3-14+43+313 12 =.故答案为:13 12.【点晴】本题考查数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出所求式子的值.2.如图,a∥b,∠2=∠3,140,∠=︒则∠4的度数是___度.答案:40【分析】分别作a∥c,a∥d,则a∥b∥c∥d,由题可知根据平行线的性质得出再用等式的性质得出再根据平行线的性质由a∥c,b∥d,得出即可得出.【详解】如图,作a∥c,a∥d,则a∥b∥解析:40【分析】分别作a∥c,a∥d,则a∥b∥c∥d,由题可知5678,∠+∠=∠+∠根据平行线的性质得出67,∠=∠再用等式的性质得出58,∠=∠再根据平行线的性质由a∥c,b∥d,得出15,48,∠=∠∠=∠即可得出1440∠=∠=︒.【详解】如图,作a∥c,a∥d,则a∥b∥c∥d,∵∠2=∠3,∴5678,∠+∠=∠+∠又∵c∥d,∴67,∠=∠∴58,∠=∠∵a ∥c ,b ∥d ,∴15,48,∠=∠∠=∠∴1440,∠=∠=︒故答案为:40.【点睛】本题考查平行线的判定与性质,解题关键是熟练掌握平行线的判定与性质;两直线平行,内错角相等;如果两条直线都和第三条直线平行,那么这两条直线也互相平行. 3.如图,在直角坐标系中,A (1,3),B (2,0),第一次将△AOB 变换成△OA 1B 1,A 1(2,3),B 1(4,0);第二次将△OA 1B 1变换成△OA 2B 2,A 2(4,3),B 2(8,0),第三次将△OA 2B 2变换成△OA 3B 3,……,则B 2021的横坐标为______.答案:【分析】根据点B(2,0),B1(4,0),B2(8,0),B3(16,0)可得规律为横坐标为,由此问题可求解.【详解】解:由B(2,0),B1(4,0),B2(8,0),B3(16,0)可解析:20222【分析】根据点B (2,0),B 1(4,0),B 2(8,0),B 3(16,0)可得规律为横坐标为12n +,由此问题可求解.【详解】解:由B (2,0),B 1(4,0),B 2(8,0),B 3(16,0)可得:()12,0n n B +,∴B 2021的横坐标为20222;故答案为20222.【点睛】本题主要考查图形与坐标,解题的关键是根据题意得到点的坐标规律.4.如图:在平面直角坐标系中,已知P 1(﹣1,0),P 2(﹣1,﹣1),P 3(1,﹣1),P 4(1,1),P 5(﹣2,1),P 6(﹣2,﹣2)…,依次扩展下去,则点P 2021的坐标为 _____________.答案:(﹣506,505)【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D 第三象限,被4除余3的点在第四象限,点P2021的在第二象限,且解析:(﹣506,505)【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D 第三象限,被4除余3的点在第四象限,点P 2021的在第二象限,且纵坐标=2020÷4,再根据第二项象限点的规律即可得出结论.【详解】解:∵P 1(﹣1,0),P 2(﹣1,﹣1),P 3(1,﹣1),P 4(1,1),P 5(﹣2,1),P 6(﹣2,﹣2)…,∴下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在第三象限,被4除余3的点在第四象限,∵2021÷4=505…1,∴点P 2021在第二象限,∵点P 5(﹣2,1),点P 9(﹣3,2),点P 13(﹣4,3),∴点P 2021(﹣506,505),故答案为:(﹣506,505).【点睛】本题考查了规律型:点的坐标,是一个阅读理解,猜想规律的题目,解答此题的关键是首先确定点所在的大致位置,该位置处点的规律,然后就可以进一步推得点的坐标. 5.如图,长方形ABCD 四个顶点的坐标分别为()2,1A ,()2,1B -,()2,1C --,()2,1D -.物体甲和物体乙分别由点()2,0P 同时出发,沿长方形ABCD 的边作环绕运动.物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2021次相遇地点的坐标是______.答案:【分析】根据题意可得长方形的边长为4和2,物体乙的速度是物体甲的2倍,进而得出物体甲与物体乙的路程比为1:2,求得每一次相遇的位置,找到规律即可求解.【详解】解:在长方形ABCD 中,AB=C解析:()1,1--【分析】根据题意可得长方形的边长为4和2,物体乙的速度是物体甲的2倍,进而得出物体甲与物体乙的路程比为1:2,求得每一次相遇的位置,找到规律即可求解.【详解】解:在长方形ABCD 中,AB=CD =4,BC=AD =2,AP=PD =1,由物体乙的速度是物体甲的2倍,时间相同,则物体甲与物体乙的路程比为1:2,根据题意:当第一次相遇时,物体甲和物体乙的路程和为12,物体甲的路程为12×13=4,物体乙的路程为12×23=8,在AB 边上的点(﹣1,1)处相遇; 当第二次相遇时,物体甲和物体乙的路程和为12×2,物体甲的路程为12×2×13=8,物体乙的路程为12×2×23=16,在CD 边上的点(﹣1,﹣1)处相遇; 当第三次相遇时,物体甲和物体乙的路程和为12×3,物体甲的路程为12×3×13=12,物体乙的路程为12×3×23=24,在点P (2,0)处相遇,此时物体甲乙回到原来出发点, ∴物体甲乙每相遇三次,则回到原出发点P 处,∵2021÷3=673……2,∴两个物体运动后的第2021次相遇地点是第二次相遇地点,故两个物体运动后的第2021次相遇地点的坐标为(﹣1,﹣1),故答案为:(﹣1,﹣1).【点睛】本题考查点坐标变化规律以及行程问题、坐标与图形,熟练掌握行程问题中的相遇以及按比例分配的运用,通过计算找到变化规律是解答的关键.6.如图,正方形ABCD 的各边分别平行于x 轴或y 轴,且CD 边的中点坐标为(2,0),AD 边的中点坐标为(0,2).点M ,N 分别从点(2,0)同时出发,沿正方形ABCD 的边作环绕运动.点M 按逆时针方向以1个单位/秒的速度匀速运动,点N 按顺时针方向以3个单位/秒的速度匀速运动,则M ,N 两点出发后的第2020次相遇地点的坐标是____.答案:(2,0)【分析】由图可知,正方形的边长为4,故正方形的周长为16,因为N 和M 的速度分别为3个和1个单位,所以用正方形的周长除以(3+1),可得第一次相遇时间,从而算出M 所走过的路程,则第二次和解析:(2,0)【分析】由图可知,正方形的边长为4,故正方形的周长为16,因为N 和M 的速度分别为3个和1个单位,所以用正方形的周长除以(3+1),可得第一次相遇时间,从而算出M 所走过的路程,则第二次和第三次相遇过程中M 所走过的路程和第一次是相同的,从而结合图形可求得第2020次相遇时的坐标.【详解】由图可知: ()()()()2,22,2,2,2,2,2,A B C D ----,∴正方形ABCD 的边长为4,周长为4 × 4= 16,∴点M 与点N 第一次相遇的时间为:16(1+3)= 4÷(秒)∴此时点M 所运动的路程为: 4×1 = 4即M 从(2, 0)到了(0,2),∴M 、N 第一次相遇的坐标为(0, 2),又∵M 、N 的速度比为1:3,时间相同,∵M 、N 的路程比为1:3,∴每次相遇时,M 点运动的路程均为1164,13⨯=+ ∴第二次相遇时,M 在(- 2,0), 即(-2, 0)为相遇地点的坐标,第三相遇时,M 在(0,-2),即(0, -2)为相遇地点的坐标,第四次相遇时,M 在(2, 0),即(2, 0)为相遇地点的坐标,第五相遇时,M 在(0,2),即(0, 2)为相遇地点的坐标,……∵20204505,=⨯∴M 和N 两点出发后的第2020次相遇在(2, 0).故答案为:(2, 0).【点睛】本题考查了物体在平面直角坐标系中运动的规律问题,明确相遇问题的计算公式及多次相遇中物体所走路程的规律是解题的关键.7.对于正数x 规定1()1f x x =+,例如:11115(3),()11345615f f ====++,则f (2020)+f (2019)+……+f (2)+f (1)+1111()()()()2320192020f f f f ++⋯++=___________ 答案:5【分析】由已知可求,则可求.【详解】解:,,,,故答案为:2019.5【点睛】本题考查代数值求值,根据所给条件,探索出是解题的关键.解析:5【分析】 由已知可求1()()1f x f x+=,则可求111(2020)(2019)(2)()()()120192019232020f f f f f f ++⋯++++⋯+=⨯=. 【详解】 解:1()1f x x=+, 111()1111x f x x x x x∴===+++,11()()111x f x f x x x∴+=+=++, ∴111(2020)(2019)(2)()()()120192019232020f f f f f f ++⋯++++⋯+=⨯=, 1111(2020)(2019)(2)(1)()()()(1)201920192019.523202011++⋯+++++⋯+=+=+=+f f f f f f f f 故答案为:2019.5【点睛】 本题考查代数值求值,根据所给条件,探索出1()()1f x f x+=是解题的关键. 8.已知5a,5b ,则2019()a b +=________.答案:1【分析】根据4<7<9可得,2<<3,从而有7<5+<8,由此可得出5+的整数部分是7,小数部分a用5+减去其整数部分即可,同理可得b的值,再将a,b的值代入所求式子即可得出结果.【详解】解析:1【分析】根据4<7<9可得,2<7<3,从而有7<5+7<8,由此可得出5+7的整数部分是7,小数部分a用5+7减去其整数部分即可,同理可得b的值,再将a,b的值代入所求式子即可得出结果.【详解】解:∵4<7<9,∴2<7<3,∴-3<-7<-2,∴7<5+7<8,2<5-7<3,∴5+7的整数部分是7,5-7的整数部分为2,∴a=5+7-7=7-2,b=5-7-2=3-7,∴2019+=12019=1.()a b故答案为:1.【点睛】此题主要考查了估算无理数的大小,正确得出各数的小数部分是解题关键.9.如果表示a、b的实数的点在数轴上的位置如图所示,那么化简|a﹣b|+2+的结果a b()是_____.答案:﹣2b【详解】由题意得:b<a<0,然后可知a-b>0,a+b<0,因此可得|a﹣b|+=a﹣b+[﹣(a+b)]=a﹣b﹣a﹣b=﹣2b.故答案为﹣2b.点睛:本题主要考查了二次根式和绝对解析:﹣2b【详解】由题意得:b<a<0,然后可知a-b>0,a+b<0,因此可得|a﹣()2+=a﹣b+[﹣a b(a+b)]=a﹣b﹣a﹣b=﹣2b.故答案为﹣2b.点睛:本题主要考查了二次根式和绝对值的性质与化简.特别因为a.b都是数轴上的实数,注意符号的变换.10.用“☆”定义一种新运算:对于任意有理数a 和b ,规定a ☆b=. 例如:(-3)☆2= 32322-++-- = 2.从﹣8,﹣7,﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6,7,8,中任选两个有理数做a ,b(a≠b)的值,并计算a ☆b ,那么所有运算结果中的最大值是_____. 答案:8【解析】解:当a >b 时,a ☆b= =a ,a 最大为8;当a <b 时,a ☆b==b ,b 最大为8,故答案为:8.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 解析:8【解析】解:当a >b 时,a ☆b =2a b a b ++- =a ,a 最大为8; 当a <b 时,a ☆b =2a b a b++-=b ,b 最大为8,故答案为:8.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.11.如图所示为一个按某种规律排列的数阵:根据数阵的规律,第7行倒数第二个数是_____.答案:【分析】观察数阵中每个平方根下数字的规律特征,依据规律推断所求数字.【详解】观察可知,整个数阵从每一行左起第一个数开始,从左到右,从上到下,是连续的正整数的平方根,而每一行的个数依次为2、455【分析】观察数阵中每个平方根下数字的规律特征,依据规律推断所求数字.【详解】观察可知,整个数阵从每一行左起第一个数开始,从左到右,从上到下,是连续的正整数的平方根,而每一行的个数依次为2、4、6、8、10…则归纳可知,第7行最后一个数是56,则第7行倒数第二个数是55.【点睛】本题考查观察与归纳,要善于发现数列的规律性特征.12.我们可以用符号f(a)表示代数式.当a是正整数时,我们规定如果a为偶数,f(a)=0.5a;如果a为奇数,f(a)=5a+1.例如:f(20)=10,f(5)=26.设a1=6,a2=f(a1),a3=f(a2)…;依此规律进行下去,得到一列数:a1,a2,a3,a4…(n为正整数),则2a1﹣a2+a3﹣a4+a5﹣a6+…+a2013﹣a2014+a2015=_____.答案:7【分析】本题可以根据代数式f(a)的运算求出a1,a2,a3,a4,a5,a6 ,a7的值,根据规律找出部分an的值,进而发现数列每7个数一循环,根据数的变化找出变化规律,依照规律即可得出结论解析:7【分析】本题可以根据代数式f(a)的运算求出a1,a2,a3,a4,a5,a6,a7的值,根据规律找出部分a n的值,进而发现数列每7个数一循环,根据数的变化找出变化规律,依照规律即可得出结论.【详解】解:观察,发现规律:a1=6,a2=f(a1)=3,a3=f(a2)=16,a4=f(a3)=8,a5=f(a4)=4,a6=f(a5)=2,a7=f(a6)=1,a8=f(a7)=6,…,∴数列a1,a2,a3,a4…(n为正整数)每7个数一循环,∴a1-a2+a3-a4+…+a13-a14=0,∵2015=2016-1=144×14-1,∴2a1-a2+a3-a4+a5-a6+…+a2013-a2014+a2015=a1+a2016+(a1-a2+a3-a4+a5-a6+…+a2015-a2016)=a1+a7=6+1=7.故答案为7.【点睛】本题考查了规律型中的数字的变化类以及代数式求值,解题的关键是根据数的变化找出变换规律,并且巧妙的借助了a1-a2+a3-a4+…+a13-a14=0来解决问题.13.将1,2,3,6按如图方式排列.若规定(m,n)表示第m排从左向右第n个数,如(5,4)表示的数是2(即第5排从左向右第4个数),那么(2021,1011)所表示的数是 ___.答案:1【分析】所给一系列数是4个数一循环,看是第几个数,除以4,根据余数得到相应循环的数即可.【详解】解:前2020排共有的个数是:,表示的数是第个数,,第2021排的第1011个数为1.解析:1【分析】所给一系列数是4个数一循环,看(2021,1011)是第几个数,除以4,根据余数得到相应循环的数即可.【详解】解:前2020排共有的个数是:(20201)2020 1234202020412102+⨯++++⋯⋯+==,(2021,1011)∴表示的数是第204121010112042221+=个数,204222151055541=⨯+,∴第2021排的第1011个数为1.故答案为:1.【点睛】本题考查算术平方根与规律型:数字的变化类,根据规律判断出是第几个数是解本题的关键.14.在平面直角坐标系中,对于P(x,y)作变换得到P′(﹣y+1,x+1),例如:A1(3,1)作上述变换得到A2(0,4),再将A2做上述变换得到A3___________,这样依次得到A1,A2,A3,…A n;…,则A2018的坐标为___________.答案:(﹣3,1) (0,4)【分析】按照变换规则可以推出各点坐标每4次一个循环,则2018在一个循环的第二次变换.【详解】解:按照变换规则,A3坐标为(﹣3,1),A4坐标(0,﹣解析:(﹣3,1) (0,4)【分析】按照变换规则可以推出各点坐标每4次一个循环,则2018在一个循环的第二次变换.【详解】解:按照变换规则,A3坐标为(﹣3,1),A4坐标(0,﹣2),A5坐标(3,1)则可知,每4次一个循环,∵2018=504×4+2,∴A 2018坐标为(0,4),故答案为:(﹣3,1),(0,4)【点睛】本题为平面直角坐标系中的动点坐标探究题,考查了点坐标的变换,解答关键是理解变换规则.15.x y的值是____. 答案:【分析】首先根据与互为相反数,可得+=0,进而得出,然后用含的代数式表示,再代入求值即可.【详解】解:∵与互为相反数,∴+=0,∴∴∴.故答案为:.【点睛】本题主要考查了实数 解析:12【分析】,进而得出1120-+-=y x ,然后用含x 的代数式表示y ,再代入求值即可.【详解】解:∵∴,∴1120-+-=y x∴2y x = ∴1=22x x y x =. 故答案为:12.【点睛】本题主要考查了实数的运算以及相反数,根据相反数的概念求得y 与x 之间的关系是解题关键.16.在平面直角坐标系中,点(,)P x y 经过某种变换后得到(1,2)P y x '-++,我们把点(1,2)P y x '-++叫做点(,)P x y 的终结点.已知点1P 的终结点为2P ,点2P 的终结点为3P ,点3P 的终结点为4P ,这样依次得到1P 、2P 、3P 、4P 、…n P 、…,若点1P 的坐标为(2,0),则点2017P 的坐标为__________.答案:(2,0)【详解】分析:按题中所示规律,依次往后列举出一些点的坐标,观察这些点的坐标特征求解.详解:根据题意得,P1(2,0),P2(1,4),P3(-3,3),P4(-2,-1),P5(2, 解析:(2,0)【详解】分析:按题中所示规律,依次往后列举出一些点的坐标,观察这些点的坐标特征求解. 详解:根据题意得,P 1(2,0),P 2(1,4),P 3(-3,3),P 4(-2,-1),P 5(2,0),P 6(1,4),…….可以得到从第一个点开始,每4个点的坐标为一个循环.因为2017=504×4+1,所以P 2017与P 1的坐标相同.故答案为(2,0).点睛:找数字的变化规律通常用列举法,按照一定的顺序列举一定数量的运算过程和结果,从运算过程中归纳出运算结果或运算结果的规律,当所得结果按一定的数量循环时,则可根据循环的规律来解答.17.定义运算“@”的运算法则为:2@6 =____.答案:4【分析】把x=2,y=6代入x@y=中计算即可.【详解】解:∵x@y=,∴2@6==4,故答案为4.【点睛】本题考查了有理数的运算能力,注意能由代数式转化成有理数计算的式子. 解析:4【分析】把x=2,y=6代入【详解】解:∵∴,故答案为4.【点睛】本题考查了有理数的运算能力,注意能由代数式转化成有理数计算的式子.18.对任意两个实数a ,b 定义新运算:a ⊕b=()()a ab b a b ≥⎧⎨⎩若若<,并且定义新运算程序仍然是先做括号内的,那么(5⊕2)⊕3=___.答案:【分析】根据“⊕”的含义,以及实数的运算方法,求出算式的值是多少即可.【详解】(⊕2)⊕3=⊕3=3,故答案为3.【点睛】本题考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关 解析:【分析】根据“⊕”的含义,以及实数的运算方法,求出算式的值是多少即可.【详解】(5⊕2)⊕3=5⊕3=3,故答案为3.【点睛】本题考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.19.一副直角三角只如图①所示叠成,含45︒角的三角尺ADE 固定不动,将含30角的三角尺ABC 绕顶点A 顺时针转动,使BC 与三角形ADE 的一边平行,如图②,当15BAD ∠=︒时,//BC DE ,则()90360BAD BAD ∠︒<∠<︒其他所有符合条件的度数为________.答案:105°、195°、240°和285°【分析】根据题意画出图形,再由平行线的性质定理即可得出结论.【详解】解:如图,当BC∥AE时,∠EAB=∠B=60°,∴∠BAD=∠DAE+∠EAB解析:105°、195°、240°和285°【分析】根据题意画出图形,再由平行线的性质定理即可得出结论.【详解】解:如图,当BC∥AE时,∠EAB=∠B=60°,∴∠BAD=∠DAE+∠EAB=45°+60°=105°;当BC∥DE时,延长BA,交DE于F,则∠AFE=∠B=60°,∴∠DAF=∠AFE-∠D=60°-45°=15°,∴∠DAB=15°+180°=195°;如图,当BC∥AD时,∠CAD=∠C=30°,∴∠BAD=360°-30°-90°=240°;如图,当BC∥AE时,∠CAE=∠C=30°,∴∠CAD=45°-30°=15°,锐角∠DAB=90°-∠CAD=75°,∴旋转角∠DAB=360°-75°=285°,故答案为:105°、195°、240°和285°.【点睛】本题考查的是平行线的判定与性质,根据题意画出图形,利用平行线的性质及直角三角板的性质求解是解答此题的关键.20.如图,△ABC中,∠C=90︒,AC=5cm,CB=12cm,AB=13cm,将△ABC沿直线CB向右平移3cm得到△DEF,DF交AB于点G,则点C到直线DE的距离为______cm.答案:【分析】根据平移前后图形的大小和形状不变,添加辅助线构造梯形,利用面积相等来计算出答案.【详解】解:如图,连接AD、CD,作CH⊥DE于H,依题意可得AD=BE=3cm,∵梯形ACED解析:75 13【分析】根据平移前后图形的大小和形状不变,添加辅助线构造梯形,利用面积相等来计算出答案.【详解】解:如图,连接AD、CD,作CH⊥DE于H,依题意可得AD=BE=3cm ,∵梯形ACED 的面积()()2131235452S cm =⨯++⨯=, ∴()1153134522ADC DCE S S CH +=⨯⨯+⨯⋅=, 解得7513CH =; 故答案为:7513. 【点睛】 本题考查的是图形的平移和点到直线的距离,注意图形平移前后的形状和大小不变,以及平移前后对应点的连线相等.21.如图,AB ∥CD ,CF 平分∠DCG ,GE 平分∠CGB 交FC 的延长线于点E ,若∠E =34°,则∠B 的度数为____________.答案:68°【分析】如图,延长DC 交BG 于M .由题意可以假设∠DCF=∠GCF=x ,∠CGE=∠MGE=y .构建方程组证明∠GMC=2∠E 即可解决问题.【详解】解:如图,延长DC 交BG 于M .由题意解析:68°【分析】如图,延长DC 交BG 于M .由题意可以假设∠DCF=∠GCF=x ,∠CGE=∠MGE=y .构建方程组证明∠GMC=2∠E 即可解决问题.【详解】解:如图,延长DC 交BG 于M .由题意可以假设∠DCF=∠GCF=x ,∠CGE=∠MGE=y .则有22x y GMCx y E=+∠⎧⎨=+∠⎩①②,①-2×②得:∠GMC=2∠E,∵∠E=34°,∴∠GMC=68°,∵AB∥CD,∴∠GMC=∠B=68°,故答案为:68°.【点睛】本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟悉基本图形,学会添加常用辅助线,学会利用参数构建方程组解决问题,属于中考填空题中的能力题.22.如图①:MA1∥NA2,图②:MA11NA3,图③:MA1∥NA4,图④:MA1∥NA5,……,则第n个图中的∠A1+∠A2+∠A3+…+∠A n+1______.(用含n的代数式表示)答案:【解析】分析:分别求出图①、图②、图③中,这些角的和,探究规律后,理由规律解决问题即可.详解:如图①中,∠A1+∠A2=180∘=1×180∘,如图②中,∠A1+∠A2+∠A3=360∘=2解析:n180︒【解析】分析:分别求出图①、图②、图③中,这些角的和,探究规律后,理由规律解决问题即可.详解:如图①中,∠A1+∠A2=180∘=1×180∘,如图②中,∠A1+∠A2+∠A3=360∘=2×180∘,如图③中,∠A1+∠A2+∠A3+∠A4=540∘=3×180∘,…,第n个图, ∠A1+∠A2+∠A3+…+∠A n+1学会从=n180︒,故答案为180n .点睛:平行线的性质.23.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E=_____度.答案:80【详解】如图,根据角平分线的性质和平行线的性质,可知∠FMA=∠CPE=∠F+∠1,∠ANE=∠E+2∠1=∠CPE=2∠FMA,即∠E=2∠F=2×40°=80°.故答案为80.解析:80【详解】如图,根据角平分线的性质和平行线的性质,可知∠FMA=12∠CPE=∠F+∠1,∠ANE=∠E+2∠1=∠CPE=2∠FMA,即∠E=2∠F=2×40°=80°.故答案为80.24.如图,a∥b,∠2=∠3,∠1=40°,则∠4的度数是______度.答案:40【解析】试题分析:如图,分别作a、b的平行线,然后根据a∥b,可得∠1=∠5,∠6=∠7,∠8=∠4,然后根据∠2=∠3,即∠5+∠6=∠7+∠8,然后由∠1=40°,可求得∠4=40°.解析:40【解析】试题分析:如图,分别作a 、b 的平行线,然后根据a ∥b ,可得∠1=∠5,∠6=∠7,∠8=∠4,然后根据∠2=∠3,即∠5+∠6=∠7+∠8,然后由∠1=40°,可求得∠4=40°. 故答案为:40.25.如图所示,12355∠=∠=∠=︒,则4∠的度数为______.答案:125°【分析】结合题意,根据对顶角相等的性质,通过证明,得,再根据补角的性质计算,即可得到答案.【详解】如图:∵,且∴∴∴∴故答案为:125°.【点睛】本题考查了解析:125°【分析】结合题意,根据对顶角相等的性质,通过证明1//2l l ,得63∠=∠,再根据补角的性质计算,即可得到答案.【详解】如图:∵52∠=∠,且12355∠=∠=∠=︒∴51∠=∠∴1//2l l∴6355∠=∠=︒∴41806125∠=︒-∠=︒故答案为:125°.【点睛】本题考查了平行线、对顶角、补角的知识;解题的关键是熟练掌握平行线的性质,从而完成求解.26.已知:如图,直线AB 、CD 相交于点O ,OA 平分∠EOC ,若∠EOC :∠EOD =2:3,则∠BOD 的度数为________.答案:36°【分析】先设∠EOC =2x ,∠EOD =3x ,根据平角的定义得2x+3x =180°,解得x =36°,则∠EOC =2x =72°,根据角平分线定义得到∠AOC ∠EOC72°=36°,然后根据对顶解析:36°【分析】先设∠EOC =2x ,∠EOD =3x ,根据平角的定义得2x +3x =180°,解得x =36°,则∠EOC =2x =72°,根据角平分线定义得到∠AOC 12=∠EOC 12=⨯72°=36°,然后根据对顶角相等得到∠BOD =∠AOC =36°.【详解】解:设∠EOC =2x ,∠EOD =3x ,根据题意得2x +3x =180°,解得x =36°,∴∠EOC =2x =72°,∵OA 平分∠EOC ,∴∠AOC 12=∠EOC 12=⨯72°=36°, ∴∠BOD =∠AOC =36°.故答案为:36°【点睛】考查了角的计算,角平分线的定义和对顶角的性质.解题的关键是明确:1直角=90°;1平角=180°,以及对顶角相等.27.如图,△ABC 沿AB 方向平移3个单位长度后到达△DEF 的位置,BC 与DF 相交于点O ,连接CF ,已知△ABC 的面积为14,AB =7,S △BDO ﹣S △COF =___.答案:2【分析】如图,连接CD ,过点C 作CG ⊥AB 于G .利用三角形面积公式求出CG ,再根据S △BDO ﹣S △COF =S △CDB ﹣S △CDF =求解即可.【详解】解:如图,连接CD ,过点C 作CG ⊥AB 于解析:2【分析】如图,连接CD ,过点C 作CG ⊥AB 于G .利用三角形面积公式求出CG ,再根据S △BDO ﹣S △COF =S △CDB ﹣S △CDF =1122DB CG CF CG ⋅⋅-⋅⋅求解即可. 【详解】解:如图,连接CD ,过点C 作CG ⊥AB 于G .∵S △ABC =12•AB •CG ,∴CG =2147⨯=4, ∵AD =CF =3,AB =7,∴BD =AB ﹣AD =7﹣3=4,∴S △BDO ﹣S △COF =S △CDB ﹣S △CDF =1111443422222DB CG CF CG ⋅-⋅⋅=⨯⨯-⨯⨯=, 故答案为:2.【点睛】本题考查三角形的面积,平移变换等知识,解题的关键是学会用转化的思想思考问题. 28.已知:如图,CD 平分ACB ∠,12180∠+∠=︒,3A ∠=∠,440∠=︒,则CED ∠=___.答案:100°【分析】先由同位角相等,证得,进而证得,再由平行线的性质得出与的数量关系,然后由已知条件求得,最后用减去,即可求得答案.【详解】解:,平分,故答案为:.【点睛解析:100°【分析】先由同位角相等,证得//EF AB ,进而证得//AC DE ,再由平行线的性质得出CED ∠与ACB ∠的数量关系,然后由已知条件求得ACB ∠,最后用180︒减去ACB ∠,即可求得答案.【详解】解:12180∠+∠=︒,1180BDC ∠+∠=︒2BDC ∴∠=∠//EF AB ∴3BDE ∴∠=∠3A ∠=∠A BDE ∴∠=∠//AC DE ∴180ACB CED ∴∠+∠=︒CD 平分ACB ∠,440∠=︒2424080ACB ∴∠=∠=⨯︒=︒180********CED ACB ∴∠=︒-∠=︒-︒=︒故答案为:100︒.【点睛】本题考查了平行线的判定与性质,解题的关键是熟练掌握相关判定定理与性质定理. 29.如图,将一张长方形纸片ABCD 沿EF 折叠,点D 、C 分别落在点D '、C ′的位置处,若∠1=56°,则∠EFB 的度数是___.答案:62°【分析】根据折叠性质得出∠DED′=2∠DEF ,根据∠1的度数求出∠DED′,即可求出∠DEF 的度数,进而得到答案.【详解】解:由翻折的性质得:∠DED′=2∠DEF ,∵∠1=56°解析:62°【分析】根据折叠性质得出∠DED ′=2∠DEF ,根据∠1的度数求出∠DED ′,即可求出∠DEF 的度数,进而得到答案.【详解】解:由翻折的性质得:∠DED ′=2∠DEF ,∵∠1=56°,∴∠DED ′=180°-∠1=124°,∴∠DEF =62°,又∵AD ∥BC ,∴∠EFB =∠DEF =62°.故答案为:62°.【点睛】本题考查了平行线的性质,翻折变换的性质,邻补角定义的应用,熟记折叠的性质是解题的关键.30.313312+333123++33331234+++…,则3100++=_______.答案:5050【分析】通过对被开方数的计算和分析,发现数字间的规律,然后利用二次根式的性质进行化简计算求解.【详解】解:第1个算式:,第2个算式:,第3个算式:,第4个算式:,...,第解析:5050【分析】通过对被开方数的计算和分析,发现数字间的规律,然后利用二次根式的性质进行化简计算求解.【详解】解:第11==,第2123===+=,第31236=++=,第4123410==+++=,...,第n12 3...n===+++,∴当n=100()1001100 123 (1005050)2+=++++==,故答案为:5050.【点睛】本题考查了有理数的运算,二次根式的化简,通过探索发现数字间的规律是解题关键.31.有一片开心农场,蔬菜每天都在匀速生长,如果每天有20名游客摘菜,6天就能摘完;如果每天有17名游客摘菜,9天就能摘完(规定每名游客每天摘菜量相同),那么每天有14名游客摘菜,___天就能摘完.答案:18【分析】首先设原有蔬菜量为a,每天生长的蔬菜量为b,每名游客每天摘菜量为c,有14名游客摘菜x天就能摘完.根据“原蔬菜量+每天生长的蔬菜量×采摘天数=每名游客每天摘菜量×人数×天数”列出方程解析:18【分析】首先设原有蔬菜量为a ,每天生长的蔬菜量为b ,每名游客每天摘菜量为c ,有14名游客摘菜x 天就能摘完.根据“原蔬菜量+每天生长的蔬菜量×采摘天数=每名游客每天摘菜量×人数×天数”列出方程组6206917914a b c a b c a bx cx +=⨯⎧⎪+=⨯⎨⎪+=⎩①②③,可解得x 的值即为所求. 【详解】解:首先设原有蔬菜量为a ,每天生长的蔬菜量为b ,每名游客每天摘菜量为c ,有14名游客摘菜x 天就能摘完,依题意得 6206917914a b c a b c a bx cx +=⨯⎧⎪+=⨯⎨⎪+=⎩①②③, 由②﹣①得:11b c =④ 由③﹣②得:()()914153xb xc ﹣=﹣⑤ 将④代入⑤得:()()91114153xc x c ⨯﹣=﹣, 解得:18x =故答案是:18.【点睛】本题考查方程组的应用,有些应用题,它所涉及到的量比较多,量与量之间的关系也不明显,需增设一些表知数辅助建立方程,辅助表知数的引入,在已知条件与所求结论之间架起了一座“桥梁”,对这种辅助未知量,并不能或不需求出,可以在解题中相消或相约,这就是我们常说的“设而不求.”32.已知不等式3x -0a ≤的正整数解恰是1,2,3,4,那么a 的取值范围是_________________.答案:【分析】用含a 的式子表示出不等式的解集,由不等式的正整数解,得到x 的范围,再根据x 与a 的关系列不等式(组)求解.【详解】因为3x -a≤0,所以x≤,因为原不等式的正整数解恰是1,2,3,4解析:1215a ≤<【分析】用含a 的式子表示出不等式的解集,由不等式的正整数解,得到x 的范围,再根据x 与a 的关系列不等式(组)求解.【详解】因为3x -a ≤0,所以x ≤3a , 因为原不等式的正整数解恰是1,2,3,4,即4353a a ⎧≥⎪⎪⎨⎪<⎪⎩,解得12≤x <15. 故答案为12≤x <15.【点睛】由不等式(组)的整数解确定所含字母的取值范围的解法是:①解不等式(组),用字母系数表示出解集;②由不等式(组)的整数解确定不等式(组)的解集;③综合①②列出关于字母系数的不等式(注意是否可取等于)求解.33.“输入一个实数 x ,然后经过如图的运算,到判断是否大于 190 为止”叫做一次操作,那么恰好经过三次操作停止,则x 的取值范围是_______________.答案:【分析】本题首先理清流程图,继而将解题过程分为三步,按照流程图指示列不等式求解x 范围,最后取其公共解集.【详解】由已知得:第一次的结果为:,没有输出,则,求解得;第二次的结果为:,没有解析:822x <≤【分析】本题首先理清流程图,继而将解题过程分为三步,按照流程图指示列不等式求解x 范围,最后取其公共解集.【详解】由已知得:第一次的结果为:32x -,没有输出,则32190x -≤,求解得64x ≤;第二次的结果为:3(32)298x x ⨯--=-,没有输出,则98190x -≤,求解得22x ≤; 第三次的结果为:3(98)22726x x ⨯--=-,输出,则2726190x ->,求解得8x >; 综上可得:822x <≤.故答案为:822x <≤.【点睛】本题考查不等式的拓展,解题关键在于读懂流程图,按要求列出不等式,其次注意计算仔细即可.。
2020-2021江阴市江阴市英桥国际学校初一数学下期中试卷附答案
解析:B
【解析】
过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.
解:
过E作EF∥AB,
∵AB∥CD,
∴AB∥CD∥EF,
∴∠C=∠FEC,∠BAE=∠FEA,
∵∠C=44°,∠AEC为直角,
∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,
④根据已知条件无法判断丁的说法是否正确.
【详解】
解:∵CD⊥AB,FE⊥AB,
∴CD∥EF,
∴∠BFE=∠BCD,
①∵∠CDG=∠BFE,
∴∠CDG=∠BCD,
∴DG∥BC,
∴∠AGD=∠ACB,
∴甲正确;
②∵∠AGD=∠ACB,
∴DG∥BC,
∴∠CDG=∠BCD,
∴∠CDG=∠BFE,
∴乙正确;
③DG不一定平行于BC,所以∠AGD不一定大于∠BFE;
【详解】
在平面内,过一点有且只有一条直线与已知直线垂直,
故选:B
【点睛】
此题考查了直线的垂直的性质,注意基础知识的识记和理解.
12.D
解析:D
【解析】
【分析】
一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.据此对各项进行判断即可.
2020-2021江阴市江阴市英桥国际学校初一数学下期中试卷附答案
一、选择题
1.在平面直角坐标系中,将点 先向左平移 个单位,再向上平移 个单位得到点 则点 的坐标是( )
A. B. C. D.
2.下列说法一定正确的是()
2020-2021学年七年级数学下学期期末考试试题含答案
七年级数学参考答案一、选择题1 2 3 4 5 6 7 8 9 10题号D B A C D A D C C B答案二、填空题题号11 12 13 14 15答案x>2 1 -3 3 40°三、解答题16. 解:原式=-+-------------------------------------------------------------5122--------------4分= 51------------------------------------------------------------------------------------5分17. 解:由①得:x≤4-----------------------------------------------------------------------------------2分由②得:x>-2.5--------------------------------------------------------------------------------3分∴-2.5<x≤4-----------------------------------------------------------------------------------4分整数解为:-2,-1,0,1,2,3,4--------------------------------------------------------5分18. 解:(1)∠BOD---------------------------------------------------------------------------------------2分(2)∵OE是∠COB的角平分线,∠BOC=130°∠BOC=65°∴∠COE=12-------------------------------------------------------------3分∴∠DOE=180°-∠COE=115°-----------------------------------------------------5分19.解:(1)100 --------------------------------------------------------------------------------------------2分(2)1-25%-15%-50%=10% -----------------------------------------------------------------------3分360°×10%=36°答:扇形统计图中“D ”所对应的扇形圆心角的度数是36° -----------------------5分20. 解:设购买甲品牌的手机x 部,购买乙品牌的手机y 部,根据题意得: -------------1分500.40.2515.5x y x y +=⎧⎨+=⎩------------------------------------------------------------------------3分解得:2030x y =⎧⎨=⎩--------------------------------------------------------------------------------------4分答:购进甲品牌的手机20部,购进乙品牌的手机30部------------------------------------5分四、解答题21.解:将③代入①得:a-b=5 ④ -------------------------------------------------------------------------------2分将③代入②得:2a+b=4 ⑤-------------------------------------------------------------------------------4分④+⑤得:3a=9 ----------------------------------------------------------------------------------5分∴a=3----------------------------------------------------------------------------------6分将a=3代入④得:b= -2-------------------------------------------------------------------------7分∴该方程组的解为325a b c =⎧⎪=-⎨⎪=-⎩----------------------------------------------------------------------8分22.(1)如图------------------------------------------------------------------------------------------------3分(2)如图------------------------------------------------------------------------------------------------6分(3)△A′B′C′的面积=4×6-12×6×2-12×4×2-12×4×2=10--------------------------------8分23.(1)15,14%-----------------------------------------------------------------------------------------4分(2)如图:---------------------------------------------------------------------------------------------6分(3)1200×(1-10%-4%)=1032(人)答:该年级身高不足165cm的学生约有1032人----------------------------------------------8分24. 解:(1)∵AD∥BC∴∠1=∠B=60°--------------------------------------------------------------------------1分∵∠1=∠C∴∠C=60°--------------------------------------------------------------------------------3分(2)DE与AB平行----------------------------------------------------------------------------4分理由:∵AD∥BC,∠C=60°∴∠ADC=180°-∠C=120°--------------------------------------------------------------5分∵DE是∠ADC的平分线∠ADC=60°∴∠ADE=12-----------------------------------------------------------------6分∴∠1=∠ADE=60°-------------------------------------------------------------------------7分∴DE ∥AB------------------------------------------------------------------------------------8分25. 解:(1)设购买一个足球需x 元,购买一个篮球需y 元,根据题意得:----------------1分2334052410x y x y +=⎧⎨+=⎩--------------------------------------------------------------------2分解得:5080x y =⎧⎨=⎩-----------------------------------------------------------------------------3分答:购买一个足球需50元,购买一个篮球需80元-------------------------------------4分(2)设购买a 个篮球,根据题意得: -------------------------------------------------------5分8050(96)5720a a +-≤-----------------------------------------------------------6分解得:2303a ≤----------------------------------------------------------------------------7分∵a是整数,且a取最大值∴a=30答:最多可购买30个篮球---------------------------------------------------------------------8分。
2020-2021学年七年级下学期期末考试数学试卷及答案解析
2020-2021学年七年级下期末考试数学试卷一.选择题(共10小题,满分30分,每小题3分) 1.(3分)下列实数中是无理数的是( ) A .23B .√2C .3.1D .0解:A 、23是分数,属于有理数,故本选项不合题意; B 、√2是无理数,故本选项符合题意;C 、3.1是有限小数,属于有理数,故本选项不合题意;D 、0是整数,属于有理数,故本选项不合题意. 故选:B .2.(3分)如图,若AB ∥DE ,∠B =130°,∠D =35°,则∠C 的度数为( )A .80°B .85°C .90°D .95°解:过C 作CM ∥AB , ∵AB ∥DE , ∴AB ∥CM ∥DE ,∴∠1+∠B =180°,∠2=∠D =35°, ∵∠B =130°, ∴∠1=50°,∴∠BCD =∠1+∠2=85°, 故选:B .3.(3分)下列等式正确的是( )A .±√9=3B .√273=±3C .√(−3)33=−3D .√(−3)2=−3解:A 、原式=±3,故A 错误. B 、原式=3,故B 错误. C 、原式=﹣3,故C 正确. D 、原式=3,故D 错误. 故选:C .4.(3分)如图,直线AB ,CD 相交于点O ,OE ⊥CD ,垂足为点O .若∠BOE =40°,则∠AOC 的度数为( )A .40°B .50°C .60°D .140°解:∵OE ⊥CD , ∴∠EOD =90°, ∵∠BOE =40°,∴∠BOD =90°﹣40°=50°, ∴∠AOC =∠BOD =50°. 故选:B .5.(3分)已知a <b ,下列结论中成立的是( ) A .﹣a +1<﹣b +1 B .﹣3a <﹣3bC .−12a +2>−12b +2D .如果c <0,那么ac<bc解:A 、a <b 则﹣a +1>﹣b +1,故原题说法错误; B 、a <b 则﹣3a >﹣3b ,故原题说法错误; C 、a <b 则−12a +2>−12b +2,故原题说法正确; D 、如果c <0,那ac>bc ,故原题说法错误;故选:C .6.(3分)下列实数中,是无理数的是( )A .3.14159265B .√36C .√7D .227解:A 、3.1415926是有限小数是有理数,选项错误. B 、√36=6,是整数,是有理数,选项错误; C 、√7是无理数,选项正确; D 、227是分数,是有理数,选项错误;故选:C .7.(3分)不等式组{2x −4≤0x +2>0的解集在数轴上用阴影表示正确的是( )A .B .C .D .解:{2x −4≤0①x +2>0②,由①得x ≤2,由②得x >﹣2, 故此不等式组的解集为:故选:C .8.(3分)点P (t +3,t +2)在直角坐标系的x 轴上,则P 点坐标为( ) A .(0,﹣2)B .(﹣2,0)C .(1,2)D .(1,0)解:∵点P (t +3,t +2)在直角坐标系的x 轴上, ∴t +2=0, 解得:t =﹣2, 故t +3=1,则P 点坐标为(1,0). 故选:D .9.(3分)老大爷背了一背鸡鸭到市场出售,单价是每只鸡100元,每只鸭80元,他出售完收入了660元,那么这背鸡鸭只数可能的方案有( ) A .4种B .3种C .2种D .1种解:设鸡有x 只,鸭有y 只, 依题意,得:100x +80y =660, ∴y =33−5x4.又∵x ,y 均为正整数, ∴{x =1y =7或{x =5y =2, ∴这背鸡鸭只数只有2种方案. 故选:C .10.(3分)在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(﹣y +1,x +1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4,…,这样依次得到点A 1,A 2,A 3,…,A n ,….若点A 1的坐标为(a ,b ),则点A 2020的坐标为( ) A .(a ,b )B .(﹣b +1,a +1)C .(﹣a ,﹣b +2)D .(b ﹣1,﹣a +1)解:观察发现:A 1(a ,b ),A 2(﹣b +1,a +1),A 3(﹣a ,﹣b +2),A 4(b ﹣1,﹣a +1),A 5(a ,b ),A 6(﹣b +1,a +1)…∴依此类推,每4个点为一个循环组依次循环, ∵2020÷4=505,∴点A 2020的坐标与A 4的坐标相同,为(b ﹣1,﹣a +1), 故选:D .二.填空题(共5小题,满分15分,每小题3分) 11.(3分)若√a 3=−7,则a = ﹣343 . 解:∵√a 3=−7, ∴a =(﹣7)3=﹣343. 故答案为:﹣343.12.(3分)新冠肺炎疫情爆发后,学生上学检测体温采用的调查方式是 普查 .(填“普查”或“抽样调查”)解:新冠肺炎疫情爆发后,学生上学检测体温采用的调查方式是普查. 故答案为:普查.13.(3分)小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x 千克,乙种水果y 千克,则可列方程组为 {4x +6y =28x =y +2 .解:由题意可得,{4x +6y =28x =y +2, 故答案为:{4x +6y =28x =y +2.14.(3分)已知关于x ,y 的方程组{4x +y =3mx −y =7m −5的解满足不等式2x +y >8,则m 的取值范围是 m <﹣6 .解:解方程组得x =2m ﹣1,y =4﹣5m , 将x =2m ﹣1,y =4﹣5m 代入不等式2x +y >8得 4m ﹣2+4﹣5m >8, ∴m <﹣6, 故答案为m <﹣6.15.(3分)如图,点A (1,0),B (2,0),C 是y 轴上一点,且三角形ABC 的面积为2,则点C 的坐标为 (0,4)或(0,﹣4) .解:设△ABC 边AB 上的高为h , ∵A (1,0),B (2,0), ∴AB =2﹣1=1, ∴△ABC 的面积=12×1•h =2, 解得h =4,点C 在y 轴正半轴时,点C 为(0,4), 点C 在y 轴负半轴时,点C 为(0,﹣4), 所以,点C 的坐标为(0,4)或(0,﹣4). 故答案为:(0,4)或(0,﹣4). 三.解答题(共8小题,满分75分) 16.(10分)(1)解方程组{x +y =102x −y =11;(2)解不等式3x ﹣2(x ﹣1)≥10.解:(1){x +y =10①2x −y =11②,由①+②,得3x =21, 解得x =7,把x =7代入①,得y =3. ∴原方程组的解为:{x =7y =3.(2)3x ﹣2(x ﹣1)≥10. 去括号,得3x ﹣2x +2≥10, 移项,得3x ﹣2x ≥10﹣2, 合并同类项,得x ≥8.17.(5分)已知5a +2的立方根是3,3a +b ﹣1的算术平方根是4,c 是√11的整数部分. (1)求a ,b ,c 的值; (2)求3a ﹣b +c 的平方根.解:(1)∵5a +2的立方根是3,3a +b ﹣1的算术平方根是4, ∴5a +2=27,3a +b ﹣1=16, ∴a =5,b =2;∵3<√11<4,c 是√11的整数部分,∴c =3;(2)3a ﹣b +c =15﹣2+3=16,16的平方根是±4.18.(9分)如图,三角形ABC 三个顶点的坐标分别是A (﹣3,﹣2),B (0,﹣1),C (﹣1,1),将三角形ABC 进行平移,点A 的对应点为A '(1,0),点B 的对应点是B ',点C 的对应点是C '.(1)画出平移后的三角形A 'B 'C '并写出B ',C '的坐标; (2)写出由三角形ABC 平移得到三角形A 'B 'C '的过程;(3)分别连接BB ',CC ',则BB '和CC '有怎样的关系?(直接写出答案,不需证明)解:(1)如图所示,△A'B'C'即为所求:∴B'(4,1),C'(3,3);(2)△ABC先向右平移4个单位长度,再向上平移2个单位长度得到△A'B'C';(3)根据平移性质可得:BB'和CC'平行且相等.19.(10分)我区的数学爱好者申请了一项省级课题﹣﹣《中学学科核心素养理念下渗透数学美育的研究》,为了了解学生对数学美的了解情况,随机抽取部分学生进行问卷调查,按照“理解、了解、不太了解、不知道”四个类型,课题组绘制了如图两幅不完整的统计图,请根据统计图中提供的信息,回答下列问题:(1)本次调查共抽取了多少名学生?并补全条形统计图;(2)在扇形统计图中,“理解”所占扇形的圆心角是多少度?(3)我区七年级大约8000名学生,请估计“理解”和“了解”的共有学生多少名? 解:(1)本次调查共抽取学生为:205%=400(名),∴不太了解的学生为:400﹣120﹣160﹣20=100(名), 补全条形统计图如下:(2)“理解”所占扇形的圆心角是:120400×360°=108°;(3)8000×(40%+120400)=5600(名), 所以“理解”和“了解”的共有学生5600名. 20.(9分)完成推理填空如图,已知∠B =∠D ,∠BAE =∠E .将证明∠AFC +∠DAE =180°的过程填写完整. 证明:∵∠BAE =∠E ,∴ AB ∥ DE ( 内错角相等,两直线平行 ). ∴∠B =∠ BCE ( 两直线平行,内错角相等 ). 又∵∠B =∠D ,∴∠D =∠ BCE (等量代换).∴AD ∥BC ( 同位角相等,两直线平行 ).∴∠AFC +∠DAE =180°( 两直线平行,同旁内角互补 ).证明:∵∠BAE =∠E ,∴AB ∥DE (内错角相等,两直线平行). ∴∠B =∠BCE (两直线平行,内错角相等). 又∵∠B =∠D ,∴∠D =∠BCE (等量代换).∴AD ∥BC (同位角相等,两直线平行).∴∠AFC +∠DAE =180°(两直线平行,同旁内角互补).故答案为:AB ,DE ,内错角相等,两直线平行;BCE ,两直线平行,内错角相等;BCE ,同位角相等,两直线平行;两直线平行,同旁内角互补.21.(8分)甲、乙两人共同解方程组{ax +5y =15①4x =by −2②时,甲看错了方程①中的a ,解得{x =−3y =−1,乙看错了②中的b ,解得{x =5y =4,求a 2019+(−b 10)2020的值. 解:将{x =−3y =−1代入方程组中的4x =by ﹣2得:﹣12=﹣b ﹣2,即b =10;将x =5,y =4代入方程组中的ax +5y =15得:5a +20=15,即a =﹣1, 则a 2019+(−b 10)2020=(−1)2019+(−1010)2020=−1+1=0. 22.(11分)某班班主任对在某次考试中取得优异成绩的同学进行表彰.她到商场购买了甲、乙两种笔记本作为奖品,若购买甲种笔记本15个,乙种笔记本20个,共花费250元;若购买甲种笔记本10个,乙种笔记本25个,共花费225元. (1)求购买一个甲种、一个乙种笔记本各需多少元?(2)班主任决定再次购买甲、乙两种笔记本共35个,如果班主任此次购买甲、乙两种笔记本的总费用不超过300元,求至多需要购买多少个甲种笔记本? 解:(1)设购买一个甲种笔记本需x 元,一个乙种笔记本需y 元, 由题意可得:{15x +20y =25010x +25y =225,解得:{x =10y =5,答:购买一个甲种笔记本需10元,一个乙种笔记本需5元; (2)设需要购买a 个甲种笔记本, 由题意可得:10a +5(35﹣a )≤300, 解得:a ≤25,答:至多需要购买25个甲种笔记本.23.(13分)已知,点Q 、A 、D 均在直线l 1上,点B 、C 均在直线l 2上,且l 1∥l 2,点E 是BA延长上一点.(1)如图1,CD∥AB,CE与AD相交于点F,AC与BF相交于点O,∠1=∠2,求证∠3=∠4;(2)在(1)的条件下,若BF平分∠ABC,试直接写出∠CFB与∠ACF的数量关系为∠CFB+12∠ACF=90°;(3)如图2,点N是∠QAB角平分线上一点,点M在射线BC上,若∠NMC与∠ABC 满足2∠NMC﹣∠ABC=180°的数量关系,请判断直线MN与直线AN的位置关系,并说明理由.解:(1)证明:∵∠1=∠2,∴∠1+∠ACF=∠2+∠ACF即:∠BCE=∠ACD,∵AB‖CD,∴∠ACD=∠4,∴∠BCE=∠4,∵l1∥l2∴∠3=∠BCE∴∠3=∠4;(2)如图,设∠ABF=∠5,∠ACF=∠6,∠CFB=∠7,∵BF 平分∠ABC ,∴∠ABC =2∠5,∠CBF =∠5,∵l 1∥l 2,∴∠AFB =∠CBF =∠5,∴∠AFC +∠BCF =180°,即∠1+∠6+∠5+∠7=180°①, ∵AB ‖CD ,l 1∥l 2,∴∠ABC +∠BCD =180°,∠BCD +∠CDF =180°,∴∠CDF =2∠5,∴∠1+∠6+∠2+2∠5=180°,∵∠1=∠2,∴2∠1+∠6+2∠5=180°,∴∠1+12∠6+∠5=90°②,∴①﹣②得:12∠6+∠7=90°, ∴∠CFB 与∠ACF 的数量关系为∠CFB +12∠ACF =90°. 故答案为:∠CFB +12∠ACF =90°.(3)直线MN 与直线AN 的位置关系为:MN ⊥AN .理由如下: 过点N 作NR ∥l 1,∵l1∥l2,NR∥l2,∴∠ABC=∠QAB,∠QAN=∠ANR,∠RNM=∠NMB,∵NA平分∠QAB,∴∠QAB=2∠QAN,不妨设∠QAN=x°,∠NAM=∠NMB=y°,∴∠ABC=∠QAB=2x°,∴y+∠NMC=180°①,∵2∠NMC﹣∠ABC=180°,∴2∠NMC﹣2x=180°,∠NMC﹣x=90°②,①﹣②得:x+y=90°,∴∠ANM=90°,∴MN⊥AN.。
2020-2021学年七年级下期末考试数学试卷及答案解析
2020-2021学年七年级下期末考试数学试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列图形中,对称轴最少的图形是()A.B.C.D.【解答】解:A.圆有无数条对称轴;B.正七边形有7条对称轴;C.五角星有5条对称轴;D.等腰梯形有1条对称轴.故选:D.2.(3分)下列事件属于确定事件的是()A.今天日本新冠肺炎新增零人B.明天太阳从西边升起C.数学老师长得最好看D.掷一枚质地均匀的硬币正面朝上【解答】解:A、今天日本新冠肺炎新增零人,是随机事件;B、明天太阳从西边升起,是不可能事件,是确定事件;C、数学老师长得最好看,是随机事件;D、掷一枚质地均匀的硬币正面朝上,是随机事件;故选:B.3.(3分)如图,在△ABC中,AB=2020,AC=2018,AD为中线,则△ABD与△ACD的周长之差为()A.1B.2C.3D.4【解答】解:∵AD为中线,∴DB=DC,∴△ABD与△ACD的周长之差为:(AB+AD+BD)﹣(AD+DC+AC)=AB+AD+BD﹣AD﹣DC﹣AC=AB﹣AC=2020﹣2018=2,故选:B.4.(3分)在圆周长的计算公式C=2πr中,变量有()A.C,πB.C,r C.π,r D.C,2π【解答】解:在圆周长的计算公式C=2πr中,变量有C和r,故选:B.5.(3分)如图,把三角尺的直角顶点放在直尺的一边上,若∠1=32°,则∠2的度数为()A.68°B.58°C.48°D.32°【解答】解:如图所示:∵AD∥FE,∴∠2=∠3,又∵∠1+∠BAC+∠3=180°,∠BAC=90°,∴∠1+∠3=90°,又∵∠1=32°,∴∠3=58°,∴∠2=58°,故选:B.6.(3分)下列运算正确的是()A.a4•a2=a8B.a6÷a2=a3C.(2ab2)2=4a2b⁴D.(a3)2=a5【解答】解:A.a4•a2=a6,故本选项不合题意;B.a6÷a2=a4,故本选项不合题意;C.(2ab2)2=4a2b⁴,正确;D.(a3)2=a6,故本选项不合题意;故选:C.7.(3分)若三角形的三边长分别为3,1+2x,8,则x的取值范围是()A.2<x<5B.3<x<8C.4<x<7D.5<x<9【解答】解:根据三角形的三边关系可得:8﹣3<1+2x<3+8,解得:2<x<5.故选:A.8.(3分)如图,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R、S,若AQ=PQ,AS=AR,则这四个结论:①P A平分∠RPS;②PR=PS;③QP ∥AR;④∠ABC=∠QPS中正确的有()A.4个B.3个C.2个D.1个【解答】解:(1)在Rt△APS和Rt△APR中,{AP=APAR=AS,∴Rt△APR≌Rt△APS(HL),∴∠P AR=∠P AS,AS=AR,∴P A平分∠BAC,故①②正确;∵AQ=PR,∴∠P AQ=∠APQ,∴∠PQS=∠P AQ+∠APQ=2∠P AQ,又∵P A平分∠BAC,∴∠BAC=2∠P AQ,∴∠PQS=∠BAC,∴PQ∥AR,故③正确;∵PR⊥AB,PS⊥AC,∴∠BRP=∠CSP,∵PR=PS,∴△BRP不一定全等与△CSP(只具备一角一边的两三角形不一定全等),故④不正确.故选:B.9.(3分)如图,在△ABC中,∠C=90°,DE⊥AB于点E,CD=DE,∠CBD=26°,则∠A的度数为()A.40°B.34°C.36°D.38°【解答】解:∵DE⊥AB,DC⊥BC,DE=DC,∴BD平分∠ABC,∴∠EBD=∠CBD=26°,∴∠A=90°﹣∠ABC=90°﹣2×26°=38°.故选:D.10.(3分)一个学习小组利用同一块木板,测量了小车从不同高度下滑的时间,他们得到如表数据:支撑物的高度h(cm)102030405060708090100小车下滑的时间t(s) 4.233.002.452.131.891.711.59 1.50 1.411.35下列说法正确的是()A.当h=70cm时,t=1.50sB.h每增加10cm,t减小1.23C.随着h逐渐变大,t也逐渐变大D.随着h逐渐升高,小车下滑的平均速度逐渐加快【解答】解;A、当h=70cm时,t=1.59s,故A错误;B、h每增加10cm,t减小的值不一定,故B错误;C、随着h逐渐升高,t逐渐变小,故C错误;D、随着h逐渐升高,小车的时间减少,小车的速度逐渐加快,故D正确;故选:D.二.填空题(共4小题,满分12分,每小题3分)11.(3分)自然界中,花粉的质量很小,一粒某种植物花粉的质量约为0.000042毫克,0.000042用科学记数法表示为 4.2×10﹣5.【解答】解:0.000042=4.2×10﹣5.故答案为:4.2×10﹣5.12.(3分)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,需添加一个条件是∠D=∠B.(只需添加一个条件即可)【解答】解:当∠D=∠B时,在△ADF和△CBE中∵{AD=BC ∠D=∠B DF=BE,∴△ADF≌△CBE(SAS),故答案为:∠D=∠B.(答案不唯一)13.(3分)某学习小组做“用频率估计概率”的试验时,统计了某一事件发生的频率,小智绘制了如图所示的折线图,该事件最有可能是③(填写一个你认为正确的序号).①掷一枚硬币,正面朝上;②掷一个质地均匀的正六面体骰子,向上一面的点数是5;③暗箱中有1个黑球和2个白球,这些球除颜色外无差别,从中任取一球是黑球.【解答】解:由折线统计图知,随着试验次数的增加,频率逐渐稳定在0.33,即13左右, ①中掷一枚硬币,正面朝上的概率为12,不符合题意; ②掷一个质地均匀的正六面体骰子,向上一面的点数是5的概率是16,不符合题意; ③中从中任取一球是黑球的概率为11+2=13,符合题意, 故答案为:③. 14.(3分)在△ABC 中MP ,NO 分别垂直平分AB ,AC .若∠BAC =106°,则∠P AO 的度数是 32° .【解答】解:∵∠BAC =106°,∴∠B +∠C =180°﹣106°=74°,∵MP 是线段AB 的垂直平分线,∴P A =PB ,∴∠P AB =∠B ,同理,∠OAC =∠C ,∴∠P AO =∠BAC ﹣(∠P AB +∠OAC )=∠BAC ﹣(∠B +∠C )=32°,故答案为:32°.三.解答题(共11小题,满分1分)15.计算:2﹣1+√16−(3−√3)0+|√2−12|. 【解答】解:2﹣1+√16−(3−√3)0+|√2−12| =12+4﹣1+√2−12=3+√2.16.如图,在△ABC中,CE,BF是两条高,若∠A=70°,∠BCE=30°,求∠EBF与∠FBC的度数.【解答】解:在Rt△ABF中,∠A=70°,CE,BF是两条高,∴∠EBF=20°,∠ECA=20°,又∵∠BCE=30°,∴∠ACB=50°,∴在Rt△BCF中∠FBC=40°.17.先化简,再求值:(2x+3y)2﹣(2x+y)(2x﹣y),其中x=−12.y=1.【解答】解:(2x+3y)2﹣(2x+y)(2x﹣y)=4x2+12xy+9y2﹣4x2+y2=12xy+10y2,当x=−12,y=1时,原式=12×(−12)×1+10×12=﹣6+10=4.18.(1分)在同一平面内,若点P与△ABC三个顶点中的任意两个顶点连接形成的三角形都是等腰三角形,则称点P是△ABC的巧妙点.(1)如图1,求作△ABC的巧妙点P(尺规作图,不写作法,保留作图痕迹).(2)如图2,在△ABC中,∠A=80°,AB=AC,求作△ABC的所有巧妙点P(尺规作图,不写作法,保留作图痕迹),并直接写出∠BPC的度数是40°,160°,140°,80°.(3)等边三角形的巧妙点的个数有C.(A)2(B)6(C)10(D)12【解答】解:(1)∴点P为所求.(2)∴P1,P2,P3,P4,P5,P6所求.∠BPC的度数分别为:40°,160°,140°,80°,40°,40°.综上所述,∠BPC的度数为40°,160°,140°,80°.(3)利用(2)中结论,可知等边三角形有10个巧妙点,故选C.19.完成推理填空如图,已知∠B=∠D,∠BAE=∠E.将证明∠AFC+∠DAE=180°的过程填写完整.证明:∵∠BAE=∠E,∴AB∥DE(内错角相等,两直线平行).∴∠B=∠BCE(两直线平行,内错角相等).又∵∠B=∠D,∴∠D=∠BCE(等量代换).∴AD∥BC(同位角相等,两直线平行).∴∠AFC+∠DAE=180°(两直线平行,同旁内角互补).【解答】证明:∵∠BAE=∠E,∴AB∥DE(内错角相等,两直线平行).∴∠B=∠BCE(两直线平行,内错角相等).又∵∠B=∠D,∴∠D=∠BCE(等量代换).∴AD∥BC(同位角相等,两直线平行).∴∠AFC+∠DAE=180°(两直线平行,同旁内角互补).故答案为:AB,DE,内错角相等,两直线平行;BCE,两直线平行,内错角相等;BCE,同位角相等,两直线平行;两直线平行,同旁内角互补.20.如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;(2)在DE上画出点P,使P A+PC最小;(3)在DE上画出点M,使|MB﹣MC|最大.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,点P即为所求;(3)如图所示,点M即为所求.21.要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB,因此测得ED的长就是AB的长,请你运用自己所学知识说明他们的做法是正确的.【解答】证明:∵BF⊥AB,DE⊥BD,∴∠ABC=∠BDE又∵CD=BC,∠ACB=∠DCE∴△EDC≌△ABC(ASA),∴DE=BA.22.一个不透明的盒子里装有30个除颜色外其它均相同的球,其中红球有m个,白球有3m 个,其它均为黄球.现小李从盒子里随机摸出一个球,若是红球,则小李获胜;小李把摸出的球放回盒子里摇匀,由小马随机摸出一个球,若为黄球,则小马获胜.(1)当m=4时,求小李摸到红球的概率是多少?(2)当m为何值时,游戏对双方是公平的?【解答】解:(1)当m=4时,红球有4个、白球有12个、黄球有14个,则小李摸到红球的概率是430=215;(2)若要是双方摸到红球和黄球的概率相等,则袋子中红球和黄球的数量相等,即m =30﹣m ﹣3m ,解得:m =6,即当m =6时,游戏对双方是公平的.23.为了加强公民的节水意识,某地规定用水收费标准如下:每户每月用水量不超过6m 3时,水费按每立方米1.1元收费,超过6m 3时,超过部分每立方米按1.6元收费,设每户每月用水量为xm 3,应缴水费为y 元.(1)写出y 与x 之间的函数表达式;(2)如果有两户家庭某月份需缴纳水费为5.5元和9.8元时,求这两户家庭这个月的用水量分别是多少?【解答】解:(1)由题意可得,当0≤x ≤6时,y =1.1x ,当x >6时,y =1.1×6+(x ﹣6)×1.6=1.6x ﹣3,即y 与x 之间的函数表达式是y ={1.1x (0≤x ≤6)1.6x −3(x >6); (2)∵5.5<1.1×6,∴缴纳水费为5.5元的用户用水量不超过6m 3,将y =5.5代入y =1.1x ,解得x =5;∵9.8>1.1×6,∴缴纳水费为9.8元的用户用水量超过6m 3,将y =9.8代入y =1.6x ﹣3,解得x =8;答:这两户家庭这个月的用水量分别是5m 3,8m 3.24.设a ,b ,c 为整数,且一切实数x 都有(x ﹣a )(x ﹣8)+1=(x ﹣b )(x ﹣c )恒成立,求a +b +c 的值.【解答】解:∵(x ﹣a )(x ﹣8)+1=x 2﹣(a +8)x +8a +1,(x ﹣b )(x ﹣c )=x 2﹣(b +c )x +bc又∵(x ﹣a )(x ﹣8)+1=(x ﹣b )(x ﹣c )恒成立,∴﹣(a +8)=﹣(b +c ),∴8a +1=bc ,bc﹣8(b+c)=﹣63,即(b﹣8)(c﹣8)=1,∵b,c都是整数,故b﹣8=1,c﹣8=1或b﹣8=﹣1,c﹣8=﹣1,解得b=c=9或b=c=7,当b=c=9时,解得a=10,当b=c=7时,解得a=6,故a+b+c=9+9+10=28或7+7+6=20,故答案为:20或28.25.(1)如图1,等腰△ABC和等腰△ADE中,∠BAC=∠DAE=90°,B,E,D三点在同一直线上,求证:∠BDC=90°;(2)如图2,等腰△ABC中,AB=AC,∠BAC=90°,D是△ABC外一点,且∠BDC =90°,求证:∠ADB=45°;(3)如图3,等边△ABC中,D是△ABC外一点,且∠BDC=60°,①∠ADB的度数;②DA,DB,DC之间的关系.【解答】(1)证明:如图1,设BD与AC交于点F,∵∠BAC=∠DAE=90°,∴∠BAE=∠CAD,在△ABE和△ACD中,{∠BAE =∠CAD AE =AD∴△ABE ≌△ACD (SAS ),∴∠ABE =∠ACD ,∵∠ABE +∠AFB =90°,∠AFB =∠CFD ,∴∠ACD +∠CFD =90°,∴∠BDC =90°;(2)如图2,过A 作AE ⊥AD 交BD 于E ,∵∠BAC =∠DAE =90°,∴∠BAE =∠CAD ,∵∠BAC =∠BDC =90°,∠AFB =∠CFD ,∴∠ABE =∠ACD ,在△ABE 和△ACD 中,{∠BAE =∠CAD AB =AC ∠ABE =∠ACD,∴△ABE ≌△ACD (ASA ),∴AE =AD ,∴∠ADE =∠AED =45°;(3)①如图3,在形内作∠DAE =60°,AE 交BD 于E 点,与(2)同理△ABE ≌△ACD ,∴AE=DA,∴△ADE是等边三角形,∴∠ADE=60°;②∵BE=DC,∴DB=BE+DE=DA+DC.。
2020-2021学年七年级下学期期末数学试卷含答案解析
2020-2021学年七年级下学期期末数学试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)若x=﹣2是方程ax+b=1(a≠0)的解,则2a﹣b的值为()A.﹣2B.﹣1C.0D.1【解答】解:把x=﹣2代入方程得:﹣2a+b=1,则2a﹣b=﹣1.故选:B.2.(3分)下列图形中是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项符合题意;C、不是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项不符合题意.故选:B.3.(3分)将若干个大小相等的正五边形排成环状,如图所示是前3个五边形,要完成这一圆环还需_______个正五边形()A.6B.7C.8D.9【解答】解:五边形的内角和为(5﹣2)•180°=540°,所以正五边形的每一个内角为540°÷5=108°,如图,延长正五边形的两边相交于点O ,则∠1=360°﹣108°×3=360°﹣324°=36°, 360°÷36°=10,∵已经有3个五边形,∴10﹣3=7,即完成这一圆环还需7个五边形.故选:B .4.(3分)我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托,如果一托为5尺,那么索长( )尺.A .25B .20C .15D .10【解答】解:设索长x 尺,竿子长y 尺,依题意,得:{x −y =5y −12x =5, 解得:{x =20y =15. 故选:B .5.(3分)一个数x 的13与4的差不小于这个数的2倍加上5所得的和,则可列不等式是( ) A .13x ﹣4>2x +5 B .13x ﹣4<2x +5 C .13x ﹣4≥2x +5 D .13x ﹣4≤2x +5 【解答】解:根据题意,得13x ﹣4≥2x +5.故选:C .6.(3分)如图,将△ABC 沿直线AB 向右平移后到达△BDE 的位置,连接CD 、CE ,若△ACD 的面积为10,则四边形ACED 的面积为( )A.15B.18C.20D.24【解答】解:∵△ABC沿直线AB向右平移后到达△BDE的位置,∴AB=BD,BC∥DE且BC=DE,∴四边形BDEC是平行四边形,∵平行四边形BDEC和△ABC等底等高,∴S平行四边形BDEC=2S△ABC=10,∴S四边形ACED=S平行四边形BDEC+S△ABC=10+5=15.故选:A.7.(3分)如图,点D,E在△ABC边上,沿DE将△ADE翻折,点A的对应点为点A′,∠A′EC=40°,∠A′DB=110°,则∠A等于()A.30°B.35°C.60°D.70°【解答】解:∵∠A′EC=40°,∴∠AEC+∠A′EC=180°+40°=220°,由翻折可知:∠AED=∠A′ED=12×220°=110°,∵∠A′DB=110°,∴∠A′DA=70°,由翻折可知:∠ADE=∠A′DE=12∠A′DA=35°,∴∠A=180°﹣∠ADE﹣∠AED=35°.故选:B.8.(3分)如图,在五边形ABCDE 中,若去掉一个30°的角后得到一个六边形BCDEMN ,则∠1+∠2的度数为( )A .210°B .110°C .150°D .100°【解答】解:解法一:∵∠A +∠B +∠C +∠D +∠E =(5﹣2)×180°=540°,∠A =30°,∴∠B +∠C +∠D +∠E =510°,∵∠1+∠2+∠B +∠C +∠D +∠E =(6﹣2)×180°=720°,∴∠1+∠2=720°﹣510°=210°,解法二:在△ANM 中,∠ANM +∠AMN =180°﹣∠A =180°﹣30°=150°,∴∠1+∠2=360°﹣(∠AMN +∠ANM )=360°﹣150°=210°故选:A .9.(3分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,余三;问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,多余3钱,问合伙人数、羊价各是多少?设合伙人数为x 人,羊价为y 钱,根据题意,可列方程组为( )A .{y =5x +45y =7x +3B .{y =5x −45y =7x +3C .{y =5x +45y =7x −3D .{y =5x −45y =7x −3 【解答】解:依题意,得:{y =5x +45y =7x −3. 故选:C .10.(3分)如图,△ABC 为钝角三角形,将△ABC 绕点A 按逆时针方向旋转100°得到△AB ′C ′,连接CC ′,若CC ′∥AB ,则∠CAB '的度数为( )A .45°B .60°C .70°D .90°【解答】解:∵将△ABC 绕点A 按逆时针方向旋转100°得到△AB ′C ′,∴AC =AC ',∠BAB '=∠CAC '=100°,∴∠ACC '=∠AC 'C =40°,∵AB ∥CC ',∴∠BAC =∠ACC '=40°,∴∠CAB '=∠BAB '﹣∠BAC =60°,故选:B .二.填空题(共5小题,满分15分,每小题3分)11.(3分)已知对任意有理数a 、b ,关于x 、y 的二元一次方程(a ﹣b )x ﹣(a +b )y =a +b有一组公共解,则公共解为 {x =0y =−1. 【解答】解:由已知得,a (x ﹣y ﹣1)﹣b (x +y +1)=0,即{x −y −1=0①x +y +1=0②, ①+②,2x =0,x =0;把x =0代入①得,y =﹣1,故此方程组的解为:{x =0y =−1. 故答案为:{x =0y =−1. 另法:解:因为对于任意有理数a ,b ,关于xy 的二元一次方程(a ﹣b )x ﹣(a +b )y =a +b 都有一组公共解,所以,设a =1,b =﹣1(a +b =0),则(a ﹣b )x ﹣(a +b )y =a +b 为:2x =0,x =0,设a =b =1,(a ﹣b =0),则(a ﹣b )x ﹣(a +b )y =a +b 为:﹣2y =2,y =﹣1,所以公共解为:x =0,y =﹣1.12.(3分)甲乙两人同解方程组{ax +by =2cx −7y =8时,甲正确解得{x =3y =−2,乙因抄错c 而得{x =−2y =2,则a +c = 2 . 【解答】解:{ax +by =2①cx −7y =8②把{x =3y =−2代入②得:3c +14=8, 解得:c =﹣2,把{x =3y =−2和{x =−2y =2代入①得:{3a −2b =2−2a +2b =2, 解得:{a =4b =5, 所以a +c =4+(﹣2)=2,故答案为:2.13.(3分)若关于x 的不等式2x ﹣a ≥3的解集如图所示,则常数a = ﹣5 .【解答】解:由数轴上关于x 的不等式的解集可知x ≥﹣1,解不等式2x ﹣a ≥3得x ≥3+a 2,故3+a 2=−1,解得a =﹣5.故答案为:﹣5.14.(3分)如图,AB ⊥BC ,∠ABD 的度数比∠DBC 的度数少15°,设∠ABD 和∠DBC 的度数分别为x 、y ,可以求出这两个角的度数的方程组是 {x +y =90y −x =15.【解答】解:根据“AB ⊥BC ”,得方程为x +y =90;根据“∠ABD 的度数比∠DBC 的度数少15°”,得方程y ﹣x =15.那么方程组应该是:{x +y =90y −x =15. 15.(3分)如图,在三角形ABC 中∠BAC =90°,AD 是BC 边上的高,∠CAD =35°,则∠B = 35° .【解答】解:∵AD 是BC 边上的高,∴∠ADC =90°,在△ACD 中,∠CAD =35°,∠ADC =90°,∴∠C =180°﹣∠CAD ﹣∠ADC =180°﹣35°﹣90°=55°.在△ABC 中,∠BAC =90°,∠C =55°,∴∠B =180°﹣∠BAC ﹣∠C =180°﹣90°﹣55°=35°.故答案为:35°.三.解答题(共8小题,满分75分)16.(8分)解方程(组):(1)15﹣(7﹣5x )=2x +(5﹣3x );(2)3+0.2x 0.2−0.2+0.03x 0.01=0.75;(3){3x −2y +4=03y +2x −19=0; (4){x+32+y+53=7x−43+2y−35=2. 【解答】解:(1)15﹣(7﹣5x )=2x +(5﹣3x ),去括号,得15﹣7+5x =2x +5﹣3x ,移项,得5x ﹣2x +3x =5﹣15+7,合并同类项,得6x =﹣3,系数化为1,得x =−12;(2)3+0.2x 0.2−0.2+0.03x 0.01=0.75, 方程变形,得30+2x 2−20+3x 1=34,去分母,得2(30+2x )﹣4(20+3x )=3,去括号,得60+4x ﹣80﹣12x =3,移项,得4x ﹣12x =3﹣60+80,合并同类项,得﹣8x =23,系数化为1,得x =−238; (3)方程组变形,得{3x −2y =−4①2x +3y =19②, ①×3+②×2得13x =26,解得x =2,把x =2代入①得,y =5,所以方程组的解为{x =2y =5; (4)方程变形,得{3x +2y =23①5x +6y =59②, ①×3﹣②得x =52,把x =52代入①得,y =314,所以方程组的解为{x =52y =314. 17.(9分)(1)解不等式3x +5<8(x ﹣1)+3,并写出满足此不等式的最小整数解.(2)解不等式组{−2(x +3)≤7x +3x+12−16<x+33,并把它的解集在数轴上表示出来.【解答】解:(1)3x +5<8x ﹣8+3,3x ﹣8x <﹣8+3﹣5,﹣5x <﹣10,x >2,所以此不等式的最小整数解为3;(2)解不等式﹣2(x +3)≤7x +3,得:x ≥﹣1,解不等式x+12−16<x+33,得:x <4,则不等式组的解集为﹣1≤x <4,将不等式组的解集表示在数轴上如下:18.(9分)下列图形中,哪些是中心对称图形?哪些是轴对称图形?请画出它们的对称中心或对称轴.【解答】解:中心对称图形有:①②③④⑤.轴对称图形有:①②③.图中的点O 即为对称中心,图中的虚线即为对称轴.19.(9分)糖葫芦一般是用竹签串上山楂,再蘸以冰糖制作而成.现将一些山楂分别串在若干根竹签上.如果每根竹签串5个山楂,还剩余4个山楂;如果每根竹签串8个山楂,还剩余7根竹签.这些竹签有多少根?山楂有多少个?【解答】解:设竹签有x 根,山楂有y 个,由题意得:{5x +4=y 8(x −7)=y, 解得:{x =20y =104, 答:竹签有20根,山楂有104个.20.(9分)如图,在△ABC 中,AM 是△ABC 的高线,AN 是△ABC 的角平分线,已知∠B=50°,∠BAC =100°,分别求出∠C 和∠MAN 的度数.【解答】解:在△ABC中,∠BAC+∠B+∠C=180°,∴∠C=180°﹣∠B﹣∠BAC=180°﹣50°﹣100°=30°.在△ABM中,∠B=50°,AM⊥BM,∴∠AMB=90°,∴∠BAM=90°﹣∠B=40°.∵AN平分∠BAC,∴∠BAN=12∠BAC=50°,∴∠MAN=∠BAN﹣∠BAM=50°﹣40°=10°.21.(10分)小明骑自行车从家中前往地铁一号线的B站,与此同时,一列地铁从A站开往B站.3分钟后,地铁到达B站,小明离B站还有1800米.已知A、B两站间距离和小明家到B站的距离恰好相等,这列地铁的平均速度是小明的4倍.(1)求小明骑车的平均速度;(2)如果此时另有一列地铁需8分钟到达B站,且小明骑车到达B站后还需2分钟才能走到地铁站台候车,他要想乘上这趟地铁,骑车的平均速度至少应提高多少?【解答】解:(1)设小明骑车的平均速度是x米/分,根据题意,得3x+1800=12 x,解方程,得x=200.答:小明骑车的平均速度是200米/分.(2)设小明的速度提高a米/分,根据题意,得6×(200+a)≥1800,解不等式,得a≥100.答:小明的速度至少应提高100米/分.22.(10分)如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DF、FG相交于点H.(1)写出图中互相平行的线段:CG∥BE,AC∥FG(2)写出图中全等的三角形:△ABC≌△FEG≌△EDB(3)将△DBE变换到与△FEG重合,变换的方法是:将△DBE逆时针旋转90°再平移BE的距离与△FEG重合.(4)判断线段DE、FG的位置关系,并说明理由.FG⊥ED.理由如下:∵△ABC绕点B顺时针旋转90°至△DBE后,∴∠DEB=∠ACB,∵把△ABC沿射线平移至△FEG,∴∠GFE=∠A,∵∠ABC=90°,∴∠A+∠ACB=90°,∴∠DEB+∠GFE=90°,∴∠FHE=90°,∴FG⊥ED..【解答】解:(1)互相平行的线段:CG∥BE,AC∥FG;(2)图中全等的三角形:△ABC≌△FEG≌△EDB;(3)将△DBE逆时针旋转90°再平移BE的距离与△FEG重合;(4)FG⊥ED.理由如下:∵△ABC绕点B顺时针旋转90°至△DBE后,∴∠DEB=∠ACB,∵把△ABC沿射线平移至△FEG,∴∠GFE=∠A,∵∠ABC=90°,∴∠A+∠ACB=90°,∴∠DEB+∠GFE=90°,∴∠FHE=90°,∴FG ⊥ED .23.(11分)喜迎元旦,某玩具店购进2022年冬奥会吉祥物冰墩墩与冬残奥会吉祥物雪容融共100个,花去3300元,这两种吉祥物的进价、售价如下表:进价(元/个) 售价 (元/个) 冰墩墩30 40 雪容融 35 50(1)求冰墩墩、雪容融各进了多少个?(2)如果销售完100个吉祥物所得的利润,全部捐赠,那么,该玩具店捐赠了多少钱?【解答】解:(1)设冰墩墩进x 个,雪容融进了y 个,由题意可得:{30x +35y =3300x +y =100, 解得:{x =40y =60, 答:冰墩墩进40个,雪容融进了60个;(2)∵利润=(40﹣30)×40+(50﹣35)×60=1300(元),∴玩具店捐赠了1300元.。
2020-2021初一数学下期末试题附答案(1)
2020-2021初一数学下期末试题附答案(1)一、选择题1.下列各式中计算正确的是( )A .93=±B .2(3)3-=-C .33(3)3-=±D .3273= 2.不等式x+1≥2的解集在数轴上表示正确的是( )A .B .C .D .3.同学们喜欢足球吗?足球一般是用黑白两种颜色的皮块缝制而成的,如图所示,黑色皮块是正五边形,白色皮块是正六边形.若一个球上共有黑白皮块32块,请你计算一下,黑色皮块和白色皮块的块数依次为( )A .16块,16块B .8块,24块C .20块,12块D .12块,20块 4.一副直角三角板如图放置,点C 在FD 的延长线上,AB//CF ,∠F=∠ACB=90°,则∠DBC 的度数为( )A .10°B .15°C .18°D .30°5.如图,直线a ∥b ,直线c 与直线a 、b 分别交于点A 、点B ,AC ⊥AB 于点A ,交直线b 于点C .如果∠1=34°,那么∠2的度数为( )A .34°B .56°C .66°D .146°6.如图所示的表格是某次篮球联赛部分球队的积分表,则下列说法不正确的是( ) 队名 比赛场数 胜场 负场 积分前进 14 10 4 24光明149523远大147a21卫星14410b钢铁1401414……………A.负一场积1分,胜一场积2分B.卫星队总积分b=18C.远大队负场数a=7D.某队的胜场总积分可以等于它的负场总积分7.已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为( )A.﹣3B.﹣5C.1或﹣3D.1或﹣58.方程组23x y ax y+=⎧⎨-=⎩的解为5xy b=⎧⎨=⎩,则a、b分别为()A.a=8,b=﹣2B.a=8,b=2C.a=12,b=2D.a=18,b=8 9.如图,下列能判断AB∥CD的条件有()①∠B+∠BCD=180°②∠1 = ∠2 ③∠3 =∠4 ④∠B = ∠5A.1B.2C.3D.410.在平面直角坐标系中,点P(1,-2)在()A.第一象限B.第二象限C.第三象限D.第四象限11.已知a,b为两个连续整数,且a<191-<b,则这两个整数是()A.1和2B.2和3C.3和4D.4和512.关于x,y的方程组2,226x y ax y a+=⎧⎨+=-⎩的解满足0x y+=,则a的值为()A.8B.6C.4D.2二、填空题13.某小区地下停车场入口门栏杆的平面示意图如图所示,垂直地面于点,平行于地面,若,则________.14.2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm .某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm ,长与高的比为8:11,则符合此规定的行李箱的高的最大值为 cm .15.若将点A (1,3)向左平移2个单位,再向下平移4个单位得到点B , 则点B 的坐标为_______.16.如图,已知直线,AB CD 相交于点O ,如果40BOD ∠=︒,OA 平分COE ∠,那么DOE ∠=________度.17.已知a 、b 满足(a ﹣1)2+2b +=0,则a+b=_____.18.在开展“课外阅读”活动中,某校为了解全校1200名学生课外阅读的情况,随机调查了60名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1200名学生一周的课外阅读时间不少于7小时的人数是_______.19.已知在一个样本中,50个数据分别在5个组内,第一、二、三、五组数据的个数分别为2,8,15,5,则第四组的频数为__________.20.结合下面图形列出关于未知数x ,y 的方程组为_____.三、解答题21.解不等式组523(1) 13222x xx x+>-⎧⎪⎨≤-⎪⎩,并求出它的所有整数解的和.22.某停车场的收费标准如下:小型汽车10元/辆,中型汽车15元/辆,现停车场共有50辆中、小型汽车,共缴纳停车费560元,中、小型汽车各有多少辆?23.如图①,已知AB∥CD,点E、F分别是AB、CD上的点,点P是两平行线之间的一点,设∠AEP=α,∠PFC=β,在图①中,过点E作射线EH交CD于点N,作射线FI,延长PF到G,使得PE、FG分别平分∠AEH、∠DFl,得到图②.(1)在图①中,过点P作PM∥AB,当α=20°,β=50°时,∠EPM=度,∠EPF=度;(2)在(1)的条件下,求图②中∠END与∠CFI的度数;(3)在图②中,当FI∥EH时,请直接写出α与β的数量关系.24.如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C=∠EFG,∠CED=∠GHD(1)求证:CE∥GF;(2)试判断∠AED与∠D之间的数量关系,并说明理由;(3)若∠EHF=100°,∠D=30°,求∠AEM的度数.25.解不等式组533(2)1233x xx x->-⎧⎪⎨-≤-⎪⎩,并把解集表示在数轴上,再找出它的整数解.【参考答案】***试卷处理标记,请不要删除1.D解析:D【解析】【分析】直接利用算术平方根、平方根以及立方根的定义分别化简求出答案.【详解】A、93=,此选项错误错误,不符合题意;B、2-=,此选项错误错误,不符合题意;(3)3C、3-=-,此选项错误错误,不符合题意;3(3)3D、3273=,此选项正确,符合题意;故选:D.【点睛】本题主要考查了算术平方根、平方根、立方根的概念,正确理解和灵活运用相关知识是解题关键.2.A解析:A【解析】试题解析:∵x+1≥2,∴x≥1.故选A.考点:解一元一次不等式;在数轴上表示不等式的解集.3.D解析:D【解析】试题分析:根据题意可知:本题中的等量关系是“黑白皮块32块”和因为每块白皮有3条边与黑边连在一起,所以黑皮只有3y块,而黑皮共有边数为5x块,依此列方程组求解即可.解:设黑色皮块和白色皮块的块数依次为x,y.则,解得,即黑色皮块和白色皮块的块数依次为12块、20块.故选D.4.B解析:B【解析】直接利用三角板的特点,结合平行线的性质得出∠ABD=45°,进而得出答案.【详解】由题意可得:∠EDF=45°,∠ABC=30°,∵AB∥CF,∴∠ABD=∠EDF=45°,∴∠DBC=45°﹣30°=15°.故选B.【点睛】本题考查的是平行线的性质,熟练掌握这一点是解题的关键.5.B解析:B【解析】分析:先根据平行线的性质得出∠2+∠BAD=180°,再根据垂直的定义求出∠2的度数.详解:∵直线a∥b,∴∠2+∠BAD=180°.∵AC⊥AB于点A,∠1=34°,∴∠2=180°﹣90°﹣34°=56°.故选B.点睛:本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补,此题难度不大.6.D解析:D【解析】【分析】A、设胜一场积x分,负一场积y分,根据前进和光明队的得分情况,即可得出关于x,y 的二元一次方程组,解之即可得出结论;B、根据总积分=2×得胜的场次数+1×负的场次数,即可求出b值;C、由负的场次数=总场次数-得胜的场次数,即可求出a值;D、设该队胜了z场,则负了(14-z)场,根据胜场总积分等于负场总积分,即可得出关于z的一元一次方程,解之即可得出z值,由该值不为整数即可得出结论.【详解】A、设胜一场积x分,负一场积y分,依题意,得:10424 9523x yx y+⎧⎨+⎩==,解得:21xy⎧⎨⎩==,∴选项A正确;B、b=2×4+1×10=18,选项B正确;C、a=14-7=7,选项C正确;D、设该队胜了z场,则负了(14-z)场,依题意,得:2z=14-z,解得:z=143,∵z=143不为整数,∴不存在该种情况,选项D错误.故选:D.【点睛】本题考查了一元一次方程的应用以及二元一次方程组的应用,找准等量关系,正确列出一元一次方程(或二元一次方程组)是解题的关键.7.A解析:A【解析】分析:根据点A(a+2,4)和B(3,2a+2)到x轴的距离相等,得到4=|2a+2|,即可解答.详解:∵点A(a+2,4)和B(3,2a+2)到x轴的距离相等,∴4=|2a+2|,a+2≠3,解得:a=−3,故选A.点睛:考查点的坐标的相关知识;用到的知识点为:到x轴和y轴的距离相等的点的横纵坐标相等或互为相反数.8.C解析:C【解析】试题解析:将x=5,y=b代入方程组得:10{53b ab+=-=,解得:a=12,b=2,故选C.考点:二元一次方程组的解.9.C解析:C【解析】【分析】判断平行的条件有:同位角相等、内错角相等、同旁内角互补,依次判断各选项是否符合.【详解】①∠B +∠BCD =180°,则同旁内角互补,可判断AB ∥CD ;②∠1 = ∠2,内错角相等,可判断AD ∥BC ,不可判断AB ∥CD ;③∠3 =∠4,内错角相等,可判断AB ∥CD ;④∠B = ∠5,同位角相等,可判断AB ∥CD故选:C【点睛】本题考查平行的证明,注意②中,∠1和∠2虽然是内错角关系,但对应的不是AB 与CD 这两条直线,故是错误的.10.D解析:D【解析】【分析】根据各象限内点的坐标特征解答即可.【详解】∵点P(1,-2),横坐标大于0,纵坐标小于0,∴点P(1,-2)在第三象限,故选D.【点睛】本题考查了象限内点的坐标特征,关键是熟记平面直角坐标系中各个象限内点的坐标符号.11.C解析:C【解析】试题解析:∵45,∴3<4,∴这两个连续整数是3和4,故选C .12.D解析:D【解析】【分析】两式相加得,即可利用a 表示出x y +的值,从而得到一个关于a 的方程,解方程从而求得a 的值.【详解】两式相加得:3336x y a +=-;即3()36,x y a +=-得2x y a +=-即20,2a a -==故选:D.【点睛】此题考查二元一次方程组的解,解题关键在于掌握二元一次方程的解析.二、填空题13.150°【解析】【分析】先过点B 作BF ∥CD 由CD ∥AE 可得CD ∥BF ∥AE 继而证得∠1+∠BCD=180°∠2+∠BAE=180°又由BA 垂直于地面AE 于A ∠BCD=120°求得答案【详解】如图过 解析:【解析】【分析】先过点B 作BF ∥CD ,由CD ∥AE ,可得CD ∥BF ∥AE ,继而证得∠1+∠BCD=180°,∠2+∠BAE=180°,又由BA 垂直于地面AE 于A ,∠BCD=120°,求得答案.【详解】如图,过点B 作BF ∥CD ,∵CD ∥AE ,∴CD ∥BF ∥AE ,∴∠1+∠BCD=180°,∠2+∠BAE=180°,∵∠BCD=120°,∠BAE=90°,∴∠1=60°,∠2=90°,∴∠ABC=∠1+∠2=150°.故答案是:150o .【点睛】考查了平行线的性质.注意掌握辅助线的作法,注意数形结合思想的应用.14.55【解析】【分析】利用长与高的比为8:11进而利用携带行李箱的长宽高三者之和不超过115cm 得出不等式求出即可【详解】设长为8x 高为11x 由题意得:19x+20≤115解得:x≤5故行李箱的高的最解析:55【解析】【分析】利用长与高的比为8:11,进而利用携带行李箱的长、宽、高三者之和不超过115cm 得出不等式求出即可.【详解】设长为8x,高为11x,由题意,得:19x+20≤115,解得:x≤5,故行李箱的高的最大值为:11x=55,答:行李箱的高的最大值为55厘米.【点睛】此题主要考查了一元一次不等式的应用,根据题意得出正确不等关系是解题关键.15.(﹣1﹣1)【解析】试题解析:点B的横坐标为1-2=-1纵坐标为3-4=-1所以点B的坐标是(-1-1)【点睛】本题考查点的平移规律;用到的知识点为:点的平移左右平移只改变点的横坐标左减右加;上下平解析:(﹣1,﹣1)【解析】试题解析:点B的横坐标为1-2=-1,纵坐标为3-4=-1,所以点B的坐标是(-1,-1).【点睛】本题考查点的平移规律;用到的知识点为:点的平移,左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.16.100【解析】【分析】根据对顶角相等求出∠AOC再根据角平分线和邻补角的定义解答【详解】解:∵∠BOD=40°∴∠AOC=∠BOD=40°∵OA平分∠COE∴∠AOE=∠AOC=40°∴∠COE=8解析:100【解析】【分析】根据对顶角相等求出∠AOC,再根据角平分线和邻补角的定义解答.【详解】解:∵∠BOD=40°,∴∠AOC=∠BOD=40°,∵OA平分∠COE,∴∠AOE=∠AOC=40°,∴∠COE=80°.∴∠DOE=180°-80°=100°故答案为:100.【点睛】本题考查了对顶角相等的性质,角平分线、邻补角的定义,是基础题,熟记性质并准确识图是解题的关键.17.﹣1【解析】【分析】利用非负数的性质可得a-1=0b+2=0解方程即可求得ab的值进而得出答案【详解】∵(a﹣1)2+=0∴a=1b=﹣2∴a+b=﹣1故答案为﹣1【点睛】本题考查了非负数的性质熟知解析:﹣1【解析】【分析】利用非负数的性质可得a-1=0,b+2=0,解方程即可求得a ,b 的值,进而得出答案.【详解】∵(a ﹣1)2=0,∴a=1,b=﹣2,∴a+b=﹣1,故答案为﹣1.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.18.【解析】【分析】用所有学生数乘以样本中课外阅读时间不少于7小时的人数所占的百分比即可【详解】估计该校1200名学生一周的课外阅读时间不少于7小时的人数是:1200×=400(人)故答案为:400【点解析:【解析】【分析】用所有学生数乘以样本中课外阅读时间不少于7小时的人数所占的百分比即可.【详解】估计该校1200名学生一周的课外阅读时间不少于7小时的人数是:1200×15+560=400(人),故答案为:400.【点睛】本题考查了用样本估计总体的知识,解题的关键是求得样本中不少于6小时的人数所占的百分比. 19.【解析】【分析】每组的数据个数就是每组的频数50减去第1235小组数据的个数就是第4组的频数【详解】50−(2+8+15+5)=20则第4小组的频数是20【点睛】本题考查频数与频率解题的关键是掌握频解析:20【解析】【分析】每组的数据个数就是每组的频数,50减去第1,2,3,5,小组数据的个数就是第4组的频数.【详解】50−(2+8+15+5)=20.则第4小组的频数是20.【点睛】本题考查频数与频率,解题的关键是掌握频数与频率的计算.20.【解析】【分析】根据图形列出方程组即可【详解】由图可得故答案为【点睛】本题考查了二元一次方程组解题的关键是根据实际问题抽象出二元一次方程组解析:250325x y x y +=⎧⎨=+⎩ . 【解析】【分析】根据图形列出方程组即可.【详解】由图可得250325x y x y +=⎧⎨=+⎩. 故答案为250325x y x y +=⎧⎨=+⎩. 【点睛】本题考查了二元一次方程组,解题的关键是根据实际问题抽象出二元一次方程组. 三、解答题21.512x -<,-2 【解析】【分析】 先求出两个不等式的解集,再求其公共解,然后求出整数解的和即可.【详解】 解:523(1)13222x x x x +>-⎧⎪⎨-⎪⎩①② 解不等式①得52x >-, 解不等式②得1x ≤,∴512x -<,x 为整数,可取-2,-1,0,1.则所有整数解的和为21012--++=-.【点睛】 此题考查一元一次不等式组解集,解题关键在于掌握简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).22.小型车有38辆,中型车有12辆【解析】【分析】设小型车有x 辆,中型车有y 辆,根据“小型汽车10元/辆,中型汽车15元/辆,现停车场共有50辆中、小型汽车,共缴纳停车费560元”,列出关于x 和y 的二元一次方程组,解之即可.【详解】解:设小型车有x 辆,中型车有y 辆,根据题意得:501015560x y x y +=⎧⎨+=⎩, 解得:3812x y =⎧⎨=⎩, 答:小型车有38辆,中型车有12辆.【点睛】本题考查了二元一次方程组的应用,正确找出等量关系,列出二元一次方程组是解题的关键.23.(1)20,70;(2)80°;(3)90°;【解析】【分析】(1)由PM ∥AB 根据两直线平行,内错角相等可得∠EPM=∠AEP=20°,根据平行公理的推论可得PM ∥CD ,继而可得∠MPF=∠CFP=50°,从而即可求得∠EPF ;(2)由角平分线的定义可得∠AEH=2α=40°,再根据AD ∥BC ,由两直线平行,内错角相等可得∠END=∠AEH=40°,由对顶角相等以及角平分线定义可得∠IFG=∠DFG=β=50°,再根据平角定义即可求得∠CFI 的度数;(3)由(2)可得,∠CFI=180°-2β,由AB ∥CD ,可得∠END=2α,当FI ∥EH 时,∠END=∠CFI ,据此即可得α+β=90°.【详解】(1)∵PM ∥AB ,α=20°,∴∠EPM=∠AEP=20°,∵AB ∥CD ,PM ∥AB ,∴PM ∥CD ,∴∠MPF=∠CFP=50°,∴∠EPF=20°+50°=70°,故答案为20,70;(2)∵PE 平分∠AEH ,∴∠AEH=2α=40°,∵AD ∥BC ,∴∠END=∠AEH=40°,又∵FG 平分∠DFI ,∴∠IFG=∠DFG=β=50°,∴∠CFI=180°-2β=80°; (3)由(2)可得,∠CFI=180°-2β,∵AB∥CD,∴∠END=∠AEN=2α,∴当FI∥EH时,∠END=∠CFI,即2α=180°-2β,∴α+β=90°.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质定理是解题的关键. 24.(1)证明见解析;(2)∠AED+∠D=180°,理由见解析;(3)∠AEM=130°【解析】分析:(1)根据同位角相等两直线平行,可证CE∥GF;(2)根据平行线的性质可得∠C=∠FGD,根据等量关系可得∠FGD=∠EFG,根据内错角相等,两直线平行可得AB∥CD,再根据平行线的性质可得∠AED与∠D之间的数量关系;(3)根据对顶角相等可求∠DHG,根据三角形外角的性质可求∠CGF,根据平行线的性质可得∠C,∠AEC,再根据平角的定义可求∠AEM的度数.本题解析:(1)证明:∵∠CED=∠GHD,∴CE∥GF(2)答:∠AED+∠D=180°理由:∵CE∥GF,∴∠C=∠FGD,∵∠C=∠EFG,∴∠FGD=∠EFG,∴AB∥CD,∴∠AED+∠D=180°;(3)∵∠DHG=∠EHF=100°,∠D=30°,∴∠CGF=100°+30°=130°∵CE∥GF,∴∠C=180°﹣130°=50°∵AB∥CD,∴∠AEC=50°,∴∠AEM=180°﹣50°=130°.点睛:本题考查了平行线的判定与性质,解题关键是根据已知条件判断相关的内错角,同位角的相等关系.25.312-<≤x,图详见解析【解析】【分析】分别求出每一个不等式的解集,根据口诀:大小小大中间找确定不等式组的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来,结合数轴可知其整数解.【详解】533(2)1233x x x x ->-⎧⎪⎨-≤-⎪⎩①② 解不等式①得32x >-, 解不等式②得1x ≤, 则不等式组的解集为312-<≤x 在数轴上表示为:其整数解为:-1,0,1.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.。
江阴市七年级下册数学期末试题及答案解答
江阴市七年级下册数学期末试题及答案解答一、选择题1.一个多边形的每个内角都相等,并且它的一个外角与一个内角的比为1:3,则这个多边形为( )A .三角形B .四边形C .六边形D .八边形 2.下列计算正确的是( )A .a 3.a 2=a 6B .a 2+a 4=2a 2C .(a 3)2=a 6D .224(3)6a a = 3.下列各式从左到右的变形中,是因式分解的是( )A .2(3)(3)9a a a +-=-B .2323(2)a a a a a--=-- C .245(4)5a a a a --=-- D .22()()a b a b a b -=+- 4.若a =-0.32,b =-3-2,c =21()2--,d =01()3-,则它们的大小关系是( ) A .a <b <c <d B .a <d <c <b C .b <a <d <c D .c <a <d <b 5.小明带了10元钱到文具店购买签字笔和练习本两种文具,已知签字笔2元支,练习本3元/本,如果10元恰好用完,那么小明共有( )种购买方案.A .0B .1C .2D .36.下列方程中,是二元一次方程的是( )A .x ﹣y 2=1B .2x ﹣y =1C .11y x +=D .xy ﹣1=07.下列计算正确的是( )A .a +a 2=2a 2B .a 5•a 2=a 10C .(﹣2a 4)4=16a 8D .(a ﹣1)2=a ﹣28.不等式3+2x>x+1的解集在数轴上表示正确的是( )A .B .C .D .9.下列各组数中,是二元一次方程5x ﹣y =4的一个解的是( )A .31x y =⎧⎨=⎩B .11x y =⎧⎨=⎩C .04x y =⎧⎨=⎩D .13x y =⎧⎨=⎩10.下列各式中,不能够用平方差公式计算的是( )A .(y +2x )(2x ﹣y )B .(﹣x ﹣3y )(x +3y )C .(2x 2﹣y 2 )(2x 2+y 2 )D .(4a +b ﹣c )(4a ﹣b ﹣c )二、填空题11.若a m =5,a n =3,则a m +n =_____________.12.34x y =⎧⎨=-⎩是方程3x+ay=1的一个解,则a 的值是__________.13.若{14x y =-=是二元一次方程3x +ay =5的一组解,则a = ______ .14.一种微粒的半径是0.00004米,这个数据用科学记数法表示为____.15.计算(﹣2xy )2的结果是_____.16.233、418、810的大小关系是(用>号连接)_____.17.多项式4a 3bc +8a 2b 2c 2各项的公因式是_________.18.已知(a +b )2=7,a 2+b 2=5,则ab 的值为_____.19.已知:()521x x ++=,则x =______________.20.小马在解关于x 的一元一次方程3232a x x -=时,误将- 2x 看成了+2x ,得到的解为x =6,请你帮小马算一算,方程正确的解为x =_____. 三、解答题21.第19届亚运会将于2022年在杭州举行,“丝绸细节”助力杭州打动世界.杭州丝绸公司为亚运会设计手工礼品,投入W 元钱,若以2条领带和1条丝巾为一份礼品,则刚好可制作600份礼品;若以1条领带和3条丝巾为一份礼品,则刚好可制作400份礼品. (1)若24W =万元,求领带及丝巾的制作成本是多少?(2)若用W 元钱全部用于制作领带,总共可以制作几条?(3)若用W 元钱恰好能制作300份其他的礼品,可以选择a 条领带和b 条丝巾作为一份礼品(两种都要有),请求出所有可能的a 、b 的值.22.要说明(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc 成立,三位同学分别提供了一种思路,请根据他们的思路写出推理过程.(1)小刚说:可以根据乘方的意义来说明等式成立;(2)小王说:可以将其转化为两数和的平方来说明等式成立;(3)小丽说:可以构造图形,通过计算面积来说明等式成立;23.因式分解:(1)3()6()x a b y b a ---(2)222(1)6(1)9y y ---+24.观察下列式子:2×4+1=9;4×6+1=25;6×8+1=49;…(1)请你根据上面式子的规律直接写出第4个式子: ;(2)探索以上式子的规律,试写出第n 个等式,并说明等式成立的理由.25.已知a 6=2b =84,且a <0,求|a ﹣b|的值.26.如图(1),在平面直角坐标系中,点A 在x 轴负半轴上,直线l x ⊥轴于B ,点C 在直线l 上,点C 在x 轴上方.(1)(),0A a ,(),2C b ,且,a b 满足2()|4|0a b a b ++-+=,如图(2),过点C 作MN ∥AB ,点Q 是直线MN 上的点,在x 轴上是否存在点P ,使得ABC ∆的面积是BPQ 的面积的23?若存在,求出P 点坐标;若不存在,请说明理由.(2)如图(3),直线l 在y 轴右侧,点E 是直线l 上动点,且点E 在x 轴下方,过点E 作DE ∥AC 交y 轴于D ,且AF 、DF 分别平分CAB ∠、ODE ∠,则AFD ∠的度数是否发生变化?若不变,求出AFD∠的度数;若变化,请说明理由.27.解不等式-3+3+121-3-18-xxx x⎧≥⎪⎨⎪<⎩()28.如图所示,A(2,0),点B 在y 轴上,将三角形OAB 沿x 轴负方向平移,平移后的图形为三角形DEC,且点C 的坐标为(-6,4) .(1)直接写出点E 的坐标;(2)在四边形ABCD 中,点P 从点B 出发,沿“BC→CD”移动.若点P 的速度为每秒 2 个单位长度,运动时间为t 秒,回答下列问题:①求点P 在运动过程中的坐标,(用含t 的式子表示,写出过程);②当 3 秒<t<5 秒时,设∠CBP=x°,∠PAD=y°,∠BPA=z°,试问x,y,z 之间的数量关系能否确定?若能,请用含x,y 的式子表示z,写出过程;若不能,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】一个外角与一个内角的比为1 : 3,则内角和是外角和的3倍,根据多边形的外角和是360°,即可求得多边形的内角的度数,依据多边形的内角和公式即可求解.【详解】解:多边形的内角和是:360°×3=1080°.设多边形的边数是n,则(n-2)•180=1080,解得:n=8.即这个多边形是正八边形.故选D.【点睛】本题考查了多边形的内角和定理以及多边形的外角和定理,注意多边形的外角和不随边数的变化而变化.解析:C【分析】根据同底幂的运算法则依次判断各选项.【详解】A 中,a 3.a 2=a 5,错误;B 中,不是同类项,不能合并,错误;C 中,(a 3)2=a 6,正确;D 中,224(3)9a a =,错误故选:C .【点睛】本题考查同底幂的运算,注意在加减运算中,不是同类项是不能合并的.3.D解析:D【分析】根据因式分解的定义,需要将式子变形为几个整式相乘的形式,据此可判断.【详解】A 、C 不是几个式子相乘的形式,错误;B 中,32a a--不是整式,错误; D 是正确的故选:D .【点睛】本题考查因式分解的定义,注意一定要化成多个整式相乘的形式才叫因式分解. 4.C解析:C【分析】直接利用负整数指数幂的性质和零指数幂的性质分别化简比较即可求解.【详解】∵2090.3.0a =-=-,2193b =--=-,2142c -⎛⎫=-= ⎪⎝⎭,0113d ⎛⎫-= ⎪⎝⎭=, ∴它们的大小关系是:b <a <d <c故选:C【点睛】本题考查负整数指数幂的性质、零指数幂的性质及有理数大小比较,正确化简各数是解题的关键.5.C解析:C设小明买了签字笔x 支,练习本y 本,根据已知列出关于x 、y 的二元一次方程,用y 表示出x ,由x 、y 均为非负整数,解不等式可得出y 可取的几个值,从而得出结论.【详解】设小明买了签字笔x 支,练习本y 本,根据已知得:2x+3y=10, 解得:1032y x -=. ∵x 、y 均为非负整数, ∵令1030y -≥,解得:103y ≤, ∴y 只能为0、2两个数,∴只有两种购买方案.故选:C .【点睛】本题考查了二元一次方程的应用以及解一元一次不等式,解题的关键是根据x 、y 均为正整数,解不等式得出y 可取的值.本题属于基础题,难度不大,只要利用x 、y 为正整数,结合不等式即可得出结论.6.B解析:B【解析】【分析】根据二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.据此逐一判断即可得.【详解】解:A .x-y 2=1不是二元一次方程;B .2x-y=1是二元一次方程;C .1x+y =1不是二元一次方程; D .xy-1=0不是二元一次方程;故选B .【点睛】 本题考查二元一次方程的定义,解题的关键是掌握含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.7.D解析:D【分析】根据负整数指数幂、合并同类项、幂的乘方与积的乘方、同底数幂的乘法等知识点进行作答.解:A、a+a2不是同类项不能合并,故本选项错误;B、根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,∴a5•a2=a7,故本选项错误;C、根据幂的乘方法则:底数不变,指数相乘,(﹣2a4)4=16a16,故本选项错误;D、(a﹣1)2=a﹣2,根据幂的乘方法则,故本选项正确;故选:D.【点睛】本题考查了合并同类项,同底数的幂的乘法,负整数指数幂,积的乘方等多个运算性质,需同学们熟练掌握.8.A解析:A【分析】先解不等式求出不等式的解集,然后根据不等式的解集在数轴上的表示方法判断即可.【详解】解:移项,得2x-x>1-3,合并同类项,得x>﹣2,不等式的解集在数轴上表示为:.故选:A.【点睛】本题考查了一元一次不等式的解法和不等式的解集在数轴上的表示,属于基础题型,熟练掌握一元一次不等式的解法是关键.9.B解析:B【分析】把x与y的值代入方程检验即可.【详解】解:A、把31xy=⎧⎨=⎩代入得:左边=15﹣1=14,右边=4,∵左边≠右边,∴31xy=⎧⎨=⎩不是方程的解;B、把11xy=⎧⎨=⎩代入得:左边=5﹣1=4,右边=4,∵左边=右边,∴11xy=⎧⎨=⎩是方程的解;C 、把04x y =⎧⎨=⎩代入得:左边=0﹣4=﹣4,右边=4, ∵左边≠右边,∴04x y =⎧⎨=⎩不是方程的解; D 、把13x y =⎧⎨=⎩代入得:左边=5﹣3=2,右边=4, ∵左边≠右边,∴13x y =⎧⎨=⎩不是方程的解, 故选:B .【点睛】本题主要考查了二元一次方程的解的知识点,准确代入求职是解题的关键.10.B解析:B【分析】根据平方差公式:22()()a b a b a b +-=-进行判断.【详解】A 、原式22(2)x y =-,不符合题意;B 、原式2(3)x y =-+,符合题意;C 、原式2222(2)()x y =-,不符合题意;D 、原式22(4)a c b =--,不符合题意;故选B .【点睛】本题考查平方差公式,熟练掌握平方差公式是解题的关键. 二、填空题11.15【分析】根据幂的运算公式即可求解.【详解】∵am=5,an=3,∴am+n= am×an=5×3=15故答案为:15.【点睛】此题主要考查幂的运算,解题的关键是熟知同底数幂的逆运解析:15根据幂的运算公式即可求解.【详解】∵a m=5,a n=3,∴a m+n= a m×a n=5×3=15故答案为:15.【点睛】此题主要考查幂的运算,解题的关键是熟知同底数幂的逆运算.12.a=2【分析】根据题意把代入方程3x+ay=1,求出a即可.【详解】解:根据题意可得3×3+a×(-4)=1,解得a=2.故本题答案为:a=2.【点睛】此题考查了二元一次方程的解,方程解析:a=2【分析】根据题意把34xy=⎧⎨=-⎩代入方程3x+ay=1,求出a即可.【详解】解:根据题意可得3×3+a×(-4)=1,解得a=2.故本题答案为:a=2.【点睛】此题考查了二元一次方程的解,方程的解即为能使方程成立的未知数的值. 13.2【解析】【分析】把方程的解代入二元一次方程,即可得到一个关于a的方程,即可求解.【详解】解:把代入方程得:-3+4a=5,解得:a=2.故答案是:2.【点睛】本题主要考查了二解析:2【解析】把方程的解代入二元一次方程,即可得到一个关于a的方程,即可求解.【详解】解:把14xy=-⎧⎨=⎩代入方程得:-3+4a=5,解得:a=2.故答案是:2.【点睛】本题主要考查了二元一次方程的解的定义:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.正确解一元一次方程是解题的关键.14.4×10-5【解析】试题分析:科学计数法是指a×10n,且1≤|a|<10,小数点向右移动几位,则n的相反数就是几.考点:科学计数法解析:【解析】试题分析:科学计数法是指a×,且1≤<10,小数点向右移动几位,则n的相反数就是几.考点:科学计数法15.4x2y2.【分析】直接利用积的乘方运算法则计算得出答案.【详解】解:(﹣2xy)2=4x2y2.故答案为:4x2y2.【点睛】本题考查了积的乘方运算,正确掌握运算法则是解题的关键.解析:4x2y2.【分析】直接利用积的乘方运算法则计算得出答案.【详解】解:(﹣2xy)2=4x2y2.故答案为:4x2y2.【点睛】本题考查了积的乘方运算,正确掌握运算法则是解题的关键.16.418>233>810直接利用幂的乘方运算法则将原式变形,进而比较得出答案.【详解】解:∵,,∴236>233>230,∴418>233>810.故答案为:418>233>81解析:418>233>810【分析】直接利用幂的乘方运算法则将原式变形,进而比较得出答案.【详解】解:∵()18182364=2=2,()10103308=2=2, ∴236>233>230,∴418>233>810.故答案为:418>233>810【点睛】比较不同底数的幂的大小,当无法直接计算或计算过程比较麻烦时,可以转化为同底数幂,比较指数大小或同指数幂,比较底数大小进行.能熟练运用幂的乘方进行变形是解题关键.17.4a2bc【分析】多项式的公因式的系数是指多项式中各项系数的最大公约数,字母取各项相同字母的最低次幂.【详解】多项式4a3bc8a2b2c2的各项公因式是4a2bc . 故答案为:4a2bc 解析:4a 2bc【分析】多项式的公因式的系数是指多项式中各项系数的最大公约数,字母取各项相同字母的最低次幂.【详解】多项式4a 3bc +8a 2b 2c 2的各项公因式是4a 2bc .故答案为:4a 2bc .【点睛】本题属于基础题型,注意一个多项式的各项都含有的公共因式是这个多项式的公因式. 18.1利用完全平方公式得到a2+2ab+b2=7,然后把a2+b2=5代入可计算出ab的值.【详解】解:∵(a+b)2=7,∴a2+2ab+b2=7,∵a2+b2=5,∴5+2ab解析:1【分析】利用完全平方公式得到a2+2ab+b2=7,然后把a2+b2=5代入可计算出ab的值.【详解】解:∵(a+b)2=7,∴a2+2ab+b2=7,∵a2+b2=5,∴5+2ab=7,∴ab=1.故答案为1.【点睛】本题主要考查了完全平方差公式的运用,掌握完全平方差公式是解题的关键.19.-5或-1或-3【分析】根据零指数幂和1的任何次幂都等于1分情况讨论求解.【详解】解:根据0指数的意义,得:当x+2≠0时,x+5=0,解得:x=﹣5.当x+2=1时,x=﹣1,当x+2解析:-5或-1或-3【分析】根据零指数幂和1的任何次幂都等于1分情况讨论求解.【详解】解:根据0指数的意义,得:当x+2≠0时,x+5=0,解得:x=﹣5.当x+2=1时,x=﹣1,当x+2=﹣1时,x=﹣3,x+5=2,指数为偶数,符合题意.故答案为:﹣5或﹣1或﹣3.【点睛】本题考查零指数幂和有理数的乘方,掌握零指数幂和1的任何次幂都是1是本题的解题关键.20.3【解析】【分析】先根据题意得出a 的值,再代入原方程求出x 的值即可.【详解】∵方程的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x ,解得x=3.故答案为3解析:3【解析】【分析】先根据题意得出a 的值,再代入原方程求出x 的值即可.【详解】 ∵方程3232a x x +=的解为x=6, ∴3a+12=36,解得a=8, ∴原方程可化为24-2x=6x ,解得x=3.故答案为3【点睛】本题考查的是一元一次方程的解,熟知解一元一次方程的基本步骤是解答此题的关键.三、解答题21.(1)领带的制作成本是120元,丝巾的制作成本是160元;(2)可以制作2000条领带;(3)42a b =⎧⎨=⎩【分析】(1)设领带及丝巾的制作成本是x 元和y 元,根据题意列出方程组求解即可; (2)由600(2)W x y =+与400(3)W x y =+可得到43y x =,代入可得2000W x =,即可求得答案;(3)根据44600(2)300()33x x ax bx +=+即可表达出a 、b 的关系式即可解答. 【详解】解:(1)设领带及丝巾的制作成本是x 元和y 元, 则600(2)240000400(3)240000x y x y +=⎧⎨+=⎩解得:120160x y =⎧⎨=⎩答:领带的制作成本是120元,丝巾的制作成本是160元.(2)由题意可得:600(2)W x y =+,且400(3)W x y =+,∴600(2)400(3)x y x y +=+, 整理得:43y x =,代入 600(2)W x y =+ 可得:4600(2)20003W x x x =+=, ∴可以制作2000条领带.(3)由(2)可得:43y x =, ∴44600(2)300()33x x ax bx +=+ 整理可得:3420a b +=∵a 、b 都为正整数, ∴42a b =⎧⎨=⎩【点睛】本题考查了二元一次方程组的综合应用,解题的关键是根据题意列出方程,并对已知条件进行适当的变形.22.(1)详见解析;(2)详见解析;(3)详见解析【分析】(1)利用乘方的意义求解,即可;(2)将式子变形,利用完全平方公式计算,即可;(3)化成边长为a+b+c 的正方形,即可得出答案.【详解】(1)小刚:(a +b +c )2=(a +b +c )(a +b +c )=a 2+ab +ac +ba +b 2+bc +ca +cb +c 2=a 2+b 2+c 2+2ab +2ac +2bc(2)小王:(a +b +c )2=[(a +b )+c ]2=(a +b )2+2(a +b )c +c 2=a 2+b 2+2ab +2ac +2bc +c 2(3)小丽:如图【点睛】本题考查了整式的运算法则的应用,能正确根据整式的运算法则进行化简是解此题的关键,也培养了学生的动手操作能力.23.(1)3()(2)a b x y -+;(2)22(2)(2)y y +-【分析】(1)提取公因式3(a-b),即可求解.(2)将(y 2-1)看成一项,根据完全平方公式进行因式分解,之后再利用平方差公式即可求解.【详解】(1)原式=3()6()x a b y b a ---=3()(2)a b x y -+故答案为:3()(2)a b x y -+(2)原式=222(1)6(1)9y y ---+ =22(y 13)--=22(4)y -=22(2)(2)y y +-故答案为:22(2)(2)y y +-【点睛】本题考查了因式分解的方法,本题分别采用了提取公因式法和公式法进行因式分解,一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.运用公式法因式分解,一般有平方差公式,完全平方公式,立方和公式,完全立方公式.24.(1)8×10+1=81;(2)2n (2n +1)+1=(2n +1)2,理由见解析.【分析】(1)根据上面式子的规律即可写出第4个式子;(2)探索以上式子的规律,结合(1)即可写出第n 个等式.【详解】解:观察下列式子:2×4+1=9=32;4×6+1=25=52:6×8+1=49=72;…(1)发现规律:第4个式子:8×10+1=81=92;故答案为:8×10+1=81;(2)第n 个等式为:2n (2n +1)+1=(2n +1)2,理由:2n (2n +1)+1=4n 2+4n +1=(2n +1)2.【点睛】本题考查了规律型-数字的变化类,解决本题的关键是根据数字的变化寻找规律,总结规律.25.16【分析】根据幂的乘方运算法则确定a 、b 的值,再根据绝对值的定义计算即可.【详解】解:∵(±4)6=2b =84=212,a <0,∴a =﹣4,b =12,∴|a ﹣b|=|﹣4﹣12|=16.【点睛】本题考查幂的乘方,难度不大,也是中考的常考知识点,熟练掌握幂的乘方运算法则是解题的关键.26.(1)存在,P 点为()8,0或()4,0-;(2)AFD ∠的度数不变,AFD ∠=45︒【分析】(1)由非负数的性质可得a 、b 的方程组,解方程组即可求出a 、b 的值,于是可得点A 、C 坐标,进而可得S △ABC ,若x 轴上存在点P (m ,0),满足S △ABC =23S △BPQ ,可得关于m 的方程,解方程即可求出m 的值,从而可得点P 坐标;(2)如图4,过点F 作FH ∥AC ,设AC 交y 轴于点G ,根据平行公理的推论可得AC ∥FH ∥DE ,然后根据平行线的性质和角的和差可得∠AFD =∠GAF +∠1,由角平分线的性质和三角形的内角和定理可得2∠GAF +2∠1=90°,于是可得∠AFD =45°,从而可得结论.【详解】解:(1)∵,a b 满足2()|4|0a b a b ++-+=, ∴040a b a b +=⎧⎨-+=⎩,解得:22a b =-⎧⎨=⎩, ∴()2,0A -,()2,2C ,∴S △ABC =14242⨯⨯=, ∵点Q 是直线MN 上的点,∴2Q y =, 若x 轴上存在点P (m ,0),满足S △ABC =23S △BPQ , 则2122432m ⨯⋅-⨯=,解得:m =8或﹣4, 所以存在点P 满足S △ABC =23S △BPQ ,且P 点坐标为()8,0或()4,0-; (2)如图4,过点F 作FH ∥AC ,设AC 交y 轴于点G ,∵DE ∥AC ,∴AC ∥FH ∥DE ,∴∠GAF =∠AFH ,∠HFD =∠1,∠AGO =∠GDE ,∴∠AFD =∠AFH +∠HFD =∠GAF +∠1,∵AF 、DF 分别平分CAB ∠、ODE ∠, ∴∠CAB =2∠GAF ,∠ODE =2∠1=∠AGO ,∵∠CAB +∠AGO =90°,∴2∠GAF +2∠1=90°,∴∠GAF +∠1=45°,即∠AFD =45°;∴AFD ∠的度数不会发生变化,且∠AFD =45°.【点睛】本题考查了非负数的性质、二元一次方程组的解法、坐标系中三角形的面积、平行线的性质、角平分线的定义以及三角形的内角和定理等知识,综合性强、但难度不大,正确添加辅助线、熟练掌握上述是解题的关键.27.﹣2<x≤1.【详解】试题分析:根据不等式的解法,分别解两个不等式,然后取其公共部分即可. 试题解析:331(1)213(1)8(2)x x x x -⎧++⎪⎨⎪--<-⎩, ∵解不等式①得:x≤1,解不等式②得:x >﹣2,∴不等式组的解集为﹣2<x≤1.点睛:此题主要考查了不等式组的解法,解题关键是利用一元一次不等式的解法,分别解不等式,然后根据不等式组的解集确定法:“都大取大,都小取小,大小小大取中间,大大小小无解了”,确定其解集即可.28.(1)()4,0- (2)1)点P 在线段BC 上时, (),4P t -,2)点P 在线段CD 上时, ()6,10P t --; (3)能确定,z x y =+,证明见解析【分析】(1)根据平移的性质即可得到结论;(2)①分两种情况:1)点P 在线段BC 上时,2)点P 在线段CD 上时;②如图,作P 作//PE BC 交于AB 于E ,则//PE AD ,根据平行线的性质即可得到结论.【详解】(1)∵点B 的横坐标为0,点C 的横坐标为-6,∴将A (2,0)向左平移6个单位长度得到点E∴()4,0E -;(2)①∵6,4BC CD ==∴1)点P 在线段BC 上时,PB t =(),4P t -;2)点P 在线段CD 上时,()4610PD t t =--=-()6,10P t --;②能确定如图,作P 作//PE BC 交于AB 于E ,则//PE AD∴1,2CBP x DAP y ==︒==︒∠∠∠∠ ∴1+2BPA x y z ==︒+︒=︒∠∠∠ ∴z x y =+.【点睛】本题考查了平行线的问题,掌握平移的性质、代数式的用法、平行线的性质以及判定定理是解题的关键.。
2021年江阴市初一数学下期末模拟试题附答案
一、选择题1.已知关于x 的不等式组15x a x b -≥⎧⎨+≤⎩的解集是3≤x ≤5,则+a b 的值为( ) A .6B .8C .10D .12 2.关于x 的方程3a x -=的解是非负数,那么a 满足的条件是( ) A .3a > B .3a ≤ C .3a < D .3a ≥ 3.某工厂现有95个工人,一个工人每天可做8个螺杆或22个螺母,两个螺母和一个螺杆为一套,现在要求工人每天做的螺杆和螺母完整配套而没有剩余,若设安排x 个工人做螺杆,y 个工人做螺母,则列出正确的二元一次方程组为( )A .958220x y x y +=⎧⎨-=⎩B .954220x y x y +=⎧⎨-=⎩C .9516220x y x y +=⎧⎨-=⎩D .9516110x y x y +=⎧⎨-=⎩ 4.如果2x 3n y m+4与-3x 9y 2n 是同类项,那么m 、n 的值分别为( ) A .m=-2,n=3 B .m=2,n=3 C .m=-3,n=2 D .m=3,n=2 5.若a 为方程250x x +-=的解,则22015a a ++的值为( )A .2010B .2020C .2025D .20196.某校七年级1班学生为了参加学校文化评比买了22张彩色的卡纸制作如下图形(每个图形由两个三角形和一个圆形组成),已知一张彩色卡纸可以剪5个三角形,或3个圆形,要使圆形和三角形正好配套,需要剪三角形的卡纸有x 张,剪圆形的卡纸有y 张,可列式为( )A .2256x y x y +=⎧⎨=⎩B .2265x y x y +=⎧⎨=⎩C .22310x y x y +=⎧⎨=⎩D .22103x y x y +=⎧⎨=⎩7.已知两点(,5)A a ,(1,)B b -且直线//AB x 轴,则( )A .a 可取任意实数,5b =B .1a =-,b 可取任意实数C .1a ≠-,5b =D .1a =-,5b ≠8.在平面直角坐标系中,点()3,4-在( )A .第一象限B .第二象限C .第三象限D .第四象限 9.下列实数中,是无理数的为( )A .3.14B .13C .5D .910.如图,25AOB ︒∠=,90AOC ︒∠=,点B ,O ,D 在同一直线上,则COD ∠的度数为( )A .65B .25C .115D .155 11.下列不等式中,是一元一次不等式的是( ) A .2x 10-> B .12-< C .3x 2y 1-≤- D .2y 35+> 12.整数a 使得关于x ,y 的二元一次方程组931ax y x y -=⎧⎨-=⎩的解为正整数(x ,y 均为正整数),且使得关于x 的不等式组()1211931x x a ⎧+≥⎪⎨⎪-<⎩无解,则a 的值可以为( )A .4B .4或5或7C .7D .11二、填空题13.已知不等式组11x x a >⎧⎨<-⎩无解,则a 的取值范围为__. 14.己知不等式组1x x a≤⎧⎨≤⎩的解集是1x ≤,则a 的取值范围是______. 15.若32x y =⎧⎨=⎩是方程24x ay -= 的一个解,则a =________. 16.甲、乙两人共同解方程组51542+=⎧⎨-=-⎩ax y x by ,由于甲看错了方程①中的a ,得到方程组的解为31x y =-⎧⎨=⎩,乙看错了方程②中的b ,得到方程组的解为54x y =⎧⎨=⎩,则a 2020+ (10b )2021=________.17.三角形A′B′C′是由三角形ABC平移得到的,点A(-1,4)的对应点为A′(1,-1),若点C′的坐标为(0,0),则点C′的对应点C的坐标为______.18.在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示.那么点A2020的坐标是________.19.37 的相反数是________;绝对值等于3的数是________20.一把标有0至10的直尺,如图所示放在数轴上,且直尺上的刻度0、1、2、3、4和数轴上的﹣1、﹣2、﹣3、﹣4、﹣5分别对应.现把直尺向右平移5个单位长度,平移后数轴上的数与刻度尺上的读数相同,则这个数是______.三、解答题21.受疫情影响,口罩价格不断走高.3月20日当天口罩的价格是年初的1.5倍;3月20日当天,王老师购买4盒口罩比年初多花了48元.(1)那么3月20日当天口罩的价格为每盒多少元?(2)3月20日,按照(1)中的口罩价格,某售卖点共卖出1000盒口罩.3月21日,政府决定投入储备口罩并规定其销售价在3月20日的基础上下调0.7%a出售.该售卖点按规定价出售一批储备口罩和非储备口罩,该售卖点的非储备口罩仍按3月20日的价格出售,3月21日当天的两种口罩总销量比3月20日增加了20%,且储备口罩的销量占总销量的5 6,两种口罩销售的总金额比3月20日至少提高了1%10a,求a的最大值.22.某商场计划经销A、B两种新型节能台灯共50盏,这两种台灯的进价、售价如表所示:A型B型进价(元/盏)4065售价(元/盏)60100(2)在每种台灯销售利润不变的情况下,若该商场销售这批台灯的总利润不少于1400元,问至少购进B种台灯多少盏?23.一个电器超市购进A、B两种型号的电风扇进行销售,已知购进2台A型号和3台B 型号共用910元,购进3台A型号比购进2台B型号多用260元.(1)求A、B两种型号的电风扇每台进价分别是多少元?(2)超市根据市场需求,决定购进这两种型号的电风扇共30台进行销售,A 种型号电风扇每台售价260元,B 种型号电风扇每件售价190元,若超市购进的两种电风扇全部售出后,总获利是1400元,求该超市本次购进A 、B 两种型号的电风扇各多少台?24.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 坐标为(a ,0),点C 的坐标为(0,b ),且a 、b 满足4a -+|b ﹣6|=0,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O ﹣C ﹣B ﹣A ﹣O 的线路移动.(1)a= ,b= ,点B 的坐标为 ;(2)当点P 移动4秒时,请指出点P 的位置,并求出点P 的坐标;(3)在移动过程中,当点P 到x 轴的距离为5个单位长度时,求点P 移动的时间.25.计算:(1)(23)(41)----;(2)1111115()13()3()555-⨯-+⨯--⨯-; (3)23(2)|21|27-+--; (4)311()()(2)424-⨯-÷-.26.如图所示,在平面直角坐标系中,已知A (0,1)、B (2,0)、C (4,3).(1)在平面直角坐标系中画出△ABC ,作出△ABC 向下平移3格后的△A 1B 1C 1; (2)求△ABC 的面积;(3)已知点Q 为y 轴上一点,若△ACQ 的面积为8,求点Q 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】先求出两个不等式的解集,再求其公共解,再根据不等式组的解集列出求出a 、b 的值,再代入代数式进行计算即可得解.【详解】15x a x b -≥⎧⎨+≤⎩①②, 由①得,x≥a +1,由②得,x≤b−5,∵不等式组的解集是3≤x≤5,∴a +1=3,b−5=5,解得a =2,b =10,所以,a +b =2+10=12.故选:D .【点睛】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解). 2.D解析:D【分析】求出方程的解,根据已知得出a-3≥0,求出即可.【详解】解:解方程a-x=3得:x=a-3,∵方程的解是非负数,∴a-3≥0,解得:a≥3,故选:D .【点睛】本题考查了一元一次方程的解,解一元一次不等式,解一元一次方程的应用,关键是得出一个关于a 的不等式.3.C解析:C【分析】设安排x 个工人做螺杆,y 个工人做螺母,根据“工厂现有95个工人”和“一个工人每天可做8个螺杆或22个螺母,两个螺母和一个螺杆为一套”列出方程组即可.【详解】设安排x 个工人做螺杆,y 个工人做螺母,由题意得:952822x y x y +=⎧⎨⨯=⎩,即9516220x y x y +=⎧⎨-=⎩, 故选:C .【点睛】本题主要考查了由实际问题抽象出二元一次方程组,关键是弄清题意,找出合适的等量关系,列出方程组.4.B解析:B【分析】根据同类项的定义可得关于m 、n 的方程组,解方程组即可求出答案.【详解】解:由题意得:3942n m n =⎧⎨+=⎩,解得:23m n =⎧⎨=⎩. 故选:B .【点睛】本题考查了同类项的定义和二元一次方程组的解法,属于基本题型,熟练掌握基本知识是解题的关键. 5.B解析:B【分析】先根据a 为方程250x x +-=的解得到25a a +=,然后整体代入即可解答.【详解】解:∵a 为方程250x x +-=的解∴250a a +-=,即25a a +=∴22015a a ++=5+2015=2020.故答案为B .【点睛】本题考查了一元二次方程的解和整体法的应用,正确理解并灵活应用一元二次方程的解解答问题是解答本题的关键.6.A解析:A【分析】设需要剪三角形的卡纸有x 张,剪圆形的卡纸有y 张,根据彩色卡纸的总张数为22张其剪出三角形的数量为圆的2倍,即可得出关于x 、y 的二元一次方程组,此题得解.【详解】设需要剪三角形的卡纸有x 张,剪圆形的卡纸有y 张,根据题意得:22 56x yx y+=⎧⎨=⎩.故选:A.【点睛】此题考查由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.7.C解析:C【分析】根据平行于坐标轴的坐标特点进行解答即可.【详解】解://AB x轴,5b∴=,1a≠-.故答案为C.【点睛】本题主要考查了坐标与图形,即平行于x轴的直线上的点纵坐标相同,平行于y轴的直线上的点横坐标相同.8.B解析:B【分析】根据直角坐标系中点的坐标的特点解答即可.【详解】∵点()3,4-,∴点()3,4-在第二象限,故选:B.【点睛】此题考查直角坐标系中点的坐标的符号特点,第一象限为(+,+),第二象限为(-,+),第三象限为(-,-),第四象限为(+,-).9.C解析:C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】A.3.14是有限小数,属于有理数;B.13是分数,属于有理数;3,是整数,属于有理数.故选:C.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.10.C解析:C【分析】先求出∠BOC,再由邻补角关系求出∠COD的度数.【详解】∵∠AOB=25°,∠AOC=90°,∴∠BOC=90°-25°=65°,∴∠COD=180°-65°=115°.故选:C.【点睛】本题考查了余角、邻补角的定义和角的计算;弄清各个角之间的关系是解题的关键.11.A解析:A【分析】只含有一个未知数,且未知数的最高次数为1的不等式叫做一元一次不等式.【详解】A、是一元一次不等式;B、不含未知数,不符合定义;C、含有两个未知数,不符合定义;D、未知数的次数是2,不符合定义,故选:A.【点睛】此题考查一元一次不等式的定义:只含有一个未知数,且未知数的最高次数为1的不等式叫做一元一次不等式.12.B解析:B【分析】先解方程组得83273xaaya⎧=⎪⎪-⎨-⎪=⎪-⎩,根据x、y为正整数可求得a,再解不等式组,根据不等式组无解可得a的取值范围,据此可求得a值.解:解二元一次方程组931ax yx y-=⎧⎨-=⎩,得:83273xaaya⎧=⎪⎪-⎨-⎪=⎪-⎩,∵方程组的解均为正整数,∴a=4、5、7、11,解不等式组()1211931xx a⎧+≥⎪⎨⎪-<⎩,得:81xx a≥⎧⎨<+⎩,∵不等式组无解,∴a+1≤8,即a≤7,∴满足题意的a值为4或5或7,故答案为:B.【点睛】本题考查二元一次方程的解法、一元一次不等式组的解法,熟练掌握它们的解法,会用不等式组无解求参数范围,会利用正约数求满足方程组的整数解是解答的关键.二、填空题13.【分析】求出不等式组中每个不等式的解集根据已知即可得出关于a的不等式即可得出答案【详解】解:不等式组无解解得:故答案为:【点睛】本题考查了一元一次不等式组的应用解此题的关键是能得出关于a的不等式题目解析:2a【分析】求出不等式组中每个不等式的解集,根据已知即可得出关于a的不等式,即可得出答案.【详解】解:不等式组11xx a>⎧⎨<-⎩无解,11a∴-,解得:2a,故答案为:2a.【点睛】本题考查了一元一次不等式组的应用,解此题的关键是能得出关于a的不等式,题目比较好,难度适中.14.a≥1【分析】已知不等式组的解集为再根据不等式组解集的口诀:同大取大得到a的范围【详解】解:∵一元一次不等式组的解集为∴a≥1故答案为:a≥1【点睛】本题考查了一元一次不等式组解集的求法将不等式组解【分析】已知不等式组的解集为1x ≤,再根据不等式组解集的口诀:同大取大,得到a 的范围.【详解】解:∵一元一次不等式组1x x a≤⎧⎨≤⎩的解集为1x ≤, ∴a≥1,故答案为:a≥1.【点睛】本题考查了一元一次不等式组解集的求法,将不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)逆用,已知不等式解集反过来求a 的范围. 15.1【分析】将解代入二元一次方程再解一个一元一次方程即可【详解】解:∵是方程的一个解∴∴故答案为:1【点睛】本题考查了二元一次方程的解解决此类题目时只要将解代入方程计算即可解析:1【分析】将解代入二元一次方程,再解一个一元一次方程即可.【详解】解:∵32x y =⎧⎨=⎩是方程24x ay -=的一个解, ∴2324a ⨯-=,∴1a =,故答案为:1.【点睛】本题考查了二元一次方程的解,解决此类题目时,只要将解代入方程计算即可. 16.【分析】根据甲看错了方程①中的a②没有看错代入②得到一个方程求出b 的值乙看错了方程②中的b①没有看错代入①求出a 的值然后再把ab 的值代入代数式计算即可求解【详解】解:根据题意得4×(-3)-b=-2解析:0【分析】根据甲看错了方程①中的a ,②没有看错,代入②得到一个方程求出b 的值,乙看错了方程②中的b ,①没有看错,代入①求出a 的值,然后再把a 、b 的值代入代数式计算即可求解.【详解】解:根据题意得,4×(-3)-b=-2,5a+5×4=15,解得a=-1,b=-10,则a 2020+ (10b )2021=(-1)2020+(-110×10)2021=1-1=0 故答案是:0.【点睛】 本题考查了二元一次方程的解,根据题意列出方程式解题的关键.17.(-25)【分析】根据点A(-14)的对应点为A′(1-1)可以得出变化规律再将点C′按照此变化规律即可得出C 点的坐标【详解】解:∵点A (-14)的对应点为A′(1-1)∴此题变化规律是为(x+2y解析:(-2,5)【分析】根据点A(-1,4)的对应点为A′(1,-1),可以得出变化规律,再将点C′按照此变化规律即可得出C 点的坐标.【详解】解:∵点A (-1,4)的对应点为A′(1,-1),∴此题变化规律是为(x+2,y-5),∴C′(0,0)的对应点C 的坐标分别为(-2,5),故答案为:(-2,5).【点睛】本题考查了平移中点的变化规律,横坐标右移加,左移减;纵坐标上移加,下移减.左右移动改变点的横坐标,上下移动改变点的纵坐标.18.(10100)【分析】这是一个关于坐标点的周期问题先找到蚂蚁运动的周期蚂蚁每运动4次为一个周期题目问点的坐标即相当于蚂蚁运动了505个周期再从前4个点中找到与之对应的点即可求出点的坐标【详解】通过观解析:(1010,0)【分析】这是一个关于坐标点的周期问题,先找到蚂蚁运动的周期,蚂蚁每运动4次为一个周期,题目问点2020A 的坐标,即20204=505÷,相当于蚂蚁运动了505个周期,再从前4个点中找到与之对应的点即可求出点2020A 的坐标.【详解】通过观察蚂蚁运动的轨迹可以发现蚂蚁的运动是有周期性的,蚂蚁每运动4次为一个周期,可得:20204=505÷,即点2020A 是蚂蚁运动了505个周期,此时与之对应的点是4A ,点4A 的坐标为(2,0),则点2020A 的坐标为(1010,0)【点睛】本题是一道关于坐标点的规律题型,解题的关键是通过观察得到其中的周期,再结合所求点与第一个周期中与之对应点,即可得到答案.19.【分析】直接利用相反数的定义以及绝对值的性质分析得出答案【详解】的相反数是;绝对值等于的数是故答案为:;【点睛】本题主要考查了绝对值以及相反数正确掌握相关定义是解题关键±解析:373【分析】直接利用相反数的定义以及绝对值的性质分析得出答案.【详解】37-的相反数是37;±.绝对值等于3的数是3±.故答案为:37;3【点睛】本题主要考查了绝对值以及相反数,正确掌握相关定义是解题关键.20.2【分析】画出示意图找出平移后数轴上的数与刻度尺上的读数相同的数字即可【详解】如图:平移后数轴上的数与刻度尺上的读数相同的数字是2故答案为:2【点睛】本题主要考查平移的概念以及数轴根据题意画出示意图解析:2【分析】画出示意图,找出平移后数轴上的数与刻度尺上的读数相同的数字即可.【详解】如图:平移后数轴上的数与刻度尺上的读数相同的数字是2.故答案为:2.【点睛】本题主要考查平移的概念以及数轴,根据题意画出示意图是解题关键.三、解答题21.(1)3月20日当天口罩的价格为每盒36元.(2)a的最大值为25.【分析】(1)可设年初口罩的价格为每盒x元,则3月20日当天口罩的价格为每盒1.5x元,根据3月20日当天,王老师购买4盒口罩比年初多花了48元列出方程即可求解;(2)根据两种口罩销售的总金额比3月20日至少提高了1%10a ,列出不等式即可求解. 【详解】 解:(1)设年初口罩的价格为每盒x 元,则3月20日当天口罩的价格为每盒1.5x 元,依题意有4 1.5448x x ⨯-=,解得24x = ,1.5 1.52436x =⨯=.∴3月20日当天口罩的价格为每盒36元.(2)1000×(1+20%)=1200(盒),5120010006⨯==1000(盒), 1200-1000=200(盒),依题意有()13620010003610.7%1000361%10a a ⎛⎫⨯+⨯-≥⨯+⎪⎝⎭, 解得a≤25.故a 的最大值为25.【点睛】本题考查了一元一次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据各数量之间的关系,正确列出一元一次不等式.22.(1)购进A 种新型节能台灯30盏,购进B 种新型节能台灯20盏;(2)至少购进B 种台灯27盏【分析】(1)设购进A 种新型节能台灯x 盏,购进B 种新型节能台灯y 盏,根据总价=单价×数量结合该商城用2500元购进A 、B 两种新型节能台灯共50盏,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设购进B 种新型节能台灯m 盏,则购进A 种新型节能台灯(50﹣m )盏,根据总利润=单盏利润×数量结合总利润不少于1400元,即可得出关于m 的一元一次不等式,解之取其中的最小整数值即可得出结论.【详解】解:(1)设购进A 种新型节能台灯x 盏,购进B 种新型节能台灯y 盏, 依题意,得:5040652500x y x y +=⎧⎨+=⎩ , 解得:3020x y =⎧⎨=⎩ . 答:购进A 种新型节能台灯30盏,购进B 种新型节能台灯20盏.(2)设购进B 种新型节能台灯m 盏,则购进A 种新型节能台灯(50﹣m )盏,依题意,得:(60﹣40)(50﹣m )+(100﹣65)m≥1400,解得:m≥803. ∵m 为正整数, ∴m 的最小值为27.答:至少购进B 种台灯27盏.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.23.(1)A 、B 两种型号的电风扇每台进价分别是200元和170元;(2)该超市本次购进A 、B 两种型号的电风扇各是20台和10台【分析】(1)设A 、B 两种型号的电风扇每台进价分别是x 元、y 元,进而利用购进2台A 型号和3台B 型号共用910元,购进3台A 型号比购进2台B 型号多用260元,列出二元一次方程组求出答案;(2)首先设购进A 种型号的电风扇a 台,则设购进B 种型号的电风扇(30-a )台,直接利用本次购进的两种电风扇全部售出后,总获利为1400元,列方程求出答案.【详解】解:(1)设A 、B 两种型号的电风扇每台进价分别是x 元、y 元,依题意,得2391032260x y x y +=⎧⎨-=⎩,解得200170x y =⎧⎨=⎩, 答:A 、B 两种型号的电风扇每台进价分别是200元和170元.(2)设购进A 种型号的电风扇a 台,则设购进B 种型号的电风扇(30)a -台, 依题意,得:(260200)(190170)(30)1400a a -+--=,解得:20a =,则3010a -=.答:该超市本次购进A 、B 两种型号的电风扇各是20台和10台.【点睛】此题主要考查了二元一次方程的应用,正确根据题目间等量关系列方程组进行计算求解是解题关键.24.(1)4,6,(4,6);(2)点P 在线段CB 上,点P 的坐标是(2,6);(3)点P 移动的时间是2.5秒或5.5秒.【解析】试题分析:(160.b -=可以求得,a b 的值,根据长方形的性质,可以求得点B 的坐标;(2)根据题意点P 从原点出发,以每秒2个单位长度的速度沿着O CB A O 的线路移动,可以得到当点P 移动4秒时,点P 的位置和点P 的坐标;(3)由题意可以得到符合要求的有两种情况,分别求出两种情况下点P 移动的时间即可.试题(1)∵a、b60.b-=∴a−4=0,b−6=0,解得a=4,b=6,∴点B的坐标是(4,6),故答案是:4,6,(4,6);(2)∵点P从原点出发,以每秒2个单位长度的速度沿着O−C−B−A−O的线路移动,∴2×4=8,∵OA=4,OC=6,∴当点P移动4秒时,在线段CB上,离点C的距离是:8−6=2,即当点P移动4秒时,此时点P在线段CB上,离点C的距离是2个单位长度,点P的坐标是(2,6);(3)由题意可得,在移动过程中,当点P到x轴的距离为5个单位长度时,存在两种情况,第一种情况,当点P在OC上时,点P移动的时间是:5÷2=2.5秒,第二种情况,当点P在BA上时,点P移动的时间是:(6+4+1)÷2=5.5秒,故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5秒或5.5秒.25.(1)4;(2)-11;(3;(4)16 -.【分析】(1)直接利用有理数的加减运算法则计算得出答案;(2)逆用分配律,直接提取公因数-115,进而计算得出答案;(3)直接利用绝对值和立方根的性质分别化简得出答案;(4)直接利用有理数的混合运算法则计算得出答案.【详解】解:(1)(23)(41)----15=-+4=;(2)原式11()(5133) 5=-⨯-+-1155=-⨯11=-;(3)原式413=+-2=; (4)原式314429=-⨯⨯ 16=-. 【点睛】本题主要考查了实数运算,正确化简各数是解题的关键.26.(1)见解析;(2)4;(3)(0,5)或(0,-3).【分析】(1)先在平面直角坐标系中描点,再连接,然后分别作出平移后的对应点,再顺次连接即可得;(2)利用割补法求解可得;(3)根据三角形面积公式求出AQ 的长,即可确定点Q 的坐标.【详解】解:(1)如图所示,(2)△ABC 的面积=111342421234222⨯-⨯⨯-⨯⨯-⨯⨯= (3)∵Q 为y 轴上一点,△ACQ 的面积为8, ∴1||482AQ ⨯⨯=, ∴AQ=4 ∴点Q 的纵坐标为:4+1=5或1-4=-3,故Q 点坐标为:(0,5)或(0,-3).【点睛】本题主要考查的是作图-平移变换、点的坐标与图形的性质,明确△ABC 的面积=四边形的面积-3个直角三角形的面积是解题的关键.。
江阴市江阴市英桥国际学校七年级下册数学期末试卷易错题(Word版 含答案)
江阴市江阴市英桥国际学校七年级下册数学期末试卷易错题(Word 版 含答案)一、解答题1.如图,//MN GH ,点A 、B 分别在直线MN 、GH 上,点O 在直线MN 、GH 之间,若116NAO ∠=︒,144OBH ∠=︒.(1)AOB ∠= ︒;(2)如图2,点C 、D 是NAO ∠、GBO ∠角平分线上的两点,且35CDB ∠=︒,求ACD ∠ 的度数;(3)如图3,点F 是平面上的一点,连结FA 、FB ,E 是射线FA 上的一点,若MAE ∠=n OAE ∠,HBF n OBF ∠=∠,且60AFB ∠=︒,求n 的值.2.综合与实践课上,同学们以“一个直角三角形和两条平行线”为背景开展数学活动,如图,已知两直线,a b ,且,a b ABC //是直角三角形,90BCA ∠=︒,操作发现:(1)如图1.若148∠=︒,求2∠的度数;(2)如图2,若30,1A ∠=︒∠的度数不确定,同学们把直线a 向上平移,并把2∠的位置改变,发现21120∠-∠=︒,请说明理由.(3)如图3,若∠A =30°,AC 平分BAM ∠,此时发现1∠与2∠又存在新的数量关系,请写出1∠与2∠的数量关系并说明理由.3.(1)(问题)如图1,若//AB CD ,40AEP ∠=︒,130PFD ∠=︒.求EPF ∠的度数; (2)(问题迁移)如图2,//AB CD ,点P 在AB 的上方,问PEA ∠,PFC ∠,EPF ∠之间有何数量关系?请说明理由;(3)(联想拓展)如图3所示,在(2)的条件下,已知EPF α∠=,PEA ∠的平分线和PFC ∠的平分线交于点G ,用含有α的式子表示G ∠的度数.4.综合与探究 (问题情境)王老师组织同学们开展了探究三角之间数量关系的数学活动(1)如图1,//EF MN ,点A 、B 分别为直线EF 、MN 上的一点,点P 为平行线间一点,请直接写出PAF ∠、PBN ∠和APB ∠之间的数量关系;(问题迁移)(2)如图2,射线OM 与射线ON 交于点O ,直线//m n ,直线m 分别交OM 、ON 于点A 、D ,直线n 分别交OM 、ON 于点B 、C ,点P 在射线OM 上运动,①当点P 在A 、B (不与A 、B 重合)两点之间运动时,设ADP α∠=∠,BCP β∠=∠.则CPD ∠,α∠,β∠之间有何数量关系?请说明理由.②若点P 不在线段AB 上运动时(点P 与点A 、B 、O 三点都不重合),请你画出满足条件的所有图形并直接写出CPD ∠,α∠,β∠之间的数量关系.5.如图,已知直线//AB 射线CD ,100CEB ∠=︒.P 是射线EB 上一动点,过点P 作PQ //EC 交射线CD 于点Q ,连接CP .作PCF PCQ ∠=∠,交直线AB 于点F ,CG 平分ECF ∠.(1)若点P ,F ,G 都在点E 的右侧,求PCG ∠的度数;(2)若点P ,F ,G 都在点E 的右侧,30EGC ECG ∠-∠=︒,求CPQ ∠的度数; (3)在点P 的运动过程中,是否存在这样的情形,使:4:3EGC EFC ∠∠=?若存在,求出CPQ ∠的度数;若不存在,请说明理由.二、解答题6.已知直线//AB CD ,M ,N 分别为直线AB ,CD 上的两点且70MND ∠=︒,P 为直线CD 上的一个动点.类似于平面镜成像,点N 关于镜面MP 所成的镜像为点Q ,此时,,NMP QMP NPM QPM MNP MQP ∠=∠∠=∠∠=∠.(1)当点P 在N 右侧时:①若镜像Q 点刚好落在直线AB 上(如图1),判断直线MN 与直线PQ 的位置关系,并说明理由;②若镜像Q 点落在直线AB 与CD 之间(如图2),直接写出BMQ ∠与DPQ ∠之间的数量关系;(2)若镜像PQ CD ⊥,求BMQ ∠的度数.7.(1)学习了平行线以后,香橙同学想出了过一点画一条直线的平行线的新方法,她是通过折纸做的,过程如(图1).①请你仿照以上过程,在图2中画出一条直线b ,使直线b 经过点P ,且//b a ,要求保留折纸痕迹,画出所用到的直线,指明结果.无需写画法:②在(1)中的步骤(b )中,折纸实际上是在寻找过点P 的直线a 的 线.(2)已知,如图3,//AB CD ,BE 平分ABC ∠,CF 平分BCD ∠.求证://BE CF (写出每步的依据).8.已知:如图1,//AB CD ,点E ,F 分别为AB ,CD 上一点.(1)在AB ,CD 之间有一点M (点M 不在线段EF 上),连接ME ,MF ,探究AEM ∠,EMF ∠,∠MFC 之间有怎样的数量关系,请补全图形,并在图形下面写出相应的数量关系,选其中一个进行证明.(2)如图2,在AB ,CD 之两点M ,N ,连接ME ,MN ,NF ,请选择一个图形写出AEM ∠,EMN ∠,MNF ∠,NFC ∠存在的数量关系(不需证明).9.如图所示,已知//AM BN ,点P 是射线AM 上一动点(与点A 不重合),BC 、BD 分别平分ABP ∠和PBN ∠,分别交射线AM 于点C 、D ,且60CBD ∠=︒ (1)求A ∠的度数.(2)当点P 运动时,APB ∠与ADB ∠之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律. (3)当点P 运动到使ACB ABD =∠∠时,求ABC ∠的度数.10.已知//a b ,直角ABC 的边与直线a 分别相交于O 、G 两点,与直线b 分别交于E 、F 点,90ACB ∠=.(1)将直角ABC 如图1位置摆放,如果46AOG ∠=,则CEF ∠=______; (2)将直角ABC 如图2位置摆放,N 为AC 上一点,180NEF CEF ︒∠+∠=,请写出NEF ∠与AOG ∠之间的等量关系,并说明理由.(3)将直角ABC 如图3位置摆放,若140GOC ∠=,延长AC 交直线b 于点Q ,点P 是射线GF 上一动点,探究POQ ∠,OPQ ∠与PQF ∠的数量关系,请直接写出结论.三、解答题11.阅读下列材料并解答问题:在一个三角形中,如果一个内角的度数是另一个内角度数的3倍,那么这样的三角形我们称为“梦想三角形”例如:一个三角形三个内角的度数分别是120°,40°,20°,这个三角形就是一个“梦想三角形”.反之,若一个三角形是“梦想三角形”,那么这个三角形的三个内角中一定有一个内角的度数是另一个内角度数的3倍. (1)如果一个“梦想三角形”有一个角为108°,那么这个“梦想三角形”的最小内角的度数为__________(2)如图1,已知∠MON =60°,在射线OM 上取一点A ,过点A 作AB ⊥OM 交ON 于点B ,以A 为端点作射线AD ,交线段OB 于点C (点C 不与O 、B 重合),若∠ACB =80°.判定△AOB 、△AOC 是否是“梦想三角形”,为什么?(3)如图2,点D 在△ABC 的边上,连接DC ,作∠ADC 的平分线交AC 于点E ,在DC 上取一点F ,使得∠EFC +∠BDC =180°,∠DEF =∠B .若△BCD 是“梦想三角形”,求∠B 的度数.12.如图所示,已知射线//,//,100CB OA AB OC C OAB ︒∠=∠=.点E 、F 在射线CB 上,且满足FOB AOB ∠=∠,OE 平分COF ∠ (1)求EOB ∠的度数;(2)若平行移动AB ,那么:OBC OFC ∠∠的值是否随之发生变化?如果变化,找出变化规律.若不变,求出这个比值;(3)在平行移动AB 的过程中,是否存在某种情况,使OEC OBA ∠=∠?若存在,求出其度数.若不存在,请说明理由.13.如图1,CE 平分ACD ∠,AE 平分BAC ∠,90EAC ACE ∠+∠=()1请判断AB 与CD 的位置关系并说明理由;()2如图2,当90E ∠=且AB 与CD 的位置关系保持不变,移动直角顶点E ,使MCE ECD ∠=∠,当直角顶点E 点移动时,问BAE ∠与MCD ∠否存在确定的数量关系?并说明理由.()3如图3,P 为线段AC 上一定点,点Q 为直线CD 上一动点且AB 与CD 的位置关系保持不变,①当点Q 在射线CD 上运动时(点C 除外),CPQ CQP ∠+∠与BAC ∠有何数量关系?猜想结论并说明理由.②当点Q 在射线CD 的反向延长线上运动时(点C 除外),CPQ CQP ∠+∠与BAC ∠有何数量关系?直接写出猜想结论,不需说明理由.14.如图,在ABC 中,ABC ∠与ACB ∠的角平分线交于O 点.(1)若40A ∠=︒,则BOC ∠= ︒; (2)若A n ∠=︒,则BOC ∠= ︒;(3)若A n ∠=︒,ABC ∠与ACB ∠的角平分线交于O 点,ABO ∠的平分线与ACO ∠的平分线交于点1O ,,2016O BD ∠的平分线与2016O CE ∠的平分线交于点2017O ,则2017O ∠=︒.15.如图①所示,在三角形纸片ABC 中,70C ∠=︒,65B ∠=︒,将纸片的一角折叠,使点A 落在ABC 内的点A '处. (1)若140∠=︒,2∠=________.(2)如图①,若各个角度不确定,试猜想1∠,2∠,A ∠之间的数量关系,直接写出结论. ②当点A 落在四边形BCDE 外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,A ∠,1∠,2∠之间又存在什么关系?请说明.(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的123456∠+∠+∠+∠+∠+∠和是________.【参考答案】一、解答题1.(1)100;(2)75°;(3)n=3. 【分析】(1)如图:过O 作OP//MN ,由MN//OP//GH 得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB 解析:(1)100;(2)75°;(3)n =3. 【分析】(1)如图:过O 作OP //MN ,由MN //OP //GH 得∠NAO +∠POA =180°,∠POB +∠OBH =180°,即∠NAO +∠AOB +∠OBH =360°,即可求出∠AOB ;(2)如图:分别延长AC 、CD 交GH 于点E 、F ,先根据角平分线求得58NAC ∠=︒,再根据平行线的性质得到58CEF ∠=︒;进一步求得18DBF ∠=︒,17DFB ∠=︒,然后根据三角形外角的性质解答即可;(3)设BF 交MN 于K ,由∠NAO =116°,得∠MAO =64°,故∠MAE =641nn ︒⨯+,同理∠OBH =144°,∠HBF =n ∠OBF ,得∠FBH =1441n n ︒⨯+,从而=n BKA FBH n ∠∠=⨯︒+1441,又∠FKN =∠F +∠FAK ,得144606411n nn n ︒︒︒⨯=+⨯++,即可求n . 【详解】解:(1)如图:过O 作OP //MN , ∵MN //GHl ∴MN //OP //GH∴∠NAO +∠POA =180°,∠POB +∠OBH =180° ∴∠NAO +∠AOB +∠OBH =360° ∵∠NAO =116°,∠OBH =144° ∴∠AOB =360°-116°-144°=100°;(2)分别延长AC 、CD 交GH 于点E 、F ,∵AC 平分NAO ∠且116NAO ∠=︒, ∴58NAC ∠=︒, 又∵MN //GH , ∴58CEF ∠=︒;∵144OBH ∠=︒,36OBG ∠=︒ ∵BD 平分OBG ∠, ∴18DBF ∠=︒, 又∵,CDB ∠=︒35∴351817DFB CDB DBF ∠=∠-∠=-=︒; ∴175875ACD DFB AEF ∠=∠+∠=︒+︒=︒; (3)设FB 交MN 于K ,∵116NAO ∠=︒,则MAO ∠=︒64; ∴641nMAE n ∠=⨯︒+ ∵144OBH ∠=︒, ∴+1n FBH n ∠=⨯︒144,=n BKA FBH n ∠∠=⨯︒+1441, 在△FAK 中,64601nBKA FKA F n ∠=∠+∠=⨯︒+︒+, ∴144646011n n n n ⨯︒=⨯︒+︒++, ∴3n =.经检验:3n =是原方程的根,且符合题意. 【点睛】本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键.2.(1)42°;(2)见解析;(3)∠1=∠2,理由见解析 【分析】(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;(2)过点B作BD∥a.由平行线的性质得∠2+∠ABD=180°解析:(1)42°;(2)见解析;(3)∠1=∠2,理由见解析【分析】(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;(2)过点B作BD∥a.由平行线的性质得∠2+∠ABD=180°,∠1=∠DBC,则∠ABD=∠ABC-∠DBC=60°-∠1,进而得出结论;(3)过点C作CP∥a,由角平分线定义得∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,由平行线的性质得∠1=∠BAM=60°,∠PCA=∠CAM=30°,∠2=∠BCP=60°,即可得出结论.【详解】解:(1)∵∠1=48°,∠BCA=90°,∴∠3=180°-∠BCA-∠1=180°-90°-48°=42°,∵a∥b,∴∠2=∠3=42°;(2)理由如下:过点B作BD∥a.如图2所示:则∠2+∠ABD=180°,∵a∥b,∴b∥BD,∴∠1=∠DBC,∴∠ABD=∠ABC-∠DBC=60°-∠1,∴∠2+60°-∠1=180°,∴∠2-∠1=120°;(3)∠1=∠2,理由如下:过点C作CP∥a,如图3所示:∵AC平分∠BAM∴∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,又∵a∥b,∴CP∥b,∠1=∠BAM=60°,∴∠PCA=∠CAM=30°,∴∠BCP=∠BCA-∠PCA=90°-30°=60°,又∵CP∥a,∴∠2=∠BCP=60°,∴∠1=∠2.【点睛】本题是三角形综合题目,考查了平移的性质、直角三角形的性质、平行线的判定与性质、角平分线定义、平角的定义等知识;本题综合性强,熟练掌握平移的性质和平行线的性质是解题的关键.3.(1)90°;(2)∠PFC=∠PEA+∠P;(3)∠G=α【分析】(1)根据平行线的性质与判定可求解;(2)过P点作PN∥AB,则PN∥CD,可得∠FPN=∠PEA+∠FPE,进而可得∠PF 解析:(1)90°;(2)∠PFC=∠PEA+∠P;(3)∠G=12α【分析】(1)根据平行线的性质与判定可求解;(2)过P点作PN∥AB,则PN∥CD,可得∠FPN=∠PEA+∠FPE,进而可得∠PFC=∠PEA+∠FPE,即可求解;(3)令AB与PF交点为O,连接EF,根据三角形的内角和定理可得∠GEF+∠GFE=1 2∠PEA+12∠PFC+∠OEF+∠OFE,由(2)得∠PEA=∠PFC-α,由∠OFE+∠OEF=180°-∠FOE=180°-∠PFC可求解.【详解】解:(1)如图1,过点P作PM∥AB,∴∠1=∠AEP.又∠AEP=40°,∴∠1=40°.∵AB∥CD,∴PM∥CD,∴∠2+∠PFD=180°.∵∠PFD=130°,∴∠2=180°-130°=50°.∴∠1+∠2=40°+50°=90°.即∠EPF=90°.(2)∠PFC=∠PEA+∠P.理由:过P 点作PN ∥AB ,则PN ∥CD ,∴∠PEA =∠NPE ,∵∠FPN =∠NPE +∠FPE ,∴∠FPN =∠PEA +∠FPE ,∵PN ∥CD ,∴∠FPN =∠PFC ,∴∠PFC =∠PEA +∠FPE ,即∠PFC =∠PEA +∠P ;(3)令AB 与PF 交点为O ,连接EF ,如图3.在△GFE 中,∠G =180°-(∠GFE +∠GEF ),∵∠GEF =12∠PEA +∠OEF ,∠GFE =12∠PFC +∠OFE ,∴∠GEF +∠GFE =12∠PEA +12∠PFC +∠OEF +∠OFE ,∵由(2)知∠PFC =∠PEA +∠P ,∴∠PEA =∠PFC -α,∵∠OFE +∠OEF =180°-∠FOE =180°-∠PFC ,∴∠GEF +∠GFE =12(∠PFC −α)+12∠PFC +180°−∠PFC =180°−12α,∴∠G =180°−(∠GEF +∠GFE )=180°−180°+12α=12α.【点睛】本题主要考查平行线的性质与判定,灵活运用平行线的性质与判定是解题的关键. 4.(1);(2)①,理由见解析;②图见解析,或【分析】(1)作PQ ∥EF ,由平行线的性质,即可得到答案;(2)①过作交于,由平行线的性质,得到,,即可得到答案;②根据题意,可对点P 进行分类讨论解析:(1)360PAF PBN APB ∠+∠+∠=°;(2)①CPD αβ∠=∠+∠,理由见解析;②图见解析,CPD βα∠=∠-∠或CPD αβ∠=∠-∠【分析】(1)作PQ ∥EF ,由平行线的性质,即可得到答案;(2)①过P 作//PE AD 交CD 于E ,由平行线的性质,得到DPE α∠=∠,CPE β∠=∠,即可得到答案;②根据题意,可对点P 进行分类讨论:当点P 在BA 延长线时;当P 在BO 之间时;与①同理,利用平行线的性质,即可求出答案.【详解】解:(1)作PQ ∥EF ,如图:∵//EF MN ,∴////EF MN PQ ,∴180PAF APQ ∠+∠=°,180PBN BPQ ∠+∠=°,∵APB APQ BPQ ∠=∠+∠∴360PAF PBN APB ∠+∠+∠=°;(2)①CPD αβ∠=∠+∠;理由如下:如图,过P 作//PE AD 交CD 于E ,∵//AD BC ,∴////AD PE BC ,∴DPE α∠=∠,CPE β∠=∠,∴CPD DPE CPE αβ∠=∠+∠=∠+∠;②当点P 在BA 延长线时,如备用图1:∵PE∥AD∥BC,∴∠EPC=β,∠EPD=α,∴CPDβα∠=∠-∠;当P在BO之间时,如备用图2:∵PE∥AD∥BC,∴∠EPD=α,∠CPE=β,∴CPDαβ∠=∠-∠.【点睛】本题考查了平行线的性质,解题的关键是熟练掌握两直线平行同旁内角互补,两直线平行内错角相等,从而得到角的关系.5.(1)40°;(2)65°;(3)存在,56°或20°【分析】(1)依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;(2)依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠G解析:(1)40°;(2)65°;(3)存在,56°或20°【分析】(1)依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;(2)依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=25°,再根据PQ∥CE,即可得出∠CPQ=∠ECP=65°;(3)设∠EGC=4x,∠EFC=3x,则∠GCF=4x-3x=x,分两种情况讨论:①当点G、F在点E 的右侧时,②当点G、F在点E的左侧时,依据等量关系列方程求解即可.【详解】解:(1)∵∠CEB=100°,AB∥CD,∴∠ECQ=80°,∵∠PCF=∠PCQ,CG平分∠ECF,∴∠PCG=∠PCF+∠FCG=12∠QCF+12∠FCE=12∠ECQ=40°;(2)∵AB∥CD∴∠QCG=∠EGC,∠QCG+∠ECG=∠ECQ=80°,∴∠EGC+∠ECG=80°,又∵∠EGC-∠ECG=30°,∴∠EGC=55°,∠ECG=25°,∴∠ECG=∠GCF=25°,∠PCF=∠PCQ=12(80°-50°)=15°,∵PQ∥CE,∴∠CPQ=∠ECP=65°;(3)设∠EGC=4x,∠EFC=3x,则∠GCF=∠FCD=4x-3x=x,①当点G、F在点E的右侧时,则∠ECG=x,∠PCF=∠PCD=32 x,∵∠ECD=80°,∴x+x+32x+32x=80°,解得x=16°,∴∠CPQ=∠ECP=x+x+32x=56°;②当点G、F在点E的左侧时,则∠ECG=∠GCF=x,∵∠CGF=180°-4x,∠GCQ=80°+x,∴180°-4x=80°+x,解得x=20°,∴∠FCQ=∠ECF+∠ECQ=40°+80°=120°,∴∠PCQ=12∠FCQ=60°,∴∠CPQ=∠ECP=80°-60°=20°.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等.二、解答题6.(1)①,证明见解析,②,(2)或.【分析】(1) ①根据和镜像证出,即可判断直线与直线的位置关系,②过点Q 作QF ∥CD ,根据平行线的性质证即可;(2)过点Q 作QF ∥CD ,根据点P 的位置不同,解析:(1)①//MN PQ ,证明见解析,②70DPQ BMQ ∠∠+=︒,(2)160︒或20︒.【分析】(1) ①根据//AB CD 和镜像证出NMP QPM ∠=∠,即可判断直线MN 与直线PQ 的位置关系,②过点Q 作QF ∥CD ,根据平行线的性质证DPQ BM MQP Q ∠=∠∠+即可;(2)过点Q 作QF ∥CD ,根据点P 的位置不同,分类讨论,依据平行线的性质求解即可.【详解】(1)①//MN PQ ,证明:∵//AB CD ,∴NPM QMP ∠=∠,∵,NMP QMP NPM QPM ∠=∠∠=∠,∴NMP QPM ∠=∠,∴//MN PQ ;②过点Q 作QF ∥CD ,∵//AB CD ,∴////AB CD QF ,∴1BMQ ∠=∠,2QPD ∠=∠,∴DPQ BM MQP Q ∠=∠∠+,∵70MNP MQP ∠=∠=︒,∴70DPQ BMQ ∠∠+=︒;(2)如图,当点P 在N 右侧时,过点Q 作QF ∥CD ,同(1)得,////AB CD QF ,∴180NP FQP Q ∠=∠+︒,FQM BMQ ∠=∠,∵PQ CD ⊥,∴90NPQ ∠=︒,∴90FQP ∠=︒,∵70MND PQM ∠=∠=︒,∴20FQM ∠=︒,∴20BMQ ∠=︒,如图,当点P 在N 左侧时,过点Q 作QF ∥CD ,同(1)得,////AB CD QF , 同理可得,90FQP ∠=︒,∵70MND ∠=︒,∴110MNP PQM ∠=∠=︒,∴20FQM ∠=︒,∵//AB QF ,∴180BM FQM Q ∠=∠+︒,∴160BMQ ∠=︒;综上,BMQ ∠的度数为160︒或20︒.【点睛】本题考查了平行线的性质与判定,解题关键是恰当的作辅助线,熟练利用平行线的性质推导角之间的关系.7.(1)①见解析;②垂;(2)见解析【分析】(1)①过点折纸,使痕迹垂直直线,然后过点折纸使痕迹与前面的痕迹垂直,从而得到直线;②步骤(b )中,折纸实际上是在寻找过点的直线的垂线.(2)先根据解析:(1)①见解析;②垂;(2)见解析(1)①过P 点折纸,使痕迹垂直直线a ,然后过P 点折纸使痕迹与前面的痕迹垂直,从而得到直线b ;②步骤(b )中,折纸实际上是在寻找过点P 的直线a 的垂线.(2)先根据平行线的性质得到ABC BCD ∠=∠,再利用角平分线的定义得到23∠∠=,然后根据平行线的判定得到结论.【详解】(1)解:①如图2所示:②在(1)中的步骤(b )中,折纸实际上是在寻找过点P 的直线a 的垂线.故答案为垂;(2)证明:BE 平分ABC ∠,CF 平分BCD ∠(已知),12∠∠∴=,33∠=∠(角平分线的定义),//AB CD (已知),ABC BCD ∴∠=∠(两直线平行,内错角相等),2223∴∠=∠(等量代换),23∴∠=∠(等式性质),//BE CF ∴(内错角相等,两直线平行).【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行线的性质与判定.8.(1)见解析;(2)见解析【分析】(1)过点M 作MP ∥AB .根据平行线的性质即可得到结论;(2)根据平行线的性质即可得到结论.【详解】解:(1)∠EMF=∠AEM+∠MFC .∠AEM+∠E解析:(1)见解析;(2)见解析【分析】(1)过点M 作MP ∥AB .根据平行线的性质即可得到结论;(2)根据平行线的性质即可得到结论.解:(1)∠EMF=∠AEM+∠MFC.∠AEM+∠EMF+∠MFC=360°.证明:过点M作MP∥AB.∵AB∥CD,∴MP∥CD.∴∠4=∠3.∵MP∥AB,∴∠1=∠2.∵∠EMF=∠2+∠3,∴∠EMF=∠1+∠4.∴∠EMF=∠AEM+∠MFC;证明:过点M作MQ∥AB.∵AB∥CD,∴MQ∥CD.∴∠CFM+∠1=180°;∵MQ∥AB,∴∠AEM+∠2=180°.∴∠CFM+∠1+∠AEM+∠2=360°.∵∠EMF=∠1+∠2,∴∠AEM+∠EMF+∠MFC=360°;(2)如图2第一个图:∠EMN+∠MNF-∠AEM-∠NFC=180°;过点M作MP∥AB,过点N作NQ∥AB,∴∠AEM=∠1,∠CFN=∠4,MP∥NQ,∴∠2+∠3=180°,∵∠EMN=∠1+∠2,∠MNF=∠3+∠4,∴∠EMN+∠MNF=∠1+∠2+∠3+∠4,∠AEM+∠CFN=∠1+∠4,∴∠EMN+∠MNF-∠AEM-∠NFC=∠1+∠2+∠3+∠4-∠1-∠4=∠2+∠3=180°;如图2第二个图:∠EMN-∠MNF+∠AEM+∠NFC=180°.过点M作MP∥AB,过点N作NQ∥AB,∴∠AEM+∠1=180°,∠CFN=∠4,MP∥NQ,∴∠2=∠3,∵∠EMN=∠1+∠2,∠MNF=∠3+∠4,∴∠EMN-∠MNF=∠1+∠2-∠3-∠4,∠AEM+∠CFN=180°-∠1+∠4,∴∠EMN-∠MNF+∠AEM+∠NFC=∠1+∠2-∠3-∠4+180°-∠1+∠4=180°.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.9.(1);(2)不变化,,理由见解析;(3)【分析】(1)结合题意,根据角平分线的性质,得;再根据平行线的性质计算,即可得到答案;(2)根据平行线的性质,得,;结合角平分线性质,得,即可完成求解 解析:(1)60A ∠=;(2)不变化,2APB ADB ∠=∠,理由见解析;(3)30ABC ∠=【分析】(1)结合题意,根据角平分线的性质,得ABN ∠;再根据平行线的性质计算,即可得到答案;(2)根据平行线的性质,得APB PBN ∠=∠,ADB DBN ∠=∠;结合角平分线性质,得2APB ADB ∠=∠,即可完成求解;(3)根据平行线的性质,得ACB CBN ∠=∠;结合ACB ABD =∠∠,推导得ABC DBN ∠=∠;再结合(1)的结论计算,即可得到答案.【详解】(1)∵BC ,BD 分别评分ABP ∠和PBN ∠, ∴1122CBP ABP DBP PBN ∠=∠∠=∠,, ∴2ABN CBD ∠=∠又∵60CBD ∠=,∴120ABN ∠=∵//AM BN ,∴180A ABN ∠+∠=∴60A ∠=;(2)∵//AM BN ,∴APB PBN ∠=∠,ADB DBN ∠=∠又∵BD 平分PBN ∠∴2PBN DBN ∠=∠,∴2APB ADB ∠=∠;∴APB ∠与ADB ∠之间的数量关系保持不变;(3)∵//AD BN ,∴ACB CBN ∠=∠又∵ACB ABD =∠∠,∴CBN ABD ∠=∠,∵ABC CBN ABD DBN ∠+∠=∠+∠∴ABC DBN ∠=∠由(1)可得60CBD ∠=,120ABN ∠= ∴()112060302ABC ∠=⨯-=. 【点睛】本题考查了角平分线、平行线的知识;解题的关键是熟练掌握角平分线、平行线的性质,从而完成求解.10.(1)136°;(2)∠AOG+∠NEF =90°,理由见解析;(3)当点P 在GF 上时,∠OPQ =140°﹣∠POQ+∠PQF ;当点P 在线段GF 的延长线上时,140°﹣∠POQ =∠OPQ+∠PQF .解析:(1)136°;(2)∠AOG +∠NEF =90°,理由见解析;(3)当点P 在GF 上时,∠OPQ =140°﹣∠POQ +∠PQF ;当点P 在线段GF 的延长线上时,140°﹣∠POQ =∠OPQ +∠PQF .【分析】(1)如图1,作CP ∥a ,则CP ∥a ∥b ,根据平行线的性质可得∠AOG =∠ACP ,∠BCP +∠CEF =180°,然后利用∠ACP +∠BCP =90°即可求得答案;(2)如图2,作CP ∥a ,则CP ∥a ∥b ,根据平行线的性质可得∠AOG =∠ACP ,∠BCP +∠CEF =180°,然后结合已知条件可得∠BCP =∠NEF ,然后利用∠ACP +∠BCP =90°即可得到结论;(3)分两种情况,如图3,当点P 在GF 上时,过点P 作PN ∥OG ,则NP ∥OG ∥EF ,根据平行线的性质可推出∠OPQ =∠GOP +∠PQF ,进一步可得结论;如图4,当点P 在线段GF 的延长线上时,同上面方法利用平行线的性质解答即可.【详解】解:(1)如图1,作CP ∥a ,a b,∵//∴CP∥a∥b,∴∠AOG=∠ACP,∠BCP+∠CEF=180°,∴∠BCP=180°﹣∠CEF,∵∠ACP+∠BCP=90°,∴∠AOG+180°﹣∠CEF=90°,∵∠AOG=46°,∴∠CEF=136°,故答案为136°;(2)∠AOG+∠NEF=90°.理由如下:如图2,作CP∥a,则CP∥a∥b,∴∠AOG=∠ACP,∠BCP+∠CEF=180°,而∠NEF+∠CEF=180°,∴∠BCP=∠NEF,∵∠ACP+∠BCP=90°,∴∠AOG+∠NEF=90°;(3)如图3,当点P在GF上时,过点P作PN∥OG,∴NP∥OG∥EF,∴∠GOP=∠OPN,∠PQF=∠NPQ,∴∠OPQ=∠GOP+∠PQF,∴∠OPQ=140°﹣∠POQ+∠PQF;如图4,当点P在线段GF的延长线上时,过点P作PN∥OG,∴NP∥OG∥EF,∴∠GOP=∠OPN,∠PQF=∠NPQ,∵∠OPN=∠OPQ+∠QPN,∴∠GOP=∠OPQ+∠PQF,∴140°﹣∠POQ=∠OPQ+∠PQF.【点睛】本题考查了平行线的性质以及平行公理的推论等知识,属于常考题型,正确添加辅助线、灵活应用平行线的判定和性质是解题的关键.三、解答题11.(1)36°或18°;(2)△AOB、△AOC都是“梦想三角形”,证明详见解析;(3)∠B=36°或∠B=.【分析】(1)根据三角形内角和等于180°,如果一个“梦想三角形”有一个角为108°,解析:(1)36°或18°;(2)△AOB、△AOC都是“梦想三角形”,证明详见解析;(3)∠B=36°或∠B=5407().【分析】(1)根据三角形内角和等于180°,如果一个“梦想三角形”有一个角为108°,可得另两个角的和为72°,由三角形中一个内角是另一个内角的3倍时,可以分别求得最小角为180°﹣108°﹣108÷3°=36°,72°÷(1+3)=18°,由此比较得出答案即可;(2)根据垂直的定义、三角形内角和定理求出∠ABO、∠OAC的度数,根据“梦想三角形”的定义判断即可;(3)根据同角的补角相等得到∠EFC=∠ADC,根据平行线的性质得到∠DEF=∠ADE,推出DE∥BC,得到∠CDE=∠BCD,根据角平分线的定义得到∠ADE=∠CDE,求得∠B=∠BCD,根据“梦想三角形”的定义求解即可.【详解】解:当108°的角是另一个内角的3倍时,最小角为180°﹣108°﹣108÷3°=36°,当180°﹣108°=72°的角是另一个内角的3倍时,最小角为72°÷(1+3)=18°,因此,这个“梦想三角形”的最小内角的度数为36°或18°.故答案为:18°或36°.(2)△AOB、△AOC都是“梦想三角形”证明:∵AB⊥OM,∴∠OAB=90°,∴∠ABO=90°﹣∠MON=30°,∴∠OAB=3∠ABO,∴△AOB为“梦想三角形”,∵∠MON=60°,∠ACB=80°,∠ACB=∠OAC+∠MON,∴∠OAC=80°﹣60°=20°,∴∠AOB=3∠OAC,∴△AOC是“梦想三角形”.(3)解:∵∠EFC+∠BDC=180°,∠ADC+∠BDC=180°,∴∠EFC=∠ADC,∴AD∥EF,∴∠DEF=∠ADE,∵∠DEF=∠B,∴∠B=∠ADE,∴DE∥BC,∴∠CDE=∠BCD,∵AE平分∠ADC,∴∠ADE=∠CDE,∴∠B=∠BCD,∵△BCD是“梦想三角形”,∴∠BDC=3∠B,或∠B=3∠BDC,∵∠BDC +∠BCD +∠B =180°,∴∠B =36°或∠B =5407︒(). 【点睛】本题考查的是三角形内角和定理、“梦想三角形”的概念,用分类讨论的思想解决问题是解本题的关键.12.(1)40°;(2)的值不变,比值为;(3)∠OEC=∠OBA=60°.【分析】(1)根据OB 平分∠AOF ,OE 平分∠COF ,即可得出∠EOB=∠EOF+∠FOB=∠COA ,从而得出答案;(2解析:(1)40°;(2):OBC OFC ∠∠的值不变,比值为12;(3)∠OEC=∠OBA=60°.【分析】(1)根据OB 平分∠AOF ,OE 平分∠COF ,即可得出∠EOB=∠EOF+∠FOB=12∠COA ,从而得出答案;(2)根据平行线的性质,即可得出∠OBC=∠BOA ,∠OFC=∠FOA ,再根据∠FOA=∠FOB+∠AOB=2∠AOB ,即可得出∠OBC :∠OFC 的值为1:2.(3)设∠AOB=x ,根据两直线平行,内错角相等表示出∠CBO=∠AOB=x ,再根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠OEC ,然后利用三角形的内角和等于180°列式表示出∠OBA ,然后列出方程求解即可.【详解】(1)∵CB ∥OA∴∠C+∠COA=180°∵∠C=100°∴∠COA=180°-∠C=80°∵∠FOB=∠AOB ,OE 平分∠COF∴∠FOB+∠EOF=12(∠AOF+∠COF )=12∠COA=40°;∴∠EOB=40°;(2)∠OBC :∠OFC 的值不发生变化∵CB ∥OA∴∠OBC=∠BOA ,∠OFC=∠FOA∵∠FOB=∠AOB∴∠FOA=2∠BOA∴∠OFC=2∠OBC∴∠OBC :∠OFC=1:2(3)当平行移动AB 至∠OBA=60°时,∠OEC=∠OBA .设∠AOB=x ,∵CB ∥AO ,∴∠CBO=∠AOB=x,∵CB∥OA,AB∥OC,∴∠OAB+∠ABC=180°,∠C+∠ABC=180°∴∠OAB=∠C=100°.∵∠OEC=∠CBO+∠EOB=x+40°,∠OBA=180°-∠OAB-∠AOB=180°-100°-x=80°-x,∴x+40°=80°-x,∴x=20°,∴∠OEC=∠OBA=80°-20°=60°.【点睛】本题主要考查了平行线、角平分线的性质以及三角形内角和定理,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.13.(1)详见解析;(2)∠BAE+∠MCD=90°,理由详见解析;(3)详见解析. 【详解】试题分析:(1)先根据CE平分∠ACD,AE平分∠BAC得出∠BAC=2∠EAC,∠ACD=2∠ACE,再解析:(1)详见解析;(2)∠BAE+12∠MCD=90°,理由详见解析;(3)详见解析.【详解】试题分析:(1)先根据CE平分∠ACD,AE平分∠BAC得出∠BAC=2∠EAC,∠ACD=2∠ACE,再由∠EAC+∠ACE=90°可知∠BAC+∠ACD=180,故可得出结论;(2)过E作EF∥AB,根据平行线的性质可知EF∥AB∥CD,∠BAE=∠AEF,∠FEC=∠DCE,故∠BAE+∠ECD=90°,再由∠MCE=∠ECD即可得出结论;(3)根据AB∥CD可知∠BAC+∠ACD=180°,∠QPC+∠PQC+∠PCQ=180°,故∠BAC=∠PQC+∠QPC.试题解析:证明:(1)∵CE平分∠ACD,AE平分∠BAC,∴∠BAC=2∠EAC,∠ACD=2∠ACE.∵∠EAC+∠ACE=90°,∴∠BAC+∠ACD=180,∴AB∥CD;(2)∠BAE+12∠MCD=90°.证明如下:过E作EF∥AB.∵AB∥CD,∴EF∥∥AB∥CD,∴∠BAE=∠AEF,∠FEC=∠DCE.∵∠E=90°,∴∠BAE+∠ECD=90°.∵∠MCE=∠ECD,∴∠BAE+12∠MCD=90°;(3)①∠BAC=∠PQC+∠QPC.理由如下:如图3:∵AB∥CD,∴∠BAC+∠ACD=180°.∵∠QPC+∠PQC+∠PCQ=180°,∴∠BAC=∠PQC+∠QPC;②∠PQC+∠QPC+∠BAC=180°.理由如下:如图4:∵AB∥CD,∴∠BAC=∠ACQ.∵∠PQC+∠PCQ+∠ACQ=180°,∴∠PQC+∠QPC+∠BAC=180°.点睛:本题考查了平行线的性质,根据题意作出平行线是解答此题的关键.14.(1)110(2)(90 +n)(3)×90°+n°【分析】(1)根据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可;(2)根据BO、CO分别是∠ABC与∠ACB的角平解析:(1)110(2)(90 +12n)(3)201712×90°+20182018212n°【分析】(1)根据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可;(2)根据BO、CO分别是∠ABC与∠ACB的角平分线,用n°的代数式表示出∠OBC与∠OCB的和,再根据三角形的内角和定理求出∠BOC的度数;(3)根据规律直接计算即可.【详解】解:(1)∵∠A=40°,∴∠ABC+∠ACB=140°,∵点O是∠AB故答案为:110°;C与∠ACB的角平分线的交点,∴∠OBC+∠OCB=70°,∴∠BOC=110°.(2)∵∠A=n°,∴∠ABC+∠ACB=180°-n°,∵BO、CO分别是∠ABC与∠ACB的角平分线,∴∠OBC+∠OCB=12∠ABC+12∠ACB=12(∠ABC+∠ACB)=12(180°﹣n°)=90°﹣12n°,∴∠BOC=180°﹣(∠OBC+∠OCB)=90°+12n°.故答案为:(90+12n);(3)由(2)得∠O=90°+12n°,∵∠ABO 的平分线与∠ACO 的平分线交于点O 1,∴∠O 1BC =34∠ABC ,∠O 1CB =34∠ACB , ∴∠O 1=180°﹣34(∠ABC +∠ACB )=180°﹣34(180°﹣∠A )=14×180°+34n °, 同理,∠O 2=18×180°+78n °, ∴∠O n =112n +×180°+11212n n ++- n °, ∴∠O 2017=201812×180°+20182018212-n °, 故答案为:201712×90°+20182018212-n °. 【点睛】 本题考查了三角形内角和定理,角平分线定义的应用,注意:三角形的内角和等于180°. 15.(1)50°;(2)①见解析;②见解析;(3)360°.【分析】(1)根据题意,已知,,可结合三角形内角和定理和折叠变换的性质求解; (2)①先根据折叠得:∠ADE=∠A′DE ,∠AED=∠A′解析:(1)50°;(2)①见解析;②见解析;(3)360°.【分析】(1)根据题意,已知70C ∠=︒,65B ∠=︒,可结合三角形内角和定理和折叠变换的性质求解;(2)①先根据折叠得:∠ADE=∠A′DE ,∠AED=∠A′ED ,由两个平角∠AEB 和∠ADC 得:∠1+∠2等于360°与四个折叠角的差,化简得结果;②利用两次外角定理得出结论;(3)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6等于六边形的内角和减去(∠B'GF+∠B'FG )以及(∠C'DE+∠C'ED )和(∠A'HL+∠A'LH ),再利用三角形的内角和定理即可求解.【详解】解:(1)∵70C ∠=︒,65B ∠=︒,∴∠A′=∠A=180°-(65°+70°)=45°,∴∠A′ED+∠A′DE =180°-∠A′=135°,∴∠2=360°-(∠C+∠B+∠1+∠A′ED+∠A′DE )=360°-310°=50°;(2)①122A ∠+∠=∠,理由如下由折叠得:∠ADE=∠A′DE ,∠AED=∠A′ED ,∵∠AEB+∠ADC=360°,∴∠1+∠2=360°-∠ADE-∠A′DE -∠AED-∠A′ED=360°-2∠ADE-2∠AED ,∴∠1+∠2=2(180°-∠ADE-∠AED )=2∠A ;②221A ∠=∠+∠,理由如下:∵2∠是ADF 的一个外角∴2A AFD ∠=∠+∠.∵AFD ∠是A EF '△的一个外角∴1AFD A '∠=∠+∠又∵A A '∠=∠∴221A ∠=∠+∠(3)如图由题意知,∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG )-(∠C'DE+∠C'ED )-(∠A'HL+∠A'LH )=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A')又∵∠B=∠B',∠C=∠C',∠A=∠A',∠A+∠B+∠C=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.【点睛】题主要考查了折叠变换、三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度.。
江阴市江阴市英桥国际学校七年级数学下册期末测试卷及答案
江阴市江阴市英桥国际学校七年级数学下册期末测试卷及答案一、选择题1.如图所示,直线a ,b 被直线c 所截,则1∠与2∠是( )A .同位角B .内错角C .同旁内角D .对顶角 2.计算(﹣2a 2)•3a 的结果是( )A .﹣6a 2B .﹣6a 3C .12a 3D .6a 33.下列等式由左边到右边的变形中,属于因式分解的是( ) A .(a ﹣2)(a+2)=a 2﹣4 B .8x 2y =8×x 2yC .m 2﹣1+n 2=(m+1)(m ﹣1)+n 2D .x 2+2x ﹣3=(x ﹣1)(x+3)4.如图,P 1是一块半径为1的半圆形纸板,在P 1的右上端剪去一个直径为1的半圆后得到图形P 2,然后依次剪去一个更小的半圆(其直径为前一个被剪去的半圆的半径)得到图形P 3、P 4…P n …,记纸板P n 的面积为S n ,则S n -S n +1的值为( )A .12nπ⎛⎫ ⎪⎝⎭B .14nπ⎛⎫ ⎪⎝⎭C .2112n π+⎛⎫ ⎪⎝⎭D .2112n π-⎛⎫ ⎪⎝⎭5.要使(4x ﹣a )(x+1)的积中不含有x 的一次项,则a 等于( ) A .﹣4B .2C .3D .46.下列从左到右的变形,是因式分解的是( ) A .()()23x 3x 9x -+=-B .()()()()y 1y 33y y 1+-=-+C .()24yz 2y z z 2y 2z zy z -+=-+D .228x 8x 22(2x 1)-+-=--7.一元一次不等式312x -->的解集在数轴上表示为( ) A .B .C .D .8.下列等式由左边到右边的变形中,因式分解正确的是( ) A .22816(4)m m m -+=-B .323346(46)x y x y x y y +=+C .()22121x x x x ++=++D .22()()a b a b a b +-=-9.下列运算正确的是( ) A .236x x x ⋅=B .224(2)4x x -=-C .326()x x =D .55x x x ÷=10.下列方程组中,是二元一次方程组的为( )A .1512n mm n ⎧+=⎪⎪⎨⎪+=⎪⎩B .2311546a b b c -=⎧⎨-=⎩C .292x y x ⎧=⎨=⎩D .00x y =⎧⎨=⎩二、填空题11.计算:m 2•m 5=_____.12.若a m =5,a n =3,则a m +n =_____________.13.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是 . 14.已知:12345633,39,327,381,3243,3729,======……,设A=2(3+1)(32+1)(34+1)(316+1)(332+1)+1,则A 的个位数字是__________. 15.如果()()2x 1x 4ax a +-+的乘积中不含2x 项,则a 为______ .16.已知a+b=5,ab=3,求: (1)a 2b+ab 2; (2)a 2+b 2.17.因式分解:224x x -=_________.18.在平面直角坐标系中,将点()2,3P -先向上平移1个单位长度,再向左平移3个单位长度后,得到点P ',则点P '的坐标为_______.19.若2(1)(23)2x x x mx n +-=++,则m n +=________.20.如图,将长方形纸片ABCD 沿着EF ,折叠后,点D ,C 分别落在点D ,C '的位置,ED '的延长线交BC 于点G .若∠1=64°,则∠2等于_____度.三、解答题21.计算:(1)2201(2)3()3----÷- (2)22(21)(21)x x -+22.如图,CD ⊥AB ,EF ⊥AB ,垂足分别为D 、F ,∠1=∠2,若∠A =65°,∠B =45°,求∠AGD 的度数.23.计算:(1)(12)﹣3﹣20160﹣|﹣5|;(2)(3a2)2﹣a2•2a2+(﹣2a3)2+a2;(3)(x+5)2﹣(x﹣2)(x﹣3);(4)(2x+y﹣2)(2x+y+2).24.装饰公司为小明家设计电视背景墙时需要A、B型板材若干块,A型板材规格是a⨯b,B型板材规格是b⨯b.现只能购得规格是150⨯b的标准板材.(单位:cm)(1)若设a=60cm,b=30cm.一张标准板材尽可能多的裁出A型、B型板材,共有下表三种裁法,下图是裁法一的裁剪示意图.裁法一裁法二裁法三A型板材块数120B型板材块数3m n则上表中,m=___________,n=__________;(2)为了装修的需要,小明家又购买了若干C型板材,其规格是a⨯a,并做成如下图的背景墙.请写出下图中所表示的等式:__________;(3)若给定一个二次三项式2a2+5ab+3b2,试用拼图的方式将其因式分解.(请仿照(2)在几何图形中标上有关数量)25.如图,D 、E 、F 分别在ΔABC 的三条边上,DE//AB ,∠1+∠2=180º.(1)试说明:DF//AC ;(2)若∠1=120º,DF 平分∠BDE ,则∠C=______º.26.杨辉三角是一个由数字排列成的三角形数表,一般形式如图所示,其中每一横行都表示(a+b)n (此处n=0,1,2,3,4...)的展开式中的系数.杨辉三角最本质的特征是:它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两数之和.…… ……(1)请直接写出(a +b )4=__________; (2)利用上面的规律计算: ①24+4×23+6×22+4×2+1=__________;②36-6×35+15×34-20×33+15×32-6×3+1=________. 27.计算: (1)201()2016|5|2----;(2)(3a 2)2﹣a 2•2a 2+(﹣2a 3)2+a 2. 28.已知,关于x 、y 二元一次方程组237921x y a x y -=-⎧⎨+=-⎩的解满足方程2x-y=13,求a 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据同旁内角的定义可判断.【详解】∵∠1和∠2都在直线c的下侧,且∠1和∠2在直线a、b之内∴∠1和∠2是同旁内角的关系故选:C.【点睛】本题考查同旁内角的理解,紧抓定义来判断.2.B解析:B【分析】用单项式乘单项式的法则进行计算.【详解】解:(-2a2)·3a=(-2×3)×(a2·a)=-6a3故选:B.【点睛】本题考查单项式乘单项式,掌握运算法则正确计算是解题关键.3.D解析:D【分析】认真审题,根据因式分解的定义,即:将多项式写成几个因式的乘积的形式,进行分析,据此即可得到本题的答案.【详解】解:A.不是乘积的形式,错误;B.等号左边的式子不是多项式,不符合因式分解的定义,错误;C.不是乘积的形式,错误;D.x2+2x﹣3=(x﹣1)(x+3),是因式分解,正确;故选:D.【点睛】本题主要考查了因式分解的定义,即:将多项式写成几个因式的乘积的形式,牢记定义是解题的关键,要注意认真总结.4.C解析:C【分析】首先分析题意,找到规律,并进行推导得出答案.【详解】根据题意得,n≥2,S1=12π×12=12π,S2=12π﹣12π×(12)2,…S n=12π﹣12π×(12)2﹣12π×[(12)2]2﹣…﹣12π×[(12)n﹣1]2,S n+1=12π﹣12π×(12)2﹣12π×[(12)2]2﹣…﹣12π×[(12)n﹣1]2﹣12π×[(12)n]2,∴S n﹣S n+1=12π×(12)2n=(12)2n+1π.故选C.【点睛】考查学生通过观察、归纳、抽象出数列的规律的能力.5.D解析:D【分析】先运用多项式的乘法法则计算,再合并同类项,因积中不含x的一次项,所以让一次项的系数等于0,得a的等式,再求解.【详解】解:(4x-a)(x+1),=4x2+4x-ax-a,=4x2+(4-a)x-a,∵积中不含x的一次项,∴4-a=0,解得a=4.故选D.【点睛】本题考查了多项式乘多项式法则,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.6.D解析:D【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.【详解】根据因式分解的定义得:从左边到右边的变形,是因式分解的是228x8x22(2x1)-+-=--.其他不是因式分解:A,C右边不是积的形式,B左边不是多项式.故选D.【点睛】本题考查了因式分解的意义,注意因式分解后左边和右边是相等的,不能凭空想象右边的式子.7.B解析:B【解析】【分析】先求出不等式的解集,再在数轴上表示出不等式的解集即可.【详解】-3x-1>2,-3x>2+1,-3x>3,x<-1,在数轴上表示为:,故选B.【点睛】本题考查了解一元一次不等式和在数轴上表示不等式的解集,能求出不等式的解集是解此题的关键.8.A解析:A【分析】根据因式分解的意义,可得答案.【详解】解:A、属于因式分解,故本选项正确;B、因式分解不彻底,故B选项不符合题意;C、没把一个多项式转化成几个整式积的形式,故C不符合题意;D、是整式的乘法,故D不符合题意;【点睛】本题考查了因式分解的意义,把一个多项式转化成几个整式积的形式是因式分解.9.C解析:C【解析】解:A.x2⋅x3=x5,故A错误;B.(-2x2)2 =4 x4,故B错误;C.( x3 )2=x6,正确;D.x5÷x =x4,故D错误.故选C.10.D解析:D【分析】组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项最高次数都应是一次的整式方程.【详解】A、属于分式方程,不符合题意;B、有三个未知数,为三元一次方程组,不符合题意;C、未知数x是2次方,为二次方程,不符合题意;D、符合二元一次方程组的定义,符合题意;故选:D.【点睛】考查了二元一次方程组的定义,一定要紧扣二元一次方程组的定义“由两个二元一次方程组成的方程组”.二、填空题11.m7【分析】根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,据此计算即可.【详解】解:m2•m5=m2+5=m7.故答案为:m7.【点睛】本题考查了同底数幂的乘法,熟练掌握同解析:m7【分析】根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,据此计算即可.【详解】解:m2•m5=m2+5=m7.故答案为:m7.【点睛】本题考查了同底数幂的乘法,熟练掌握同底数幂的乘法法则是解答本题的关键.12.15【分析】根据幂的运算公式即可求解.【详解】∵am=5,an=3,∴am+n= am×an=5×3=15故答案为:15.【点睛】此题主要考查幂的运算,解题的关键是熟知同底数幂的逆运解析:15【分析】根据幂的运算公式即可求解.【详解】∵a m=5,a n=3,∴a m+n= a m×a n=5×3=15故答案为:15.【点睛】此题主要考查幂的运算,解题的关键是熟知同底数幂的逆运算.13.12【解析】试题解析:根据题意,得(n-2)•180-360=1260,解得:n=11.那么这个多边形是十一边形.考点:多边形内角与外角.解析:12【解析】试题解析:根据题意,得(n-2)•180-360=1260,解得:n=11.那么这个多边形是十一边形.考点:多边形内角与外角.14.1【分析】把2写成3-1后,利用平方差公式化简,归纳总结得到一般性规律,即可确定出A的个位数字.【详解】解:A=(3-1)(3+1)(32+1)(34+1)(316+1)(332+1)+1解析:1【分析】把2写成3-1后,利用平方差公式化简,归纳总结得到一般性规律,即可确定出A的个位数字.【详解】解:A=(3-1)(3+1)(32+1)(34+1)(316+1)(332+1)+1 =(32-1)(32+1)(34+1)(316+1)(332+1)+1 =(34-1)(34+1)(316+1)(332+1)+1 =(316-1)(316+1)(332+1)+1 =(332-1)(332+1)+1 =364-1+1 =364,观察已知等式,个位数字以3,9,7,1循环,64÷4=16,则A 的个位数字是1, 故答案为:1. 【点睛】本题考查平方差公式,熟练掌握平方差公式是解本题的关键.15.【分析】先根据多项式乘以多项式法则展开,合并同类项,根据已知得出,求出即可; 【详解】 解: ,的乘积中不含项, , 解得:. 故答案为:. 【点睛】本题考查了多项式乘以多项式法则和解一元解析:14【分析】先根据多项式乘以多项式法则展开,合并同类项,根据已知得出4a 10-+=,求出即可; 【详解】解:()()2x 1x 4ax a +-+322x 4ax ax x 4ax a =-++-+()32x 4a 1x 3ax a =+-+-+,()()2x 1x 4ax a +-+的乘积中不含2x 项,4a 10∴-+=,解得:1a 4=.故答案为:14.【点睛】本题考查了多项式乘以多项式法则和解一元一次方程,掌握多项式乘以多项式法则是解此题的关键.16.(1)15;(2)19.【解析】【分析】(1)原式提取公因式,将已知等式代入计算即可求出值;(2)原式利用完全平方公式变形,将已知等式代入计算即可求出值;【详解】(1)a2b+ab2=a解析:(1)15;(2)19.【解析】【分析】(1)原式提取公因式,将已知等式代入计算即可求出值;(2)原式利用完全平方公式变形,将已知等式代入计算即可求出值;【详解】(1)a2b+ab2=ab(a+b)=3×5=15(2)a2+b2=(a+b)2-2ab=52-2×3=19【点睛】此题考查了完全平方公式,以及代数式求值,熟练掌握完全平方公式是解本题的关键.17.【分析】直接提取公因式即可.【详解】.故答案为:.【点睛】本题考查了因式分解——提取公因式法,掌握知识点是解题关键.解析:2(2)x x-【分析】直接提取公因式即可.【详解】2242(2)x x x x-=-.故答案为:2(2)x x-.【点睛】本题考查了因式分解——提取公因式法,掌握知识点是解题关键.18.【分析】根据向左平移横坐标减,向上平移纵坐标加求解即可得到平移后的坐标.【详解】解:将点先向上平移个单位长度,得到,再向左平移个单位长度后得到:, 故答案为:;【点睛】本题考查了坐标与图解析:()1,2--【分析】根据向左平移横坐标减,向上平移纵坐标加求解即可得到平移后的坐标.【详解】解:将点()2,3P -先向上平移1个单位长度,得到()()2,312,2-+=-,再向左平移3个单位长度后得到:()()23,21,2--=--,故答案为:()1,2--;【点睛】本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.19.【分析】根据多项式与多项式相乘的法则进行运算,得一次项系数与常数项分别为、,进而求得 .【详解】解:∵,∴ 、 ,∴.故答案为.【点睛】本题目考查整式的乘法,难度不大,熟练掌握多项解析:4-【分析】根据多项式与多项式相乘的法则进行运算,得一次项系数与常数项分别为m 、n ,进而求得m n + .【详解】解:∵22(1)(23)23=2x x x x x mx n +-=--++,∴1m =- 、3n =- ,∴()=13=13=4m n +-+----.故答案为4-.【点睛】本题目考查整式的乘法,难度不大,熟练掌握多项式与多项式相乘的运算方法即可顺利解题.20.128【分析】由ADBC ,∠1=64°,根据两直线平行,内错角相等,可求得∠DEF 的度数,然后由折叠的性质,可得∠FEG 的度数,进而再利用两直线平行内错角相等得到∠2的度数.【详解】解:∵A解析:128【分析】由AD //BC ,∠1=64°,根据两直线平行,内错角相等,可求得∠DEF 的度数,然后由折叠的性质,可得∠FEG 的度数,进而再利用两直线平行内错角相等得到∠2的度数.【详解】解:∵AD //BC ,∠1=64°,∴∠DEF =∠1=64°,由折叠的性质可得∠FEG =∠DEF =64°,∴∠2=∠1+∠EFG =64°+64°=128°.故答案为:128.【点睛】本题主要考察两直线平行的性质、折叠的性质以及矩形的性质,重点在于利用已知条件找到角度之间的关系.三、解答题21.(1)374-.(2)16x 4−8x 2+1. 【分析】(1)原式利用负整数指数幂,零指数幂、平方的计算法则得到1914--÷,再计算即可得到结果;(2)原式逆用积的乘方运算法则变形,再利用平方差公式及完全平方公式化简即可得到结果.【详解】(1)2201(2)3()3----÷-= 1914--÷=374-.(2)原式=[(2x−1)(2x+1)]2=(4x2−1)2=16x4−8x2+1.【点睛】本题考查零指数幂、负整数指数幂、平方差公式及完全平方公式,熟练掌握运算法则是解本题的关键.22.70°【分析】由CD⊥AB,EF⊥AB可得出∠CDF=∠EFB=90°,利用“同位角相等,两直线平行”可得出CD∥EF,利用“两直线平行,同位角相等”可得出∠DCB=∠1,结合∠1=∠2可得出∠DCB=∠2,利用“内错角相等,两直线平行”可得出DG∥BC,利用“两直线平行,同位角相等”可得出∠ADG的度数,在△ADG中,利用三角形内角和定理即可求出∠AGD的度数.【详解】解:∵CD⊥AB,EF⊥AB,∴∠CDF=∠EFB=90°,∴CD∥EF,∴∠DCB=∠1.∵∠1=∠2,∴∠DCB=∠2,∴DG∥BC,∴∠ADG=∠B=45°.又∵在△ADG中,∠A=65°,∠ADG=45°,∴∠AGD=180°﹣∠A﹣∠ADG=70°【点睛】本题考查了平行线的判定与性质以及三角形内角和定理,利用平行线的性质求出∠ADG的度数是解题的关键.23.(1)2;(2)7a4+4a6+a2;(3)15x+19;(4)4x2+4xy+y2﹣4【分析】(1)首先利用负整数指数幂的性质、零次幂的性质、绝对值的性质进行计算,再算加减即可;(2)首先利用积的乘方的计算法则、单项式乘以单项式计算法则计算,再合并同类项即可;(3)首先利用完全平方公式、多项式乘以多项式计算法则计算,再合并同类项即可;(4)首先利用平方差计算,再利用完全平方公式进行计算即可.【详解】解:(1)原式=8﹣1﹣5=2;(2)原式=9a4﹣2a4+4a6+a2,=7a4+4a6+a2;(3)原式=x2+10x+25﹣(x2﹣3x﹣2x+6),=x2+10x+25﹣x2+3x+2x﹣6,=15x+19;(4)原式=(2x+y)2﹣4,=4x2+4xy+y2﹣4.【点睛】本题考查的是实数的运算,幂的运算及合并同类项,整式的混合运算,掌握以上知识点是解题的关键.24.(1)m=1,n=5;(2)(a+2b)2=a2+4ab+4b2;(3)2a2+5ab+3b2=(a+b)(2a+3b),详见解析【分析】(1)结合图形和条件分析可以得出按裁法二裁剪时,可以裁出B型板1块,按裁法三裁剪时,可以裁出5块B型板;(2)看图即可得出所求的式子;(3)通过画图能更好的理解题意,从而得出结果.由于构成的是长方形,它的面积等于所给图片的面积之和,从而因式分解.【详解】(1)按裁法二裁剪时,2块A型板材块的长为120cm,150-120=30,所以可裁出B型板1块,按裁法三裁剪时,全部裁出B型板,150÷30=5,所以可裁出5块B型板;∴m=1,n=5.故答案为:1,5;(2)如下图:发现的等式为:(a+2b)2=a2+4ab+4b2;故答案为:(a+2b)2=a2+4ab+4b2.(3)按题意画图如下:∵构成的长方形面积等于所给图片的面积之和,∴2a2+5ab+3b2=(a+b)(2a+3b).【点睛】本题考查了完全平方公式和几何图形的应用及一元一次方程的应用,关键是根据学生的画图能力,计算能力来解答.25.(1)见解析;(2)60.【分析】(1)根据平行线的性质得出∠A=∠2,求出∠1+∠A=180°,根据平行线的判定得出即可.(2)根据平行线的性质解答即可.【详解】证明:(1)∵DE ∥AB ,∴∠A=∠2,∵∠1+∠2=180°.∴∠1+∠A=180°,∴DF ∥AC ;(2)∵DE ∥AB ,∠1=120°,∴∠FDE=60°,∵DF 平分∠BDE ,∴∠FDB=60°,∵DF ∥AC ,∴∠C=∠FDB=60°【点睛】本题考查了平行线的性质和判定定理,解题的关键是能灵活运用平行线的判定和性质定理进行推理.26.(1)++++432234a 4a b 6a b 4ab b ;(2)①81;②64【分析】(1)根据杨辉三角的数表规律解答即可;(2)由杨辉三角的数表规律和(1)题的结果可得所求式子=(2+1)4,据此解答即可; ②由杨辉三角的数表规律可得所求式子=(3-1)6,据此解答即可.【详解】解:(1)()4432234464a b a a b a b ab b +=++++;故答案为:++++432234a 4a b 6a b 4ab b ;(2)①24+4×23+6×22+4×2+1=(2+1)4=34=81;故答案为:81;②36-6×35+15×34-20×33+15×32-6×3+1=(3-1)6=26=64;故答案为:64.【点睛】本题考查了多项式的乘法和完全平方公式的拓展以及数的规律探求,正确理解题意、找准规律是解题的关键.27.(1)﹣2;(2)7a 4+4a 6+a 2.【分析】(1)由负整数指数幂、零指数幂、绝对值的意义进行判断,即可得到答案; (2)由积的乘方,同底数幂相乘进行计算,然后合并同类项,即可得到答案.【详解】解:(1)201()2016|5|2----=4﹣1﹣5=﹣2; (2)(3a 2)2﹣a 2•2a 2+(﹣2a 3)2+a 2=9a 4﹣2a 4+4a 6+a 2=7a 4+4a 6+a 2.【点睛】本题考查了积的乘方,同底数幂相乘,负整数指数幂,零指数幂,以及绝对值,解题的关键是熟练掌握运算法则进行解题.28.a=4【分析】先联立x+2y=−1与2x−y=13解出x ,y ,再代入2x−3y=7a−9即可求出a 值.【详解】依题意得21213x y x y +=-⎧⎨-=⎩ 解得53x y =⎧⎨=-⎩ , 代入2x−3y=7a−9,得:a=4,故a 的值为4.【点睛】此题主要考查二元一次方程组的解,解题的关键是熟知二元一次方程组的解法.。
江阴市江阴市英桥国际学校七年级数学下册期末压轴难题测试卷及答案
江阴市江阴市英桥国际学校七年级数学下册期末压轴难题测试卷及答案一、选择题1.如图,直线AB 交DCE ∠的边CE 于点F ,则1∠与2∠是( )A .同位角B .同旁内角C .对顶角D .内错角 2.下列图形中,哪个可以通过图1平移得到( )A .B .C .D . 3.在平面直角坐标系中,点(﹣1,m 2+1)一定在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列语句中,是假命题的是( )A .有理数和无理数统称实数B .在同一平面内,过一点有且只有一条直线与已知直线垂直C .在同一平面内,垂直于同一条直线的两条直线互相平行D .两个锐角的和是锐角5.如图,AB //CD ,AD ⊥AC ,∠BAD =35°,则∠ACD =( )A .35°B .45°C .55°D .70°6.下列说法正确的是( )A .一个数的立方根有两个,它们互为相反数B .负数没有立方根C .任何一个数都有平方根和立方根D .任何数的立方根都只有一个7.如图,//AB CD ,EF 分别交AB ,CD 于点G ,H ,若139∠=︒,则2∠的度数为( )A .51︒B .39︒C .129︒D .78︒8.如图,在平面直角坐标系中,放置半径为1的圆,圆心到两坐标轴的距离都等于半径,若该圆向x 轴正方向滚动2017圈(滚动时在x 轴上不滑动),此时该圆圆心的坐标为( )A .(2018,1)B .(4034π+1,1)C .(2017,1)D .(4034π,1)二、填空题9.若21(2)30x y z -+-+-=,则x+y+z=________.10.平面直角坐标系中,点(3,2)A -关于x 轴的对称点是__________.11.若点A (9﹣a ,3﹣a )在第二、四象限的角平分线上,则A 点的坐标为_____. 12.如图,BD 平分∠ABC ,ED ∥BC ,∠1=25°,则∠2=_____°,∠3=______°.13.如图a 是长方形纸带,将纸带沿 EF 折叠成图b ,再沿BF 折叠成图c ,若∠AEF =160°,则图 c 中的∠CFE 的度数是___度.14.当1x ≠-时,我们把11x -+称为x 为“和1负倒数”.如:1的“和1负倒数”为11112-=-+;-3的“和1负倒数”为11312-=-+.若134x =-,2x 是1x 的“和1负倒数”,3x 是2x 的“和1负倒数”…依次类推,则4x =______;123•••x x x …•2021x = _____.15.已知点A (0,1),B (0 ,2),点C 在x 轴上,且2ABC S ∆=,则点C 的坐标________. 16.在平面直角坐标系中,已知点()2,4A -,()3,4B ,()3,C m ,且4m <,下列结论:①//AB x 轴,②将点A 先向右平移5个单位,再向下平移m 个单位可得到点C ;③若点D 在直线BC 上,则D 点的横坐标为3;④三角形ABC 的面积为()542m -,其中正确的结论是___________(填序号).三、解答题17.计算:(1) 333|3|--(2) 1333⎛⎫+ ⎪⎝⎭ 18.求下列各式中的x :(1)3641250x -=; (2)3(1)8x +=; (3)3(21)270x -+=.19.如图,已知∠AED =∠C ,∠DEF =∠B ,试说明∠EFG +∠BDG =180∘,请完成下列填空:∵∠AED =∠C (_________)∴ED ∥BC (_________)∴∠DEF =∠EHC (___________)∵∠DEF =∠B (已知)∴_______(等量代换)∴BD ∥EH (同位角相等,两直线平行)∴∠BDG =∠DFE (两直线平行,内错角相等)∵_________________(邻补角的意义)∴∠EFG +∠BDG =180∘(___________)20.在平面直角坐标系中,O 为坐标原点,点A 的坐标为(),a a -,点B 坐标为(),a b ,且满足4a b +=.(1)若a 没有平方根,且点B 到x 轴的距离是点A 到x 轴距离的3倍,求点B 的坐标; (2)点D 的坐标为()4,2-,OAB 的面积是DAB 的2倍,求点B 的坐标.21.2因此2的小数部分我们不可能全部地写出来,于是小明用2﹣1来表示2的小数部分,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分又例如:因为4<7<9,即2<7<3,所以7的整数部分为2,小数部分为(7﹣2)请解答:(1)10的整数部分是,小数部分是;(2)如果5的小数部分为a,13的整数部分为b,求a+b﹣5的值.二十二、解答题22.已知在44⨯的正方形网格中,每个小正方形的边长为1.(1)计算图①中正方形ABCD的面积与边长.(2)利用图②中的正方形网格,作出面积为8的正方形,并在此基础上建立适当的数轴,在数轴上表示实数8和8-.二十三、解答题23.如图1,已知直线CD∥EF,点A,B分别在直线CD与EF上.P为两平行线间一点.(1)若∠DAP=40°,∠FBP=70°,则∠APB=(2)猜想∠DAP,∠FBP,∠APB之间有什么关系?并说明理由;(3)利用(2)的结论解答:①如图2,AP1,BP1分别平分∠DAP,∠FBP,请你写出∠P与∠P1的数量关系,并说明理由;②如图3,AP2,BP2分别平分∠CAP,∠EBP,若∠APB=β,求∠AP2B.(用含β的代数式表示)24.如图1所示:点E为BC上一点,∠A=∠D,AB∥CD(1)直接写出∠ACB与∠BED的数量关系;(2)如图2,AB∥CD,BG平分∠ABE,BG的反向延长线与∠EDF的平分线交于H点,若∠DEB比∠GHD大60°,求∠DEB的度数;(3)保持(2)中所求的∠DEB的度数不变,如图3,BM平分∠EBK,DN平分∠CDE,作BP∥DN,则∠PBM的度数是否改变?若不发生变化,请求它的度数,若发生改变,请说明理由.(本题中的角均为大于0°且小于180°的角).25.如图,直线//AB CD ,E 、F 是AB 、CD 上的两点,直线l 与AB 、CD 分别交于点G 、H ,点P 是直线l 上的一个动点(不与点G 、H 重合),连接PE 、PF .(1)当点P 与点E 、F 在一直线上时,GEP EGP ∠=∠,60FHP ∠=︒,则PFD ∠=_____.(2)若点P 与点E 、F 不在一直线上,试探索AEP ∠、EPF ∠、CFP ∠之间的关系,并证明你的结论.26.直线MN 与直线PQ 垂直相交于O ,点A 在射线OP 上运动,点B 在射线OM 上运动,A 、B 不与点O 重合,如图1,已知AC 、BC 分别是∠BAP 和∠ABM 角的平分线,(1)点A 、B 在运动的过程中,∠ACB 的大小是否发生变化?若发生变化,请说明理由;若不发生变化,试求出∠ACB 的大小.(2)如图2,将△ABC 沿直线AB 折叠,若点C 落在直线PQ 上,则∠ABO =________, 如图3,将△ABC 沿直线AB 折叠,若点C 落在直线MN 上,则∠ABO =________(3)如图4,延长BA 至G ,已知∠BAO 、∠OAG 的角平分线与∠BOQ 的角平分线及其反向延长线交于E 、F ,则∠EAF = ;在△AEF 中,如果有一个角是另一个角的32倍,求∠ABO 的度数.【参考答案】一、选择题1.A解析:A【分析】根据对顶角,同位角、内错角、同旁内角的概念解答即可.【详解】解:∵直线AB交∠DCE的边CE于点F,∴∠1与∠2是直线A B、CD被直线CE所截得到的同位角.故选:A.【点睛】此题主要考查了对顶角,同位角、内错角、同旁内角.解题的关键是掌握对顶角,同位角、内错角、同旁内角的概念.2.A【详解】试题分析:因为图形平移前后,不改变图形的形状和大小,只是位置发生改变,所以由图1平移可得A,故选A.考点:平移的性质.解析:A【详解】试题分析:因为图形平移前后,不改变图形的形状和大小,只是位置发生改变,所以由图1平移可得A,故选A.考点:平移的性质.3.B【分析】应先判断出点的横纵坐标的符号,进而判断点所在的象限.【详解】解:因为点(﹣1,m2+1),横坐标﹣1<0,纵坐标m2+1一定大于0,所以满足点在第二象限的条件.故选:B.【点睛】本题主要考查平面直角坐标系里象限的坐标,熟练掌握每个象限的坐标符号特点是解题的关键.4.D【分析】根据实数的分类,垂直的性质,平行线的判定,锐角的定义逐项分析即可【详解】A. 有理数和无理数统称实数,正确,是真命题,不符合题意;B. 在同一平面内,过一点有且只有一条直线与已知直线垂直,正确,是真命题,不符合题意;C. 在同一平面内,垂直于同一条直线的两条直线互相平行,正确,是真命题,不符合题意;︒+︒=︒>︒,故D选项是假命题,符合题意D. 两个锐角的和不一定是锐角,例如505010090故选D【点睛】本题考查了真假命题的判定,实数的分类,垂直的性质,平行线的判定,锐角的定义,掌握相关性质定理是解题的关键.5.C【分析】由平行线的性质可得∠ADC=∠BAD=35°,再由垂线的定义可得△ACD是直角三角形,进而根据直角三角形两锐角互余的性质即可得出∠ACD的度数.【详解】∵AB∥CD,∠BAD=35°,∴∠ADC=∠BAD=35°,∵AD⊥AC,∴∠ADC+∠ACD=90°,∴∠ACD=90°﹣35°=55°,故选:C.【点睛】本题主要考查平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键.6.D【分析】根据负数没有平方根,一个正数的平方根有两个且互为相反数,一个数的立方根只有一个,结合选项即可作出判断.【详解】A、一个数的立方根只有1个,故本选项错误;B、负数有立方根,故本选项错误;C、负数只有立方根,没有平方根,故本选项错误;D、任何数的立方根都只有一个,故本选项正确.故选:D.【点睛】本题考查了平方根、算术平方根、立方根的概念,解决本题的关键是熟记平方根、算术平方根、立方根的概念.7.B【分析】根据平行线的性质和对顶角相等即可得∠2的度数.【详解】解:∵//AB CD ,∴∠2=∠FHD ,∵∠FHD =∠1=39°,∴∠2=39°.故选:B .【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.8.B【分析】首先求出圆心坐标(1,1),再根据圆的滚动情况求出平移距离,再根据点平移时其坐标变化规律求解即可.【详解】解:∵圆的半径为1,且圆心到两坐标轴的距离都等于半径,∴圆心坐标(1,1解析:B【分析】首先求出圆心坐标(1,1),再根据圆的滚动情况求出平移距离,再根据点平移时其坐标变化规律求解即可.【详解】解:∵圆的半径为1,且圆心到两坐标轴的距离都等于半径,∴圆心坐标(1,1).∵圆向x 轴正方向滚动2017圈,∴圆沿x 轴正方向平移1220174034⨯⨯π⨯=π个单位长度.∴圆心沿x 轴正方向平移4034π个单位长度.∴平移后圆心坐标()40341,1π+.故选:B .【点睛】本题考查了点平移时其坐标变化规律,点向左(右)平移时,横坐标减(加)平移距离,点向下(上)平移时,纵坐标减(加)平移距离.二、填空题9.6【分析】根据非负数的性质列出方程求出x 、y 、z 的值,代入所求代数式计算即可.【详解】解:∵∴x-1=0,y-2=0,z-3=0,∴x=1,y=2,z=3.∴x+y+z=1+2+3=6解析:6【分析】根据非负数的性质列出方程求出x 、y 、z 的值,代入所求代数式计算即可.【详解】解:∵21(2)0x y -+-=∴x-1=0,y-2=0,z-3=0,∴x=1,y=2,z=3.∴x+y+z=1+2+3=6.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.【分析】根据平面直角坐标系中,关于坐标轴对称的点的坐标特征,即可完成解答.【详解】解:点关于轴的对称点的坐标是(3,2).【点睛】本题考查了根据平面直角坐标系中关于坐标轴对称的点的坐标特解析:()3,2【分析】根据平面直角坐标系中,关于坐标轴对称的点的坐标特征,即可完成解答.【详解】解:点(3,2)A -关于x 轴的对称点的坐标是(3,2).【点睛】本题考查了根据平面直角坐标系中关于坐标轴对称的点的坐标特征,即关于x 轴对称的点的坐标横坐标不变,纵坐标变为相反数;关于y 轴对称的点的坐标纵坐标不变,横 坐标变为相反数;11.(3,﹣3).【分析】根据第二、四象限角平分线上点的坐标特征得到9﹣a+3﹣a =0,然后解方程即可.【详解】∵点P 在第二、四象限角平分线上,∴9﹣a+3﹣a =0,∴a =6,∴A 点的坐标解析:(3,﹣3).【分析】根据第二、四象限角平分线上点的坐标特征得到9﹣a+3﹣a=0,然后解方程即可.【详解】∵点P在第二、四象限角平分线上,∴9﹣a+3﹣a=0,∴a=6,∴A点的坐标为(3,﹣3).故答案为:(3,﹣3).【点睛】本题考查了坐标与图形性质:解题的关键是利用坐标特征判断线段与坐标轴的位置关系;记住坐标轴和第一、三象限角平分线、第二、四象限角平分线上点的坐标特征.12.50【分析】由两直线平行,内错角、同位角分别相等可得出∠2=∠DBC,∠3=∠ABC=∠1+∠DBC,又由BD平分∠ABC得出∠DBC=∠1=25°,利用等价替换法分别求出∠2和∠3即可解析:50【分析】由两直线平行,内错角、同位角分别相等可得出∠2=∠DBC,∠3=∠ABC=∠1+∠DBC,又由BD平分∠ABC得出∠DBC=∠1=25°,利用等价替换法分别求出∠2和∠3即可.【详解】解:∵BD平分∠ABC,∴∠DBC=∠1=25°;又∵ED∥BC,∴∠2=∠DBC=25°,∠3=∠ABC=∠1+∠DBC=50°.故答案为:25、50.【点睛】本题考查了平行线的性质:两直线平行,内错角相等,同位角相等,解题过程中采用了等量代换的方法.13.120【分析】先根据平行线的性质,设,根据图形折叠的性质得出=,再由三角形外角的性质解得,再由平行线的性质得出∠GFC,最后根据即可解题.【详解】折叠∴∠DEF ==,∴解析:120【分析】先根据平行线的性质,设20BFE ∠=︒,根据图形折叠的性质得出GEF ∠=20︒,再由三角形外角的性质解得40DGF ∠=︒,再由平行线的性质得出∠GFC =140︒,最后根据CFE GFC BFE ∠=∠-∠即可解题.【详解】160AEF ∠=︒180********DEF AEF ∴∠=︒-∠=︒-︒=︒//AD BC20BFE DEF ∴∠=∠=︒折叠∴∠DEF =GEF ∠=20︒,∴20+2040DGF ∠=︒︒=︒//DG FC180DGF GFC ∴∠+∠=︒18040140GFC ∴∠=︒-︒=︒14020120CFE GFC BFE ∴∠=∠-∠=︒-︒=︒故答案为:120.【点睛】本题考查图形的翻折变换以及平行线的性质,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.14.【分析】根据“和1负倒数”的定义分别计算、、、…,可得到数字的变化规律:从开始每3个数为一周期循环,由此即可解答.【详解】解:由“和1负倒数”定义和可得:,,,……由此可得出从开 解析:34-【分析】根据“和1负倒数”的定义分别计算2x 、3x 、4x 、5x …,可得到数字的变化规律:从1x 开始每3个数为一周期循环,由此即可解答.【详解】解:由“和1负倒数”定义和134x =-可得: 214314x =-=--+, 311413x =-=-+, 4131413x =-=-+,514314x =-=--+ ……由此可得出从1x 开始每3个数为一周期循环,∵2021÷3=673…2,∴20214x =-,202034x =-,又1x ·2x .3x = 31(4)43-⨯-⨯=1, ∴123•••x x x …•2021x =3(4)4-⨯-=3, 故答案为:34-;3. 【点睛】本题考查新定义的实数运算、数字型规律探究,理解新定义的运算法则,正确得出数字的变化规律是解答的关键.15.(4,0)或(﹣4,0)【详解】试题解析:设C 点坐标为(|x|,0)∴解得:x=±4所以,点C 的坐标为(4,0)或(-4,0).解析:(4,0)或(﹣4,0)【详解】试题解析:设C 点坐标为(|x |,0) ∴1=(21)22ABC S x ∆⨯⨯-= 解得:x =±4所以,点C 的坐标为(4,0)或(-4,0).16.①③④【分析】①两点纵坐标相同,得到 AB //x 轴,即可判断;②根据平移规律求得平移后的点的坐标,即可判断;③根据两点的坐标特征可知直线BCx 轴,即可判断;④求得三角形的面积,即可判断.解析:①③④【分析】①两点纵坐标相同,得到 AB //x 轴,即可判断;②根据平移规律求得平移后的点的坐标,即可判断;③根据两点的坐标特征可知直线BC ⊥x 轴,即可判断;④求得三角形的面积,即可判断.【详解】 解:A (-2,4),B (3,4),它们的纵坐标相同,∴AB //x 轴,故①正确;将点A 先向右平移 5 个单位,再向下平移m 个单位可得到点(3,4-m ),故②错误;B (3,4),C (3,m ),它们的横坐标相同,∴BC ⊥x 轴,点 D 在直线BC 上,∴点 D 的横坐标为 3,故③正确;点A (-2,4),B (3, 4),C (3,m ),且m <4,∴AB =5,C 点到 AB 的距离为(4-m ),∴三角形 ABC 的面积为()542m -, 故④正确;故答案为:①③④.【点睛】本题考查了平行线的判定,坐标和图形变化,平移以及点的坐标特征,明确线段的位置和大小是解题的关键.三、解答题17.(1)0;(2)4【分析】(1)根据绝对值的性质去绝对值然后合并即可;(2)根据乘法分配律计算即可.【详解】(1)解原式==0;(2)解原式==3+1解析:(1)0;(2)4【分析】(1)根据绝对值的性质去绝对值然后合并即可;(2)根据乘法分配律计算即可.【详解】(1)解原式=0;(2)解原式=3+1=4.故答案为(1)0;(2)4.【点睛】本题考查实数的运算、绝对值,掌握绝对值的性质以及运算法则是解题的关键.18.(1);(2)1;(3)-1.【分析】(1)根据立方根的定义解方程即可;(2)根据立方根的定义解方程即可;(3)根据立方根的定义解方程即可.【详解】解:(1),∴,∴,∴;(2解析:(1)54;(2)1;(3)-1. 【分析】(1)根据立方根的定义解方程即可;(2)根据立方根的定义解方程即可;(3)根据立方根的定义解方程即可.【详解】解:(1)3641250x -=,∴ ()334=5x , ∴4=5x , ∴5=4x ; (2)3(1)8x +=∴33(1)2x +=∴12x +=∴1x =;(3)3(21)270x -+=,∴()33(21)3x -=-, ∴213x -=-,∴1x =-.【点睛】本题考查了利用立方根的含义解方程,熟知立方根的定义是解决问题的关键. 19.已知;同位角相等,两直线平行;两直线平行,内错角相等;∠EHC =∠B ;∠DFE+∠EFG =180∘;等量代换【分析】根据同位角相等,两直线平行推出ED ∥BC ,通过两直线平行,内错角相等推出∠解析:已知;同位角相等,两直线平行;两直线平行,内错角相等;∠EHC =∠B ;∠DFE +∠EFG =180∘;等量代换【分析】根据同位角相等,两直线平行推出ED ∥BC ,通过两直线平行,内错角相等推出∠DEF =∠EHC ,再运用等量代换得到∠EHC =∠B ,最后推出BD ∥EH ,∠BDG =∠DFE ,再利用邻补角的意义推出结论,据此回答问题.【详解】解:∵∠AED =∠C (已知)∴ED ∥BC (同位角相等,两直线平行)∴∠DEF=∠EHC (两直线平行,内错角相等)∵∠DEF=∠B(已知)∴∠EHC =∠B (等量代换)∴BD∥EH(同位角相等,两直线平行)∴∠BDG=∠DFE(两直线平行,内错角相等)∵∠DFE+∠EFG =180∘(邻补角的意义)∴∠EFG+∠BDG=180∘(等量代换).【点睛】本题主要考查平行线的判定和性质,属于综合题,难度一般,熟练掌握平行线的判定和性质是解题关键.20.(1)(-2,6);(2)(,)或(8,-4)【分析】(1)根据平方根的意义得到a<0,再利用点B到x轴的距离是点A到x轴距离的3倍得到方程,解之得到a值,可写出B点坐标;(2)利用A(a,-解析:(1)(-2,6);(2)(83,43)或(8,-4)【分析】(1)根据平方根的意义得到a<0,再利用点B到x轴的距离是点A到x轴距离的3倍得到方程,解之得到a值,可写出B点坐标;(2)利用A(a,-a)和B(a,4-a)得到AB=4,AB与y轴平行,由于点D的坐标为(4,-2),△OAB的面积是△DAB面积的2倍,则判断点A、点B在y轴的右侧,即a>0,根据三角形面积公式得到11424422a a⨯⨯=⨯⨯⨯-,解方程得到a值,然后写出B点坐标.【详解】解:(1)∵a没有平方根,∴a<0,∴-a>0,∵点B到x轴的距离是点A到x轴距离的3倍,∴3b a=-,∵a+b=4,∴43a a-=-,解得:a=-2或a=1(舍),∴b=6,此时点B的坐标为(-2,6);(2)∵点A的坐标为(a,-a),点B坐标为(a,4-a),∴AB=4,AB与y轴平行,∵点D的坐标为(4,-2),△OAB的面积是△DAB面积的2倍,∴点A、点B在y轴的右侧,即a>0,∴11424422a a ⨯⨯=⨯⨯⨯-, 解得:a =83或a =8, ∴B 点坐标为(83,43)或(8,-4). 【点睛】本题考查了坐标与图形性质:利用点的坐标计算线段的长和判断线段与坐标轴的位置关系.也考查了三角形的面积公式和平方根的性质.21.(1)3, ﹣3;(2)1.【分析】(1)根据解答即可;(2)根据2<<3得出a ,根据3<<4得出b ,再把a ,b 的值代入计算即可.【详解】(1)∵,∴的整数部分是3,小数部分是﹣3,解析:(1)3,3;(2)1.【分析】(1)根据34解答即可;(2)根据23得出a ,根据34得出b ,再把a ,b 的值代入计算即可.【详解】(1)∵34<<, ∴3﹣3,故答案为:3﹣3;(2)∵23,a 2,∵34,∴b =3,a +b 2+31.【点睛】此题考查无理数的估算,正确掌握数的平方是解题的关键.二十二、解答题22.(1)正方形的面积为10,正方形的边长为;(2)见解析【分析】(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画解析:(1)正方形ABCD 的面积为10,正方形ABCD 2)见解析【分析】(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形ABCD的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画出图形,然后建立数轴,根据算术平方根的意义即可表示出结论.【详解】解:(1)正方形ABCD的面积为4×4-4×12×3×1=10则正方形ABCD的边长为10;(2)如下图所示,正方形的面积为4×4-4×12×2×2=8,所以该正方形即为所求,如图建立数轴,以数轴的原点为圆心,正方形的边长为半径作弧,分别交数轴于两点∴8∴弧与数轴的左边交点为8888【点睛】此题考查的是求网格中图形的面积和实数与数轴,掌握算术平方根的意义和利用数轴表示无理数是解题关键.二十三、解答题23.(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由见解析;(3)①∠P=2∠P1,理由见解析;②∠AP2B=.【分析】(1)过P作PM∥CD,根据两直线平行,内错角相等可得∠APM=解析:(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由见解析;(3)①∠P=2∠P1,理由见解析;②∠AP2B=1 1802β︒-.【分析】(1)过P作PM∥CD,根据两直线平行,内错角相等可得∠APM=∠DAP,再根据平行公理求出CD∥EF然后根据两直线平行,内错角相等可得∠MPB=∠FBP,最后根据∠APM+∠MPB=∠DAP+∠FBP等量代换即可得证;(2)结论:∠APB=∠DAP+∠FBP.(3)①根据(2)的规律和角平分线定义解答;②根据①的规律可得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,然后根据角平分线的定义和平角等于180°列式整理即可得解.【详解】(1)证明:过P 作PM ∥CD ,∴∠APM =∠DAP .(两直线平行,内错角相等),∵CD ∥EF (已知),∴PM ∥CD (平行于同一条直线的两条直线互相平行),∴∠MPB =∠FBP .(两直线平行,内错角相等),∴∠APM +∠MPB =∠DAP +∠FBP .(等式性质) 即∠APB =∠DAP +∠FBP =40°+70°=110°. (2)结论:∠APB=∠DAP +∠FBP .理由:见(1)中证明.(3)①结论:∠P=2∠P 1;理由:由(2)可知:∠P =∠DAP +∠FBP ,∠P 1=∠DAP 1+∠FBP 1,∵∠DAP =2∠DAP 1,∠FBP =2∠FBP 1,∴∠P =2∠P 1.②由①得∠APB =∠DAP +∠FBP ,∠AP 2B =∠CAP 2+∠EBP 2,∵AP 2、BP 2分别平分∠CAP 、∠EBP ,∴∠CAP 2=12∠CAP ,∠EBP 2=12∠EBP ,∴∠AP 2B =12∠CAP +12∠EBP , = 12(180°-∠DAP )+ 12(180°-∠FBP ),=180°- 12(∠DAP +∠FBP ),=180°- 12∠APB ,=180°- 12β.【点睛】本题考查了平行线的性质,角平分线的定义,熟记性质与概念是解题的关键,此类题目,难点在于过拐点作平行线. 24.(1) ;(2) ;(3)不发生变化,理由见解析【分析】(1)如图1,延长DE 交AB 于点F ,根据平行线的性质推出;(2)如图2,过点E 作ES ∥AB ,过点H 作HT ∥AB ,根据AB ∥CD ,AB ∥E 解析:(1) +180ACB BED ∠∠=︒;(2) 100︒;(3)不发生变化,理由见解析【分析】(1)如图1,延长DE 交AB 于点F ,根据平行线的性质推出+180ACB BED ∠∠=︒;(2)如图2,过点E 作ES ∥AB ,过点H 作HT ∥AB ,根据AB ∥CD ,AB ∥ES 推出BED ABE CDE ∠=∠+∠,再根据AB ∥TH ,AB ∥CD 推出GHD THD THB ∠=∠-∠,最后根据BED ∠比BHD ∠大60︒得出BED ∠的度数;(3)如图3,过点E 作EQ ∥DN ,根据DEB CDE ABE ∠=∠+∠得出βα-的度数,根据条件再逐步求出PBM ∠的度数.【详解】(1)如答图1所示,延长DE 交AB 于点F .AB ∥CD ,所以D EFB ∠=∠,又因为A D ∠=∠,所以A EFB ∠=∠,所以AC ∥DF ,所以ACB CED ∠=∠.因为+180CED BED ∠∠=︒,所以+180ACB BED ∠∠=︒.(2)如答图2所示,过点E 作ES ∥AB ,过点H 作HT ∥AB .设ABG EBG α∠=∠=,FDH EDH β∠=∠=,因为AB ∥CD ,AB ∥ES ,所以ABE BES ∠=∠,SED CED ∠=∠,所以21802BED BES SED ABE CDE αβ∠=∠+∠=∠+∠=+︒-,因为AB ∥TH ,AB ∥CD ,所以ABG THB ∠=∠,FDH DHT ∠=∠,所以GHD THD THB βα∠=∠-∠=-,因为BED ∠比BHD ∠大60︒,所以2+1802()60αββα︒---=︒,所以40βα-=︒,所以40BHD ∠=︒,所以100BED ∠=︒(3)不发生变化如答图3所示,过点E 作EQ ∥DN .设CDN EDN α∠=∠=,EBM KBM β∠=∠=,由(2)易知DEB CDE ABE ∠=∠+∠,所以2+1802100αβ︒-=︒,所以40βα-=︒, 所以180()180DEB CDE EDN EBM PBM PBM αβ∠=∠+∠+︒-∠+∠=+︒--∠, 所以80()40PBM βα∠=︒--=︒.【点睛】本题考查了平行线的性质,求角的度数,正确作出相关的辅助线,根据条件逐步求出角度的度数是解题的关键.25.(1)120°;(2)∠EPF =∠AEP+∠CFP 或∠AEP=∠EPF+∠CFP ,证明见详解.【分析】(1)根据题意,当点与点、在一直线上时,作出图形,由AB ∥CD ,∠FHP=60°,可以推出解析:(1)120°;(2)∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,证明见详解.【分析】(1)根据题意,当点P与点E、F在一直线上时,作出图形,由AB∥CD,∠FHP=60°,可∠=∠=60°,计算∠PFD即可;以推出GEP EGP(2)根据点P是动点,分三种情况讨论:①当点P在AB与CD之间时;②当点P在AB 上方时;③当点P在CD下方时,分别求出∠AEP、∠EPF、∠CFP之间的关系即可.【详解】(1)当点P与点E、F在一直线上时,作图如下,∠=∠,∵AB∥CD,∠FHP=60°,GEP EGP∠=∠=∠FHP=60°,∴GEP EGP∴∠EFD=180°-∠GEP=180°-60°=120°,∴∠PFD=120°,故答案为:120°;(2)满足关系式为∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.证明:根据点P是动点,分三种情况讨论:①当点P在AB与CD之间时,过点P作PQ∥AB,如下图,∵AB∥CD,∴PQ∥AB∥CD,∴∠AEP=∠EPQ,∠CFP=∠FPQ,∴∠EPF=∠EPQ+∠FPQ=∠AEP+∠CFP,即∠EPF =∠AEP+∠CFP;②当点P在AB上方时,如下图所示,∵∠AEP=∠EPF+∠EQP,∵AB∥CD,∴∠CFP=∠EQP,∴∠AEP=∠EPF+∠CFP;③当点P在CD下方时,∵AB∥CD,∴∠AEP=∠EQF,∴∠EQF=∠EPF+∠CFP,∴∠AEP=∠EPF+∠CFP,综上所述,∠AEP、∠EPF、∠CFP之间满足的关系式为:∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,故答案为:∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.【点睛】本题考查了平行线的性质,外角的性质,掌握平行线的性质是解题的关键,注意分情况讨论问题.26.(1)∠AEB的大小不会发生变化,∠ACB=45°;(2)30°,60°;(3)60°或72°.【分析】(1)由直线MN与直线PQ垂直相交于O,得到∠AOB=90°,根据三角形的外角的性质得到∠解析:(1)∠AEB的大小不会发生变化,∠ACB=45°;(2)30°,60°;(3)60°或72°.【分析】(1)由直线MN与直线PQ垂直相交于O,得到∠AOB=90°,根据三角形的外角的性质得到∠PAB+∠ABM=270°,根据角平分线的定义得到∠BAC=12∠PAB,∠ABC=12∠ABM,于是得到结论;(2)由于将△ABC沿直线AB折叠,若点C落在直线PQ上,得到∠CAB=∠BAQ,由角平分线的定义得到∠PAC=∠CAB,即可得到结论;根据将△ABC沿直线AB折叠,若点C落在直线MN上,得到∠ABC=∠ABN,由于BC平分∠ABM,得到∠ABC=∠MBC,于是得到结论;(3)由∠BAO与∠BOQ的角平分线相交于E可得出∠E与∠ABO的关系,由AE、AF分别是∠BAO和∠OAG的角平分线可知∠EAF=90°,在△AEF中,由一个角是另一个角的32倍分情况进行分类讨论即可.【详解】解:(1)∠ACB的大小不变,∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠PAB+∠ABM=270°,∵AC、BC分别是∠BAP和∠ABM角的平分线,∴∠BAC=12∠PAB,∠ABC=12∠ABM,∴∠BAC+∠ABC=12(∠PAB+∠ABM)=135°,∴∠ACB=45°;(2)∵将△ABC沿直线AB折叠,若点C落在直线PQ上,∴∠CAB=∠BAQ,∵AC平分∠PAB,∴∠PAC=∠CAB,∴∠PAC=∠CAB=∠BAO=60°,∵∠AOB=90°,∴∠ABO=30°,∵将△ABC沿直线AB折叠,若点C落在直线MN上,∴∠ABC=∠ABN,∵BC平分∠ABM,∴∠ABC=∠MBC,∴∠MBC=∠ABC=∠ABN,∴∠ABO=60°,故答案为:30°,60°;(3)∵AE、AF分别是∠BAO与∠GAO的平分线,∴∠EAO=12∠BAO,∠FAO=12∠GAO,∴∠E=∠EOQ﹣∠EAO=12(∠BOQ﹣∠BAO)=12∠ABO,∵AE、AF分别是∠BAO和∠OAG的角平分线,∴∠EAF=∠EAO+∠FAO=12(∠BAO+∠GAO)=90°.在△AEF中,∵∠BAO与∠BOQ的角平分线相交于E,∴∠EAO= 12∠BAO,∠EOQ=12∠BOQ,∴∠E=∠EOQ-∠EAO=12(∠BOQ-∠BAO)=12∠ABO,∵有一个角是另一个角的32倍,故有:①∠EAF=32∠F,∠E=30°,∠ABO=60°;②∠F=32∠E,∠E=36°,∠ABO=72°;③∠EAF=32∠E,∠E=60°,∠ABO=120°(舍去);④∠E=32∠F,∠E=54°,∠ABO=108°(舍去);∴∠ABO为60°或72°.【点睛】本题主要考查的是角平分线的性质以及三角形内角和定理的应用.解决这个问题的关键就是要能根据角平分线的性质将外角的度数与三角形的内角联系起来,然后再根据内角和定理进行求解.另外需要分类讨论的时候一定要注意分类讨论的思想.。
2020-2021学年七年级下学期期末数学试卷及答案解析 (42)
2020-2021学年七年级下学期期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的,用2B 铅笔把答题卡上对应题目的答案标号涂黑.) 1.下列各图中,∠1与∠2是对顶角的是( )A .B .C .D .2.在实数﹣3,0,√3,3中,最小的实数是( ) A .﹣3B .0C .√3D .33.下列各数中,无理数是( ) A .√4B .3.14C .√−273D .5π4.在平面直角坐标系中,点P (2,﹣3)在( ) A .第一象限B .第二象限C .第三象限D .第四象限5.在数轴上表示不等式x <1的解集,正确的是( ) A . B . C .D .6.已知代数式15x a ﹣1y 3与﹣5x ﹣b y 2a +b 是同类项,则a 与b 的值分别是( ) A .{a =2b =−1B .{a =2b =1C .{a =−2b =−1D .{a =−2b =17.若{x =2y =−1是方程ax +y =5的一组解,则a 的值为( )A .1B .2C .3D .﹣38.灾区急需帐篷.某企业急灾区之所急,准备捐助甲、乙两种型号的帐篷共1500顶,其中甲种帐篷每顶安置6人,乙种帐篷每顶安置4人,共安置8000人.设该企业捐助甲种帐篷x 顶、乙种帐篷y 顶,那么下面列出的方程组中正确的是( ) A .{x +4y =15004x +y =8000B .{x +4y =15006x +y =8000C .{x +y =15004x +6y =8000D .{x +y =15006x +4y =80009.2020年中考已经结束,市教科研所随机抽取1000名学生试卷进行调查分析,这个问题的样本是()A.1000B.1000名C.1000名考生的数学试卷D.1000名学生10.若a,b为实数,且|a+1|+√b−1=0,则(ab)2019的值是()A.0B.1C.﹣1D.±111.如图,下列条件中不能判定AB∥CD的是()A.∠3=∠4B.∠1=∠5C.∠1+∠4=180°D.∠3=∠5 12.在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变换:①f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1);②g(m,n)=(﹣m,﹣n),如g(2,1)=(﹣2,﹣1).按照以上变换有:f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(﹣3,2)]等于()A.(3,2)B.(3,﹣2)C.(﹣3,2)D.(﹣3,﹣2)二、填空题(本题共计6小题,每题3分,共计18分,请将答案填在答题卡上)13.剧院里5排2号可用(5,2)表示,则(3,7)表示.14.√2的相反数是.15.如图,a∥b,∠1=30°,则∠2=.16.在方程2x+y=5中,用x的代数式表示y,得y=.17.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打折.18.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向依次平移,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A 21的坐标为 .三、解答题(本大题共8小题,共66分.解答应写出文字说明,证明过程或演算步骤.) 19.(6分)解方程组:{2x −y =34x +3y =11..20.(6分)解不等式5x +15>4x +13,并把它的解集在数轴上表示出来.21.(8分)将一副三角板拼成如图所示的图形,过点C 作CF 平分∠DCE 交DE 于点F . (1)求证:CF ∥AB ; (2)求∠DFC 的度数.22.(8分)如图,已知在平面直角坐标系中,△ABC 的位置如图所示.(1)将△ABC 向右平移3个单位,再向上平移2个单位,请在图中作出平移后的△A ′B ′C ′,并写出△A ′B ′C ′各点的坐标. (2)求△ABC 的面积.23.(8分)为更精准地关爱留守学生,某学校将留守学生的各种情形分成四种类型:A .由父母一方照看;B .由爷爷奶奶照看;C .由叔姨等近亲照看;D .直接寄宿学校.某数学小组随机调查了一个班级,发现该班留守学生数量占全班总人数的20%,并将调查结果制成如下两幅不完整的统计图.(1)该班共有名留守学生,B类型留守学生所在扇形的圆心角的度数为;(2)将条形统计图补充完整;(3)已知该校共有2400名学生,现学校打算对D类型的留守学生进行手拉手关爱活动,请你估计该校将有多少名留守学生在此关爱活动中受益?24.(10分)随着新能源汽车的发展,某公交公司将用新能源公交车淘汰某一条线路上“冒黑烟”较严重的燃油公交车,计划购买A型和B型新能源公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需300万元;若购买A型公交车2辆,B型公交车1辆,共需270万元,(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该条线路上A型和B型公交车每辆年均载客量分别为80万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1000万元,且确保这10辆公交车在该线路的年均载客量总和不少于900万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?25.(10分)观察下列各式:(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1…(1)根据以上规律,则(x﹣1)(x7+x6+x5+x4+x3+x2+x+1)=.(2)你能否由此归纳出一般性规律:(x﹣1)(x n﹣1+x n﹣2+…+x+1)=.(3)根据上述的规律,求1+2+22+…+238+239的值.26.(10分)平面内的两条直线有相交和平行两种位置关系.(1)如图1,若AB∥CD,点P在AB、CD内部,∠B=50°,∠D=30°,则∠BPD=.(2)如图2,将点P移到AB、CD外部,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论.(3)如图3,写出∠BPD、∠B、∠D、∠BQD之间的数量关系.(不需证明)2020-2021学年七年级下学期期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.)1.下列各图中,∠1与∠2是对顶角的是()A.B.C.D.【解答】解:A、∠1与∠2不是对顶角,故A选项错误;B、∠1与∠2是对顶角,故B选项正确;C、∠1与∠2不是对顶角,故C选项错误;D、∠1与∠2不是对顶角,故D选项错误.故选:B.2.在实数﹣3,0,√3,3中,最小的实数是()A.﹣3B.0C.√3D.3【解答】解:∵﹣3<0<√3<3,∴其中最小的实数是﹣3.故选:A.3.下列各数中,无理数是()3D.5πA.√4B.3.14C.√−27【解答】解:A、√4=2是有理数,故A错误;B.3.14是有理数,故B错误;3=−3是有理数,故C错误;C、√−27D、5π是无理数,故C正确;故选:D.4.在平面直角坐标系中,点P(2,﹣3)在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:点P(2,﹣3)在第四象限.故选:D .5.在数轴上表示不等式x <1的解集,正确的是( ) A . B . C .D .【解答】解:在数轴上表示不等式x <1的解集,正确的是故选:B .6.已知代数式15x a ﹣1y 3与﹣5x ﹣b y 2a +b 是同类项,则a 与b 的值分别是( )A .{a =2b =−1B .{a =2b =1C .{a =−2b =−1D .{a =−2b =1【解答】解:∵15x a ﹣1y 3与﹣5x ﹣b y 2a +b 是同类项, ∴{a −1=−b 2a +b =3, ∴{a =2b =−1. 故选:A .7.若{x =2y =−1是方程ax +y =5的一组解,则a 的值为( )A .1B .2C .3D .﹣3【解答】解:∵{x =2y =−1是方程ax +y =5的一组解,∴2a ﹣1=5, 解得a =3, 故选:C .8.灾区急需帐篷.某企业急灾区之所急,准备捐助甲、乙两种型号的帐篷共1500顶,其中甲种帐篷每顶安置6人,乙种帐篷每顶安置4人,共安置8000人.设该企业捐助甲种帐篷x 顶、乙种帐篷y 顶,那么下面列出的方程组中正确的是( ) A .{x +4y =15004x +y =8000B .{x +4y =15006x +y =8000C .{x +y =15004x +6y =8000D .{x +y =15006x +4y =8000【解答】解:根据甲、乙两种型号的帐篷共1500顶,得方程x +y =1500;根据共安置8000人,得方程6x +4y =8000.列方程组为:{x +y =15006x +4y =8000.故选:D .9.2020年中考已经结束,市教科研所随机抽取1000名学生试卷进行调查分析,这个问题的样本是( ) A .1000B .1000名C .1000名考生的数学试卷D .1000名学生【解答】解:抽取1000名考生的数学试卷是总体的一个样本, 故选:C .10.若a ,b 为实数,且|a +1|+√b −1=0,则(ab )2019的值是( ) A .0B .1C .﹣1D .±1【解答】解:根据题意,得a +1=0,b ﹣1=0, ∴a =﹣1,b =1,∴(ab )2019=(﹣1×1)2019=﹣1, 故选:C .11.如图,下列条件中不能判定AB ∥CD 的是( )A .∠3=∠4B .∠1=∠5C .∠1+∠4=180°D .∠3=∠5【解答】解:∠3=∠5是同旁内角相等,但不一定互补,所以不能判定AB ∥CD . 故选:D .12.在平面直角坐标系中,对于平面内任一点(m ,n ),规定以下两种变换: ①f (m ,n )=(m ,﹣n ),如f (2,1)=(2,﹣1); ②g (m ,n )=(﹣m ,﹣n ),如g (2,1)=(﹣2,﹣1).按照以上变换有:f [g (3,4)]=f (﹣3,﹣4)=(﹣3,4),那么g [f (﹣3,2)]等于( ) A .(3,2)B .(3,﹣2)C .(﹣3,2)D .(﹣3,﹣2)【解答】解:∵f (﹣3,2)=(﹣3,﹣2),∴g[f(﹣3,2)]=g(﹣3,﹣2)=(3,2),故选:A.二、填空题(本题共计6小题,每题3分,共计18分,请将答案填在答题卡上)13.剧院里5排2号可用(5,2)表示,则(3,7)表示3棑7号.【解答】解:剧院里5排2号可用(5,2)表示,则(3,7)表示3棑7号.故答案为3棑7号.14.√2的相反数是−√2.【解答】解:√2的相反数是−√2故答案为:−√215.如图,a∥b,∠1=30°,则∠2=150°.【解答】解:∵a∥b,∠1=30°,∴∠1=∠3=30°,∴∠2=180°﹣∠3=180°﹣30°=150°.故答案为:150°.16.在方程2x+y=5中,用x的代数式表示y,得y=5﹣2x.【解答】解:2x+y=5,将2x移到等式的右边得,y=5﹣2x.故本题答案为:5﹣2x.17.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打7折.【解答】解:设至多打x折则1200×x10−800≥800×5%,解得x≥7,即最多可打7折. 故答案为:7.18.如图,在平面直角坐标系中,一动点从原点O 出发,按向上、向右、向下、向右的方向依次平移,每次移动一个单位,得到点A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),…那么点A 21的坐标为 (10,1) .【解答】解:由图可知,n =1时,4×1+1=5,点A 5(2,1), n =2时,4×2+1=9,点A 9(4,1), n =3时,4×3+1=13,点A 13(6,1), 所以,点A 4n +1(2n ,1), ∵21=4×5+1,则A 21的坐标是(10,1). 故答案为:(10,1).三、解答题(本大题共8小题,共66分.解答应写出文字说明,证明过程或演算步骤.) 19.(6分)解方程组:{2x −y =34x +3y =11..【解答】解:{2x −y =3①4x +3y =11②,①×3+②得:10x =20,即x =2, 把x =2代入①得:y =1, 则方程组的解为{x =2y =1.20.(6分)解不等式5x +15>4x +13,并把它的解集在数轴上表示出来.【解答】解:移项得5x ﹣4x >13﹣15, 合并同类项得,x >﹣2. 在数轴上表示为:21.(8分)将一副三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB;(2)求∠DFC的度数.【解答】(1)证明:∵CF平分∠DCE,∴∠1=∠2=12∠DCE,∵∠DCE=90°,∴∠1=45°,∵∠3=45°,∴∠1=∠3,∴AB∥CF(内错角相等,两直线平行);(2)∵∠D=30°,∠1=45°,∴∠DFC=180°﹣30°﹣45°=105°.22.(8分)如图,已知在平面直角坐标系中,△ABC的位置如图所示.(1)将△ABC向右平移3个单位,再向上平移2个单位,请在图中作出平移后的△A′B′C′,并写出△A′B′C′各点的坐标.(2)求△ABC的面积.【解答】解:(1)如图所示:△A′B′C′即为所求,A′(2,4),B′(1,1),C′(5,2);(2)S△ABC=4×3−12×3×1−12×3×2−12×4×1=5.5.23.(8分)为更精准地关爱留守学生,某学校将留守学生的各种情形分成四种类型:A.由父母一方照看;B.由爷爷奶奶照看;C.由叔姨等近亲照看;D.直接寄宿学校.某数学小组随机调查了一个班级,发现该班留守学生数量占全班总人数的20%,并将调查结果制成如下两幅不完整的统计图.(1)该班共有10名留守学生,B类型留守学生所在扇形的圆心角的度数为144°;(2)将条形统计图补充完整;(3)已知该校共有2400名学生,现学校打算对D类型的留守学生进行手拉手关爱活动,请你估计该校将有多少名留守学生在此关爱活动中受益?【解答】解:(1)2÷20%=10(人),410×100%×360°=144°,故答案为:10,144°;(2)10﹣2﹣4﹣2=2(人),如图所示:(3)2400×210×20%=96(人),答:估计该校将有96名留守学生在此关爱活动中受益.24.(10分)随着新能源汽车的发展,某公交公司将用新能源公交车淘汰某一条线路上“冒黑烟”较严重的燃油公交车,计划购买A 型和B 型新能源公交车共10辆,若购买A 型公交车1辆,B 型公交车2辆,共需300万元;若购买A 型公交车2辆,B 型公交车1辆,共需270万元,(1)求购买A 型和B 型公交车每辆各需多少万元?(2)预计在该条线路上A 型和B 型公交车每辆年均载客量分别为80万人次和100万人次.若该公司购买A 型和B 型公交车的总费用不超过1000万元,且确保这10辆公交车在该线路的年均载客量总和不少于900万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?【解答】解:(1)设购买A 型新能源公交车每辆需x 万元,购买B 型新能源公交车每辆需y 万元,由题意得:{x +2y =3002x +y =270, 解得{x =80y =110, 答:购买A 型新能源公交车每辆需80万元,购买B 型新能源公交车每辆需110万元.(2)设购买A 型公交车a 辆,则B 型公交车(10﹣a )辆,由题意得{80a +110(10−a)≤100080a +100(10−a)≥900, 解得:103≤a ≤5,因为a 是整数,所以a =4,5;则共有两种购买方案:①购买A型公交车4辆,则B型公交车6辆:80×4+110×6=980万元;②购买A型公交车5辆,则B型公交车5辆:80×5+110×5=950万元;购买A型公交车5辆,则B型公交车5辆费用最少,最少总费用为950万元.25.(10分)观察下列各式:(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1…(1)根据以上规律,则(x﹣1)(x7+x6+x5+x4+x3+x2+x+1)=x8﹣1.(2)你能否由此归纳出一般性规律:(x﹣1)(x n﹣1+x n﹣2+…+x+1)=x n﹣1.(3)根据上述的规律,求1+2+22+…+238+239的值.【解答】解:(1)由规律得:(x﹣1)(x7+x6+x5+x4+x3+x2+x+1)=x8﹣1;故答案为x8﹣1;(2)(x﹣1)(x n+x n﹣1+…+x2+x+1)=x n﹣1;故答案为x n﹣1.(3)1+2+22+…+234+239=(2﹣1)(20+21+22++…+234+239)=240﹣1,26.(10分)平面内的两条直线有相交和平行两种位置关系.(1)如图1,若AB∥CD,点P在AB、CD内部,∠B=50°,∠D=30°,则∠BPD=80°.(2)如图2,将点P移到AB、CD外部,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论.(3)如图3,写出∠BPD、∠B、∠D、∠BQD之间的数量关系.(不需证明)【解答】解:(1)如图1,过P点作PQ∥AB,∵AB∥CD,∴AB∥PQ∥CD,∴∠BPQ=∠B=50°,∠DPQ=∠D=30°,∵∠BPD=∠BPQ+∠DPQ=80°,∴∠BPD=∠NAP+∠HBP=80°;(2)∵AB∥CD,∴∠CEP=∠B,∵∠CEP=∠BPD+∠D,∴∠B=∠BPD+∠D;(3)连结QP并且延长QP至E,∵∠BPE=∠BQE+∠B,∠DPE=∠DQE+∠D,∠BPD=∠BPE+∠DPE,∠BQD=∠BQE+∠DQE,∴∠BPD=∠B+∠D+∠BQD.故答案为:80°.。
2020-2021江阴市江阴二中初一数学下期末模拟试题附答案
A.2 .A. B.C .D. 3 .A. 2020-2021江阴市江阴二中初一数学下期末模拟试题附答案、选择题下列各式中计算正确的是(B. , ( 3)2 3C. 3 ( 3)3 3D. 3 27 3已知关于x的不等式组3Vm<44< m<5 x> lx<m 的解中有3个整数解,4< 5将一个矩形纸片按如图所示折叠,若/ 1=40。
,则/ 2° C.60°4.《九章算术》中记载一问题如下:“今有共买鸡,人出八, 人数、物价各几何?”意思是:今有人合伙购物,每人出又差A.C.5.A.6.A.则m的取值范围是()的度数是(D. 70°盈三;人出七,不足四,问4钱,问人数、物价各多少?设有x人,买鸡的钱数为)8x 7x 8x 7x 已知8xB.7x 是关于,,_ , , x 若不等式组{2x a= 2, b= 18xD.7x8钱,会多3钱;每人出7钱, y,依题意可列方程组为x, y的二元一次方程x-ay=3的一个解,则a的值为()B. -1 C.D. -22> 0 ……的解集为0vxv1,b 1<0则a, b的值分别为(B. a=2, b= 3 C.a=- 2, b=3 D. a= — 2, b=17.如图,把一个直角三角尺的直角顶点放在直尺的一边上,若/ 1 = 50。
,则/ 2 =OA. 20°B.30°C.40°D.50°8.如图,将GABE向右平移2cm得至IJADCF,如果AABE的周长是16cm,那么四边形ABFD的周长是()A. 16cmB. 18cm 9.如图所示,下列说法不正确的是(C. 20cmD. 21cmA. /I和/2是同旁内角C. Z3和/4是同位角10.下列说法正确的是()A.两点之间,直线最短;B.过一点有一条直线平行于已知直线;C.和已知直线垂直的直线有且只有一条;D.在平面内过一点有且只有一条直线垂直于已知直线^11.如图,将AABC沿BC边上的中线AD平移到那'B'C’的位置,已知那BC的面积为9,阴影部分三角形的面积为 4.若AA′=1 ,则A'D等于(12.用反证法证明命题在三角形中,至多有一个内角是直角A.至少有一个内角是直角B.至少有两个内角是直角C.至多有一个内角是直角D.至多有两个内角是直角二、填空题13.某小区地下停车场入口门栏杆的平面示意图如图所示,B4垂直地面,E于点力,CD 平行于地面4E ,若= 120口,则.B. Z1和是对顶角D. Z1和/4是内错角A. 2B. 32C.-3 D.”时,应先假设(A14 .如图,已知直线 AB,CD 相交于点O,如果 BOD 40 , OA 平分 COE ,那么DOE 度.15 .用适当的符号表示 a 是非负数: .x y 3x a16 .若二元一次方程组的解为 ,则a- b= _______________ .3x 5y 4 y b, x 2 -、… ax by 5,…,…一17 .已知 是方程组{的解,则a-b 的值母 ___________________y 1 bx ay 1一18 .结合下面图形列出关于未知数x, y 的方程组为.函1回 ।和। 何1声119 .如图,将周长为10的三角形ABC 沿BC 方向平移1个单位长度得到三角形 DEF,则20 .步步高超市在2018年初从科沃斯商城购进一批智能扫地机器人,进价为 800元,出售 时标价为1200元,后来由于该商品积压,超市准备打折销售,但要保证利润率不低于21 .我市盘山、黄崖关长城、航母公园三景区是人们节假日游玩的热点景区.某中学对七年级(1)班学生今年暑假到这三景区游玩的计划做了全面调查,调查分四个类别,A 游三个景区;B :游两个景区;C :游一个景区;D :不到这三个景区游玩.根据调查的结果绘 制了不完全的条形统计图和扇形统计图(如图①、图②)如下,请根据图中所给的信息, 5%,则至多可打三、解答题折.四边形ABFD 的周长为解答下列问题:(1)求七年级(1)班学生人数; (2)将条形统计图补充完整; (3)求扇形统计图中表示“B 类别”的圆心角的度数;(4)若该中学七年级有学生 520人,求计划暑假选择 A 、B 、C 三个类别出去游玩的学生 有多少人?2 3(x 1)3 ,并求出它的所有整数解的和.2 X X23.如图,已知AB // CD.(1)发现问题:若/ ABF = - /ABE , / CDF= - Z CDE ,则/ F 与/ E 的等量关系2 2为.(2)探究问题:若/ ABF = 1/ABE, / CDF = 1 / CDE .猜想:/ F 与/E 的等量关33系,并证明你的结论.(3)归纳问题:若/ ABF = 1/ABE, / CDF = 1/ CDE .直接写出/ F 与/E 的等量关n n万元,面包车每辆 4万元,公司可投入的购车款不超过 55万元. (1)符合公司要求的购买方案有几种?请说明理由;(2)如果每辆轿车的日租金为 200元,每辆面包车的日租金为110元,假设新购买的这 10辆车每日都可租出,要使这 10辆车的日租金不低于 1500元,那么应选择以上哪种购买方 案?25.如图,已知在 ABC 中,FGPEB, 2 3,说明 EDB DBC 180的理解:••• FG PEB (已知),22.解不等式组5x 1 x2 24.某汽车租赁公司要购买轿车和面包车共 10辆,其中轿车至少要购买 3辆,轿车每辆7 系.2 3 (已知),DE II BC (EDB DBC 180 (【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】直接利用算术平方根、平方根以及立方根的定义分别化简求出答案.【详解】A、希3 ,此选项错误错误,不符合题意;B、师)2 3,此选项错误错误,不符合题意;C、3/石33,此选项错误错误,不符合题意;D、3/27 3,此选项正确,符合题意;故选:D.【点睛】本题主要考查了算术平方根、平方根、立方根的概念,正确理解和灵活运用相关知识是解题关键.2.C解析:C【解析】【分析】表示出不等式组的解集,由解集中有3个整数解,确定出m的范围即可.【详解】不等式组解集为1vxvm,由不等式组有3个整数解,且为2, 3, 4,得到4Vme 5,故选C.【点睛】此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.3.D解析:D【解析】 【分析】根据折叠的知识和直线平行判定即可解答 【详解】解:如图可知折叠后的图案/ABC= ZEBC,又因为矩形对边平行,根据直线平行内错角相等可得Z2=Z DBC ,又因为/ 2+/ABC=180 ° , 所以/ EBC+/2=180。
2020-2021初一数学下期末试卷(附答案)(4)
2020-2021初一数学下期末试卷(附答案)(4)一、选择题1.已知关于x的不等式组的解中有3个整数解,则m的取值范围是()A.3<m≤4B.4≤m<5C.4<m≤5D.4≤m≤52.点M(2,-3)关于原点对称的点N的坐标是: ( )A.(-2,-3) B.(-2, 3) C.(2, 3) D.(-3, 2)3.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是()A.40°B.50°C.60°D.70°4.估计10+1的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间5.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.15°B.22.5°C.30°D.45°6.如图,在平面直角坐标系xOy中,点P(1,0).点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(﹣1,1),第3次向上跳动1个单位至点P3,第4次向右跳动3个单位至点P4,第5次又向上跳动1个单位至点P5,第6次向左跳动4个单位至点P6,….照此规律,点P第100次跳动至点P100的坐标是( )A.(﹣26,50)B.(﹣25,50)C.(26,50)D.(25,50)7.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,所列方程组正确的是( )A .783230x y x y +=⎧⎨+=⎩B .782330x y x y +=⎧⎨+=⎩C .302378x y x y +=⎧⎨+=⎩D .303278x y x y +=⎧⎨+=⎩8.16的平方根为( )A .±4B .±2C .+4D .29.将点A (1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B ,则点B 的坐标为( )A .(2,1)B .(﹣2,﹣1)C .(﹣2,1)D .(2,﹣1)10.对于两个不相等的实数,a b ,我们规定符号{}max ,a b 表示,a b 中较大的数,如{}max 2,44=,按这个规定,方程{}21max ,x x x x+-=的解为 ( ) A .1-2 B .2-2C .1-212+或D .1+2或-111.如图,AB ∥CD ,DE ⊥BE ,BF 、DF 分别为∠ABE 、∠CDE 的角平分线,则∠BFD =( )A .110°B .120°C .125°D .135°12.若x <y ,则下列不等式中不成立的是( ) A .x 1y 1-<-B .3x 3y <C .x y 22< D .2x 2y -<-二、填空题13.9的算术平方根是________.14.2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm .某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm ,长与高的比为8:11,则符合此规定的行李箱的高的最大值为 cm .15.若点P (2−a ,2a+5)到两坐标轴的距离相等,则a 的值为____.16.不等式组11{2320x x ≥--<的解集为________.17.已知13x y =⎧⎨=⎩是二元一次方程组71mx ny nx my +=⎧⎨-=⎩的解,则2m +n 的值为_____.18.用适当的符号表示a 是非负数:_______________.19.如图,点A ,B ,C 在直线l 上,PB ⊥l ,PA=6cm ,PB=5cm ,PC=7cm ,则点P 到直线l 的距离是_____cm.20.已知方程组236x y x y +=⎧⎨-=⎩的解满足方程x +2y =k ,则k 的值是__________.三、解答题21.七年级同学最喜欢看哪一类课外书?某校随机抽取七年级部分同学对此进行问卷调査(每人只选择一种最喜欢的书籍类型).如图是根据调查结果绘制的两幅统计图(不完整).请根据统计图信息,解答下列问题:(1)一共有多少名学生参与了本次问卷调查;(2)补全条形统计图,并求出扇形统计图中“其他”所在扇形的圆心角度数; (3)若该年级有400名学生,请你估计该年级喜欢“科普常识”的学生人数.22.我市盘山、黄崖关长城、航母公园三景区是人们节假日游玩的热点景区.某中学对七年级(1)班学生今年暑假到这三景区游玩的计划做了全面调查,调查分四个类别,A 游三个景区;B :游两个景区;C :游一个景区;D :不到这三个景区游玩.根据调查的结果绘制了不完全的条形统计图和扇形统计图(如图①、图②)如下,请根据图中所给的信息,解答下列问题:(1)求七年级(1)班学生人数;(2)将条形统计图补充完整;(3)求扇形统计图中表示“B类别”的圆心角的度数;(4)若该中学七年级有学生520人,求计划暑假选择A、B、C三个类别出去游玩的学生有多少人?23.为了解学生参加户外活动的情况,和谐中学对学生每天参加户外活动的时间进行抽样调查,并将调查结果绘制成如图两幅不完整的统计图,根据图示,请回答下列问题:(1)被抽样调查的学生有______人,并补全条形统计图;(2)每天户外活动时间的中位数是______(小时);(3)该校共有2000名学生,请估计该校每天户外活动时间超过1小时的学生有多少人?24.如图1,点A、B在直线1l上,点C、D在直线2l上,AE平分∠BAC,CE平分∠ACD,∠EAC+∠ACE=90°.(1)请判断1l与2l的位置关系并说明理由;(2)如图2,在(1)的结论下,P为线段AC上一定点,点Q为直线CD上一动点,当点Q在射线CD上运动时(不与点C重合)∠CPQ+∠CQP与∠BAC有何数量关系?请说明理由.25.某电脑经销商计划购进一批电脑机箱和液晶显示器,若购电脑机箱10台和液液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液示器5台,共需要资金4120元.(1)每台电脑机箱、液晶显示器的进价各是多少元?(2)该经销商购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元.试问:该经销商有哪几种进货方案?哪种方案获利最大?最大利润是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】表示出不等式组的解集,由解集中有3个整数解,确定出m的范围即可.【详解】不等式组解集为1<x<m,由不等式组有3个整数解,且为2,3,4,得到4<m≤5,故选C.【点睛】此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.2.B解析:B【解析】试题解析:已知点M(2,-3),则点M关于原点对称的点的坐标是(-2,3),故选B.3.D解析:D【解析】【分析】根据折叠的知识和直线平行判定即可解答.【详解】解:如图可知折叠后的图案∠ABC=∠EBC,又因为矩形对边平行,根据直线平行内错角相等可得 ∠2=∠DBC ,又因为∠2+∠ABC=180°, 所以∠EBC+∠2=180°,即∠DBC+∠2=2∠2=180°-∠1=140°. 可求出∠2=70°. 【点睛】掌握折叠图形的过程中有些角度是对称相等的是解答本题的关键.4.B解析:B 【解析】解:∵3104<<,∴41015<+<.故选B .点睛:此题主要考查了估算无理数的大小,正确得出10 的取值范围是解题关键.5.A解析:A 【解析】试题分析:如图,过A 点作AB ∥a ,∴∠1=∠2,∵a ∥b ,∴AB ∥b ,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A .考点:平行线的性质.6.C解析:C 【解析】 【分析】解决本题的关键是分析出题目的规律,以奇数开头的相邻两个坐标的纵坐标是相同的,所以第100次跳动后,纵坐标为100250÷=,其中4的倍数的跳动都在y 轴的右侧,那么第100次跳动得到的横坐标也在y 轴的右侧.1P 横坐标为1,4P 横坐标为2,8P 横坐标为3,以此类推可得到100P 的横坐标.【详解】解:经过观察可得:1P 和2P 的纵坐标均为1,3P 和4P 的纵坐标均为2,5P 和6P 的纵坐标均为3,因此可以推知99P 和100P 的纵坐标均为100250÷=;其中4的倍数的跳动都在y 轴的右侧,那么第100次跳动得到的横坐标也在y 轴的右侧.1P 横坐标为1,4P 横坐标为2,8P 横坐标为3,以此类推可得到:n P 的横坐标为41n ÷+(n 是4的倍数).故点100P 的横坐标为:1004126÷+=,纵坐标为:100250÷=,点P 第100次跳动至点100P 的坐标为()26,50. 故选:C . 【点睛】本题考查规律型:点的坐标,解题的关键是分析出题目的规律,找出题目中点的坐标的规律,属于中考常考题型.7.A解析:A 【解析】 【分析】 【详解】该班男生有x 人,女生有y 人.根据题意得:303278x y x y +=⎧⎨+=⎩,故选D .考点:由实际问题抽象出二元一次方程组.8.A解析:A 【解析】 【分析】根据平方根的概念即可求出答案. 【详解】∵(±4)2=16,∴16的平方根是±4. 故选A . 【点睛】本题考查了平方根的概念,属于基础题型.9.C解析:C【解析】分析:让A 点的横坐标减3,纵坐标加2即为点B 的坐标. 详解:由题中平移规律可知:点B 的横坐标为1-3=-2;纵坐标为-1+2=1, ∴点B 的坐标是(-2,1). 故选:C.点睛:本题考查了坐标与图形变化-平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.10.D解析:D 【解析】 【分析】分x x <-和x x >-两种情况将所求方程变形,求出解即可.当x x <-,即0x <时,所求方程变形为21x x x+-=, 去分母得:2210x x ++=,即210x +=(),解得:121x x ==-,经检验1x =-是分式方程的解;当x x >-,即0x >时,所求方程变形为21x x x+=, 去分母得:2210x x --=,代入公式得:22212x ±==±, 解得:341212x x =+=-,(舍去), 经检验12x =+是分式方程的解, 综上,所求方程的解为12+或-1. 故选D. 【点睛】本题考查的知识点是分式方程的解,解题关键是弄清题中的新定义.11.D解析:D 【解析】 【分析】 【详解】如图所示,过E 作EG ∥AB .∵AB ∥CD ,∴EG ∥CD , ∴∠ABE +∠BEG =180°,∠CDE +∠DEG =180°, ∴∠ABE +∠BED +∠CDE =360°.又∵DE ⊥BE ,BF ,DF 分别为∠ABE ,∠CDE 的角平分线, ∴∠FBE +∠FDE =12(∠ABE +∠CDE )=12(360°﹣90°)=135°, ∴∠BFD =360°﹣∠FBE ﹣∠FDE ﹣∠BED =360°﹣135°﹣90°=135°. 故选D .【点睛】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.12.D【解析】【分析】利用不等式的基本性质判断即可.【详解】若x<y,则x﹣1<y﹣1,选项A成立;若x<y,则3x<3y,选项B成立;若x<y,则x2<y2,选项C成立;若x<y,则﹣2x>﹣2y,选项D不成立,故选D.【点睛】此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.二、填空题13.【解析】【分析】根据算术平方根的性质求出=3再求出3的算术平方根即可【详解】解:∵=33的算术平方根是∴的算术平方根是故答案为:【点睛】本题考查算术平方根的概念和求法正数的算术平方根是正数0的算术平【解析】【分析】,再求出3的算术平方根即可.【详解】,3,.【点睛】本题考查算术平方根的概念和求法,正数的算术平方根是正数,0的算术平方根是0,负数没有平方根.14.55【解析】【分析】利用长与高的比为8:11进而利用携带行李箱的长宽高三者之和不超过115cm得出不等式求出即可【详解】设长为8x高为11x由题意得:19x+20≤115解得:x≤5故行李箱的高的最解析:55【解析】【分析】利用长与高的比为8:11,进而利用携带行李箱的长、宽、高三者之和不超过115cm得出不等式求出即可.设长为8x ,高为11x , 由题意,得:19x+20≤115, 解得:x≤5,故行李箱的高的最大值为:11x=55, 答:行李箱的高的最大值为55厘米. 【点睛】此题主要考查了一元一次不等式的应用,根据题意得出正确不等关系是解题关键.15.a=-1或a=-7【解析】【分析】由点P 到两坐标轴的距离相等可得出|2-a|=|2a+5|求出a 的值即可【详解】解:∵点P 到两坐标轴的距离相等∴|2-a|=|2a+5|∴2-a=2a+52-a=-(解析:a=-1或a=-7. 【解析】 【分析】由点P 到两坐标轴的距离相等可得出|2-a|=|2a+5|,求出a 的值即可. 【详解】解:∵点P 到两坐标轴的距离相等, ∴|2-a|=|2a+5|,∴2-a=2a+5,2-a=-(2a+5) ∴a=-1或a=-7.故答案是:a=-1或a=-7. 【点睛】本题考查了点到坐标轴的距离与坐标的关系,解答本题的关键在于得出|2-a|=|2a+5|,注意不要漏解.16.【解析】∵解不等式①得:x ⩾−2解不等式②得:x<∴不等式组的解集为−2⩽x<故答案为−2⩽x< 解析:223x -≤<【解析】112320x x ⎧≥-⎪⎨⎪-<⎩①②∵解不等式①得:x ⩾−2, 解不等式②得:x<23, ∴不等式组的解集为−2⩽x<23,故答案为−2⩽x<2 3 .17.3【解析】解:由题意可得:①-②得:4m+2n=6故2m+n=3故答案为3 解析:3【解析】解:由题意可得:3731m nn m+=⎧⎨-=⎩①②,①-②得:4m+2n=6,故2m+n =3.故答案为3.18.a≥0【解析】【分析】非负数即大于等于0据此列不等式【详解】由题意得a ≥0故答案为:a≥0解析:a≥0【解析】【分析】非负数即大于等于0,据此列不等式.【详解】由题意得a≥0.故答案为:a≥0.19.【解析】【分析】根据点到直线的距离是直线外的点到这条直线的垂线段的长度可得答案【详解】解:∵PB⊥lPB=5cm∴P到l的距离是垂线段PB的长度5cm故答案为:5【点睛】本题考查了点到直线的距离的定解析:【解析】【分析】根据点到直线的距离是直线外的点到这条直线的垂线段的长度,可得答案.【详解】解:∵PB⊥l,PB=5cm,∴P到l的距离是垂线段PB的长度5cm,故答案为:5.【点睛】本题考查了点到直线的距离的定义,熟练掌握是解题的关键.20.-3【解析】分析:解出已知方程组中xy的值代入方程x+2y=k即可详解:解方程组得代入方程x+2y=k得k=-3故本题答案为:-3点睛:本题的实质是考查三元一次方程组的解法需要对三元一次方程组的定义解析:-3【解析】分析:解出已知方程组中x,y的值代入方程x+2y=k即可.详解:解方程组236x yx y+=⎧⎨-=⎩,得33 xy⎧⎨-⎩==,代入方程x+2y=k,得k=-3.故本题答案为:-3.点睛:本题的实质是考查三元一次方程组的解法.需要对三元一次方程组的定义有一个深刻的理解.方程组有三个未知数,每个方程的未知项的次数都是1,并且一共有三个方程,像这样的方程组,叫三元一次方程组.通过解方程组,了解把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.解三元一次方程组的关键是消元.解题之前先观察方程组中的方程的系数特点,认准易消的未知数,消去未知数,组成无该未知数的二元一次方程组.三、解答题21.(1)200;(2)见解析,36°;(3)120【解析】【分析】(1)从两个统计图可得,“小说”的有80人,占调查人数的40%,可求出调查人数;(2)求出“科普常识”人数,即可补全条形统计图:)样本中,“其它”的占调查人数的20200,因此圆心角占360°的,10%,可求出度数;(3)样本估计总体,样本中“科普常识”占30%,估计总体400人的30%是喜欢“科普常识”的人数.【详解】(1)80÷40%=200人,答:一共有200名学生参与了本次问卷调查;(2)200×30%=60人,补全条形统计图如图所示:360°×20200=36°,(3)400×30%=120人,答:该年级有400名学生喜欢“科普常识”的学生有120人.【点睛】本题考查扇形统计图、条形统计图的意义和制作方法,从统计图中获取数量及数量之间的关系是解决问题的关键,样本估计总体是统计中常用的方法.22.(1)七年级(1)班有学生40人;(2)补图见解析;(3)108°;(4)计划暑假选择A 、B 、C 三个类别出去游玩的学生有325人.【解析】【分析】(1)根据统计图中的数据可以求得七年级(1)班的学生人数;(2)根据(1)中的结果和统计图中的数据可以求得选择B 的人数,从而可以将条形统计图补充完整;(3)根据统计图中的数据可以求得扇形统计图中表示“B 类别”的圆心角的度数;(4)根据统计图中的数据可以求得计划暑假选择A 、B 、C 三个类别出去游玩的学生有多少人.【详解】(1)8÷20%=40(人), 即七年级(1)班有学生40人;(2)选择B 的学生有:40﹣8﹣5﹣15=12(人),补全的条形统计图如下;(3)扇形统计图中表示“B 类别”的圆心角的度数是:360°×1240=108°; (4)520×401540=325(人), 答:计划暑假选择A 、B 、C 三个类别出去游玩的学生有325人.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.23.(1)500;(2)1;(3)该校每天户外活动时间超过1小时的学生有800人.【解析】【分析】(1)根据条形统计图和扇形统计图可以求得被调查学生总数和1.5小时的学生数,从而可以将条形统计图补充完整;(2)根据条形统计图可以得到这组数据的中位数;(3)根据条形统计图可以求得校共有1850名学生,该校每天户外活动时间超过1小时的学生有多少人.【详解】(1)0.5小时的有100人占被调查总人数的20%,∴被调查的人数有:10020%500÷=,24.(1)1l∥2l;(2)①当Q在C点左侧时,∠BAC=∠CQP +∠CPQ,②当Q在C点右侧时,∠CPQ+∠CQP+∠BAC=180°.【解析】【分析】(1)先根据CE平分∠ACD,AE平分∠BAC得出∠BAC=2∠1,∠ACD=2∠2,再由∠1+∠2=90°可知∠BAC+∠ACD=180,故可得出结论;(2)分两种情况讨论:①当Q在C点左侧时;②当Q在C点右侧时.【详解】解:(1)1l∥2l.理由如下:∵AE平分∠BAC,CE平分∠ACD(已知),∴∠BAC=2∠1,∠ACD=2∠2(角平分线的定义);又∵∠1+∠2=90°(已知),∴∠BAC+∠ACD=2∠1+2∠2=2(∠1+∠2)=180°(等量代换)∴1l∥2l(同旁内角互补,两直线平行)(2)①当Q在C点左侧时,过点P作PE∥1l.∵1l∥2l(已证),∴PE∥2l(同平行于一条直线的两直线互相平行),∴∠1=∠2,(两直线平行,内错角相等),∠BAC=∠EPC,(两直线平行,同位角相等),又∵∠EPC=∠1+∠CPQ,∴∠BAC=∠CQP +∠CPQ(等量代换)②当Q在C点右侧时,过点P作PE∥1l.∵1l∥2l(已证),∴PE∥2l(同平行于一条直线的两直线互相平行),∴∠1=∠2,∠BAC=∠APE,(两直线平行,内错角相等),又∵∠EPC=∠1+∠CPQ,∠APE+∠EPC=180°(平角定义)∴∠CPQ+∠CQP+∠BAC=180°.【点睛】本题考查了平行线的性质,根据题意作出平行线是解答此题的关键.25.(1)每台电脑机箱、液晶显示器的进价各是60元,800元;(2)利润最大为4400元.【解析】【分析】(1)设每台电脑机箱的进价是x元,液晶显示器的进价是y元,根据“若购进电脑机箱10台和液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液晶显示器5台,共需要资金4120元”即可列方程组求解;(2)设购进电脑机箱z台,根据“可用于购买这两种商品的资金不超过22240元,所获利润不少于4100元”即可列不等式组求解.【详解】解:(1)设每台电脑机箱、液晶显示器的进价各是x,y元,根据题意得:1087000 254120x yx y+=⎧⎨+=⎩,解得:60800 xy=⎧⎨=⎩,答:每台电脑机箱、液晶显示器的进价各是60元,800元;(2)设该经销商购进电脑机箱m台,购进液晶显示器(50-m)台,根据题意得:60800(50)22240 10160(50)4100m mm m+-≤⎧⎨+-≥⎩,解得:24≤m≤26,因为m要为整数,所以m可以取24、25、26,从而得出有三种进货方式:①电脑箱:24台,液晶显示器:26台,②电脑箱:25台,液晶显示器:25台;③电脑箱:26台,液晶显示器:24台.∴方案一的利润:24×10+26×160=4400,方案二的利润:25×10+25×160=4250,方案三的利润:26×10+24×160=4100,∴方案一的利润最大为4400元.答:该经销商有3种进货方案:①进24台电脑机箱,26台液晶显示器;②进25台电脑机箱,25台液晶显示器;③进26台电脑机箱,24台液晶显示器.第①种方案利润最大为4400元.【点睛】考点:方案问题,方案问题是初中数学的重点,在中考中极为常见,一般难度不大,需熟练掌握.。
2020-2021初一数学下期末试题(及答案)(1)
2020-2021初一数学下期末试题(及答案)(1)一、选择题1.如图,直线BC与MN相交于点O,AO⊥BC,OE平分∠BON,若∠EON=20°,则∠AOM的度数为()A.40°B.50°C.60°D.70°2.如图,直线a∥b,直线c与直线a、b分别交于点A、点B,AC⊥AB于点A,交直线b于点C.如果∠1=34°,那么∠2的度数为()A.34°B.56°C.66°D.146°3.《九章算术》中记载一问题如下:“今有共买鸡,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱,问人数、物价各多少?设有x人,买鸡的钱数为y,依题意可列方程组为()A.8374x yx y+=⎧⎨+=⎩B.8374x yx y-=⎧⎨-=⎩C.8374x yx y+=⎧⎨-=⎩D.8374x yx y-=⎧⎨+=⎩4.点 P(m + 3,m + 1)在x轴上,则P点坐标为()A.(0,﹣2)B.(0,﹣4)C.(4,0)D.(2,0)5.如图,在下列给出的条件中,不能判定AB∥DF的是()A.∠A+∠2=180°B.∠1=∠A C.∠1=∠4D.∠A=∠3 6.如图,能判定EB∥AC的条件是()A .∠C =∠ABEB .∠A =∠EBDC .∠C =∠ABCD .∠A =∠ABE7.若|321|20x y x y --++-=,则x ,y 的值为( )A .14x y =⎧⎨=⎩B .20x y =⎧⎨=⎩C .02x y =⎧⎨=⎩D .11x y =⎧⎨=⎩8.在实数0,-π,3,-4中,最小的数是( )A .0B .-πC .3D .-49.不等式组1212x x +>⎧⎨-≤⎩的解集是( )A .1x <B .x ≥3C .1≤x ﹤3D .1﹤x ≤3 10.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-211.不等式组2201x x +>⎧⎨-≥-⎩的解在数轴上表示为( )A .B .C .D .12.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,···,按这样的运动规律,经过第2020次运动后,动点P 的坐标是( )A .()2020,1B .()2020,0C .()2020,2D .()2019,0二、填空题13.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足x +y >0,则m 的取值范围是____.14.不等式组有3个整数解,则m 的取值范围是_____.15.如图5-Z -11是一块长方形ABCD 的场地,长AB =102 m ,宽AD =51 m ,从A ,B 两处入口的中路宽都为1 m ,两小路汇合处路宽为2 m ,其余部分种植草坪,则草坪的面积为________m 2.16.如图,已知直线,AB CD 相交于点O ,如果40BOD ∠=︒,OA 平分COE ∠,那么DOE ∠=________度.17.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为 .18.对一个实数x 技如图所示的程序进行操作,规定:程序运行从“输入一个实数x ”到判断结果是否大于190?“为一次操作,如果操作恰好进行三次才停止,那么x 的取值范围是__________.19.《孙子算经》是中国古代重要的数学著作,现在的传本共三卷,卷上叙述算筹记数的纵横相间制度和筹算乘除法;卷中举例说明筹算分数算法和筹算开平方法;卷下记录算题,不但提供了答案,而且还给出了解法,其中记载:“今有木、不知长短,引绳度之,余绳四尺五寸,屈绳量之,不足一尺,木长几何?”译文:“用一根绳子量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还到余1尺,问木长多少尺?”设绳长x 尺,木长y 尺.可列方程组为__________. 20.关于x 的不等式组352223x x x a-≤-⎧⎨+>⎩有且仅有4个整数解,则a 的整数值是______________.三、解答题21.诗词是我国古代文化中的瑰宝,某市教育主管部门为了解本市初中生对诗词的学习情况,举办了一次“中华诗词”背诵大赛,随机抽取了部分同学的成绩(x为整数,总分100分),绘制了如下尚不完整的统计图表.组别成绩分组(单位:分)频数A50≤x<6040B60≤x<70aC70≤x<8090D80≤x<90bE90≤x<100100合计c根据以上信息解答下列问题:(1)统计表中a=,b=,c=;(2)扇形统计图中,m的值为,“E”所对应的圆心角的度数是 (度);(3)若参加本次大赛的同学共有4000人,请你估计成绩在80分及以上的学生大约有多少人?22.如图,直线AB与CD相交于点O,∠BOE=∠DOF=90°.(1)写出图中与∠COE互补的所有的角(不用说明理由).(2)问:∠COE与∠AOF相等吗?请说明理由;(3)如果∠AOC=15∠EOF,求∠AOC的度数.23.解不等式组523(1)13222x xx x+>-⎧⎪⎨≤-⎪⎩,并求出它的所有整数解的和.24.已知△ABC在平面直角坐标系中的位置如图所示.将△ABC向右平移6个单位长度,再向下平移6个单位长度得到△A1B1C1.(图中每个小方格边长均为1个单位长度).(1)在图中画出平移后的△A1B1C1;(2)直接写出△A1B1C1各顶点的坐标(3)求出△A1B1C1的面积25.“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】首先根据角的平分线的定义求得∠BON,然后根据对顶角相等求得∠MOC,然后根据∠AOM=90°﹣∠COM即可求解.【详解】∵OE平分∠BON,∴∠BON=2∠EON=40°,∴∠COM=∠BON=40°,∵AO⊥BC,∴∠AOC=90°,∴∠AOM=90°﹣∠COM=90°﹣40°=50°.故选B.【点睛】本题考查了垂直的定义、角平分线的定义以及对顶角的性质,正确求得∠MOC的度数是关键.2.B解析:B【解析】分析:先根据平行线的性质得出∠2+∠BAD=180°,再根据垂直的定义求出∠2的度数.详解:∵直线a∥b,∴∠2+∠BAD=180°.∵AC⊥AB于点A,∠1=34°,∴∠2=180°﹣90°﹣34°=56°.故选B.点睛:本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补,此题难度不大.3.D解析:D【解析】【分析】一方面买鸡的钱数=8人出的总钱数-3钱,另一方面买鸡的钱数=7人出的总钱数+4钱,据此即可列出方程组.【详解】解:设有x人,买鸡的钱数为y,根据题意,得:8374x y x y-=⎧⎨+=⎩.【点睛】本题考查的是二元一次方程组的应用,正确理解题意、根据买鸡的总钱数不变列出方程组是解题关键.4.D解析:D【解析】【分析】根据点在x轴上的特征,纵坐标为0,可得m+1=0,解得:m=-1,然后再代入m+3,可求出横坐标.【详解】解:因为点P(m + 3,m + 1)在x轴上,所以m+1=0,解得:m=-1,所以m+3=2,所以P点坐标为(2,0).故选D.【点睛】本题主要考查点在坐标轴上的特征,解决本题的关键是要熟练掌握点在坐标轴上的特征. 5.B解析:B【解析】【分析】利用平行线的判定定理,逐一判断,容易得出结论.【详解】A选项:∵∠2+∠A=180°,∴AB∥DF(同旁内角互补,两直线平行);B选项:∵∠1=∠A,∴AC∥DE(同位角相等,两直线平行),不能证出AB∥DF;C选项:∵∠1=∠4,∴AB∥DF(内错角相等,两直线平行).D选项:∵∠A=∠3,∴AB∥DF(同位角相等,两直线平行)故选B.【点睛】考查了平行线的判定;正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.6.D解析:D【解析】【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【详解】A、∠C=∠ABE不能判断出EB∥AC,故A选项不符合题意;B、∠A=∠EBD不能判断出EB∥AC,故B选项不符合题意;C、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故C选项不符合题意;D 、∠A =∠ABE ,根据内错角相等,两直线平行,可以得出EB ∥AC ,故D 选项符合题意. 故选:D . 【点睛】此题考查平行线的性质,正确识别“三线八角”中的同位角、内错角、同旁内角是解题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.7.D解析:D 【解析】分析:先根据非负数的性质列出关于x 、y 的二元一次方程组,再利用加减消元法求出x 的值,利用代入消元法求出y 的值即可.详解:∵3210x y --=, ∴321020x y x y --⎧⎨+-⎩==将方程组变形为32=1=2x y x y -⎧⎨+⎩①②,①+②×2得,5x=5,解得x=1, 把x=1代入①得,3-2y=1,解得y=1, ∴方程组的解为11x y =⎧⎨=⎩. 故选:D .点睛:本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.8.D解析:D 【解析】 【分析】根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解. 【详解】∵正数大于0和一切负数, ∴只需比较-π和-4的大小, ∵|-π|<|-4|, ∴最小的数是-4. 故选D . 【点睛】此题主要考查了实数的大小的比较,注意两个无理数的比较方法:统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.9.D解析:D 【解析】 【分析】 【详解】 解:1212x x +>⎧⎨-≤⎩①②,由①得x>1,由②得x≤3,所以解集为:1<x≤3; 故选D .10.A解析:A 【解析】 【分析】根据题意可得不等式恰好有两个负整数解,即-1和-2,再结合不等式计算即可. 【详解】根据x 的不等式x -b >0恰有两个负整数解,可得x 的负整数解为-1和-20x b ->Q x b ∴>综合上述可得32b -≤<- 故选A. 【点睛】本题主要考查不等式的非整数解,关键在于非整数解的确定.11.D解析:D 【解析】 【分析】解不等式组求得不等式组的解集,再把其表示在数轴上即可解答. 【详解】2201x x ①②+>⎧⎨-≥-⎩, 解不等式①得,x >-1; 解不等式②得,x ≤1; ∴不等式组的解集是﹣1<x ≤1. 不等式组的解集在数轴上表示为:故选D. 【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解决问题的关键.12.B解析:B 【解析】 【分析】观察可得点P 的变化规律,“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,由此即可得出结论. 【详解】观察, ()()()()()()0123450,01,12,0,3,2,4,0,5,1....P P P P P P ,,,, 发现规律:()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数) .∵20204505=⨯∴2020P 点的坐标为()2020,0. 故选: B. 【点睛】本题考查了规律型中的点的坐标,解题的关键是找出规律“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,本题属于中档题,难度不大,解决该题型题目时,根据点P 的变化罗列出部分点的坐标,再根据坐标的变化找出规律是关键.二、填空题13.m>-2【解析】【分析】首先解关于x 和y 的方程组利用m 表示出x+y 代入x+y >0即可得到关于m 的不等式求得m 的范围【详解】解:①+②得2x+2y =2m+4则x+y =m+2根据题意得m+2>0解得m >解析:m >-2【解析】 【分析】首先解关于x 和y 的方程组,利用m 表示出x +y ,代入x +y >0即可得到关于m 的不等式,求得m 的范围. 【详解】 解:2133x y m x y -=+⎧⎨+=⎩①②,①+②得2x +2y =2m +4, 则x +y =m +2,根据题意得m +2>0,解得m >﹣2.故答案是:m >﹣2.【点睛】本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m 当作已知数表示出x +y 的值,再得到关于m 的不等式.14.2<m≤3【解析】【分析】根据不等式组x >-1x <m 有3个整数解先根据x >-1可确定3个整数解是012所以2<m≤3【详解】根据不等式组x >-1x <m 有3个整数解可得:2<m≤3故答案为:2<m≤3解析:2<m≤3【解析】【分析】 根据不等式组有3个整数解,先根据可确定3个整数解是0,1,2,所以.【详解】 根据不等式组有3个整数解,可得: .故答案为:. 【点睛】本题主要考查不等式组整数解问题,解决本题的关键是要熟练掌握不等式组的解法. 15.5000【解析】试题解析:由图片可看出剩余部分的草坪正好可以拼成一个长方形且这个长方形的长为102−2=100m 这个长方形的宽为:51−1=50m 因此草坪的面积故答案为:5000解析:5000【解析】试题解析:由图片可看出,剩余部分的草坪正好可以拼成一个长方形,且这个长方形的长为102−2=100m ,这个长方形的宽为:51−1=50m ,因此,草坪的面积2501005000m .=⨯=故答案为:5000.16.100【解析】【分析】根据对顶角相等求出∠AOC 再根据角平分线和邻补角的定义解答【详解】解:∵∠BOD=40°∴∠AOC=∠BOD=40°∵OA 平分∠COE ∴∠AOE=∠AOC=40°∴∠COE=8解析:100【解析】【分析】根据对顶角相等求出∠AOC ,再根据角平分线和邻补角的定义解答.【详解】解:∵∠BOD=40°,∴∠AOC=∠BOD=40°,∵OA平分∠COE,∴∠AOE=∠AOC=40°,∴∠COE=80°.∴∠DOE=180°-80°=100°故答案为:100.【点睛】本题考查了对顶角相等的性质,角平分线、邻补角的定义,是基础题,熟记性质并准确识图是解题的关键.17.【解析】试题解析:根据题意将周长为8的△ABC沿边BC向右平移1个单位得到△DEF则AD=1BF=BC+CF=BC+1DF=AC又∵AB+BC+AC=10∴四边形ABFD的周长=AD+AB+BF+D解析:【解析】试题解析:根据题意,将周长为8的△ABC沿边BC向右平移1个单位得到△DEF,则AD=1,BF=BC+CF=BC+1,DF=AC,又∵AB+BC+AC=10,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.考点:平移的性质.18.【解析】【分析】表示出第一次第二次第三次的输出结果再由第三次输出结果可得出不等式解出即可【详解】解:第一次的结果为:3x-2没有输出则3x-2≤190解得:x≤64;第二次的结果为:3(3x-2)-解析:822<≤x【解析】【分析】表示出第一次、第二次、第三次的输出结果,再由第三次输出结果可得出不等式,解出即可.【详解】解:第一次的结果为:3x-2,没有输出,则3x-2≤190,解得:x≤64;第二次的结果为:3(3x-2)-2=9x-8,没有输出,则9x-8≤190,解得:x≤22;第三次的结果为:3(9x-8)-2=27x-26,输出,则27x-26>190,解得:x>8;综上可得:8<x≤22.故答案为:8<x≤22.【点睛】本题考查了一元一次方程组的应用,解答本题的关键是读懂题意,根据结果是否可以输出,得出不等式.19.【解析】【分析】本题的等量关系是:绳长-木长=45;木长-绳长=1据此可列方程组求解【详解】设绳长x尺长木为y尺依题意得故答案为:【点睛】此题考查由实际问题抽象出二元一次方程组解题关键在于列出方程解析:4.5 11 2x yx y-=⎧⎪⎨=-⎪⎩【解析】【分析】本题的等量关系是:绳长-木长=4.5;木长-12绳长=1,据此可列方程组求解.【详解】设绳长x尺,长木为y尺,依题意得4.5 11 2x yx y-=⎧⎪⎨=-⎪⎩,故答案为:4.5 11 2x yx y-=⎧⎪⎨=-⎪⎩.【点睛】此题考查由实际问题抽象出二元一次方程组,解题关键在于列出方程.20.12【解析】【分析】求出每个不等式的解集根据已知得出不等式组的解集根据不等式组的整数解即可得出关于a的不等式组求出即可【详解】解不等式3x -5≤2x-2得:x≤3解不能等式2x+3>a得:x>∵不等解析:1,2【解析】【分析】求出每个不等式的解集,根据已知得出不等式组的解集,根据不等式组的整数解即可得出关于a的不等式组,求出即可.【详解】解不等式3x-5≤2x-2,得:x≤3,解不能等式2x+3>a,得:x>32a-,∵不等式组有且仅有4个整数解,∴-1≤32a-<0,解得:1≤a<3,∴整数a 的值为1和2,故答案为:1,2.【点睛】本题考查了一元一次不等式组的整数解,解答本题的关键应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.三、解答题21.(1)70,200,500;(2)14,72;(3)成绩在80分及以上的学生大约有2400人.【解析】【分析】(1)根据统计图中的数据可以分别求得a 、b 、c 的值;(2)根据统计图中的数据可以求得m 和“E”所对应的圆心角的度数;(3)根据题意可以求得成绩在80分及以上的学生大约有多少人.【详解】解:(1)()()408%18%18%40%20%70a =÷⨯----=,()408%40%200b =÷⨯=,408%500c =÷=,故答案为70,200,500; (2)%18%18%40%20%14%m =----=,“E ”所对应的圆心角的度数是:36020%72︒⨯=︒,故答案为14,72;(3)()400040%20%2400⨯+= (人),答:成绩在80分及以上的学生大约有2400人.【点睛】本题考查了扇形统计图、用样本估计总体、频数分布表,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.(1) ∠DOE ,∠BOF ;(2) 相等;(3) ∠AOC=30°.【解析】试题分析:(1)由题意易得∠COE+∠DOE=180°,由∠BOE=∠DOF=90°可得∠DOE=∠BOF ,从而可得∠COE 的补角是∠DOE 和∠BOF ;(2)由∠BOE=∠DOF=90°易得∠AOE=∠COF=90°,从而可得∠COE=∠AOF ;(3)设∠AOC=x ,则可得∠EOF=5x ,结合∠COE=∠AOF 可得∠COE=2x ,由∠AOC+∠COE=∠AOE=90°列出关于x 的方程,解方程求得x 的值即可.试题解析;(1)∵直线AB 与CD 相交于点O ,∴∠COE+∠DOE=180°,即∠DOE 是∠COE 的补角,∵∠BOE=∠DOF=90°,∴∠BOE+∠BOD=∠DOF+∠BOD ,即:∠DOE=∠BOF ,∴与∠COE 互补的角有:∠DOE ,∠BOF ;(2)∠COE 与∠AOF 相等,理由:∵直线AB 、CD 相交于点O ,∴∠AOE+∠BOE=180°,∠COF+∠DOF=180°,又∵∠BOE=∠DOF=90°,∴∠AOE=∠COF=90°,∴∠AOE ﹣∠AOC=∠COF ﹣∠AOC ,∴∠COE=∠AOF ;(3)设∠AOC=x ,则∠EOF=5x ,∴∠COE+∠AOF=∠EOF-∠AOC=5x-x=4x ,∵∠COE=∠AOF ,∴∠COE=∠AOF=2x ,∵∠AOE=90°,∴x+2x=90°,∴x=30°,∴∠AOC=30°.点睛:(1)有公共顶点,且部分重合的两个直角,其公共部分两侧的两个角相等(如本题中的∠COE=∠AOF );(2)解第3小题的关键是:当设∠AOC=x 时,利用已知条件把∠COE 用含“x ”的式子表达出来,这样即可由∠AOC+∠COE=∠AOE=90°,列出关于“x ”的方程,解方程即可得到所求答案了.23.512x -<„,-2 【解析】【分析】 先求出两个不等式的解集,再求其公共解,然后求出整数解的和即可.【详解】 解:523(1)13222x x x x +>-⎧⎪⎨-⎪⎩①②„ 解不等式①得52x >-, 解不等式②得1x ≤,∴512x -<„,x 为整数,可取-2,-1,0,1.则所有整数解的和为21012--++=-.【点睛】 此题考查一元一次不等式组解集,解题关键在于掌握简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).24.(1)详见解析;(2)A1(4,−2), B1(1,−4), C1(2,−1);(3)7 2【解析】【分析】(1)直接利用平移的性质得出A,B,C平移后对应点位置;(2)利用(1)中图形得出各对应点坐标;(3)利用△A1B1C1所在矩形面积减去周围三角形面积即可得出答案.【详解】(1)如图所示:△A1B1C1,即为所求;(2)如图所示:A1(4,−2), B1(1,−4), C1(2,−1);(3) △A1B1C1的面积为:3×3−12×1×3−12×1×2−12×2×3=3.5【点睛】此题考查作图-平移变换,解题关键在于掌握作图法则25.(1)40;(2)72;(3)280.【解析】【分析】(1)用最想去A景点的人数除以它所占的百分比即可得到被调查的学生总人数;(2)先计算出最想去D景点的人数,再补全条形统计图,然后用360°乘以最想去D景点的人数所占的百分比即可得到扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)用800乘以样本中最想去A景点的人数所占的百分比即可.【详解】(1)被调查的学生总人数为8÷20%=40(人);(2)最想去D景点的人数为40﹣8﹣14﹣4﹣6=8(人),补全条形统计图为:扇形统计图中表示“最想去景点D”的扇形圆心角的度数为840×360°=72°; (3)800×1440=280,所以估计“最想去景点B“的学生人数为280人.。
2020-2021学年七年级下学期期末数学试卷及答案解析 (90)
2020-2021学年七年级下学期期末数学试卷一.选择题(共8小题,满分24分,每小题3分)1.已知:2m=1,2n=3,则2m+n=()A.2B.3C.4D.6 2.下列各式从左到右的变形,属于因式分解的是()A.x2﹣2x+1=x(x﹣2)+1B.x2﹣xy+y2=(x﹣y)2C.1x2−1y4=(1x+1y2)(1x−1y2)D.x4﹣16=(x2+4)(x+2)(x﹣2)3.以下命题的逆命题为真命题的是()A.对顶角相等B.同旁内角互补,两直线平行C.若a=b,则a2=b2D.若a>0,b>0,则a2+b2>04.三角形的三边长分别是3,1﹣2a,8.则数a的取值范围是()A.﹣5<a<﹣2B.﹣5<a<2C.5<a<11D.0<a<25.如图,在△ABC中,BC=5,∠A=80°,∠B=70°,把△ABC沿RS的方向平移到△DEF的位置,若CF=4,则下列结论中错误的是()A.BE=4B.∠F=30°C.AB∥DE D.DF=56.下列不等式变形中不正确的是()A.由a>b,得b<a B.由﹣a>﹣b,得a<bC.由﹣ax>a,得x>﹣1D.由−12x<y,得x>﹣2y7.如图是我国古代数学家在为《周髀算经》作注解时给出的“弦图”,给出“弦图”这位数学家是()A .毕达哥拉斯B .祖冲之C .赵爽D .华罗庚8.已知|x |=3,|y |=2,且xy <0,则x +y 的值等于( ) A .5B .1C .±5D .±1二.填空题(共10小题,满分30分,每小题3分) 9.已知{3x +2y =172x +3y =13,则x +y = .10.已知a ﹣2b +1=0,则代数式2a ﹣4b ﹣1的值为 .11.将命题“对顶角相等”改为“如果…那么…”的形式为: .12.如图,按虚线剪去长方形纸片的相邻两个角,并使∠1=120°,AB ⊥BC ,那么∠2的度数为 .13.在等式5m ﹣3=6的两边都 ,可以得到5m =9.14.2019年义乌客运站行车时刻表如图,假设客车运行全程保持匀速行驶,则当快车出发 小时后,两车相距25km .义乌﹣上海 出发时间 到站时间 里程(km )普通车 7:00 11:00 300 快车7:3010:3030015.如图,数轴上表示的是关于x 的不等式组中两个不等式的解集,则这个不等式组的解集为 .16.如图,将△ABC 沿着DE 对折,点A 落到A ′处,若∠BDA ′+∠CEA ′=70°,则∠A = .17.已知x ,y 满足方程组{x +6y =123x −2y =8,则x +y 的值为 .18.观察下列顺序排列的等式: 9×0+1=1 9×1+2=11 9×2+3=21 9×3+4=31,猜想第n 个等式为 (用含有n 的等式表示). 三.解答题(共6小题,满分46分)19.(6分)计算:(23)﹣2×3﹣1+(π﹣2018)0÷(13)﹣1.20.(6分)如图,E 、F 分别在AB 、CD 上,AF ∥ED ,∠D =∠A . (1)求证:AB ∥CD ;(2)若∠DEB 与∠C 互余,求证:EC ⊥ED .21.(8分)(1)计算:(2x ﹣y )2﹣(x +y )(y ﹣x ). (2)因式分解:m 3﹣m .22.(8分)对于任意一个三位正整数,十位上的数字减去个位上的数字之差恰好等于百位上的数字,则称这个三位数为“极差数”.例如:对于三位数451,5﹣1=4,则451是“极差数”;对于三位数110,1﹣0=1,则110是“极差数” (1)求证:任意一个“极差数”一定能被11整除;(2)在一个“极差数”首位之前添加其十位的数字得到一个新的四位数M ,在一个“极差数”末位之后添加数字1得到一个新的四位数N ,若M ﹣N 能被12整除,求满足条件的“极差数”.23.(8分)如图1,MN ∥EF ,C 为两直线之间一点.(1)如图1,若∠MAC 与∠EBC 的平分线相交于点D ,若∠ACB =100°,求∠ADB 的度数.(2)如图2,若∠CAM 与∠CBE 的平分线相交于点D ,∠ACB 与∠ADB 有何数量关系?并证明你的结论.(3)如图3,若∠CAM 的平分线与∠CBF 的平分线所在的直线相交于点D ,请直接写出∠ACB 与∠ADB 之间的数量关系: .24.(10分)已知关于x ,y 的二元一次方程组{3x +y =4m +2x −y =6的解满足x +y <3,求满足条件的m 的所有非负整数值.四.解答题(共2小题,满分20分,每小题10分)25.(10分)某商场在促销期间规定:商场所有商品按标价的80%出售,同时,当顾客在该商场内消费满一定金额后,可按如下方案得相应金额的奖券:消费金额w (元)的范围 200≤w <400 400≤w <500 500≤w <700 700≤w <900 …获得奖券的金额(元)30 60 100 130 …根据上述促销方法,顾客在该商场购物可以获得双重优惠.例如:购买标价为400元的商品,则消费金额为320元,获得的优惠额为:400×0.2+30=110(元).设购买商品得到的优惠率=购买商品获得的优惠额商品的标价.试问.(1)购买一件标价为1000元的商品,顾客得到的优惠率是多少?(2)对于标价在500≤x <800(元)的商品,顾客购买标价为多少元的商品,可以得到不小于13的优惠率?26.(10分)阅读下面的文字,回答后面的问题. 求3+32+33+…+3100的值.解:令S=3+32+33+…+3100(1),将等式两边提示乘以3得到:3S=32+33+34+…+3101(2),(2)﹣(1)得到:2S=3101﹣3∴S=3101−32问题(1)求2+22+…+2100的值;(2)求4+12+36+…+4×340的值;(3)如图,设四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第二个正方形AEGH,如此下去…一直作图到第10个图形为止.已知正方形ABCD的边长为1,求所有的正方形的所有边长之和.2020-2021学年七年级下学期期末数学试卷参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.已知:2m=1,2n=3,则2m+n=()A.2B.3C.4D.6【解答】解:∵2m=1,2n=3,∴2m+n=2m•2n=1×3=3.故选:B.2.下列各式从左到右的变形,属于因式分解的是()A.x2﹣2x+1=x(x﹣2)+1B.x2﹣xy+y2=(x﹣y)2C.1x −1y=(1x+1y)(1x−1y)D.x4﹣16=(x2+4)(x+2)(x﹣2)【解答】解:x4﹣16=(x2+4)(x+2)(x﹣2)属于因式分解,故选:D.3.以下命题的逆命题为真命题的是()A.对顶角相等B.同旁内角互补,两直线平行C.若a=b,则a2=b2D.若a>0,b>0,则a2+b2>0【解答】解:A、对顶角相等逆命题为相等的角为对顶角,此逆命题为假命题,故A选项错误;B、同旁内角互补,两直线平行的逆命题为两直线平行,同旁内角互补,此逆命题为真命题,故B选项正确;C、若a=b,则a2=b2的逆命题为若a2=b2,则a=b,此逆命题为假命题,故C选项错误;D、若a>0,b>0,则a2+b2>0的逆命题为若a2+b2>0,则a>0,b>0,此逆命题为假命题,故D选项错误.故选:B.4.三角形的三边长分别是3,1﹣2a,8.则数a的取值范围是()A.﹣5<a<﹣2B.﹣5<a<2C.5<a<11D.0<a<2【解答】解:8﹣3<1﹣2a<3+8,即5<1﹣2a<11,解得:﹣5<a<﹣2.故选:A.5.如图,在△ABC中,BC=5,∠A=80°,∠B=70°,把△ABC沿RS的方向平移到△DEF的位置,若CF=4,则下列结论中错误的是()A.BE=4B.∠F=30°C.AB∥DE D.DF=5【解答】解:∵把△ABC沿RS的方向平移到△DEF的位置,BC=5,∠A=80°,∠B =70°,∴CF=BE=4,∠F=∠ACB=180°﹣∠A﹣∠B=180°﹣80°﹣70°=30°,AB∥DE,∴A、B、C正确,D错误,故选:D.6.下列不等式变形中不正确的是()A.由a>b,得b<a B.由﹣a>﹣b,得a<bC.由﹣ax>a,得x>﹣1D.由−12x<y,得x>﹣2y【解答】解:∵由a>b,得b<a,∴选项A不符合题意;∵由﹣a>﹣b,得a<b,∴选项B不符合题意;∵a<0时,由﹣ax>a,得x>﹣1,∴选项C符合题意;∵由−12x <y ,得x >﹣2y , ∴选项D 不符合题意. 故选:C .7.如图是我国古代数学家在为《周髀算经》作注解时给出的“弦图”,给出“弦图”这位数学家是( )A .毕达哥拉斯B .祖冲之C .赵爽D .华罗庚【解答】解:我国古代数学家赵爽在为《周髀算经》作注解时给出的“弦图”,它解决的数学问题是勾股定理. 故选:C .8.已知|x |=3,|y |=2,且xy <0,则x +y 的值等于( ) A .5B .1C .±5D .±1【解答】解:依题意得:{x =3y =−2,,{x =−3y =2∴x +y =1或﹣1 故选:D .二.填空题(共10小题,满分30分,每小题3分) 9.已知{3x +2y =172x +3y =13,则x +y = 6 .【解答】解:{3x +2y =17①2x +3y =13②,①+②得:5x +5y =30, 则x +y =6. 故答案为:610.已知a ﹣2b +1=0,则代数式2a ﹣4b ﹣1的值为 ﹣3 . 【解答】解:∵a ﹣2b +1=0, ∴a ﹣2b =﹣1,∴2a﹣4b﹣1=2(a﹣2b)﹣1=2×(﹣1)﹣1=﹣2﹣1=﹣3故答案为:﹣3.11.将命题“对顶角相等”改为“如果…那么…”的形式为:如果两个角是对顶角,那么这两个角相等.【解答】解:原命题的条件是:“两个角是对顶角”,结论是:“这两个角相等”,命题“对顶角相等”写成“如果…,那么…”的形式为:“如果两个角是对顶角,那么这两个角相等”.故答案为:如果两个角是对顶角,那么这两个角相等.12.如图,按虚线剪去长方形纸片的相邻两个角,并使∠1=120°,AB⊥BC,那么∠2的度数为150°.【解答】解:如图,过点B作长方形边的平行线,∵长方形对边平行,∴∠1+∠ABD=180°,∠2+∠CBD=180°,∴∠1+∠ABC+∠2=360°;∵AB⊥BC,∴∠ABC=90°,∴∠2=360°﹣120°﹣90°=150°.故答案为:150°13.在等式5m﹣3=6的两边都加上3,可以得到5m=9.【解答】解:5m ﹣3=6,等式两边都加上3得:5m ﹣3+3=6+3, 即5m =9, 故答案为:加上3.14.2019年义乌客运站行车时刻表如图,假设客车运行全程保持匀速行驶,则当快车出发 0.5或2.5或196小时后,两车相距25km .义乌﹣上海 出发时间 到站时间 里程(km )普通车 7:00 11:00 300 快车7:3010:30300【解答】解:设当快车出发x 小时后,两车相距25km . ①慢车在前,快车在后,3004(x +12)−3003x =25, 解得x =0.5.②快车在前,慢车在后, 依题意得:3003x −3004(x +,12)=25, 解得x =2.5. 或3004(x +12)=300﹣25,解得x =196.综上所述,当快车出发0.5或2.5或196小时后,两车相距25km .故答案是:0.5或2.5或196.15.如图,数轴上表示的是关于x 的不等式组中两个不等式的解集,则这个不等式组的解集为 2≤x ≤3 .【解答】解:根据数轴得:{x ≤3x ≥2,则这个不等式组的解集为2≤x ≤3, 故答案为:2≤x ≤316.如图,将△ABC 沿着DE 对折,点A 落到A ′处,若∠BDA ′+∠CEA ′=70°,则∠A= 35° .【解答】解:∵将△ABC 沿着DE 对折,A 落到A ′,∴∠A ′DE =∠ADE ,∠A ′ED =∠AED ,∴∠BDA ′+2∠ADE =180°,∠A ′EC +2∠AED =180°,∴∠BDA ′+2∠ADE +∠A ′EC +2∠AED =360°,∵∠BDA ′+∠CEA ′=70°,∴∠ADE +∠AED =145°,∴∠A =35°.故答案为:35°.17.已知x ,y 满足方程组{x +6y =123x −2y =8,则x +y 的值为 5 . 【解答】解:{x +6y =12①3x −2y =8②, ①+②得:4x +4y =20,则x +y =5,故答案为:518.观察下列顺序排列的等式:9×0+1=19×1+2=119×2+3=219×3+4=31,猜想第n 个等式为 9(n ﹣1)+n =10(n ﹣1)+1 (用含有n 的等式表示).【解答】解:观察下列顺序排列的等式:9×0+1=19×1+2=119×2+3=219×3+4=31,发现规律:第n 个等式为9(n ﹣1)+n =10(n ﹣1)+1.故答案为:9(n ﹣1)+n =10(n ﹣1)+1.三.解答题(共6小题,满分46分)19.(6分)计算:(23)﹣2×3﹣1+(π﹣2018)0÷(13)﹣1. 【解答】解:原式=94×13+1÷3,=34+13;=1312. 20.(6分)如图,E 、F 分别在AB 、CD 上,AF ∥ED ,∠D =∠A .(1)求证:AB ∥CD ;(2)若∠DEB 与∠C 互余,求证:EC ⊥ED .【解答】证明:(1)∵AF ∥ED ,∴∠AFC =∠D ,又∵∠D =∠A ,∴∠AFC =∠A ,∴AB ∥CD ;(2)∵AB ∥CD ,∴∠C =∠AEC ,又∵∠DEB 和∠C 互余,∴∠DEB +∠C =90°,∴∠DEB +∠AEC =90°,∴∠CED =180°﹣(∠BED +∠AEC )=90°,即EC⊥ED.21.(8分)(1)计算:(2x﹣y)2﹣(x+y)(y﹣x).(2)因式分解:m3﹣m.【解答】解:(1)原式=4x2﹣4xy+y2﹣y2+x2=5x2﹣4xy;(2)原式=m(m2﹣1)=m(m+1)(m﹣1).22.(8分)对于任意一个三位正整数,十位上的数字减去个位上的数字之差恰好等于百位上的数字,则称这个三位数为“极差数”.例如:对于三位数451,5﹣1=4,则451是“极差数”;对于三位数110,1﹣0=1,则110是“极差数”(1)求证:任意一个“极差数”一定能被11整除;(2)在一个“极差数”首位之前添加其十位的数字得到一个新的四位数M,在一个“极差数”末位之后添加数字1得到一个新的四位数N,若M﹣N能被12整除,求满足条件的“极差数”.【解答】(1)证明:设任意一个“极差数”的百位数字是a,十位数字是b,个位数字是c,∵a=b﹣c,∴100a+10b+c=100b﹣100c+10b+c=110b﹣99c=11(10b﹣9c),∴100a+10b+c能被11整除,∴任意一个“极差数”一定能被11整除;(2)解:设任意一个“欢乐数”的百位数字是a,十位数字是b,个位数字是c,则M =1000b+100a+10b+c,N=1000a+100b+10c+1,则M﹣N=﹣900a+910b﹣9c﹣1=﹣900(b﹣c)+910b﹣9c﹣1=10b+891c﹣1,当c=1时,b=1,a=0(舍去);当c=1时,b=7,a=6;当c=3时,b=4,a=1;当c=5时,b=1,a=﹣4(舍去);当c=5时,b=7,a=2;当c=7时,b=4,a=﹣3(舍去).故满足条件的“极差数”有671或143或275.23.(8分)如图1,MN∥EF,C为两直线之间一点.(1)如图1,若∠MAC与∠EBC的平分线相交于点D,若∠ACB=100°,求∠ADB的度数.(2)如图2,若∠CAM与∠CBE的平分线相交于点D,∠ACB与∠ADB有何数量关系?并证明你的结论.(3)如图3,若∠CAM的平分线与∠CBF的平分线所在的直线相交于点D,请直接写出∠ACB与∠ADB之间的数量关系:∠ADB=90°−12∠ACB.【解答】解:(1)如图1,过C作CG∥MN,DH∥MN,∵MN∥EF,∴MN∥CG∥DH∥EF,∴∠1=∠ADH,∠2=∠BDH,∠MAC=∠ACG,∠EBC=∠BCG,∵∠MAC与∠EBC的平分线相交于点D,∴∠1=12∠ACG,∠2=12∠BCG,∴∠ADB=12(∠ACG+∠BCG)=12∠ACB;∵∠ACB=100°,∴∠ADB=50°;(2)如图2,过C作CG∥MN,DH∥MN,∵MN∥EF,∴MN∥CG∥DH∥EF,∴∠1=∠ADH,∠2=∠BDH,∠NAC=∠ACG,∠FBC=∠BCG,∵∠MAC与∠EBC的平分线相交于点D,∴∠1=12∠MAC,∠2=12EBC,∴∠ADB=∠1+∠2=12(∠MAC+∠EBC)=12(180°﹣∠NAC+180°﹣∠FBC)=12(360°﹣∠ACB),∴∠ADB=180°−12∠ACB;(3)如图3,过C作CG∥MN,DH∥MN,∵MN∥EF,∴MN∥CG∥DH∥EF,∴∠1=∠ADH,∠2=∠BDH,∠NAC=∠ACG,∠FBC=∠BCG,∵∠MAC与∠FBC的平分线相交于点D,∴∠1=12∠MAC,∠2=12∠CBF,∵∠ADB=360°﹣∠1﹣(180°﹣∠2)﹣∠ACB=360°−12∠MAC﹣(180°−12∠CBF)﹣∠ACB=360°−12(180°﹣∠ACG)﹣(180°−12∠BCG)=90°−12∠ACB.∴∠ADB=90°−12∠ACB.故答案为:∠ADB=90°−12∠ACB.24.(10分)已知关于x ,y 的二元一次方程组{3x +y =4m +2x −y =6的解满足x +y <3,求满足条件的m 的所有非负整数值.【解答】解:{3x +y =4m +2①x −y =6②①+②得:4x =4m +8∴x =m +2,把 x =m +2代入②得m +2﹣y =6∴y =m ﹣4,∴x +y =(m +2)+(m ﹣4)=2m ﹣2,∵x +y <3∴2m ﹣2<3,∴m <52,所以满足条件的m 的所有非负整数值为:0,1,2.四.解答题(共2小题,满分20分,每小题10分)25.(10分)某商场在促销期间规定:商场所有商品按标价的80%出售,同时,当顾客在该商场内消费满一定金额后,可按如下方案得相应金额的奖券:消费金额w (元)的范围200≤w <400 400≤w <500 500≤w <700 700≤w <900 …获得奖券的金额(元)30 60 100 130 …根据上述促销方法,顾客在该商场购物可以获得双重优惠.例如:购买标价为400元的商品,则消费金额为320元,获得的优惠额为:400×0.2+30=110(元).设购买商品得到的优惠率=购买商品获得的优惠额商品的标价.试问. (1)购买一件标价为1000元的商品,顾客得到的优惠率是多少?(2)对于标价在500≤x <800(元)的商品,顾客购买标价为多少元的商品,可以得到不小于13的优惠率? 【解答】解(1)顾客得到的优惠率是1000×0.2+1301000×100%=33%;(2)设顾客购买标价为x 元的商品,因为500≤x <800,所以消费额400≤0.8x <640,依题意得(Ⅰ){0.2x+60x ≥13400≤0.8x <500或(Ⅱ){0.2x+100x ≥13500≤0.8x <640,不等式组(Ⅰ)无解,不等式组(Ⅱ)的解为625≤x ≤750,当顾客购买标价在625≤x ≤750内的商品时,可得到不小于13的优惠率. 26.(10分)阅读下面的文字,回答后面的问题.求3+32+33+…+3100的值.解:令S =3+32+33+…+3100(1),将等式两边提示乘以3得到:3S =32+33+34+…+3101(2),(2)﹣(1)得到:2S =3101﹣3∴S =3101−32问题(1)求2+22+…+2100的值;(2)求4+12+36+…+4×340的值;(3)如图,设四边形ABCD 是边长为1的正方形,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第二个正方形AEGH ,如此下去…一直作图到第10个图形为止.已知正方形ABCD 的边长为1,求所有的正方形的所有边长之和.【解答】解:(1)∵S =2+22+…+2100①,∴2S =22+23+…+2101②,由②﹣①:S =2101﹣2;(2)令S =1+3+32+33+…+340①,将等式两边提示乘以3得到:3S =3+32+33+34+…+341②, ②﹣①得到:2S =341﹣1,∴S =341−12.∴4+12+36+…+4×340=4×(1+3+32+33+…+340)=2(341﹣1);(3)所有的正方形的所有边长之和为4×[1+√2+(√2)2+…+(√2)9],令S=1+√2+(√2)2+…+(√2)9①、√2S=√2+(√2)2+…+(√2)10②,②﹣①得到:(√2−1)S=32﹣1=31,S=31×(√2+1).故所有的正方形的所有边长之和为4×31×(√2+1)=124√2+124.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析:D 【解析】 【分析】 【详解】
根据两直线平行,内错角相等得到∠3=∠7,∠2=∠6; 根据两直线平行,同旁内角互补得到∠3+∠4+∠5+∠6=180°. 而∠4 与∠8 是 AD 和 BC 被 BD 所截形成得内错角,则∠4=∠8 错误, 故选 D.
6.C
解析:C 【解析】 【分析】 由两直线平行,同位角相等,可求得∠3 的度数,然后求得∠2 的度数. 【详解】
13.如图,将周长为 9 的△ABC 沿 BC 方向平移 2 个单位得到△DEF,则四边形 ABFD 的周
长为_____.
14.已
x
y
2 1
是关于
x
、
y
的二次元方程
ax
3y
9
的解,则
a
的值为___________
15.某手机店今年 1-4 月的手机销售总额如图 1,其中一款音乐手机的销售额占当月手机销
(1)求七年级(1)班学生人数; (2)将条形统计图补充完整; (3)求扇形统计图中表示“B 类别”的圆心角的度数; (4)若该中学七年级有学生 520 人,求计划暑假选择 A、B、C 三个类别出去游玩的学生 有多少人?
23.已知方程组
x x
y y
1 7
3a a
中
x
为非正数,
y
为负数.
(1)求 a 的取值范围;
16.《孙子算经》是中国古代重要的数学著作,现在的传本共三卷,卷上叙述算筹记数的 纵横相间制度和筹算乘除法;卷中举例说明筹算分数算法和筹算开平方法;卷下记录算 题,不但提供了答案,而且还给出了解法,其中记载:“今有木、不知长短,引绳度之,余 绳四尺五寸,屈绳量之,不足一尺,木长几何?”译文:“用一根绳子量一根长木,绳子还剩
若 x<y,则 x < y ,选项 C 成立; 22
故点 P100 的横坐标为:100 4 1 26,纵坐标为:100 2 50,点 P 第 100 次跳动至
点 P100 的坐标为 26,50 .
故选: C .
【点睛】 本题考查规律型:点的坐标,解题的关键是分析出题目的规律,找出题目中点的坐标的规 律,属于中考常考题型.
3.A
解析:A 【解析】 【分析】 【详解】
解析:C 【解析】 【分析】 解决本题的关键是分析出题目的规律,以奇数开头的相邻两个坐标的纵坐标是相同的,所
以第 100 次跳动后,纵坐标为100 2 50,其中 4 的倍数的跳动都在 y 轴的右侧,那么 第 100 次跳动得到的横坐标也在 y 轴的右侧. P1 横坐标为1, P4 横坐标为 2 , P8 横坐标为 3 ,以此类推可得到 P100 的横坐标.
x y 30 该班男生有 x 人,女生有 y 人.根据题意得: 3x 2 y 78 ,
故选 D. 考点:由实际问题抽象出二元一次方程组.
4.B
解析:B 【解析】 【分析】
把
代入 x-ay=3,解一元一次方程求出 a 值即可.
【详解】
∵
是关于 x,y 的二元一次方程 x-ay=3 的一个解,
∴1-2a=3 解得:a=-1 故选 B. 【点睛】 本题考查二元一次方程的解,使方程左右两边相等的未知数的值,叫做方程的解;一组数 是方程的解,那么它一定满足这个方程.
售总额的百分比如图 2.有以下四个结论:
①从 1 月到 4 月,手机销售总额连续下降
②从 1 月到 4 月,音乐手机销售额在当月手机销售总额中的占比连续下降
③音乐手机 4 月份的销售额比 3 月份有所下降
④今年 1-4 月中,音乐手机销售额最低的是 3 月
其中正确的结论是________(填写序号).
去量竿,绳索比竿长 5 尺;如果将绳索对半折后再去量竿,就比竿短 5 尺.设绳索长 x 尺, 竿长 y 尺,则符合题意的方程组是________________________
19.两条直线相交所成的四个角中,有两个角分别是(2x-10)°和(110-x)°,则 x=_____. 20.在平面直角坐标系中,若 x 轴上的点 P 到 y 轴的距离为 3,则点 P 的坐标是 ________.
① 最多可采购甲商品多少件? ② 若要求购买乙商品的数量不超过甲商品数量的 4 ,请给出所有购买方案,并求出该单位购
5
买这批商品最少要用多少资金. 25.把一堆书分给几名学生,如果每人分到 4 本,那么多 4 本;如果每人分到 5 本,那么 最 后 1 名学生只分到 3 本.问:一共有多少名学生?多少本书?
P1(1,1),紧接着第 2 次向左跳动 2 个单位至点 P2(﹣1,1),第 3 次向上跳动 1 个单位至点 P3,第 4 次向右跳动 3 个单位至点 P4,第 5 次又向上跳动 1 个单位至点 P5,第 6 次向左跳 动 4 个单位至点 P6,….照此规律,点 P 第 100 次跳动至点 P100 的坐标是( )
8.D
解析:D 【解析】 【分析】 【详解】
x 1 2①
解:
x
1
2②
,由①得
x>1,由②得
x≤3,
所以解集为:1<x≤3;
故选 D.
9.A
解析:A 【解析】
分析:由 S△ABC=9、S△A′EF=4 且 AD 为 BC 边的中线知 S△A′DE= 1 S△A′EF=2, 2
1
S△ABD=
2
S△ABC=
【详解】
解:经过观察可得: P1 和 P2 的纵坐标均为1, P3 和 P4 的纵坐标均为 2 , P5 和 P6 的纵坐标
均为 3 ,因此可以推知 P99 和 P100 的纵坐标均为100 2 50;其中 4 的倍数的跳动都在 y 轴的右侧,那么第 100 次跳动得到的横坐标也在 y 轴的右侧. P1 横坐标为1, P4 横坐标为 2 , P8 横坐标为 3 ,以此类推可得到: Pn 的横坐标为 n 4 1( n 是 4 的倍数).
A.线段 PA 的长度 B.线段 PB 的长度 C.线段 PC 的长度
2x 2 0 11.不等式组 x 1 的解在数轴上表示为( )
D.线段 PD 的长度
A.
B.
C.
D.
12.若 x<y,则下列不等式中不成立的是( )
A. x 1 y 1 二、填空题
B. 3x 3y
C. x y 22
D. 2x 2y
解析:B 【解析】
由点到直线的距离定义,即垂线段的长度可得结果,点 P 到直线 l 的距离是线段 PB 的长 度,
故选 B.
11.D
解析:D
【解析】
【分析】
解不等式组求得不等式组的解集,再把其表示在数轴上即可解答.
【详解】
2x 2 0①
x 1②
,
解不等式①得,x>-1;
解不等式②得,x≤1;
坐标. 22.我市盘山、黄崖关长城、航母公园三景区是人们节假日游玩的热点景区.某中学对七 年级(1)班学生今年暑假到这三景区游玩的计划做了全面调查,调查分四个类别,A 游三 个景区;B:游两个景区;C:游一个景区;D:不到这三个景区游玩.根据调查的结果绘 制了不完全的条形统计图和扇形统计图(如图①、图②)如下,请根据图中所给的信息, 解答下列问题:
余 4.5 尺,将绳子对折再量长木,长木还到余1尺,问木长多少尺?”设绳长 x 尺,木长 y
尺.可列方程组为__________. 17.已知(m-2)x|m-1|+y=0 是关于 x,y 的二元一次方程,则 m=______. 18.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿 子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索
∴不等式组的解集是﹣1<x≤1.
不等式组的解集在数轴上表示为:
故选 D. 【点睛】 本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大 小小找不到”的原则是解决问题的关键.
12.D
解析:D 【解析】 【分析】 利用不等式的基本性质判断即可. 【详解】 若 x<y,则 x﹣1<y﹣1,选项 A 成立; 若 x<y,则 3x<3y,选项 B 成立;
(2)在 a 的取值范围中,当 a 为何整数时,不等式 2ax x>2a 1的解集为 x<1?
24.某单位需采购一批商品,购买甲商品 10 件和乙商品 15 件需资金 350 元,而购买甲商品 15 件和乙商品 10 件需要资金 375 元.
1 求甲、乙商品每件各多少元?
2 本次计划采购甲、乙商品共 30 件,计划资金不超过 460 元,
A. 3x 2y 30 B. 2x 3y 30 C. 2x 3y 78 D. 3x 2y 78
4.已知
是关于 x,y 的二元一次方程 x-ay=3 的一个解,则 a 的值为( )
A.1
B.-1
C.2
5.如图,如果 AB∥CD,那么下面说法错误的是( )
D.-2
A.∠3=∠7
B.∠2=∠6
2020-2021 江阴市江阴市英桥国际学校初一数学下期末试卷附答案
一、选择题
1.已知实数 a,b,若 a>b,则下列结论错误的是
A.a-7>b-7
B.6+a>b+6
C. a >b 55
D.-3a>-3b
2.如图,在平面直角坐标系 xOy 中,点 P(1,0).点 P 第 1 次向上跳动 1 个单位至点
∴A′E∥AB,
∴△DA′E∽△DAB,
则( AD )2 AD
S S
A DE ABD
(
,即
AD AD
)2 1
2 9 2
,
解得 A′D=2 或 A′D=- 2 (舍), 5
故选 A. 点睛:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性